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Abstract

Template attacks consist of two stages: a profil-
ing and a matching step. This way of attacking a
circuit can be shown to be optimal when the pro-
filing exactly describes the side-channel leakage
of the circuit to be attacked. On the contrary,
this article focuses on identifying the problems
that arise when there is a discrepancy between
the templates and the traces to match. Based
on a real-world case-study, we show that two
phenomena can hinder the success of template
attacks when the precharacterized templates are
outdated: the traces can be desynchronized and
the amplitudes can be scaled differently. We ob-
serve that the consequence of these distortions
can be as dramatic as ranking the correct key
last, which is the worst degradation possible for
a side-channel distinguisher; Since an attacker is
usually interested in the first keys in the rank-
ings. Then we suggest two ways to correct the
templates mismatches: waveform realignment
and acquisition campaigns normalization. After

this processing, it appears that the template at-
tacks almost do not loose any efficiency in terms
of success rate and guessing entropy with respect
to an attack with ideal templates.

Keywords: Template attack ; Resynchro-
nization ; Side-channel attacks.

1 Introduction

Template attacks [10] are side-channel attacks
based on a precharacterization phase. This
phase is carried out off-line on an profiling circuit
with known key, once for all the subsequent at-
tacks. It aims at preparing templates that char-
acterize the leakage of the circuit, in order to
continue with the most powerful attacks, namely
Bayesian attacks. These two phases are also re-
ferred to as “training” and “matching”.

To our best knowledge, most state-of-the-art
literature contains only proof-of-concept attacks,
where the traces intended for the training and
the matching phases are acquired consecutively
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on the same circuit [10, 18, 3, 12, 4, 1, 21, 15,
8, 9]. This case is the most favorable to the at-
tacker, since the templates are built in extremely
similar conditions to that of the real attack. In
more realistic cases, an attacker does not train
and do the attack on the same circuit at the same
moment. The effect of time can add new fac-
tors that may make the attack more difficult. In
fact, the adversary should conduct traces acqui-
sition (a difficult and error-prone experimental
process) ideally in the same way for the train-
ing and for the matching. Every step involved
in an acquisition, from the characteristics of the
measurement resistor to the configuration of the
oscilloscope, should be as similar as possible. To
assess in which respect acquisition discrepancies
can impede an adversary, we conduct some ex-
periments that consist of changing conditions to
study the induced effects. We identified two ma-
jor problems: the curves desynchronization in
time and in amplitude. We explore some strate-
gies available to an adversary using template at-
tacks to bypass them.

Recent works have formalized the quantity of
information that is lost when templates are not
portable. Notably, the notation of perceived in-
formation is introduced in [20] and applied on
a protected circuit in [19]: it is equal to the
information leakage an evaluator estimates us-
ing a model (templates obtained from another
circuit) that differs from the actual leakage of
the targeted circuit (on which matching is done).
It is shown that this information is always less
or equal to that of the hypothetical case where
the model exactly describes the targeted circuit.
Thus, the mismatch between the templates the
targeted circuit underestimates the leakage. In
this paper, we do not focus on information theo-
retic metrics, but rather on attack metrics. This
distinction has been introduced in [22], to make

a difference with the vulnerability assessment
(leakage metrics) and the security assessment
(attack metrics). Thus, we intend to practically
conduct template attacks using the same device
at different times. In addition, we target unpro-
tected implementations. Thus, the differences
in the templates due to process variation is ex-
pected to be much less dominant than in [19],
where the study is conducted on a purportedly
power-constant implementation. This motivates
the focus of this paper on attack metrics.

The rest of the article is structured as fol-
lows. Our methodology, intentionally practice-
oriented, is first explained in Sec. 2. Then, we
recall in Sec. 3 how principal subspaces can be
used to reduce the dimensionality of templates.
Resynchronization techniques to temporally re-
align campaigns are discussed in Sec. 4. Their
result is given in Sec. 5. The correction of ver-
tical scaling mismatches is presented in Sec. 6.
Eventually, Sec. 7 is the final evaluation of the
portability of templates with horizontal and ver-
tical correction. The conclusions and perspec-
tives can be found in Sec. 8.

