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Abstract 

The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. 
Various mechanistic models have been developed to better understand avian influenza transmission and evalu-
ate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, 
the results of models of avian influenza transmission and control have not yet been subject to a comprehensive 
review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we 
conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objec-
tives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used 
parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the character-
istics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We 
reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated 
the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number 
ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenic-
ity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, 
such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models’ 
potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received 
less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes 
and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was opti-
mal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred 
for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy 
of interventions, highlighting the need for effective surveillance and epidemic preparedness.
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1  Introduction
Avian influenza viruses (AIVs) pose a continuous threat 
to domestic poultry, wildlife, and humans. The diversity 
of two envelope glycoproteins, hemagglutinin and neu-
raminidase, are used to divide AIVs into various subtypes 
(named HxNy) with different characteristics and patho-
genicity. Waterfowl, especially Anseriformes (ducks, 
geese and swans) and Charadriiformes (gulls, terns and 
sandpipers), are considered to be the natural reservoir 
of all AIV subtypes [1]. When transmitted to poultry, 
the H5 and H7 AIV subtypes usually cause mild clinical 
symptoms, and are designated as low pathogenicity avian 
influenza (LPAI). However, H5 and H7 AIVs can mutate 
into highly pathogenic avian influenza (HPAI), causing 
severe morbidity and mortality in poultry. This transition 
from LPAI to HPAI usually happens in domestic poultry, 
either shortly after the first introduction of the virus, or 
after months or even years of undetected circulation [2]. 
On some occasions, this phenomenon has caused large 

poultry outbreaks, such as the HPAI H5N2 epidemic in 
1983 in the United States, the HPAI H7N1 epidemic in 
Italy in 1999–2000, the HPAI H7N7 epidemic in 2003 in 
the Netherlands and the HPAI H7N3 epidemic in 2004 in 
Canada [3]. Both LPAI and HPAI viruses can be zoonotic, 
causing a range of symptoms in humans, including severe 
respiratory distress and death. One notable example of 
zoonotic AIV infection was the transmission of LPAI and 
HPAI H7N9 viruses from poultry to humans in China 
between 2013 and 2017, causing more than 1,500 human 
cases and over 600 deaths [4].

The emergence of the A/Goose/Guangdong/1/1996 
(Gs/Gd) H5N1 virus lineage in China in 1996 [3] has 
been associated with a shift in HPAI virus transmission. 
This Gs/Gd lineage has shown a propensity for transmis-
sion among wild migratory birds, leading to an unprec-
edented global spread. Moreover, numerous genome 
reassortments with other circulating AIVs has led to the 
diversification of the Gs/Gd lineage into several clades 
and subclades [5]. From Southeast Asia, HPAI H5N1 
viruses first spread to Europe, the Middle-East and Africa 
in 2005 and 2006. These viruses became endemic in poul-
try in many countries in Asia and Africa, further promot-
ing virus evolution and diversification.

Beginning in 2014, H5Nx viruses clade 2.3.4.4 became 
predominant and spread throughout Asia, Europe, 
Africa, and, for the first time, America. HPAI H5N8 and 
H5N6 predominated from 2014 to 2021 [5], and were 
replaced again by HPAI H5N1 starting in 2021 [6]. These 
viruses caused many outbreaks in domestic poultry; in 
Europe alone, 2642 H5N8 and 2740 H5N1 HPAI out-
breaks have been reported from October 1, 2014 to Sep-
tember 30, 2023 [7]. These viruses even appear to have 
persisted in wild birds in Europe throughout the sum-
mers of 2021 and 2022, suggesting a fundamental shift 
toward a potential endemic circulation [8, 9]. In addi-
tion to devastating losses in poultry, HPAI H5Nx viruses 
recently caused mass mortality events in wild birds 
worldwide, raising serious concerns for conservation 
[10–12].

