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ABSTRACT: 

 

Real-world three-dimensional reconstruction is a project of long-standing interest in global computer vision. Many tools have emerged 

these past years to accurately perceive the surrounding world either through active sensors or through passive algorithmic methods. 

With the advent and popularization of augmented reality on smartphones, new visualization issues have emerged concerning the virtual 

experience. Especially a 3D model seems to be essential to provide more realistic AR effects including consistency of occlusion, 

shadow mapping or even collision between virtual objects and real environment. However, due to the huge computation of most of 

current approaches, most of these algorithms are working on a computer desktop or high-end smartphones. Indeed, the reconstruction 

scale is rapidly limited by the complexity of both computation and memory. Therefore, our study aims to find a relevant method to 

process real time reconstruction of close-range outdoor scenes such as cultural heritage or underground infrastructures in real time 

locally on a smartphone. 

 

 

1 INTRODUCTION 

Real-world three-dimensional reconstruction is a subject of long-

standing interest in computer vision. It has become even more 

predominant with the advent and popularization of autonomous 

cars or augmented reality. Especially a 3D model seems to be 

essential to provide more realistic AR effects including 

consistency of occlusion, shadow mapping or even collision 

between virtual objects and real environment. This opened up the 

need for real time scanning at scale with continuous integration 

of the accumulated 3D data. 

 

Initially, reconstructions were created by fusing depth 

measurements from specific active sensors such as structured 

light, time of flight (Izadi et al., 2011) or LiDAR (Lightning 

Detection and Ranging) into 3D models. Although these sensors 

provide accurate results, their expansive aspect and the need for 

adequate equipment make them less attractive. Therefore, 

multiple approach have emerged to reconstruct a scene based on 

monocular (Yang et al., 2011), binocular or multi-view stereo 

methods that predict depth maps according to RGB images only. 

A depth map represents an image where pixels does not contain 

colour information, but a distance to objects in the scene from a 

given viewpoint (Figure 1). This data describes a pseudo-

reconstruction of space that does not directly represent a surface, 

but rather a sample of discrete values that allows understanding 

the geometry of the environment captured from a specific camera 

position. 

 

Most of the existing solutions are relying on massive data 

exchange and cloud computing because the smartphone alone 

cannot provide sufficient computational performance. Therefore, 

the challenge of our research is to imagine a new approach of 

producing outdoor 3D models from a smartphone-based 

acquisition and a full processing performed on the device for the 
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SYSLOR Company. We aim to reach a productivity in real-time 

in order to provide a continuous overview of the 3D 

reconstruction from the recording. The interest of this 

visualisation is to assist continuously the user during the survey 

by providing him security and confidence regarding both the 

quality of the acquisition and the exhaustiveness of the data 

produced. 

 

The algorithmic procedure has thus induced a succession of 

constraints to be taken into account during the developments: 

 

-  Ensuring a computational reliability of the process 

efficiently supported by the performances offered by the 

current smartphones, 

-    Enabling optimization of the computational process to 

achieve real-time productivity, 

-     Ensuring accessibility of the acquisition for everyone. 

 

 
Figure 1. Example of depth map  

Source: (Wojciech Mo, 2016) 

 

2 STATE OF THE ART OF EXISTING SOLUTIONS 

Before presenting how reconstruction can be processed, we need 

to take a closer look at scene representation. As depicted by (Seitz 

et al., 2006), it is possible to consider a differentiation of the 
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reconstruction approaches in terms of scene representation, since 

the geometry of an object can easily be described according to: 

 

-  A voxel grid (3D equivalent of pixel), used for its 

simplicity and its ability to approximate any surface, 

-    A polygonal mesh (usually triangular), very popular for 

simplicity of storage and convenience of data visualization, 

-    A depth map, which avoids the need to resample the 3D 

geometry. 