2 Methodology

This article aims at investigating the practical
effects of possible experimental conditions mis-
matches between training and matching phases
on the attacks’ success rate and guessing en-
tropy [22]. In this study, we focus on the effect
of time in a template attack: the reproducibility
of measurement setups is challenged. We choose
to consider three sets of measurements acquired
on an ASIC implementing DES:

1. Campaign A: 80,000 measurements ob-
tained in year 2006 at nominal voltage
(about 1.2 V) serve to build the templates,
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2. Campaign B: 50,000 measurements ob-
tained in year 2010 at nominal voltage
(about 1.2 V) on the same ASIC are used
for matching,

3. Campaign C: 50,000 measurements ob-
tained in year 2010 at reduced voltage
(about 1.0 V) on the same ASIC are also
used for matching.

The goal of the campaign C is to provide a com-
parison of two campaigns (B and C) that were
carried out close in time, but with slightly differ-
ent experimental conditions. Here, the variation
comes from the power supply. More precisely,
the common features between the A and B/C
campaigns are listed below:

� The same ASIC is tested.

� It is soldered on the same evaluation board
(described in Appendix B of [13]).

� The same differential voltage probe (Agilent
1132A) is used to measure the voltage drop
over a resistor placed between the ground of
the evaluation board and the ground of the
ASIC.

� The same oscilloscope (Agilent infiniium
54855A DSO) is used, with exactly the same
setup file (refer to Tab. 1 that describes the
settings of the several acquisitions).

The differences between the A and B/C cam-
paigns are:

� The wiring between the evaluation board
and the oscilloscope has been redone
(thereby incurring maybe some delay vari-
ations, for instance on the trigger line); it
is different between A and B, A and C, but

equal for B and C. Indeed, the only mod-
ification done between campaigns B and C
has consisted in turning the power supply
button to reduce the voltage from 1.2 to 1.0
volts.

� The spying resistor has been changed be-
tween campaigns A and B/C.

� The ASIC has been aging, and has thus un-
dergone hot-carrier-induced degradation [5]
(an effect that is hard to quantify on a
circuit that was not designed to be tested
against aging).

The first and second order statistics on the
three campaigns are given in Fig. 1, 2 and 3.

It can be noticed that messages vary ran-
domly, and that the encryption starts around
time sample 5,000 and stops at about sample
15,000. The increase of power consumption dur-
ing these sixteen clock cycles coincides with the
sixteen rounds of DES encryption. As can be
seen on the same figures (right part), the ac-
companying decrease of the standard deviation
is consistent with the fact the control logic and
lines become deterministic during the encryp-
tion, thereby subtracting a noise contribution
from the encryption process. Indeed, in our ar-
chitecture, the DES datapath is left enabled in
the “idle” state, which makes it produce high
and inconsistent activity outside encryption tim-
ing windows. From the variance curves, other
interesting comments can be done:

� Regardless of the acquisition campaign (A,
B or C), there is a constant noise level
(slightly below 1 mV), that represents
the intrinsic acquisition noise (incurred by
quantization and thermal fluctuations).
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Table 1: Setup of Agilent’s files in the three campaigns studied in this article – this data has been
extracted after the campaigns from the Agilent “.bin” files (whose format is described in [2] at
pages 409-413).

