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Abstract: Annual concentration is a key element to assess the air quality of an area for long-time 

exposure effects. Nonetheless, obtaining annual concentrations from sensors is costly since it needs 

to have a year of measurements for each required pollutant. To overcome this issue, several strate-

gies are studied to assess annual particulate matter concentration from monthly data, with their 

pros and cons depending on the risk acceptance and measurement campaign costs. When applied 

on a French dataset, the error spans from 12–14% with one month of measurement to 4–6% for six 

months of measurement for PM10 and PM2.5, respectively. A relationship between the mean relative 

error and 95th percentile relative error is provided with an R2 of 0.99. The relationship between PM10 

and PM2.5 was also investigated and improved compared to previous work by considering the sea-

sonality and influence on emission reaching a mean relative error of 12%. Thus, this study provides 

tools for urban planners, engineers, researchers, and public authorities for improved monitoring of 

annual air pollution at a lower cost for particulate matter. 

Keywords: particulate matter; air pollution; annual concentration assessment;  

monthly measurements; sensor data analysis 

 

1. Introduction 

Air quality is a major concern in European countries, especially in urban areas where 

high emissions can be observed. Among the numerous air pollutants monitored, particu-

late matter (PM) was considered the highest priority according to the World Health Or-

ganization [1] due to its harmful effects on human health. Studies have shown that PM 

can have several health impacts such as preterm birth [2], neurodevelopmental disorders 

[3,4] or short-term health effects [5,6], whereas long-term exposure to these pollutants can 

significantly increase cardiovascular incident probability and respiratory diseases [7], 

with the smaller particles being the most harmful [8]. As an example of a health-related 

impact, around 400,000 people prematurely died in 2016 from PM2.5 exposure over the 

European continent [9]. 

Particulate matters (PM) are complex airborne pollutants composed of a mixture of 

extremely small particles and other compounds such as metals, organic chemicals, or dust 

particles [7]. They can come from natural sources (e.g., forest fires) but they are mainly 

emitted from anthropogenic sources [10]. PMs are generally classified depending on their 

aerodynamic diameter: the coarse PM having an aerodynamic diameter of 10 µm or less 

(PM10) and the fine PM having an aerodynamic diameter of 2.5 µm or less (PM2.5) [11]. 

According to the WHO, the PM10 are more likely to be produced by mechanical processes 

(construction activities, dust re-suspension, etc.), whereas PM2.5 are more likely coming 
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from combustion sources (wood combustion, biomass fuel combustion, etc.) [1]. Thus, ac-

cording to the WHO, the ratios of PM10 and PM2.5 must vary subsequently depending on 

the meteorology, the local geography, and the specific sources of particulate matter. For 

this work, both PM10 and PM2.5 were considered but without distinction from their 

sources. 

The European Union (EU) and the World Health Organization (WHO) have issued 

critical and target values that should not be exceeded in order to protect people from the 

hazardous effects of PM on human health [12,13]. To compare with these values, air pol-

lution can be assessed using both numerical methods [14–18] and on-site monitoring 

[19,20]. 

Numerical modeling can be a powerful tool which can be used to assess pollutant 

dispersion for complex situations such as noise-barrier configurations [21–23] or high-rise 

buildings [24,25] using computational fluid dynamics or artificial intelligence [26,27], with 

recent studies dealing with how to compute mean annual concentrations from numerical 

results [28,29]. Beside this, on-site monitoring has the advantage of giving the actual air 

pollutant concentrations at the monitoring point. However, year-round measurement 

data should be gathered to calculate mean annual concentration, which is a significant 

constraint in terms of time and cost. 

A recent study has shown the possibility of assessing annual NO2 concentrations 

based on monthly concentration using a methodology based on quadratic functions, thus 

allowing reducing the necessary monitoring time and, consequently, the costs [30]. 

Since particulate matter concentrations follow the same logic of seasonality [31,32], 

the aim of the present study is to check if such methodology can also be implemented for 

PM10 and PM2.5 annual concentration assessment. This methodology would be to deter-

mine the annual concentrations by using a shorter time period, accounting for seasonality 

and other variations that may occur over the course of a year, and determine easy-to-use 

regressions that will improve results for measurement campaigns that cannot afford to 

have year-round monitoring stations at the same location. Particularly, it is to assess sev-

eral strategies to compute annual particulate matter concentration from monthly data, 

with their pros and cons depending on the risk acceptance and measurement campaign 

costs, and also to find if there is any correlation between PM10 and PM2.5 concentration 

evolution. This could help countries and environmental agencies to reduce the cost of as-

sessing annual air quality and thus improving the knowledge of pollutant exposure of 

dwellers, especially for countries with weak sensors or modeling coverage [33].  

