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ABSTRACT

Neural network-based anomaly detection remains challeng-
ing in clinical applications with little or no supervised in-
formation and subtle anomalies such as hardly visible brain
lesions. Among unsupervised methods, patch-based auto-
encoders with their efficient representation power provided
by their latent space, have shown good results for visible le-
sion detection. However, the commonly used reconstruction
error criterion may limit their performance when facing less
obvious lesions. In this work, we design two alternative de-
tection criteria. They are derived from multivariate analysis
and can more directly capture information from latent space
representations. Their performance compares favorably with
two additional supervised learning methods, on a difficult de
novo Parkinson Disease (PD) classification task.

Index Terms— Anomaly detection, Neuroimaging, Deep
learning, Parkinson Disease, Mixture models, One-Class
SVM.

1. INTRODUCTION

Most recent success of deep supervised learning, in the con-
text of medical image analysis, critically depends on the
availability of large sets of annotated images. The perfor-
mance of supervised learning methods, on tasks such as
anomaly detection, is then limited when the studied pathol-
ogy is rare or when a fine expert annotation is required. A
typical example is that of de novo (just diagnosed) Parkinson
Disease (PD) patients, for which brain structural abnormali-
ties are subtle and hardly visible in standard T1w or diffusion
MR images. A natural alternative to supervised methods is
outlier detection or Unsupervised Anomaly Detection (UAD).
This formalism requires only the manual identification of
”normal” data to construct a tractable model of normality,
while outliers are then automatically detected as samples
deviating from this normal model. Different categories of
UAD methods have been applied to medical image segmen-
tation or detection tasks. They mainly differ in the features
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used to learn the normal model and the score computed to
assess the distance to this model, which in brain anomaly
detection is typically assessed at the voxel level. Illustra-
tions include several auto-encoders (AE) architectures that
have been compared in [1]. These AE models are trained
to perform a “pretext” task on normal images consisting in
the reconstruction of these images. For an arbitrary image,
voxel-wise anomaly scores are then computed as the recon-
struction errors, i.e. the differences between the image voxels
and the reconstructed ones. Such errors are expected to be
much larger for unseen voxels from patient images, provided
the chosen architecture has initially well captured the normal
subjects main features. To further investigate the importance
of the normal model construction, building on this standard
deep UAD formalism, we recently compared different auto-
encoders architectures for the detection of subtle anomalies
in the diffusion parametric maps of de novo PD patients [2].
This comparison included an auto-encoder (AE), taking 2D
transverse slices as input, and the adaptation of a patch-based
siamese auto-encoder (SAE) proposed in [3]. Our results
demonstrated encouraging performance with the SAE model
slightly outperforming the AE, thus indicating that patches
may indeed be advantageous, in particular for their ability to
capture local spatial neighborhood information around each
voxel. However, as regards the detection score, the study also
confirmed recent observations outlining the limitations of the
reconstruction error scores for the detection of very subtle ab-
normalities [4]. In this work, we propose to investigate other
detection procedures combining 1) enhanced normal mod-
els and 2) scoring rules derived from multivariate statistics.
Following the approach reported in [3], we consider a patch-
based approach but propose to perform the detection step in
the latent space of the auto-encoder. More specifically, latent
space representations of the normal images are extracted from
the patch-based SAE of [2], and then used as features to build
a normal model. Two types of models are considered, a non
parametric discriminative one class support vector machine
(OC-SVM) [5] and a parametric generative mixture model
[6] (see Figure 1 and next section for details). So doing, the



hope is to combine the representation power of patch-based
AE networks to extract relevant and subtle features, with the
efficiency of multivariate statistical models. These two com-
binations are then compared to a baseline UAD model based
on the reconstruction error and to two standard supervised
CNN, namely 3D ResNet and DenseNet.

2. UAD PIPELINE

The proposed framework for unsupervised brain anomaly de-
tection is depicted on Figure 1. The central AE is first trained
to learn the representation space of normal samples and re-
construct pseudo-normal images. The standard setting con-
sists of computing reconstruction error maps (as the differ-
ence between the input and output images) on which anoma-
lous unseen regions are expected to exhibit poor reconstruc-
tions or equivalently high anomaly scores. In this work, we
also investigate two other outlier detection rules based respec-
tively on a generative and a discriminative model designed to
capture information from the AE latent space.