Campaign A Campaigns B & C

### Binary Header Format

# Version: 10

# File Size: 80176

# Nbr of Waveforms: 1

### Waveform Header

# Header Size: 140

# Waveform Type: HORIZONTAL_HISTOGRAM

# Nbr of Waveform Buffers: 1

# Nbr of Hits: 20003

# X Display Range: 7.4228448e-51

# X Display Origin: 2.32682e-06

# X Increment: 5e-11

# X Origin: 2.32676844e-06

# X Unit: 0

# Y Unit: 0

# Date: 8 APR 2006

# Time: 11:31:01

# Model: 54855A:

# Label: channel 3

# Tag value: 0

# Index: 0

### Waveform Data Header:

# Waveform Data Header Size: 12

# Buffer Type: NORMAL_32

# Bytes Per Point: 4

# Buffer size (in bytes): 80012

### Binary Header Format

# Version: 10

# File Size: 80176

# Nbr of Waveforms: 1

### Waveform Header

# Header Size: 140

# Waveform Type: HORIZONTAL_HISTOGRAM

# Nbr of Waveform Buffers: 1

# Nbr of Hits: 20003

# X Display Range: 7.4228448e-51

# X Display Origin: 2.32682e-06

# X Increment: 5e-11

# X Origin: 2.32676844e-06

# X Unit: 0

# Y Unit: 0

# Date: 27 MAY 2010

# Time: 20:16:21

# Model: 54855A:

# Label: channel 3

# Tag value: 0

# Index: 0

### Waveform Data Header:

# Waveform Data Header Size: 12

# Buffer Type: NORMAL_32

# Bytes Per Point: 4

# Buffer size (in bytes): 80012
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Figure 1: Mean and standard deviation trace for the campaign A.
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Figure 2: Mean and standard deviation trace for the campaign B.
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� The height of the variance peaks at the clock
rising edges is increasing with that of the
average peaks; This confirms that this vari-
ance actually models the algorithmic noise.
As a matter of fact, it is indeed expected
that the algorithmic noise is an increasing
function of the direct power consumption.

The overall shape of these three campaigns
looks quite different, especially in amplitude.
Now, if we have a closer look at the synchro-
nization of the campaigns between themselves,
we observe that they are not in phase. The
Fig. 4(a) typically emphasizes the timing mis-
match between A, on the one hand, and B & C
on the other hand. This figure is zoomed on the
first round of encryption.

3 Template Attack with PCA
Preprocessing

Template attacks require to characterize the
leakage in an off-line step. This characteriza-
tion gives all information needed to attack and
recover the encryption key. In the usually as-
sumed Gaussian model, the used data consists
of averages and covariance of each set of traces
categorized according to one model. During the
attack phase, the adversary uses the maximum
likelihood principle to rank the key hypotheses.
Statistically, the more traces, the better the cor-
rect key emerges between the others. Ideally, the
attacker uses these templates for a successful at-
tack. However, the large size of covariance matri-
ces makes the calculation infeasible in the case of
long traces, since matrices are badly conditioned.
In practice, points of interest (POIs) must be
found to carry out all calculations. Many meth-
ods are presented in the literature. Among them
we find:

1. Manual selection, which requires expertise;

2. Sum Of Squared pairwise (T-)Differences
(or sosd [11] / sost [12]);

3. Linear Discriminant Analysis (LDA [21])

4. Principal Components Analysis (PCA [4]).

To be accurate, the fourth method is a particu-
lar case of the so-called principal subspaces tem-
plate attacks [21]. Indeed, the aim of PCA is
to reduce the data to a lower-dimensional repre-
sentation that summarize a large part of (if not
all) the variability. In this article, we compare
the templates in PCA subspaces, using only one
direction for the projections, which will move
from one multivariate analysis to a univariate
analysis, while keeping the maximum informa-
tion. For one or more traces acquired on the
target circuit, the attack phase consists in guess-
ing the secret key κ used for encryption using
Bayes’ rule. The attack is successful if and only
if:

κ = argmaxk

1√
(2π)n|Λk|

exp−1

2
·(τ−µk)TΛ−1

k (τ−µk) .

Here, τ is the attacked trace, the pairs (µk,Λk)
are the templates that correspond to the sup-
posed key k, and n is the number of retained
directions.

Traces, averages and covariances are a pri-
ori projected into a new database given by the
PCA to reduce dimensions. New directions are
the eigenvectors of the covariance matrix con-
structed from averages representing each tem-
plate. We choose to work with the first eigenvec-
tor as unique direction because it concentrates
the maximum of variance: the table 2 shows the
large difference between the first and the follow-
ing eigenvalues for all the campaigns.
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Figure 3: Mean and standard deviation trace for the campaign C.
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Figure 4: Comparison of statistics properties of campaigns A, B and C.
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Table 2: Eigenvalues of PCA on campaigns A, B and C.