Control measures against HPAI epidemics in poul-
try include culling infected birds, pre-emptive culling 
around infected flocks, movement bans, and screening 
of at-risk contacts [13]. Poultry vaccination also has been 
employed in several Asian and African countries [14, 15]. 
However, this strategy faces several challenges, including 
difficulties in selecting vaccine strains, monitoring influ-
enza evolution, differentiating vaccinated from infected 
birds, and maintaining appropriate vaccination cover-
age [15]. For all of these reasons, poultry vaccination is 
currently prohibited in the United States (US) [16], and 
was authorized only recently in the European Union (EU) 
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[17]. Despite significant efforts to limit avian influenza 
incursions and spread in the poultry sector, the global 
spread of HPAI viruses, causing devastating epidemics, 
highlights the need to design and implement adequate 
prevention and control strategies [18].

Mechanistic models, which describe transmission 
dynamics by using mathematical expressions, could help 
in this effort. Models can help evaluate the impact of 
existing and alternative disease control strategies. They 
have been used for various animal diseases, including 
foot-and-mouth disease [19], African swine fever [20, 
21], and bluetongue [22]. While numerous mechanistic 
models have been used to analyze AIV epidemics [23], 
their results concerning surveillance and control, which 
could be useful for decision-making, have yet to be sub-
ject to a comprehensive review. Reviews conducted so far 
on avian influenza have focused on virological and clini-
cal aspects [24, 25] or on risk factors [26–28], including 
transmission routes [29, 30]. Two recent studies reviewed 
transmission parameter values based on experimental 
studies [31] and on both experimental and field studies 
[32], but to the best of our knowledge no comprehensive 
analysis of mechanistic models has been undertaken. To 
fill this gap, we conducted a systematic review of mech-
anistic models applied to avian influenza in poultry to 
(i) describe the mechanistic models used and their epide-
miological context, (ii) list AIV transmission parameters, 
and (iii) provide insights on avian influenza transmission 
and the impact of control measures. In regard to our sec-
ond objective, synthesizing AIV transmission parameters 
is difficult because parameter values often vary depend-
ing on the epidemiological context (e.g., virus sub-
type, host species, production system). However, listing 
parameter estimates may be useful for simulation models 
and can provide ranges of possible values that can help 
parameter estimation. Based on our results, we discuss 
future avenues and challenges for modeling AIV epidem-
ics and evaluating control strategies.

2 � Materials and methods
This systematic review was conducted in compliance 
with the guidelines of Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analysis (PRISMA) [33].

2.1 � Search strategy
Three online databases (PubMed, Web of Science, and 
CAB Abstracts) were searched for relevant literature on 
mechanistic models used to study the transmission of 
avian influenza in domestic poultry populations. Three 
groups of terms were used for each database and linked 
with the “AND” Boolean; within each group, we used an 

association of keywords linked with the “OR” Boolean 
(Additional file 1). All searches were done in the article 
title, abstract, and keywords. Articles in languages other 
than English were excluded. The last search was per-
formed on April 18, 2023.

2.2 � Inclusion and exclusion criteria
The final list of articles to include in the review was 
defined through a two-step screening process (Addi-
tional file  2). In the first step, titles and abstracts were 
independently screened by two reviewers (BB and AM) 
based on four criteria. Articles were included if they: 
(1)  were primary research articles on avian influenza, 
(2)  focused at least in part on domestic poultry popula-
tions, (3)  described the propagation of avian influenza 
epidemics at the population level, and (4)  described a 
mechanistic approach for modeling the spread of avian 
influenza. Based on these criteria, editorials, commen-
taries, reviews, and perspective articles were excluded. 
Articles without any explicit description of transmission 
processes, or presenting only experimental or molecular 
data, also were excluded. During this step, a conservative 
approach was taken, with all articles selected by at least 
one of the reviewers kept for the next step.

The second screening step was carried out based on the 
full-text content. Articles were included if they met the 
inclusion criteria of the first screening, and if the model 
described was used to achieve at least one of the follow-
ing two objectives: (1)  estimation of model parameters 
using avian influenza epidemic data, and (2) evaluation of 
control strategies using a model fitted to field data in the 
same or in a previous study. Articles that focused solely 
on simulated epidemics were therefore excluded (i.e., at 
least one parameter of the model had to be estimated 
by fitting the model to observed data; models where all 
parameter values were assumed were excluded). We 
also looked at the reference lists of the articles included 
to find further articles that may have been missed in the 
primary search. Finally, both reviewers discussed their 
respective final selections until a consensus was reached 
on each article. In the absence of consensus, the opinion 
of a third reviewer (SL) was sought.