The data used in this study are presented in Section 2. The results are then presented 

in Section 3, with the evolution of PM concentration in France and the methodologies to 

compute annual concentrations from monthly data and to compute PM2.5 concentrations 

from PM10 concentrations. A discussion is provided in Section 4. 

2. Materials and Methods 

2.1. Study Location 

This work was performed at a national scale retrieving PM10 and PM2.5 concentrations 

monitored in a large number of regions in France. The location of these regions is pre-

sented in Figure 1, and includes, from North to South, Haut-de-France, Normandie, 

Grand-Est, Ile-de-France, Pays de la Loire, Bourgogne–Franche-Comté, Nouvelle Aqui-

taine, and Provence-Alpes-Côte d’Azur. A representative view of the variety of locations 

from France could be covered by these regions as they are located at several latitude and 

longitude. One of the most critical parts to selecting the regions was also related to the 

data availability. 
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Figure 1. Location of the regions where data were used. 

2.2. Data Availability 

Data were obtained through the open access database provided by the French air 

quality monitoring authorities known in France as the AASQA acronym (Association 

Agréée de Surveillance de la Qualité de l’Air), which means “Approved Air Quality Mon-

itoring Associations. The data collected are PM10 and PM2.5 monthly mean concentrations, 

mainly observed over a nine-year period from 2011 to 2019. A summary of the available 

data, corresponding to a total of around 28,000 monthly mean concentrations and 230 dif-

ferent stations, is given in Table 1. Only the data where the full year was available have 

been retained. 

Table 1. Summary of the available data. 

Region 

PM10 PM2.5 

Data 

Availability  

Number  

of Monthly 

Data 

Relative 

Percentage of 

the Total 

Dataset 

Data 

Availability  

Number  

of Monthly 

Data 

Relative 

Percentage of 

the Total 

Dataset 

Hauts-de-France 2011–2019 3888 15% 2011–2019 1836 20% 

Ile-de-France 2011–2019 3240 13% 2011–2019 1512 24% 

Grand-Est 2011–2019 4536 18% 2011–2019 1836 24% 

Pays de la Loire 2011–2019 2060 8% 2011–2019 750 10% 

Bourgogne–Franche-Comté 2011–2019 1404 6% 2011–2019 1080 14% 

Provence-Alpes-Côte d’Azur 2011–2019 3456 14% 2015–2019 490 7% 

Nouvelle Aquitaine 2012–2019 3648 15% - - - 

Normandie 2011–2019 2808 11% - - - 

2.3. Data Range 

Considering the whole dataset, the monthly mean concentrations range from 24 to 

76 µg/m3 and from 1 to 47 µg/m3 for PM10 and PM2.5, respectively, whereas annual mean 

concentrations range from 30 to 55 µg/m3 and from 5 to 33 µg/m3. These concentrations 

correspond to different types of stations (also called “influence”) which include back-

ground (66%), industrial (10%), and traffic (24%) stations, as well as different types of ar-

eas, including rural (14%), suburban (18%), and urban (68%) areas for PM10. The PM2.5 

station types and influences are not known except for the one where both PM10 and PM2.5 

data exist. There are 25,040 monthly concentrations for the PM10 and 7506 for PM2.5. 
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2.4. Statistical Performance Measures 

In order to compare the different ways to assess annual PM concentrations from 

monthly PM concentrations, three statistical performance parameters were considered in-

cluding (1) the coefficient of determination, (2) the relative error over a given dataset, and 

(3) the mean relative error over multiple datasets. 

𝑅2 = 1 −
∑ (𝐶𝑖 − 𝐶𝑖̂)²𝑛

𝑖=1

∑ (𝐶𝑖 − 𝐶𝑖̅)²𝑛
𝑖=1

 (1) 

where 𝑅2 is the coefficient of determination, 𝑛 is the number of data, 𝐶𝑖 is the concen-

tration value, 𝐶𝑖̂ is the predicted corresponding value, and 𝐶𝑖̅ is the averaged concentra-

tion. 