 

Then, more generally, the reconstruction approaches can be 

subdivided into four ways according to how they are undertaken: 

 

1. Extraction and mapping of feature points used to 

fit a surface to the generated features surface, 

2. Calculation of a cost function associated with a 

3D volume, then extraction of a surface from it, 

3. Recurrent evolution of a surface to minimize a 

cost function, 

4. Computation of a set of depth maps. 

  

2.1 2.5 reconstruction – depth maps  

In the absence of specific depth sensors, depth data can come 

from the study of a colorimetric similarity, also called photo-

consistency criterion, between the pixels of a stereoscopic pair. 

A first well-known approach is the planesweep algorithm 

(Collins, 1996). The idea of this algorithm is to project backwards 

the whole image on successive virtual planes, perpendicular to 

the center of projection, indented according to a certain sampling 

step in 3D space. According to each virtual plane established, 

each pixel will be assigned a depth value derived from a 

similarity calculated between a reference view and the adjacent 

viewing position (Figure 2). Especially (Muratov et al., 2016) 

have reused and improved this method to generate a high-

resolution mesh within minutes on a smartphone. The nature of 

the photo-consistency indicator determining the depth value has 

a significant impact on the relevance of the results in the case of 

changes in illumination or edge effects as indicated by (Mari 

Molas, 2017).  

 

 
Figure 2. Planesweep method  

Source: (Graber, 2012) 

 

More recently, depth maps find a relevant use in augmented 

reality application, especially to offer management of occlusion 

effects between the real world and the virtual contents (Valentin 

et al., 2019). In the Depth API provided by ARCore, depth maps 

are generated from the hybrid optimization of two algorithms: 

PatchMatch (Bleyer et al., 2011) and HashMatch (Fanello et al., 

2017). On the basis that an image is made up of regions of 

constant depth, the idea is to alternate generating an isolated 

depth value and propagating it to neighbouring pixels (Figure 3). 

 

Finally, the popularization of machine learning has led to the 

emergence of new solutions for creating depth maps, notably by 

integrating convolutional neural networks (CNN) such as 

MVSNet (Yao et al., 2018) or DORN (Fu et al., 2018). 

 

 
Figure 3. Process for creating depth maps within ARCore 

 

2.2 Depth maps fusion 

Usually, to fully reconstruct a 3D model, accumulated depth 

maps need to be gathered and combined. The integration of all 

these new data allows to continuously update the model and can 

be approached from different perspectives. 

 

A first one is to represent the model as a surfel (surface element) 

cloud. Adopted by (Kolev et al., 2014), this representation seems 

more adequate for interactive applications running in real time in 

contrast to triangular meshes (Piazza et al., 2018). Indeed, the 

unstructured set of surfels can easily be kept consistent. A very 

interesting alternative to the one proposed above is based on 

Truncated Signed Distance Functions (TSDF). Inspired by (Zach, 

2008), the idea is to convert the depth maps into a Signed 

Distance Field (SDF) where pixels are projected as voxel (3D 

point) with a value between [-1;1]. This value describes the 

distance of the voxel to the true surface of the object. This 

volumetric fusion of maps, taken up by (Izadi et al., 2011) in 

KinectFusion and (Graber, 2012), is interesting since it offers a 

relatively robust management of outliers while guaranteeing an 

efficient update of the model. 

 

Then, the geometry of the model can be extracted using known 

methods such as raycasting (Graber, 2012) (Ondruska et al., 

2015) or marching cubes (Lorensen and Cline, 1987). The 

raycasting approach is generally preferred over the marching 

cubes method because the latter relies on a binary decision to 

determine the surface position. However, as a result, the 

geometry of the 3D model may contain false positives, i.e. non-

existent artefacts, as well as false negatives, i.e. poorly extracted 
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features. In addition, the marching cubes method is more 

favourable because it offers directly a mesh model against a point 

cloud for raycasting. 

 

2.3 3D volume creation 

Rather than going through an intermediate representation of the 

data, it is possible to build a volumetric geometry directly. From 

CNNs constructed as graphs, Pixel2Mesh (Wang et al., 2018) 

with and GEOMetrics (Smith et al., 2019) are extracting spatial 

deformations that will shape a predefined mesh model to 

converge to the captured geometry. Pixel2Mesh uses dissociation 

layers to refine the facets of the mesh by uniform oversampling. 