2.3 � Data extraction and analysis
The first three authors worked independently to sys-
tematically record the key features of all selected arti-
cles. The information extracted included (Additional 
file  3): contextual information (year of the epidemic(s) 
studied, poultry population, AIV subtype, virus patho-
genicity, geographical location, scale), control strategies 
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(surveillance and control measures evaluated), modeling 
approach (modeling aim, model paradigm, epidemio-
logical unit, contact structure, transmission routes) and 
transmission parameters estimated. For within-farm 
models, when the value of the basic reproduction num-
ber R0 was not reported, it was calculated by multiplying 
the value of the transmission rate β by the value of the 
average duration of the infectious period, wherever pos-
sible. All extracted data were checked for consistency by 
the first two authors. Descriptive statistics and figures 
were done using R software [34].

3 � Results
3.1 � Included articles and epidemiological characteristics
Based on an initial search on April 24, 2019 and two 
search updates on October 21, 2021 and April 18, 2023, 
the search query yielded 2920 articles, of which 1140 
were duplicates (Figure  1). Of the 1780 remaining arti-
cles, 1487 were removed after the first screening and 251 
after the second. Four additional articles which met the 
inclusion criteria were identified by checking the refer-
ences of the articles that passed both screenings. As a 
result, a total of 46 articles were included in the review 
[35–80] (Figure 1).

The epidemiological context of the models presented 
in these articles varied in terms of pathotype (LPAI or 
HPAI), subtype, and location (Table 1, Figure 2). The vast 

majority of articles focused on HPAI (n = 41), with three 
studies on LPAI and two on both HPAI and LPAI simul-
taneously (Table 1).

The majority of articles (n = 18; Table  1, Figure  2) 
focused on the HPAI H5N1 subtype. Although HPAI 
H5N1 has spread globally since its emergence in 1996, it 
is noteworthy that models were applied to only a limited 
number of countries. Thirteen articles analyzed HPAI 
H5N1 spread in Asia (Thailand, Vietnam, Bangladesh, 
India, Indonesia and South Korea), three in Africa (Nige-
ria and Egypt), one in Europe (Romania), and two at the 
global scale.

The second most studied subtype was HPAI H7N7 
(n = 7; Table 1, Figure 2). All seven articles, including the 
earliest modeling article published in 2004 [69], investi-
gated the 2003 HPAI H7N7 epidemic in the Netherlands.

Other past HPAI epidemics analyzed so far included 
H5N8 in Japan, France and the Netherlands (n = 4), 
H5N2 in the United States (n = 4), H5N6 in South Korea 
and the Philippines (n = 3), H7N3 in Canada (n = 1), 
H7N1 in Italy (n = 1), and multiple H5 subtypes in South 
Korea and China (n = 3).

Three studies focused on LPAI viruses (Table 1): LPAI 
H5N2 in the United States (n = 1), LPAI H7N3 in the 
Netherlands (n = 1) and LPAI H7N9 in China (n = 1). 
Finally, two studies focused on both LPAI and HPAI 
H7N9 in China.

Records identified through 

Cab Abstract search

(n = 1015)

Total hits

(n = 2920)

Records removed at 

title/abstract level

(n = 1487)

Included 

articles

(n = 46)

Articles screened 

based on title and 

abstract

(n = 1780)

Full-text articles 

assessed for 

eligibility

(n = 293)

Records identified through 

PubMed search (n = 967)

Records identified through 

Web of Science search

(n = 938)

Articles excluded 

after full-text 

screening

(n = 251)

Articles 

retrieved from 

hand search of 

references

(n = 4)

Duplicates 

removed 

(n = 1140)

Figure 1  PRISMA flow diagram of the article selection process.
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3.2 � Modeling approaches
In accordance with our inclusion criteria, the most fre-
quent modeling objective was to estimate model param-
eters (45/46), followed by the evaluation of control 
strategies (20/46), with 19 articles doing both. Only one 
article evaluated control strategies without estimating 
model parameters: Hill et al. [47] re-used the model fit-
ted to epidemic data in Hill et al. [46] to evaluate control 
strategies in the same epidemiological context.

Most articles included a stochastic component 
(33/46), while the others were deterministic (13/46). 