𝑅𝐸𝑖 = ∑
|𝑝𝑖𝑗 − 𝑑𝑖𝑗|

|𝑑𝑖̅|

𝑛𝑖

𝑗=1
 (2) 

where 𝑅𝐸𝑖 is the relative error for the dataset 𝑖, 𝑛𝑖 is the number of data in the dataset 

𝑖, 𝑝𝑖𝑗 is the predicted value, 𝑑𝑖𝑗 is the actual data value, and 𝑑𝑖̅ is the averaged actual 

data value. 

𝑀𝑅𝐸 =
1

𝑛
∑ 𝑅𝐸𝑖

𝑛

𝑖=1
 (3) 

where 𝑀𝑅𝐸 is the mean relative error, 𝑛 is the number of datasets considered, and 𝑅𝐸𝑖 

is the relative error for the dataset 𝑖. 

In the following, the 95th percentile relative error (P95RE) is the percentile 95 value 

from the REi. 

2.5. Months Clustering Based on the Concentration Estimation 

A clustering was performed using MetaboAnalyst package on R (version 3.6.3.). The 

clustering was performed by combining the heatmap and the hierarchical ascendent clus-

tering, with distance measure with Euclidean and clustering algorithms using ward.D. 

The combination of heatmap and clustering was performed to evaluate whether a 

monthly concentration was higher or lower than the annual concentration using the fol-

lowing equation: 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑜𝑛𝑡ℎ − 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑛𝑛𝑢𝑎𝑙

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑛𝑛𝑢𝑎𝑙
 (4) 

3. Results 

3.1. PM10 and PM2.5 Mean Annual Concentration Trends in France 

Figure 2A shows the evolution of the PM10 and PM2.5 mean annual concentration in 

France between 2011 and 2019. According to these two boxplots, the mean annual concen-

trations are globally decreasing in France since 2011 for both PM10 and PM2.5. However, 

the most significant decrease was observed between 2011 and 2015. After 2015, the mean 

annual concentrations appear to be steady, even if the mean value averaged over all the 

stations (red line) is still decreasing. Indeed, considering a linear regression, the regression 

slope is about −1.3 (respectively, −0.4) between 2011 and 2015 (respectively, 2016 and 2019) 

for PM10 and about −1.2 (respectively, −0.6) for the same periods for PM2.5. Thus, there is a 

slope variation by a factor of 3.25 and 2 for PM10 and PM2.5, respectively. Please note that 

these observations are only from the box plots, since no specific statistical tests were per-

formed. 
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Figure 2. PM10 and PM2.5 general evolution (A) as a function of the years (with mean annual concen-

trations following the red line) and detail of the influence for PM10 (B) and PM2.5 (C). 

Figure 2 gives additional information by distinguishing the mean annual concentra-

tions by the influence of the station for both PM10 and PM2.5. According to Figure 2B, a 

decrease in PM10 concentrations is observed for whatever the influence considered 

(i.e., background, industrial, and traffic stations), but the higher decrease is observed for 

traffic stations, nonetheless. 

It is the same observation for PM2.5 concentration, according to Figure 2C, for both 

background and traffic stations. No comparison can be made between PM10 and PM2.5 

concentration evolution for industrial stations since there is not this kind of station for 

PM2.5 available. 
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As a first approach, the annual PM10 concentrations were plotted as a function of the 

monthly PM10 concentrations considering the whole dataset (including all years, all re-

gions, all types of stations, and all types of areas). The corresponding results, along with 

a linear regression line, are presented in Figure 3A. Although the annual concentration 

appears to be linearly correlated with the monthly concentration, the scatterplot is widely 

dispersed around the regression line, leading to a low coefficient of determination 

(𝑅2 =  0.57). Additionally, considering the obtained line to assess annual concentration 

from monthly concentration can lead to over or underestimation that can reach 100%. 

 

Figure 3. Evolution of the PM10 annual concentration as a function of the monthly concentration 

considering (A) the whole dataset and (B) only the year 2019, and their corresponding linear regres-

sions. 

3.2. Assessment of Annual Concentrations Based on Monthly Data 

To improve the results, the same process has been applied considering all months of 

given years of data. As an example, the results obtained for the year 2019 are presented in 

Figure 3B. According to this figure, the linear regression is improved when considering 

the given years of data: 𝑅2 = 0.78 is obtained for 2019. The slopes and intercepts of the 

two linear regressions presented in Figure 3 are of the same order of magnitude, but 

slightly different, confirming that using all years or each year independently led to differ-

ent results. The over and underestimation are also lowered but can still reach 50%. 