In GeoMetrics, the mesh is redefined only in target areas, which 

allows a better adaptation to the local complexity of an object. 

Nevertheless, these two methods are built from an initial mesh 

model, either a sphere or an ellipse, which directly induce 

topological biases. 

 

To bypass this specific constraint, Gkioxari et al. (2019) 

developed Mesh R-CNN. The 3D mesh structure is obtained 

indirectly by passing through an intermediate description, 

namely a voxel occupation grid. This coarse description of the 

object will be transformed into a triangular mesh using the 

operation called cubify. Based on the voxel occupancy 

probabilities within the grid, each voxel is substituted by a 

triangular cubic mesh with 8 vertices, 18 edges and 12 faces. 

Then, the vertices and edges common to adjacent entities are 

merged while shared interior faces are eliminated. 

 

2.4 Comparison of reconstruction methods 

The specifications defined within our problematic enabled us to 

classify the various methods. Some of them have already been 

implemented on old generation smartphones (Ondruska et al., 

2015; Muratov et al., 2016) or latest generation smartphone 

(Valentin et al., 2019). This observation confirms that 3D 

processing can be potentially embedded on this type of device. 

Although most of the presented methods based on deep learning 

represent the concrete future of real-time reconstruction for 

computer vision, they are still too limited for direct 

implementation on a smartphone. 

We have thus confronted the identified methods with our 

specifications (Table 1). The results provided are the outcome of 

tests undertaken, but for many an investigation carried out in 

relation to the remarks reported and correlated between the 

various authors cited. During the study, we have especially 

noticed that depth maps are particularly relevant data to bypass 

the triangulation steps related to collinearity equations while 

being an interesting trade-off between computation complexity 

and effective results. Especially, we highlighted the relevancy of 

the planesweep method implemented on smartphone by 

(Muratov et al., 2017) and the ARCore Depth API (Valentin et 

al, 2019) to generate accurate depth maps. Therefore, these 

methods seem to be very interesting for the development of our 

solution. Concerning data fusion, we prefer the method using 

surfels (Schöps et al., 2017), as it seems to be quite relevant for 

an interactive application while being within reach of our 

objectives from an algorithmic point of view. 

 

3 PRODUCTION OF DEPTH DATA 

3.1 Planesweep algorithm  

The planesweep method presented by (Collins, 1996), operates 

locally to estimate the photo-consistency between two adjacent 

views. Its interest is to promote a result relatively quickly by 

ensuring robustness to incongruous changes in brightness, but 

also in the event of large bases. The indicator used to measure 

photo consistency directly influences the calculation of 

colorimetric homogeneity and therefore affects the overall 

quality of the depth maps. 

 

We tested several indicators very well described by (Mari Molas, 

2017) in order to determine the relevance of the method as a 

whole. Among those studied (SAD Sum of Absolute Differences, 

SSD Sum of Squared Differences, NCC Normalized Cross 

Correlation, Census transform, Rank transform), the one that 

seems to be the most relevant because of a favourable ratio 

accurate results / computation time is the SAD indicator (see 

Figure 4). Indeed, it allows describing the photographed 

environment more efficiently with a minimum error of 13.1 cm. 

This result was obtained after comparing computed depth map to 

 
* : Poor consistency,      ** : Acceptable consistency,     *** :  particular adequacy to the criteria 

 

Table 1. Conclusion of our study concerning reconstruction methods 

Real time productivity Computation optimization Reconstruction quality Reference

3D-R2N2 * * * (Choy et al., 2016)

Depth API ARCore *** *** *** (Valentin et al., 2019)

DORN * * * (Fu et al., 2018)

GEOMetrics * * *** (Smith et al., 2019)

KinectFusion *** ** * (Izadi et al., 2011)

Marching cubes ** ** *** (Lorensen and Cline, 1987)