PCA Campaign

eigenvalues A B C

Eigenvalue 1 0.00062368 0.00482484 0.0033602

Eigenvalue 2 9.3984e-06 5.0050e-05 3.3966e-05

Eigenvalue 3 5.3011e-06 3.5375e-05 2.4543e-05

Eigenvalue 4 2.6232e-06 1.3643e-05 1.0195e-05

In this article, we focus on the Hamming dis-
tance model on the first round and for the first
substitution box, given by |(R0⊕ (S(R0⊕K1))⊕
P−1(L0))[1 : 4]| ∈ {0, 1, 2, 3, 4} and detailed in
Fig. 5. Consequently we obtain five templates in
the profiling phase.

4 Horizontal Resynchroniza-
tion: POC and AOC

Misalignment of traces is a problem customar-
ily encountered in side-channel analysis. Sev-
eral methods have been suggested to recover
the proper synchronization between curves.
Amongst them, we review amplitude-only and
phase-only correlations (abridged AOC and
POC [16]). Those methods consist in estimat-
ing the offset between two traces by maximizing
their cross-correlation, or the cross-correlation of
their phase. A survey of these methods can be
found in [14].

In this section, we compare their efficiency.
For this and only for the purpose of compari-
son, we assume to know the keys and we proceed
to a training on the traces attacked using PCA.
If the correct partitioning was known (which is
true for the templates but not for the traces un-

der attack), we could compare the relative abil-
ity of AOC and POC to recover the correct off-
set by applying them on the first eigenvector of
PCA. The result, illustrated in Fig. 6(a), shows
that AOC is definitely less noisy. However, with-
out any prior information about the secret key
of the campaign to attack, only the average of
the campaigns or the traces one by one can be
used to estimate the timing offset. The perfor-
mance is respectively illustrated in Fig. 6(b) and
(c). In this case, the POC seems more adequate:
the maximal peak has a greater contrast for this
method.

We thus use the POC to estimate the misalign-
ment of the curves between campaigns A and B
on the one hand and A and C on the other. We
end up with a global resynchronization of the
curves, depicted in Fig. 7(a) and 7(b). After
this time shift, the first eigenvectors are also in
phase, as depicted in Fig. 8.

The exact figures for resynchronization are
given in Tab. 3; one sample represents 0.05 ns,
because the sampling rate is 20 Gsample/s. This
table shows that the a priori resynchronization
on the power traces is slightly different from that
using the first eigenvector of the PCA. Nonethe-
less, we rely in the following on these close values
to bring campaigns B and C in synchronization
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Figure 5: Datapath of DES involved in the attack of the first round.

with campaign A.

5 Successful Attack with Bad
Timing Shifts

We tested templates attacks on a large window
of offsets: [0..1, 000], which includes the offsets
of about 170 found previously. Campaign A is
used for training with whole set of 80,000 traces,
and Campaign B for matching. Currently, we
do not use the campaign C, which serves only
to see the effect of voltage changing. In the fol-
lowing we focus only on the success rate of the
resynchronized campaign B. The success rate on
campaign C is similar.

The success rate and the guessing entropy are
our comparison metrics. The first-order success
rate is, by definition, the percentage of times
that the key used during encryption is ranked
first among the 64 key assumptions. In most es-
timates, we have experienced that an increasing
number of matching traces generates an increas-
ing success rate. For the sake of representativ-
ity, we fix the number of traces to 1,000 to keep
enough traces for an accurate estimation of the
metrics. The guessing entropy is also important
because it illustrates the ranking among the en-

cryption key assumptions. In that sense, this
metric is less strict and thus more informative
than the success rate about the attack trend.

The purpose of this first experiment is to check
whether the success rate can reach 100% exactly
at the right shift given by the synchronization
characterized in Tab. 3. Basically, we want to
know if an attacker has a margin of error in
the resynchronization process. The first result
is that the offsets offering a decent success rate
or guessing entropy are not those actually given
by the resynchronization. Indeed, figures 9(a)
and 9(b) show that we have different peaks cor-
responding to different shifts.