The same methodology used for PM10 has been conducted on PM2.5. As for PM10, it 

appears that interpolating the annual PM2.5 concentration as a function of monthly PM2.5 

concentration with a linear regression led to poor results when considering the whole 

data, but also each year separately. 

As seen previously, the solution considering the whole dataset is not satisfying. To 

improve the results, the same methodology as in [30] was used. First, a check of whether 

there are seasonal trends on the variation of the particle matter concentration is per-

formed. 

Two main groups can be seen from the clustering given in Figure 4A,B, a group con-

taining the winter months could be distinguished with monthly concentrations higher 

than the annual concentration on average and the rest of the year with monthly concen-

trations lower than the annual concentrations on average. 
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Figure 4. Months clustering according to the comparison of annual and monthly concentrations: (A) 

clustering results of PM10, (B) PM2.5, and (C) R2 from linear regression depending on the months for 

PM2.5 (light gray) and PM10 (dark gray). 

• For PM10 there are 594 samples representing 28.23% of the data belonging to group 

1. It is composed mainly of 4 months making up around 90% of the group with Feb-

ruary (27%), January (23%), March (25%), and December (16%); 

• For PM2.5 there are 204 samples representing 22.47% of the data belonging to group 

1. It is composed mainly of 3 months making up 85% of the group with January (32%), 

February (30%), and March (26%). 

The difference between the seasons could be explained by the more diverse source of 

particulate matter in winter from heating or cold starting vehicles. 

According to Figure 4C, the results obtained using linear regressions considering 

monthly concentrations against annual ones show that, when using only one month of 

measurements, the worst months to evaluate the annual concentration are in winter 

(MRE = 0.15 in winter vs. MRE = 0.11 the rest of the year for PM10 and MRE = 0.17 in winter, 

vs. MRE = 0.13 the rest of the year for PM2.5). This is probably related to the fact that the 

mid-months represent half of the annual concentration, whereas winter only represents a 

third/quarter and thus are more representative of the annual concentration. Another fac-

tor might be that the additional particulate matter from heating may vary between years 

depending on the climate condition of the winter. 

3.3. Assessment of Annual Concentrations Based on Monthly Data by Years 

These previous predictions were made using all years. However, as discussed in Sec-

tion 3.2, considering each year separately improved the results. Thus, it is possible to im-

prove the results by considering each year independently. Indeed, each year could follow 

a different trend, for example a warmer winter leading to less heating. 

When comparing this approach with the previous one, as seen in Figure 5, the MRE 

is lower for PM10 for every month with an absolute reduction of −0.033 on the MRE corre-

sponding to a relative reduction of 27% on the MRE on average. As for PM10, the predic-

tion of PM2.5 for annual concentration using monthly data is improved when considering 

each year independently. The MRE is reduced by −0.050 in absolute and 35% in relative 

on average. 
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Figure 5. Comparison of the MRE when considering for each month, all the years at once, or one 

year at a time independently (average result) for PM10 (left) and PM2.5 (right). 

However, there are two major limits with this method of considering each year inde-

pendently. First, several sensors are necessary in the area that monitors the concentration 

throughout the year with enough variety to make a regression. This issue is not a big deal 

when the country is well covered in sensors as is the case for France. Second, waiting for 

the end of the year to perform the correlation seems to be inconsistent with engineering 

issues. 

3.4. Assessment of Annual Concentrations Based on a Group of Months 

In France, a popular way to evaluate the annual concentration is to measure one 

month in summer and one month in winter to have a better representativeness of the sea-

sonal variation during the year. Several months can be monitored throughout the year to 

improve the predictions on the mean annual concentration. But it lacks quantitative infor-

mation on the gains in accuracy of several months’ measurements compared with one-

month measurements. To solve this issue, the mean concentration of several groups of 

months evenly spaced were studied. For instance, if using two months, the mean of the 

concentrations between January (1st month) and July (1 + 6 = 7th month) will be computed; 

with 4 months, the average between January (1st), April (4th), July (7th), and October 

(10th) will be computed; etc. 

Figure 6 shows a comparison of the MRE for both PM10 and PM2.5 between the use of 

a linear regression on the average and directly using the average concentration value of 

the months (equivalent to a linear regression of bias 0 of and intercept of 1). 
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Figure 6. Evolution of the mean relative error (A) depending on the number of months for PM10 

(left) and PM2.5 (right) when using the linear regression and directly averaging. 