Two different modeling approaches (Box  1) were 
used in the selected articles: population-based mod-
els (PBM, 27/46) and individual-based models (IBM, 
19/46; Table 2). All PBMs assumed homogeneous mix-
ing between epidemiological units (i.e., where one 
epidemiological unit could contact any other unit in 
a population randomly with equal probability). Most 
of the IBMs (15/19) assumed that effective contacts 
depended on the distance between two epidemiological 
units; either contacts occurred with equal probability 
but only with units within a given radius, or contacts 

Table 1  Overview of the 46 articles included in the review.

a Articles in which zoonotic transmission (from birds to humans) was considered.

Pathotype Subtype Country Epidemic years References

HP H5N1 Thailand 2004–2005 [35-38]

2004–2007 [39]

Vietnam 2004–2005, 2007 [40]

2008–2015 [41]

South Korea 2008 [42]

2003–2004, 2008, 2010–2011 [43]

Indonesia and global 2008–2001 [44]a

Global 2005–2009 [45]a

Bangladesh 2007–2012 [46]a; [48]

2007–2008, 2011 [47]

India 2008–2010 [49]

Nigeria 2006–2007 [50]

2005–2008 [51]

Egypt 2010 [52]a

Romania 2005–2006 [53]

H5N2 United States 1983–1984 [54, 55]

2015 [56]; [57]

H5N6 Philippines 2017 [58]a; [59]

South Korea 2016 [60]

2016–2018 [43]

2016–2017 [61]

H5N8 South Korea 2016 [60]

2014–2015, 2016–2018 [43]

Netherlands 2014, 2016 [62]

France 2016–2017 [63]

2020–2021 [64]

Japan 2020–2021 [65]

H5Nx China 2005–2019 [66]

H7N1 Italy 1999–2000 [67]

H7N3 Canada 2004 [68]

H7N7 Netherlands 2003 [69-75]

LP H5N2 United States 2018 [76]

H7N3 Netherlands 2003 [77]

H7N9 China 2013–2015 [78]a

LP and HP H7N9 China 2013–2017 [79]a; [80]a
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Figure 2  Temporal description—distribution of publication date for different avian influenza subtypes. Kim and Cho [43], Lee et al. [60] 
and Chen et al. [66] studied multiple H5 subtypes.

Table 2  Model paradigm, epidemiological unit and transmission scale of the 46 articles included in the review.

a The total of individual-based models is not the sum of individual-based models with different epidemiological units because Pelletier et al. [50] and Rorres et al. [55] 
each developed two models, one using administrative area as the epidemiological unit and one using farm as the epidemiological unit.

Model paradigm Pathotype Epidemiological unit Scale of transmission References

Population-based
model
(n = 27)

HP Administrative area (e.g., 
village, district, region, coun-
try…)
(n = 4)

Between-areas
(n = 4)

[37, 49, 51, 53]

Farm
(n = 7)

Between-farms
(n = 7)

[39, 41, 43, 48, 68, 69, 72]

Individual birds
(n = 11)

Within-area
(n = 5)

[44, 45, 52, 58, 66]

Within-farm
(n = 6)

[35, 57, 62, 64, 65, 73]

LP Individual birds
(n = 3)

Within-area
(n = 1)

[78]

Within-farm
(n = 2)

[76, 77]

LP and HP Individual birds
(n = 2)

Within-area
(n = 2)

[79, 80]

Individual-based
model
(n = 19)a

HP Administrative area (e.g., 
village, district, region, coun-
try…)
(n = 4)

Between-areas
(n = 4)

[36, 40, 50, 55]

Farm
(n = 16)

Between-farms
(n = 14)

[42, 46, 47, 50, 54–56, 59, 
61, 63, 67, 70, 71, 75]

Between-farms and between-areas
(n = 2)

[38, 60]

Individual birds
(n = 1)

Within-farm and between-farms
(n = 1)

[74]
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could occur with any other unit but with a probability 
that decreased with increasing distance. One IBM used 
a network to represent contact between farms through 
recorded vehicle movements [61]. Finally, three IBMs 
considered transmission at two levels, with homog-
enous mixing of the epidemiological units (individuals, 
farms) within larger subpopulations (farms, areas), and 
distance-dependent contacts between these subpopula-
tions [38, 60, 74]. In these three cases, the “individuals” 
in the IBMs were the subpopulations and not the epide-
miological units.