2.1. Latent space feature extraction

To construct an efficient normal model, we consider a patch-
based network to enrich the latent space with local informa-
tion at the voxel level. Leveraging the architecture proposed
in [3], we use a SAE [7] composed of two replica of an auto-
encoder sharing the same weights, associated to the following
loss term :

LSAE(x1,x2) =
∑2
t=1 ||xt − x̂t||22 − α · cos(z1, z2)

which balances two objectives 1) decoding the representation
z learned from the encoder fed with patches x into a recon-
struction x̂ that is close from the original patch x and 2) hav-
ing close (in the sens of the cosine similarity) z for similar
patches1.

2.2. Outlier detection in the latent space

As an alternative to the reconstruction error ||x−x̂||22 between
a patch x and its reconstruction x̂, we present below two out-
lier detection procedures built from a collection of normal
patch representations (zi)1≤i≤n to account for normality in
the latent space.
A discriminative approach: One-Class SVM.
The goal of the OC-SVM [8] is to construct a decision func-
tion f , positive on the estimated support of the distribution
of normal samples zi, negative elsewhere and null on the
frontier. The training samples from the normal class are first
mapped to a higher dimensional space via a feature map φ(·)
associated with a kernel k such that k(zi, zj) = φ(zi) ·φ(zj).
As the problem is linear in this redescription space, the pa-
rameters w and ρ of the hyperplane w · φ(z) − ρ = 0 are

1In the case of learning on brain MR images,“similar” patches means
that the patches are located in the same place in the brain, which is possible
because all MRI’s are registered to a common atlas beforehand.

obtained by solving a convex optimization problem aiming at
maximizing the distance of the hyperplane from the origin.
The decision function can then be expressed as f(z) =
w · φ(z) − ρ. In a typical scenario, samples with negatives
scores of f would be considered outliers. During inference, z
extracted from patches can be evaluated by the decision func-
tion to get an anomaly score corresponding to their distance to
the hyperplane. This anomaly score, attributed to the central
voxel of each patch, then provides an anomaly score map for
the whole image. An ensemble of OC-SVM scores, trained
on different zi is used to provide a more robust anomaly map.
A generative approach: multivariate mixtures.
While OC-SVM estimates only the support of the normal
model, the goal here is to estimate the full normal distri-
bution. To this end, we use a mixture model distribution
p, denoted by MMST , whose individual components are
multiple scale t-distributions (MST ):

p(z; Θ) =
∑K
k=1 πkMST (z;θk)

with Θ = (πk,θk)1≤k≤K , πk ∈ [0, 1] and
∑

k=1:K

πk = 1

MST distributions are generalizations of the multivariate t-
distribution that extend its Gaussian scale mixture represen-
tation. The standard univariate scale variable is replaced by
a M -dimensional scale variable (Wm)1≤m≤M ∈ RM where
M denotes the latent space dimension. This allows a richer
variety of shapes beyond elliptical distributions. The scale
variable Wm for dimension m can be interpreted as account-
ing for the reliability of this dimension and is typically small
when z is far from the mean parameter. The specific defini-
tion can be found in [9]. Given a learning set of (zi)1≤i≤n,
the estimation of the model parameter denoted by Θ̂n is the-
oretically feasible using a standard expectation-maximization
(EM) algorithm but is too time and memory costly in practice
when the amount of data is large. In this work, we therefore
resort to an online version of EM [10] that we derived for our
MMST model as detailed in [11]. Finally given a latent
representation of a patch z, we can use the scale variables to
derive a measure of proximity f to the learned normal model:
f(z) = max1≤m≤M w̄z

m, with w̄z
m = E[Wm|z; Θ̂n], where

the expectation is computed for the learnedMMST model
and is typically larger when at least one dimension of z is well
explained by the model. This measure of proximity, available
for each voxel, provides in turn an anomaly score map for the
whole image.

2.3. Post-processing of the anomaly maps

A threshold value (the abnormality threshold) set to an ex-
treme quantile (eg. in the range of [90%, 100%[) of the
anomaly scores distribution in the normal train samples was
derived for each method (reconstruction error, encoder +
OC-SVM and encoder + MMST ) and applied to the test
patient and test control dataset. The resulting binary anomaly
maps can serve to identify suspect regions. To help evaluate
the localization of these anomalies, two atlases were consid-



Fig. 1: The trained encoder extracts latent representation z of patches, used by 1) a decoder to compute reconstruction error in the image
space 2) OC-SVM and 3) MMST to perform outlier detection in the latent space. Anomaly maps representing the percentage of abnormal

voxels per brain structures are shown on the right, warm colors corresponding to the highest percentages.

ered and fused: the Neuromorphometrics atlas [12] which
segments the brain into 8 macro-regions and the MNI PD25
atlas [13] which is specifically designed for PD patients ex-
ploration and delineates 8 relevant subcortical structures (see
Fig 2). The percentage of anomalous voxels was computed
for each of these regions of interest leading to region-wise
anomaly maps as depicted on the right of Figure 1.