As expected, the more months, the better the results. This result leads to two key 

points: 

• The slope is stronger from one month to three months than from three months to six 

months, meaning that the gain in error is maximized up to a period of 3 months for 

both PM10 and PM2.5. 

• The linear regression improves the results, especially when the number of months 

used is low. When reaching 3 months, the difference between the linear regression 

and averaging becomes less than 10%. 

As an additional result of the study, an easy way to improve the 2-month results, 

and, also easy to implement, is to consider and use the observation made on the different 

types of months that exist: the best results are obtained when using two months that do 

not contain the winter type of month (i.e., April/October and May/November). Thus, most 

likely, if a winter month is considered and represents half of the data when averaging the 

concentrations, it over represents the season. To solve that, weighting the winter-type 

months (December, January, February, and March) by 1/4 and the rest of the months by 

3/4 improves the results as well as the stability of the predictions, as can be seen in Figure 

7. 
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Figure 7. Improvement of the mean absolute error when weighting by ¼  the winter month and rest 

of the year by ¾  for PM10 (left) and PM2.5 (right). 

3.5. Correlation between MRE and P95RE 

To evaluate the error made when using this function, it can be interesting to compute 

the 95th percentile relative error (P95RE) since for high stakes places regarding air pollu-

tion, it can be preferable to overestimate the pollution to be assured that the people in the 

area will not be confronted to pollution higher than what was expected. It was found that 

the 95th percentile relative error is linked for every relationship between monthly and 

annual concentration by 2.6 for PM10 as well as for PM2.5, as shown in Figure 8. For exam-

ple, if there is an MRE of 10% it means that the P95RE is about 26%. 

 

Figure 8. Relationship between mean error and 95th percentile error. 

3.6. Correlation between PM10 and PM2.5 Annual Concentrations 

An issue that can often happen is that a monitoring site has only data for one of the 

two types of particles. France is a great example of that issue as can be seen with the num-

ber of data, France is better covered for PM10 than PM2.5. So, is it possible to have an idea 

of the concentration of PM2.5 from PM10 and, reciprocally, PM10 from PM2.5 if the data are 

missing? 

The data from monthly concentrations when both sensors existed were merged to be 

compared for a total of 2941 concentrations. The ratio between PM10 and PM2.5 vary de-

pending on the emission sources, to evaluate this impact, the data were labeled according 

to their emission type (either traffic or background). The data range is from 0 to 76 µg/m3 

for PM10 and 0 to 47 µg/m3 for PM2.5. However, around 90% of the background data is 

under 30 µg/m3 PM10 and 65% for traffic data, which may influence the regression. The 

plot is presented in Figure 9. 
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Figure 9. Monthly concentration of PM2.5 against monthly concentration of PM10. 

The relationship obtained from the data are given in the following Table 2. This rela-

tionship can be used when no better data is available to evaluate the missing PM10 or PM2.5 

concentrations. 

Table 2. Results of the different linear regressions on the full dataset, the background and traffic 

influence. 

Influence Type Equation R2 MRE P95RE 

Full dataset PM2.5 = 0.60 × PM10 + 0.63 (5) 0.74 0.17 0.50 

Background PM2.5 = 0.73 × PM10−1.58 (6) 0.77 0.15 0.42 

Traffic PM2.5 = 0.54 × PM10 + 1.36 (7) 0.75 0.17 0.44 

The regressions obtained in this study are consistent with previous work. For in-

stance, the report from the U.S. Environmental Protection Agency 2003 Air Quality Crite-

ria for Particulate Matter shows a PM2.5/PM10 ratio of 0.75 for the Eastern United States, 

0.52 for the Central United States, and 0.53 for the Western United States. The relationship 

for the background results are very close to the results obtained from the Hong Kong En-

vironmental Protection Department [34] which they used 10 years (from 2002 to 2011), 

and measured five stations while excluding stations that were traffic-dominant and in 

which they reported the following relationship for the daily concentrations: 

PM2.5 = 0.75 × PM10−1.72 (5) 

Hence, it can probably be assumed that the monthly relationship found can also be 

used for daily concentrations. 