Mesh R-CNN * * *** (Gkioxari et al., 2019)

MobileFusion * * *** (Ondruska et al., 2015)

MonoFusion * * *** (Pradeep et al., 2013)

PatchMatch *** ** * (Bleyer et al., 2011)

Pixel2Mesh * * *** (Wang et al., 2018)

Planesweep *** *** **
(Collins, 1996)

(Muratov et al., 2017)

MVSNet * * *** (Yao et al., 2018)

Raycasting *** *** ** (Graber, 2012)

RoutedFusion ** * ** (Weder et al., 2020)

SurfelMeshing * ** *** (Schöps et al., 2019)

Delaunay Tétraédization * ** * (Piazza et al., 2018)

TGV ** ** ** (Graber, 2012)

Visual hull constraints *** *** ** (Prisacariu et al., 2015)
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a ground truth map obtained from a famous benchmark: fountain-

P11 (Strecha et al., 2008). 

 

After testing the influence of the parameters composing the 

planesweep, it appears that this method is quite legitimate for 

generalized multi-view reconstruction applications. However, 

given that it is based on a purely sequential computational 

procedure, it results in a latency of the calculations. Therefore, 

we have discarded this solution and turned to a more localized 

approach of stereo-correspondence, which uses a simpler 

procedure to implement, namely the API integrated in Google's 

ARCore application. 

 

3.2 Depth API ARCore 

The development of mobile technologies, has allowed the 

emergence and democratization of augmented reality 

applications. Google services have especially developed an API 

integrating the measurements of depth maps generated from a 

monocular camera (Valentin et al., 2019) at a rate of 30 Hz. In 

order to understand how these depth maps are generated, it is 

necessary to look at the overall working principle of ARCore. 

This application is based on three fundamental concepts: motion 

tracking, environment understanding and light estimation. Using 

an approach similar to conventional SLAM, feature points are 

detected along the movement to locate the smartphone in space. 

Using a methodology similar to RANSAC, these points are used 

to determine average planes ensuring an accurate understanding 

of the surrounding environment.  

 

To use the Depth API from ARCore wisely, it is important to take 

into account the following factors that can influence the quality 

of a recording: 

-    Illumination conditions, 

-   Potential phenomena of reflection or scattering specific 

to the materiel, 

-    Poor textured scenes. 

 

Figure 5 shows the analysis of the data produced by ARCore. The 

first case was performed in a relatively poor textured 

environment. The differences in depth observed are of the order 

of ten centimeters. This is interesting but it highlights the 

limitations of the solution, which relies solely on visual 

colorimetric information to calculate the different distances. The 

second case represents a more realistic scene with different 

depths. We can see right away that the results are better than the 

first case. In particular, the difference in depth is estimated to be 

about 8 cm. It is important to understand that these results depend 

on the quality of the movement performed, so a redundancy of 

views will provide more accurate results than a single view as 

showed in Figure 5.  

 
1st case 

 
2nd case 

 
Figure 5. Two cases of analysis of depth results provided by 

ARCore 

 

 
Figure 4. Impact study of photo-consistency measurements on depth maps quality 

 

SAD SSD NCC

Rank transform Census transform Ground truth

SAD SSD NCC
Rank 

transform

Census 

transform

RMS [cm] 13.1 13.1 13.8 15.1 66.9

Time computation 

[min]
3.19 3.29 7.26 5.37 10.12
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ARCore applies a smoothing process to its depth maps in order 

to express a value for all the pixels of an image. This means that 

the depth gradient is quite small; implying that around the edges 

of the objects discontinuities will appear causing a slight 

difference in accuracy within the comparison. To get rid of these 

distorted values, we set up a post-processing of the data 

consisting in the elaboration of a discontinuity mask based on a 

Canny detection (Canny, 1986) followed by mathematical 

morphology operators to remove a maximum of uninteresting 

pixels. The size of the kernel is chosen so that only the dominant 

contours are kept in the image. 