On the other hand, using the strict guessing
entropy definition [22, Eqn. (2)], we face a prac-
tical problem of calculation: the ex aequo keys.
This problem is explained by the fact that more
traces added involve that keys probabilities tend
to limit values. Thus, it is possible that at some
moments, the probability of some guesses keys
becomes zero. This set of guesses keys may in-
clude the right key, in the case of traces badly
processed. Thereby, the right key will have the
same probability than other uncertain guessed
keys, and therefore, the guessing entropy will be
affected.
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(a) Synchronization of the first eigenvectors.
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(b) Synchronization of the campaigns means.
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(c) Synchronization of two randomly chosen raw traces.
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Figure 6: Results of resynchronization between (a) eigenvectors, (b) campaigns means and (c) two
samples traces, for AOC and POC.
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Figure 7: Comparison of statistical properties of resynchronized campaigns A, B and C.
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Table 3: Optimal time offsets found by POC on campaigns A, B and C, given in sample count
units.

Reference for Campaign

the synchronization A B C

1st eigenvector (See Fig. 6(a)) 0 166 166

Raw traces (See Fig. 6(c)) 0 170 172

With this in mind, we refine the concept of
guessing entropy by adding the notions of pes-
simistic and optimistic ranking. The ranking is
pessimistic (resp. optimistic) if we consider the
worst (resp. best) ranking for ex aequo keys. In
our figures, the guessing entropy we represent is
the average between the pessimistic and the op-
timistic guessing entropies. Thus, for instance,
when the template attack finds the correct key is
not the actual one with probability 1 (which can
happen due to the finite resolution of the float-
ing point numbers handled by personal comput-
ers), then the pessimistic ranking is 64 whereas
the optimistic one is 2. Therefore, we opt for a
“tradeoff” guessing entropy of (64 + 2)/2 = 33.

Figs 9(a) and 9(b) show a similarity between
success rate and guessing entropy. At this level,
we can deduce that an attacker may recover the
key with a high probability, even if she does not
synchronize the training and the matching cam-
paigns with the correct offset. Also, the adver-
sary will notice that, for some shifts, the key is
ranked last (i.e. at position 64 out of 64) in
terms of guessing entropy. This phenomenon is
repeated at different times. This is due to the
fact that the number of time offsets is greater
than the clock cycle.

We conjecture these errors are caused by the
difference in amplitude between the two cam-

paigns. Actually, the templates built from cam-
paign A do not have the same scale as traces from
campaigns B or C; Hence, they match poorly.
As a matter of fact, despite our wish to make
the acquisition of campaigns B and C close to
that of campaign A, we faced amplitudes mis-
matches. To validate our hypothesis, we take
traces from the same campaign A, and split them
into halves: one for training and the other for
matching. We shift each target trace in a win-
dow of 2,000 samples and examine the success
rate and the guessing entropy, represented in fig-
ures 10(a) and 10(b). We note that the success
rate grows to 100% at near zero offset, and re-
mains stuck at zero otherwise. As we can see in
Fig. 4(a), the amplitude is significantly different
between the averages. Thus, without resynchro-
nization techniques, it would be difficult to re-
cover the key from traces of campaign B or C
using the templates built from campaign A.

6 Vertical Homothety

Template attacks are only poorly resilient to ho-
motheties (multiplication by a scalar), therefore
the vertical variations can definitely hinder the
attack. The effect of an homothety in the volt-
age is sketched in Fig. 11. This figure describes a
case with only two templates, where the attacked
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Figure 9: Looking for the best possible shift for campaign B versus A. We recall from Tab. 3 that
the offset found by POC is 166.
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Figure 10: Success rate and guessing entropy in perfect conditions (campaign A vs A). The correct
offset is 0.
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Figure 11: The matching phase can reveal incorrect hypotheses if the observations have gone
through an homothety. In this illustration, there are two templates (shown in plain or dashed
lines) and the homothety factor is 2/3.

trace has a voltage less than the nominal value.
To overcome this problem, we perform a verti-
cal homothety on the matching traces to bring
their averages as close as possible to that of the
templates. We investigate which scaling factor
yields the best results. We begin by multiplying
each trace by 0.5, and by calculating the suc-
cess rate and the guessing entropy for different
time shifts. The results, illustrated in Fig. 12(a)
and 12(b), show that the shifts for a successful
attack are entirely different from those obtained
without considering the amplitude. Also we get
rid off the surprising sharp peaks of Fig. 9(b) and
we observe that the success rate is growing to
100% at the offsets predicted in Sec. 4. We test
with another factor (namely 0.47) obtained by
approaching the first peak on the trace attacked
with the first peak on the general mean train-
ing traces. This new factor further improves the
guessing entropy and the success rate, especially
near the right time shift.

