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Abstract: We report optimized mid-infrared supercontinuum generation in a silicon-germanium on 

silicon waveguide with varying dispersion. We employ the generated supercontinuum for a proof-

of- principle demonstration of free-space parallel gas spectroscopy.  

© 2022 The Author(s)  

 

1. Introduction 

Mid-infrared (MIR, from 3 to 13 µm) supercontinuum (SC) sources are of great interest for high precision and high 

throughput spectroscopy [1,2]. The MIR band is known as the molecular fingerprint region. Many important 

molecules (e. g. pollutants and greenhouse gases) have fundamental roto-vibrational modes absorbing in the MIR 

region. Therefore, molecule detection and spectroscopy in the MIR can have orders of magnitudes higher sensitivity 

than in the near-infrared and visible regions, where only weak overtones of the fundamental absorption lines are 

present. However, commercial MIR technology is still relatively bulky and expensive. The last ten years have seen 

a quest to develop compact and cheaper sensing and spectroscopic devices with high performances. An integrated 

MIR SC is an ideal source for such devices, since it can provide broadband, fast, and high resolution measurements.  
Germanium-based waveguides are particularly interesting for integrated MIR SC generation, since they 

combine a wide transparency window in the MIR (up to 8.5-13 µm, depending on the germanium content) [3], and 

high nonlinearity [4]. In addition, the use of group IV materials is particularly important for future commercial 

applications, since it allows to leverage the well-developed microfabrication technologies of the electronic industry 

for cost-effective mass production of the final devices. In the last years, we have demonstrated SC generation in 

silicon-germanium and pure germanium waveguides [5,6], as well as the ability to control the properties of the 

generated SC [7–9]. SC generation in silicon-germanium waveguides covering the entire molecular fingerprint 

region has also been demonstrated [10]. The properties of the generated SC strongly depend on the group velocity 

dispersion profile of the underlying waveguide. Typically, a waveguide pumped in the anomalous dispersion region 

generates a broader SC with, however, low spectral flatness and poor coherence. On the other hand, high spectral 

flatness and coherence can be achieved in a waveguide operating in the all-normal dispersion regime, but at the cost 

of reducing the SC bandwidth. High resolution, multi-species parallel absorption spectroscopy would greatly 

benefit from a SC that combines high spectral flatness and a broad spectral coverage, i.e. from a design that allows 

to overcome this trade-off.  

Here, we employ an air-clad silicon-germanium on silicon (SiGe/Si) two-stages inverse-tapered waveguide to 

enhance the efficiency, the spectral flatness, and the spectral coverage of our SC. We harness the spectral quality of 

our SC for a proof-of-principle demonstration of parallel free-space spectroscopy of water vapor and carbon 

dioxide. 

2. Supercontinuum Generation and Parallel Gas Spectroscopy  

Our waveguide consist of a 3.3 µm thick air-clad Si0.6Ge0.4 core on a silicon substrate (fig. 1a). At the input side, the 

waveguide is 3.25 µm wide and has a 3 mm long straight section, followed by an inverse-tapered section which 

increases the waveguide width up to 9 µm at the output side. We pumped the waveguide at 3.9 µm, in the 

anomalous dispersion regime (fig. 1b, blue curve), with 200 fs pulses at 63 MHz repetition rate at 60 mW average 

power. The top part of figure 1c shows the generated SC, recorder with a Fourier transform interferometry based 

optical spectrum analyzer. The small cross straight section at the input enhances the efficiency of the nonlinear 



spectral broadening, which is maximized by the anomalous dispersion profile. The inverse-tapered section allows to 

continuously shift the position of the two zero dispersion wavelengths (fig. 1b), and therefore the spectral location 

of the generated dispersive waves, resulting in a flat and broadband spectrum. The SC extension at the long 

wavelength side is limited by the detection band of our spectrum analyzer, which is sensitive up to 5.5 µm. The 

absorption from water vapor and carbon dioxide in the free-space path between the waveguide output and the 

spectrum analyzer are clearly visible in the spectrum. In particular, the improved spectral flatness in the 2.5-3 µm 

region, resulting from our particular design, allows to well resolve the absorption lines of water. The bottom part of 

figure 1c shows the absorbance of water (left) and carbon dioxide (right) as retrieved from our measurements (blue) 

and compared to the HITRAN database (red). The agreement is relatively good, and it is limited by the resolution, 

of our spectrum analyzer.  

3. Conclusion 

In conclusion, we have demonstrated efficient MIR SC generation in a SiGe/Si waveguide. The waveguide was 

designed to generate a broadband and flat spectrum. We harnessed the spectral quality of our SC for a proof-of- 

principle demonstration of multi-species parallel gas spectroscopy. 
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