 

Finally, the API provided by ARCore meets our expectations 

more favourably in terms of both the quality of the results and the 

rate of data production. This method has therefore been selected 

in our developments. 

 

4 3D RECONSTRUCTION METHODOLOGY 

ARCore can been used in the reconstruction process. 

Nevertheless, (Manni et al., 2021) decided to bypass the classical 

reconstruction process by using an object classification method 

to determine the most similar synthetic object from a database. 

 

The contribution of depth maps alongside image data, resulting 

in so-called RGB-D data, opens the way to the creation of 3D 

models. Thanks to all the research carried out, we were able to 

design an optimal processing chain that converts RGB-D data to 

point clouds based on the intrinsic parameters of the camera. 

Figure 6 illustrates some reconstructed point clouds created with 

our method. 

 

 
Figure 6. Example of reconstructions provided by our solution 

4.1 Characteristics of point clouds 

The characteristics of the produced point clouds are directly 

influenced by the resolution of the RGB-D images. Initially, the 

resolution of the depth maps produced by ARCore is 160x120 

pixels to ensure a high productivity. Given that each pixel in the 

image produces a single 3D point, this will lead to a sparse point 

cloud of 19200 points with a spacing of about 2 cm (Figure 7a). 

Therefore, we have increased the size of depth maps to 320x240 

and 640x480 pixels using linear interpolation to oversample the 

data. This operation intends to increase the amount of data from 

19200 to 76800 and 307200 points respectively while providing 

a better density of points with a spacing reduced to 1 cm and 0.5 

cm respectively. Even if more data to be processed implies more 

calculations to be carried out, a simple parallelization of the 

projection will be enough to guarantee a real time productivity. 

Moreover, visually, a higher resolution makes sense when we 

wish to have a finer detail of the recorded scene (Figure 7b-7c). 

 

 
Figure 7. RGB-D resolution impact on point clouds 

 

4.2 Analysis of results obtained 

We built a proof of concept that can be generalized to several 

environments. Our solution has been designed to digitize all 

elements within a maximum range of 4 m. Actually, beyond a 

certain range, depth data provided by ARCore are going to be less 

accurate. Indeed, as one moves away from the scene or the object, 

the depth values will become more and more inaccurate. In 

particular, the ARCore documentation informs us that the data 

estimation error increases quadratically with the distance.  

 

Therefore, to quantify the value of the models resulting from our 

method, we conducted comparisons with a ground truth built 

from Agisoft Metashape. The results are quite interesting and 

encouraging since we obtain an average deviation of 6-7 cm 

(Figure 8). The accuracy of our point clouds is directly linked to 

factors influencing depth estimation without forgetting the 

acquisition procedure. Indeed, to provide good estimation, a solid 

motion tracking at an adapted speed is required so that the 

algorithms can correctly understand the surrounding 

environment. Moreover, since the depth data results from 

colorimetric similarity between the pixels of a stereoscopic pair, 

deformations can be visible on the facade or the ground. For a 

first sketch of the result, the latter is quite promising, especially 

since the generation of the models is done almost in real time. 
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Figure 8. Qualitative analysis of a resulting point cloud 

 

4.3 Computational bottleneck  

Producing 3D model through cloud processing induces data 

exchange that can be time-consuming. Therefore, after 

conducting the acquisition, users have often to wait a certain 

amount of time to have a feedback.  By relying on simple but 

effective methodology, we designed a proof of concept to ensure 

a permanent monitoring of the reconstruction with reasonable 

computation time. 

 

At the time we present these results, our solution has not yet been 

fully integrated into the smartphone due to code conversion 

issues. Therefore, time consumptions are given according to 

computer computation using the minimum amount of CPU 

(Central Processing Unit) and by doing without the GPU 

(Graphical Processing Unit). In Table 2, we provide an overview 

of the average computation time of creating 3D model from a 

single view according to different input data resolutions. Results 

are very promising because we are able to produce very 

efficiently complex data consisting of several hundred thousand 

points all in a fraction of a second. In comparison, with a basic 

photogrammetry process, it can took several minutes to provide 

the corresponding model. Even if progress in automation has 

been made, allowing reducing the production time, the results of 

our method are still produced more quickly and requires less 

computing power.  