3. EXPERIMENTS

3.1. Data description and splitting

T1-weighted and DTI MR scans from 54 healthy controls
and 124 de novo PD patients were extracted from the PPMI
database [14]. All retrieved images were acquired with the
same MR scanner model (3T Siemens Trio Tim). Mean diffu-
sivity (MD) and fractional anisotropy (FA) maps were com-
puted from DTI using MRtrix3.0. All maps X (T1w, FA,
MD) were normalized in intensity with
Xnorm = X−1%quantile(χ)

99%quantile(χ)−1%quantile(χ) with χ being the in-
tensity distribution of train controls images of one modality.
All maps were non-linearly registered onto the MNI atlas re-
sulting in images of dimension 121× 145× 121 with a voxel
size of 1.5 × 1.5 × 1.5 mm3. As for the cross-validation,
healthy controls dataset was divided into 10 folds following a
bootstrap procedure [15], leading to each fold containing [[39,
41]] train controls and [[13, 15]] test controls. The same pro-
cedure was performed with PD patients, leading to each fold
containing [[36, 40]] train patients and [[82, 86]] test patients.
Special care was put into balancing the age and sex distribu-
tion of each fold.

3.2. Hyperparameters of the UAD pipeline

The encoder was composed of 4 convolutionnal blocks with
kernel size (5, 5), (3, 3), (3, 3) and (3, 3), with strides re-
spectively (1, 1), (1, 1), (3, 3) and (1, 1), number of filters
respectively 3, 4, 12 and 16, no padding and GeLu activation.
Each block was followed by a batch normalization block. The

decoder was the symmetric counterpart of the encoder. The
input of the encoder consisted of the patches of each of the
3 modalities combined as channels. The SAE model was
trained with [[975000, 1025000]] patches of size 15×15×3 (25
000 patches per subject). We used Adam optimizer [16] for
20 epochs, with default hyperparameters, best model selec-
tion based on validation loss and training batch size of 1000.
An ensemble of five OC-SVM were trained, each with 500 zi
samples extracted from 500 random brain localizations from
the train set and the mean of the 5 decision functions was
used as the final anomaly score (note that this differs from [3]
where one OC-SVM is trained per voxel). We used ν = 0.03
and a Gaussian kernel whose hyperparameter 1

γ was set to the
product of variance and dimension of the zi. ForMMST ,
we used K = 9. We set the abnormality threshold defined in
section 2.3 to 98% (experiments have shown that the choice
of this threshold has little influence on the final performance).

3.3. Performance evaluation of the UAD models

Performance of the three methods was evaluated as in [6, 2].
The percentage of abnormal voxels in the whole brain or
per region of interest derived from the post-processing of
the anomaly score maps (see section 2.3) was employed
to classify the test controls and test patients as healthy
or pathological (PD). By varying a threshold on this met-
ric, we can draw a ROC curve from the test population,
and derive the best-achievable g-mean score defined as√

Sensitivity× Specificity. g-mean score is used as a perfor-
mance metric to compare the different classification models.
In the absence of reference annotations of the brain struc-
tures affected by the pathology, this pretext classification task
allows to indirectly evaluate if the anomalies detected by
the UAD models are characteristic of the pathology. It was
computed either considering the percentage of anomalies in
the whole brain, or in each of the regions of interest of the
Neuromorphometric and MNI PD25 atlases.



Fig. 2: g-mean score of the 3 UAD and 2 CNN models. For UAD models, we consider anomaly % on the whole brain and per region,
including the 8 subcortical structures from the MNI PD25 atlas: substantia nigra (SN), red nucleus (RN), subthalamic nucleus (STN), globus

pallidus interna and externa (GPi, GPe), thalamus, putamen and caudate nucleus.