We could work separately on each point and
calculate a scaling coefficient per point. How-
ever, to automate this procedure, we suggest to
center and normalize all traces: those for profil-
ing and also those for matching. This normaliza-
tion harmonizes the acquisition campaigns and

thereby reduces the scaling deviation between
them. This method is customarily used in side-
channel analysis (see for instance [17, §4.1]): it
is further investigated in Sec. 7.

7 Estimation of the Portability

Using the vertical scaling (described in Sec. 6)
and the adequate horizontal resynchronization,
we compare the efficiency of the templates at-
tacks. The metric is the success rate and the
guessing entropy.

We clearly see in Fig. 13(a) and 13(b) that
when traces are taken on a setup different from
the ones of the templates, the success rate is
lower than in the ideal case, where both the
matching and training campaigns originate from
consecutive measurements. We insist, of course,
that the traces for each experiment are well sep-
arated: there is indeed no intersection between
traces for matching and those of training. Al-
though the attacker could find the key, she nev-
ertheless requires more traces to do so. Actually,
the attacker able to globally scale the matching
campaign (by a factor of 0.47) does not have the
same effectiveness as an attacker who better con-
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(a) Guessing entropy vs different shifts.
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Figure 12: Comparison of attacks for different vertical scalings as a function of the resynchronization
offset. The training is done on campaign A and the matching on campaign B.

trols the acquisition of traces. The loss can be
estimated in terms of number of traces to reach
50% success rate: as can be seen in Fig. 13(b),
without precaution, the attack requires about 10
times more queries.

Nonetheless, if both campaigns for templates
and for matching are normalized (each trace is
replaced by its difference with the average trace
of the campaign, and this subtraction is itself
divided by the overall campaign standard devia-
tion), we observe (also in Fig. 13(a) and 13(b))
that the metrics are almost as good as for the
template attacks on the reference campaign (half
of A for training versus the other half for match-
ing). Thus, the normalization of campaigns in
conjunction with timing resynchronization is a
preprocessing that allows for a successful porta-
bility of templates from campaign A to B. The
the same work can be done on the campaign C.
The success rates will be similar to those ob-
served with B. It can therefore be claimed that,
according to our experiments, template attacks

(with the indicated preprocessing) can indeed be
almost 100% efficient even if discrepancies exist
in timing or vertical scaling.

It is also interesting to compare template at-
tacks with univariate attacks (typically DPA [6]
and CPA [7]). In Fig. 14, it can be seen
that attacking a campaign B with raw (hence
unadapted) precharacterization from campaign
A yield results worse than DPA or CPA, but
that template attacks conducted with resynchro-
nization and normalization perform better than
those attacks.

8 Conclusion and Perspectives

Despite the favors granted to a template at-
tack adversary, such as unlimited training on a
clone device, she can come across difficulties if
the traces are neither to scale nor synchronized.
Based on real experiments, we indeed note that
the vertical amplitude can change between the
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Figure 13: Effectiveness of an attacker using preprocessing techniques suitable for template attacks,
using campaign A for the templates.
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acquisitions on the clone and the measurements
on the targeted circuit.A desynchronization in
time might occur, which induces errors especially
in the choice of points of interest. We investigate
this kind of situation, in the case where an ad-
versary uses PCA to reduce the dimensionality of
the side-channel traces. For our case-study, we
have made acquisitions at very different dates,
and we conclude that despite all our efforts to
maintain the same conditions, the traces appear-
ance is not the same.

In this situation, we recommend that the ad-
versary adds a treatment phase between train-
ing and the real attacks. We demonstrate how
to resynchronize traces in amplitude and time to
be able to recover the key. Realignment in time
is straightforward; but it is difficult to find a
consensual coefficient to change the amplitude of
each trace. Thus we introduce the normalization
of the traces (both for the templates “training”
and for the “matching” traces). This pretreat-
ment appears efficient: it allows to keep a success
rate equivalent to an attack that is made on the
same acquisition campaign.
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