 

During our tests, we also compared computational time while 

including post processing of the depth maps provided by ARCore 

(Table 2). As we already mentioned, these depth maps are 

smoothed to provide sufficient data all over the scene, but this 

induces flying points when we compute the corresponding 3D 

model (Figure 9).These particular points are outliers that damage 

the visual representation of the scene. The process described to 

remove these points seems to lead to an increase in calculation 

time of about 20%. Therefore, further research have to be 

conducted to find some alternatives that suppress these outliers 

without increasing that much the computational time. However, 

in the case of more accurate depth data, we can easily imagine 

doing without this process. 

 

 RGB-D data resolution 

Low Medium High 

w/o depth 

map post-

processing 

0.004s 0.02s 0.08s 

w/ depth 

map post-

processing 

0.02s 0.09s 0.4s 

 

Table 2. Computational time of our method for a single view 

 

 
Figure 9. Flying points removal 

 

5 CONCLUSION 

Designing a proof of concept is not an easy thing to do, especially 

when significant material constraints are imposed. It implies 

having to find a computational approach simple enough while 

being as effective as possible compared to a reference method.  

For our study, we had three major constraints on which our 

developments had to rely: 

 

-  Ensuring a computational reliability of the process 

efficiently supported by the performances offered by the 

current smartphones, 

-    Enabling optimization of the computational process to 

achieve real-time productivity, 

-     Ensuring accessibility of the acquisition for everyone. 

 

Thanks to all the researches and tests carried out, we ended up 

with a first processing chain, which works quite well. We are able 

to create dense point clouds within an accuracy of 7 cm for a 

single view, which can further be refined by the addition of more 

surrounding views. Even if the depth maps generated by ARCore 

can be noisy in the context of scattering surfaces or around edges, 
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we still managed to develop a very satisfactory method that 

provides quite encouraging results of about 8 cm. The initial 

objectives of the project led by the SYSLOR Company have been 

well outlined since we are able to provide results very quickly 

with limited computing power compared to usual method such as 

photogrammetry, which provide relevant information about the 

completeness and conformity of the acquisition. Although real 

time has not yet been concretely reached since the 

implementation of the algorithm has not been completely 

finished on smartphone, the provided initial results are very 

promising.  

 

6 FUTURE WORKS 

Our ambitions go beyond a simple ephemeral visualization as 

found in most AR applications integrating reconstruction 

methodologies. We want to establish a 3D model used to 

concretely map the environment around us, and more specifically 

underground infrastructures. For this, we wish to integrate 

extrinsic elements to our methodology, in particular GNSS data 

from a low cost antenna developed by (Quentin et al., 2019) 

within the company SYSLOR for permanent geolocalized 

restitution.  

 

7 REFERENCE 

Bleyer, M., Rhemann, C., and Rother, C., 2011: PatchMatch 

Stereo – Stereo Matching with Slanted Support Windows. In 

Procedings of the British Machine Vision Conference 2011, 

pages 14.1–14.11, Dundee. British Machine Vision Association. 

doi : 10.5244/C.25.14  

 

Canny, J., 1986: A Computational Approach to Edge Detection. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, PAMI-8(6): 679–698. Conference Name: IEEE 

Transactions on Pattern Analysis and Machine Intelligence. 

 

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S., 2016: 

3D-R2N2: A Unified Approach for Single and Multi-view 3D 

Object Reconstruction. In Leibe, B., Matas, J., Sebe, N., and 

Welling, M., editors, Computer Vision – ECCV 2016, Lecture 

Notes in Computer Science, pages 628–644, Cham. Springer 

International Publishing. 

 

Collins, R., 1996: A space-sweep approach to true multi-image 

matching. In Proceedings CVPR IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, pages 

358–363, San Francisco, CA, USA. IEEE. doi: 

10.1109/CVPR.1996.517097. 