Box 1  Definitions (see [90, 97–99])

Population-based models: although the overall population 
is made up of individual units, population-based models group 
all individual units of the same state together, without distinc-
tion between individual units belonging to the same subgroup. 
The number (or proportion) of the epidemiological units in each 
subgroup (e.g., susceptible, infectious, recovered) is tracked, 
but not the individual state of each unit (for instance, we know 
how many individual units are infectious, but not which ones). 
These models are also called compartmental models.
Individual-based models: contrary to population-based models, 
individual-based models monitor explicitly the state of each 
individual unit in the overall population. Therefore, it is possible 
to track both which individual units are in each state, and also the 
number of epidemiological units in each state.
Epidemiological unit: the unit of interest and the smallest entity 
of the model. It could be an individual animal, a group of animals, 
herds, or populations in regions or countries. The epidemiological 
unit can be aggregated and modeled as a number or proportion 
of the overall population in each state, or modeled as individuals 
whose status is tracked.
Frequency-dependence (sometimes referred to as “pseudo-
mass action”): with this assumption, the contact rate (the number 
of contacts made by each epidemiological unit per unit time, 
where contacts are of an appropriate type for transmission to be 
possible) is constant irrespective of the population size N(t) . 
In that case, the force of infection is of the form β I(t)

N(t)
 , where β 

is the effective contact rate (in time−1), i.e., the number of effec-
tive contacts made by each epidemiological unit per unit time. 
An effective contact is a contact that would effectively lead 
to transmission if the contact is between an infectious and a sus-
ceptible unit.
Density-dependence (sometimes referred to as “mass action”): 
with this assumption, the contact rate increases with the popula-
tion size N(t) . In that case, the force of infection is of the form 
β I(t) , where β (in unit−1.time−1) is the per capita rate at which 
two specific epidemiological units come into effective contact 
per unit time. Note that the density-dependent β is not equiva-
lent to the frequency-dependent β because of these different 
assumptions on the contact rate.

Three types of epidemiological units were considered: 
individual birds, poultry farms, and geographical areas 
defined by administrative boundaries (e.g., villages, dis-
tricts, counties, countries). When considering individu-
als as epidemiological units (17/46 articles, Table  2), 
the health statuses of birds were classically defined as 
susceptible (S), exposed—infected but not yet infec-
tious (E), infectious (I), recovered (R) or dead (D). SID 

(n = 10) and SEIRD (n = 4) models were used most fre-
quently. When considering farms as epidemiological 
units, the whole farm was considered as exposed and 
then infectious after the onset of infection (i.e., neglect-
ing within-farm dynamics). Similarly, for administrative 
areas, the whole area was considered as exposed when 
at least one outbreak (e.g., one infected farm) occurred, 
and then the whole area became infectious at the end 
of the latent period. At these levels (farms, areas), the 
recovered state was not considered; after being infec-
tious, the whole epidemiological unit was either com-
pletely depopulated, or completely susceptible again. At 
the farm and administrative area levels (29/46, Table 2), 
the models used most frequently were SEID (n = 16) 
and SID (n = 9).

Most of the PBMs presented in the review (16/27; 
Table  2) defined individual birds as the epidemiological 
unit. Seven studied the transmission dynamics between 
individual birds and humans [44, 45, 52, 58, 78–80], eight 
between individual birds in a farm [35, 57, 62, 64, 65, 73, 
76, 77], and one between domestic birds and wild birds 
[66]. The other PBMs (11/27; Table 2) studied transmis-
sion between poultry farms [39, 41, 43, 48, 68, 69, 72] or 
transmission between poultry populations pooled at the 
administrative unit level [37, 49, 51, 53].

Most IBMs (16/19; Table 2) investigated the transmis-
sion process between farms [42, 46, 47, 50, 54–56, 59, 61, 
63, 67, 70, 71, 75] or between administrative areas [36, 
40, 50, 55], with two articles evaluating both in the same 
study [50, 55]. The remaining three articles considered 
transmission at two different scales (e.g., within-farm and 
between-farms) [38, 60, 74].