3.4. Comparison with supervised approaches

We compared classification performance of the three UAD
models (reconstruction error, encoder + OC-SVM and en-
coder + MMST ) to that of two standard supervised 3D
convolutional networks: 3D ResNet with 18 layers [17] and
DenseNet-264 [18]. Each of these 2 CNN took as input the
whole 3D T1w, MD and FA brain images combined as chan-
nels. A dense layer was added at the end of each network
in order to have a one-dimensional output for classification.
For each fold, the models were trained on 75% of train con-
trols and train patients, the remaining 25% being kept for
validation. Training was performed with Adam optimizer
[16] for 300 epochs with default hyperparameters and a batch
size of 8. Note that the train patients described in section
3.1 were only used for training of these two supervised net-
works. These two models were evaluated on the same test
patient dataset as used for the UAD models thus enabling a
fair comparison.

4. RESULTS

The g-mean score of each method is reported in Figure 2.
We notice that the 3 UAD models achieve a median g-mean
score around 0.65 on the whole brain, and in the range [0.6,
0.7] when only considering certain macro-regions (e.g. tem-
poral or occipital lobe). For subcortical structures (e.g. RN
or SN), performance drop to the range [0.5, 0.6] and even
lower for some methods (especially Encoder + OC-SVM). At
this stage of the PD progression, these subcortical structures
seem slightly impacted. Note that the supervised methods,
Resnet3D and Densenet, provide on the whole brain a me-
dian g-mean score in the range [0.55, 0.6], lower than the

UAD models considered in this study.

5. DISCUSSION AND CONCLUSION

Auto-encoders have shown to be a reference method regard-
ing unsupervised anomaly detection [1] but have also shown
limits when used for very subtle anomalies [4]. We have in-
vestigated whether an analysis of the latent space could im-
prove these performances compared to a classical reconstruc-
tion error approach. We used two methods based on different
paradigms: One-Class SVM (discriminative) and Mixture of
Multiple scaled t-distributions (generative). It is clear from
the supervised networks results that the proposed task, dis-
criminating de novo PD from controls, is very hard: the su-
pervised methods performances fall below the unsupervised
methods ones, validating our approach. As seen with the per-
formance of the reconstruction error, we found that the latent
space UAD methods are strong competitors but do not sur-
pass the former. In comparison with [2] where only diffusion
was used, we report that the addition of T1w images does not
improve significantly the performances.
We also demonstrated that using a patch-based encoder, as a
feature extractor to feed a MMST model, gave promising
results as it allows capturing some spatial context, which was
lacking in [6]. Finally, the discrimination of PD based only on
subcortical structures seems not feasible, as reported in [19]
for substantia nigra, at an early stage of the pathology.
Future work includes investigating whether the combination
of reconstruction error and latent space anomaly maps can in-
crease the classification performance. We aim to extract 3D
features with the auto-encoders and complete the multi-modal
approach by adding T2w and T2∗w images as in [20].
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[10] O. Cappé and E. Moulines, “On-line expectation–
maximization algorithm for latent data models,” JRSS
B, vol. 71, no. 3, pp. 593–613, 2009.

[11] G. Oudoumanessah, M. Dojat, and F. Forbes, “Un-
supervised scalable anomaly detection: applica-
tion to medical imaging,” Research report, Oct.
2022, https://hal.archives-ouvertes.
fr/hal-03824951.

[12] R. Bakker, P. Tiesinga, and R. Kotter, “The Scalable
Brain Atlas: Instant Web-Based Access to Public Brain
Atlases and Related Content,” Neuroinformatics, vol.
13, pp. 353–366, 2015.

[13] Y. Xiao, V. Fonov, S. Beriault, et al., “Multi-contrast un-
biased MRI atlas of a Parkinson’s disease population,”
Int J Comput Assist Radiol Surg, vol. 10, pp. 329–341,
2015.

[14] Kenneth Marek, Sohini Chowdhury, Andrew Siderowf,
et al., “The parkinson’s progression markers initiative
(ppmi) - establishing a pd biomarker cohort,” Annals
of Clinical and Translational Neurology, p. 1460–1477,
2018.

[15] Russell A. Poldrack, Grace Huckins, and Gael Varo-
quaux, “Establishment of Best Practices for Evidence
for Prediction: A Review,” JAMA Psychiatry, pp. 534–
540, 2019.

[16] Diederik P Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” in ICLR (Poster), 2015.

[17] D. Tran, H. Wang, L. Torresani, et al., “A closer look at
spatiotemporal convolutions for action recognition,” in
2018 IEEE CVPR, 2018, pp. 6450–6459.

[18] G. Huang, Z. Liu, G. Pleiss, et al., “Convolutional net-
works with dense connectivity,” IEEE PAMI, 2019.

[19] J. Prasuhn, M. Heldmann, T. F. Münte, and
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