 

Fanello, S. R., Valentin, J., Kowdle, A., Rhemann, C., 

Tankovich, V., Ciliberto, C., Davidson, P., and Izadi, S., 2017: 

Low Compute and Fully Parallel Computer Vision with 

HashMatch. In 2017 IEEE International Conference on 

Computer Vision (ICCV), pages 3894–3903, Venice. IEEE. doi: 

10.1109/ICCV.2017.418  

 

Fu, H., Gong, M., Wang, C., Batmanghelich, K., and Tao, D., 

2018: Deep Ordinal Regression Network for Monocular Depth 

Estimation. In 2018 IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, pages 2002–2011, Salt Lake City, UT. 

IEEE. 

 

Gkioxari, G., Johnson, J., and Malik, J., 2019: Mesh R-CNN. In 

2019 IEEE/CVF International Conference on Computer Vision 

(ICCV), pages 9784–9794, Seoul, Korea (South), Korea (South). 

IEEE. ISSN: 2380-7504. 

 

Graber, G., 2012: Real time 3D-Reconstruction. Master’s thesis, 

Graz University of Technology - Institute for Computer Graphics 

and Vision, Austria. 

 

Izadi, S., Davison, A., Fitzgibbon, A., Kim, D., Hilliges, O., 

Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, 

S., and Freeman, D., 2011: KinectFusion: real-time 3D 

reconstruction and interaction using a moving depth camera. In 

Proceedings of the 24th annual ACM symposium on User 

interface software and technology - UIST ’11, page 559, Santa 

Barbara, California, USA. ACM Press. 

 

Kolev, K., Tanskanen, P., Speciale, P., and Pollefeys, M., 2014: 

Turning Mobile Phones into 3D Scanners. In 2014 IEEE 

Conference on Computer Vision and Pattern Recognition, pages 

3946–3953, Columbus, OH, USA. IEEE. 

 

Lorensen,W. E. and Cline, H. E., 1987: Marching cubes : A high 

resolution 3D surface construction algorithm. In Proceedings of 

the 14th annual conference on Computer graphics and interactive 

techniques - SIGGRAPH ’87, pages 163–169, Anaheim, 

California. ACM Press. 

 

Manni, A., Oriti, D., Sanna, A., De Pace, F., Manuri, F., 2021: 

Snap2cad: 3D indoor environment reconstruction for AR/VR 

applications using a smartphone device. Computers & Graphics 

100, 116–124. https://doi.org/10.1016/j.cag.2021.07.014 

 

Mari Molas, R., 2017: Multi-view 3D Reconstruction via Depth 

Map Fusion for a Smartphone Application. BACHELOR 

THESIS UPF / YEAR 2017. Bachelor’s Thesis, Pompeu Fabra 

University, Spain. 

 

Muratov, O., Slynko, Y., Chernov, V., Lyubimtseva, M., 

Shamsuarov, A., and Bucha, V., 2016: 3DCapture: 3D 

Reconstruction for a Smartphone. In 2016 IEEE Conference on 

Computer Vision and Pattern Recognition Workshops 

(CVPRW), pages 893–900, Las Vegas, NV. IEEE. 

 

Ondruska, P., Kohli, P., and Izadi, S., 2015: MobileFusion: Real-

Time Volumetric Surface Reconstruction and Dense Tracking on 

Mobile Phones. IEEE Transactions on Visualization and 

Computer Graphics, 21(11):1251–1258. 

 

Piazza, E., Romanoni, A., and Matteucci, M., 2018: Real-Time 

CPU-Based Large-Scale Three-Dimensional Mesh 

Reconstruction. IEEE Robotics and Automation Letters, 3(3): 

1584–1591. Conference Name: IEEE Robotics and Automation 

Letters. 