Data on poultry species explicitly included in the 
model were specified in only 20 of the 46 articles. The 
data mainly covered chickens (n = 17), ducks (n = 9) and 
turkeys (n = 7). Four articles included other species, such 
as geese, quails, and ostriches [36, 61, 63, 67]. Even when 
demographic data were available on various poultry spe-
cies, poultry populations usually were considered to be 
one homogeneous population. There were a few excep-
tions that distinguished backyard from commercial farms 
[36, 68, 72], or that incorporated the heterogeneity in 
transmission between host species and sometimes esti-
mated their relative contribution to transmission [36, 38, 
60, 63, 67].

Similarly, heterogeneity in transmission routes was 
rarely considered. Most transmission models considered 
that AIV transmission occurred only via poultry-to-poul-
try transmission, with only 10 of the 46 considering other 
transmission routes (e.g., contacts with wild birds or 
contaminated environment). For example, some authors 
modeled explicitly the environment [45, 66, 79] or the 
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disease dynamics in wild birds [36, 45, 49, 66], while oth-
ers considered a constant, distance-independent param-
eter to implicitly capture other undefined transmission 
sources (e.g., infectious backyard farms or wild birds, 

long-distance movements of infected birds or contami-
nated equipment) [38, 46, 47, 56, 63].

Table 3  Estimated parameter values in within- and between-farm transmission models.

FD: frequency-dependence ( β is in day−1); DD: density-dependence ( β is in farm−1.day−1).

This model assumed a force of infection of the form β I(t)
N

 , where N was a constant (the initial population size). Although assuming a density-dependent contact rate 
[69], the unit of β was the same as for frequency-dependent models, here in day−1.

Values of the reproduction number were not indicated when the average duration of the infectious period was not provided, or when the transmission between farms 
was distance dependent (because the reproduction number is farm specific).

Reference Subtype Model Transmission rate β Reproduction number

Within-farm transmission

 [35] HP/H5N1 PBM/FD Min: 0.60 (0.43–0.84)
Max: 2.30 (1.92–2.76)

Min: 2.18 (1.94–2.46)
Max: 3.49 (2.70–4.50)

 [57] HP/H5N2 PBM/FD 3.2 (2.3–4.3) 12.8 (9.2–17.2)

 [62] HP/H5N8 PBM/FD Min: 0.95 (0.3–2.3)
Max: 34.4 (27.3–44.1)

Min: 5.225 (1.65–12.65)
Max: 86 (68.25–110.25)

 [64] HP/H5N8 PBM/FD 4.1 (2.8–5.8) 17.5 (9.4–29.3)

 [65] HP/H5N8 PBM/FD Min: 0.661 (0.627–0.696)
Max: 3.387 (1.774–2.071)

Min: 2.642 (2.507–2.785)
Max: 13.548 (12.832–14.304)

 [73] HP/H7N7 PBM/FD 4.50 (2.68–7.57) –

 [74] HP/H7N7 IBM/FD 1.9 (0.61–8.1) 7.6 (2.44–32.4)

 [76] LP/H5N2 PBM/FD Min: 0.6 (0.4–1.0)
Max: 3.9 (1.2–5.8)

Min: 7.068 (4.712–11.78)
Max: 45.942 (14.136–68.324)

 [77] LP/H7N3 PBM/FD Min: 0.50 (0.45–0.55)
Max: 0.72 (0.68–0.77)

Min: 4.7 (3.0–8.6)
Max: 5.6 (4.3–7.7)

Between-farm transmission

 [38] HP/H5N1 IBM/DD 0.99 (0.76–1.12) × 10–6 –

 [41] HP/H5N1 PBM/DD Min: 1.4 × 10–8

Max: 40 × 10–8
Min: 0.55
Max: 15.7

 [42] HP/H5N1 IBM/DD 0.429 (probability) –

 [43] HP/H5N1
HP/H5N8
HP/H5N6

PBM/DD – Min: 0.03 (0–0.98)
Max: 2.20 (1.51–3.16)

 [46, 47] HP/H5N1 IBM/DD Min: 1.71 (0.586–3.63) × 10–10

Max: 1.06 (0.0729–3.78) × 10–7
–

 [48] HP/H5N1 PBM/FD Min: 0.08 (0.06–0.10)
Max: 0.11 (0.08–0.20)