Nevertheless, it can be noted that other works find significant differences between a 

winter and summer ratio [35,36]. Following our two types of months shown in Section 3.2, 

the regression presented in Table 3 can be calculated. 
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Table 3. Results of the different linear regressions by month types. 

Season type Equation R2 MRE P95RE 

Winter month (Jan, Feb, March) PM2.5 = 0.61 × PM10 + 2.37 (9) 0.75 0.14 0.40 

Rest of the year PM2.5 = 0.51 × PM10 + 1.18 (10) 0.72 0.16 0.46 

The results can be improved by combining the two approaches. If the knowledge on 

both the influence type and month type is known, one can compute the two regressions 

and calculate the mean. 

For instance, if a value of PM10 is known to be from a traffic-related influence in a 

winter month, PM2.5 = (0.54 × PM10 + 1.36 + 0.61 × PM10 + 2.37)/2 = 0.575 × PM10 + 1.875. 

This strategy enables the improvement of the results greatly with a R2 of 0.80, a MRE 

of 0.12 and P95RE of 0.33. 

4. Discussion and Perspectives 

The results presented here provide useful information on the behavior of PM10 and 

PM2.5 all around France and should also work for comparable countries based on the cli-

mate and lifestyle (i.e., the West European countries) since France has various types of 

climates (continental, oceanic, and Mediterranean). Nevertheless, the results are most 

likely not applicable everywhere. For instance, while Iran seems to have the same seasonal 

trends [37], India shows higher particulate matter concentrations during summer [38]. 

Thus, the results obtained in this study must be considered with geographic and lifestyle 

parameters. The proposed relationship most likely works in other places with four sea-

sons, such as the rest of Europe, but it would need to be confirmed with local data from 

other countries. In countries with a completely different climate, the reasoning could be 

applied if data are available to determine the correct local regressions. The relationship 

described here between PM10 and PM2.5 most likely works in other parts of the world since 

it is in accordance with results from a previous study in China and the United States. A 

second limit of the results proposed here are the ranges of values. Using the regressions 

outside the range in extrapolation may lead to greater errors. Therefore, another perspec-

tive would be to have wider ranges of values to see if the relationship still works for higher 

values. 

The strategy elected (number of months, each year vs. all year) to measure the annual 

concentration depends on two parameters: the needs and risk acceptance. Indeed, when 

using one month, the winter months gives the worst results. Nevertheless, it is often pref-

erable to overestimate pollution for safety reasons for the inhabitants. Therefore, it could 

be a strategy to measure only in winter as it does overestimate the annual concentration 

generally using the raw value of measurement without applying the regression law given 

in the appendices. The results on using a group of months give quantitative information 

about it. Indeed, the MRE gives an idea of the mean error that can be made depending on 

the number of months elected: if the user aims to be below 10%, two months of monitoring 

must at least be performed. Nevertheless, it is only representative of the mean result, but 

for safety measures, it may be required to be sure not to underestimate the annual con-

centration and, thus, choosing another indicator. In such case, considering the dispersion 

and the chances of having an underestimation, the P95RE may be used to lower the chances 

of underestimating the pollutant concentrations. 

5. Conclusions 

This work studies the assessment of annual particulate matter PM10 and PM2.5 with 

partial data around two aspects. First, by determining the annual concentration with 

monthly concentrations. Second, the relationship between PM10 and PM2.5 in France and 

in the world considering previous works from other authors. The main conclusions are as 

follows: 
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(a) There is no general trend to assess particulate matter annual concentrations from any 

month; 

(b) Two types of behavior are highlighted regarding monthly concentrations against an-

nual ones: winter months that overestimate annual concentrations, and the months 

from the rest of the year that underestimate; 

(c) Multiple months can be used to improve results, with a stronger gain in accuracy 

using up to 3 months than from 3 months to 6 months of monitoring; 

(d) The error of the predictions can be reduced when using two months by weighting a 

winter month if present by 1/4 while the other month is weighted by ¾ ; 

(e) The choice of strategy to assess mean annual particulate matter concentrations 

should be done depending on the risk acceptance and cost of campaign measure-

ment; 

(f) If no better option is available, PM10 and PM2.5 can determine the other using a linear 

law depending on the influence of the station and the month. 

The perspective of this work could be to compare the monthly/annual concentration 

results with other countries, applying the same methodology to other pollutants (except 

for NO2/NOx that were already tested in a previous work) and improving the range of 

concentration of particulate matter to be able to apply these solutions in more polluted 

areas. 
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