 

Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer, M., and 

Bathiche, S., 2013: MonoFusion : Real-time 3D Reconstruction 

of Small Scenes with a Single Web Camera. In 2013 IEEE 

International Symposium on Mixed and Augmented Reality 

(ISMAR), pages 83–88, Adelaide, SA, Australia. IEEE. 

 

Prisacariu, V. A., Kahler, O., Murray, D. W., and Reid, I. D., 

2015: Real-Time 3D Tracking and Reconstruction on Mobile 

Phones. IEEE Transactions on Visualization and Computer 

Graphics, 21(5): 557–570. 

 

Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R., 

2006: A Comparison and Evaluation of Multi-View Stereo 

Reconstruction Algorithms. In 2006 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition - 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-201-2022 | © Author(s) 2022. CC BY 4.0 License.

 
207

https://doi.org/10.1016/j.cag.2021.07.014


 

Volume 1 (CVPR’06), pages 519–528, New York, NY, USA. 

IEEE. doi: 10.1109/CVPR.2006.19  

 

Semler, Q., Mangin, L., Moussaoui, A., and Semin, E., 2019: 

Development of a low-cost centimetric GNSS Positioning 

solution for android applications. International Archives of the 

Photogrammetry, Remote Sensing & Spatial Information 

Sciences, XLII-2/W17: 309–314.  

 

Smith, E., Fujimoto, S., Romero, A., and Meger, D., 2019: 

GEOMetrics: Exploiting Geometric Structure for Graph-

Encoded Objects. In Chaudhuri, K. and Salakhutdinov, R., 

editors, Proceedings of the 36th International Conference on 

Machine Learning, volume 97 of Proceedings of Machine 

Learning Research, pages 5866–5876, Long Beach, California, 

USA. PMLR. 

 

Strecha, C., von Hansen,W., Van Gool, L., Fua, P., and 

Thoennessen, U., 2008: On benchmarking camera calibration 

and multi-view stereo for high resolution imagery. In 2008 IEEE 

Conference on Computer Vision and Pattern Recognition, pages 

1–8, Anchorage, AK, USA. IEEE. 

 

Valentin, J., Kowdle, A., Barron, J. T., Wadhwa, N., Dzitsiuk, 

M., Schoenberg, M., Verma, V., Csaszar, A., Turner, E., 

Dryanovski, I., Afonso, J., Pascoal, J., Tsotsos, K., Leung, M., 

Schmidt, M., Guleryuz, O., Khamis, S., Tankovitch, V., Fanello, 

S., Izadi, S., and Rhemann, C, 2019: Depth from motion for 

smartphone AR. ACM Transactions on Graphics, 37(6): 1–19. 

doi: 10.1145/3272127.3275041 

 

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y.-G., 

2018: Pixel2Mesh: Generating 3D Mesh Models from Single 

RGB Images. In Proceedings of the European Conference on 

Computer Vision (ECCV), pages 52–67, Munich, Germany. 

 

Weder, S., Schonberger, J., Pollefeys, M., and Oswald, M. R., 

2020: Routed-Fusion: Learning Real-Time Depth Map Fusion. In 

Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, pages 4887–4897, Seattle, WA, USA. 

IEEE. 

 

Wojciech Mo, 2016: Stereo Vision - Depth Map. Available at: 

https://www.youtube.com/watch?v=bsA6RKUUA3M 

(Accessed: 31 March 2022). 

 

Yang, X., Zhou, L., Jiang, H., Tang, Z., Wang, Y., Bao, H., and 

Zhang, G., 2020: Mobile3DRecon: Real-time Monocular 3D 

Reconstruction on a Mobile Phone. IEEE Transactions on 

Visualization and Computer Graphics, 26(12): 3446–3456. 

 

Yao, Y., Luo, Z., Li, S., Fang, T., and Quan, L., 2018: MVSNet: 

Depth Inference for Unstructured Multi-view Stereo. In 

Proceedings of the European Conference on Computer Vision 

(ECCV), pages 767–783, Munich, Germany. 

 

 

 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-201-2022 | © Author(s) 2022. CC BY 4.0 License.

 
208