Min: 0.85 (0.77–1.02)
Max: 0.96 (0.72–1.20)

 [56] HP/H5N2 IBM/DD 0.0061 (0.0025–0.0137) –

 [59] HP/H5N6 IBM/DD 0.0012 (0.0001–0.1) –

 [60] HP/H5N6
HP/H5N8

IBM/DD Min: 0.00007–Max: 0.00707 –

 [63] HP/H5N8 IBM/FD Min: 0.23 (0.16–0.31)
Max: 0.53 (0.37–0.72)

–

 [67] HP/H7N1 IBM/DD Min: 0.0009 (0.0005–0.0013)
Max: 0.0155 (0.0078–0.0232)

–

 [68] HP/H7N3 PBM/DD Min: 0 – Max: 0.00238 4.8

 [69] HP/H7N7 PBM/DD* Min: 0.17 (0.1–0.2)
Max: 0.47 (0.3–0.7)

Min: 1.2 (0.6–1.9)
Max: 6.5 (3.1–9.9)

 [70] HP/H7N7 IBM/DD Min: 0.076
Max: 0.336

–

 [71] HP/H7N7 IBM/DD 0.002 (0.0012–0.0039) –

 [72] HP/H7N7 PBM/DD 1.7 (1.5–2.0) × 10–4 1.33

 [74] HP/H7N7 IBM/DD 0.0039 (0.0023–0.0076) –
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3.3 � Parameter estimations
The between-individual transmission rate β was system-
atically estimated in all nine articles considering within-
farm transmission (eight PBMs and one IBM; Table  3). 
Although all nine models assumed homogeneous mix-
ing and frequency-dependent contact rates, the values 
of the between-individual transmission rate ranged from 
0.6 to 34.4 per day for HPAI viruses, and from 0.5 to 3.9 
per day for LPAI viruses (Table  3). Accordingly, values 
for the between-individual basic reproduction number 
R0 ranged widely, from 2.18 to 86 for HPAI viruses, and 
from 4.7 to 45.942 for LPAI viruses (Table 3). The most 
common parameters other than β and R0, i.e., the aver-
age durations of the latent and infectious periods and the 
case fatality risk, were most often fixed using published 
values from infection experiments (Additional file  4). 
The average duration of the latent period was always less 
than two days, irrespective of subtype and pathogenicity, 
and the average duration of the infectious period ranged 
from 1 to 15 days (Additional file  4). The case fatality 
risk ranged from 20 to 100% for HPAI viruses, while it 
was very low (0–1%) for LPAI viruses. Five of the nine 
articles also estimated the time of virus introduction in 
addition to the above-mentioned parameters [62, 64, 65, 
76, 77]. All parameter values in within-farm transmis-
sion models of HPAI viruses were estimated using daily 
recorded mortality data, while egg production data [77] 
or diagnostic testing data [76] were used for LPAI viruses 
(Table 3).

Similarly, the between-farm transmission rate β and the 
between-farm reproduction number Rh were the most 
commonly estimated parameters in the 24 articles study-
ing between-farm transmission of HPAI (Table  3). The 
average duration of the infectious period at the farm level 
was the third most frequently estimated parameter, and 
ranged quite widely depending on epidemiological set-
tings and virus subtypes. However, the smallest estimated 
value was 6.4 days, indicating rather long infectious peri-
ods at the farm level (Additional file 5).

In addition, 14 of the 24 articles modeling between-
farm transmission used spatial transmission kernels to 
describe how the relative risk of transmission between 
farms changed with the distance between a susceptible 
and an infectious farm. The resulting spatial transmission 
kernels are illustrated in Figure 3, except for that of Sey-
mour et al. [75] who used a nonparametric transmission 
kernel that could not be reproduced. Two studies used a 
step function where the relative risk was one below a cer-
tain distance threshold, and zero otherwise [42, 63]. Le 
Menach et al. [70] estimated three transmission rates for 
pre-determined ranges of between-farms distances (less 

than 3 km, between 3 and 10 km, and more than 10 km), 
which we converted into a step-function kernel (Fig-
ure  3). The other studies used parametric kernels, with 
three different functions (Table 4):

•	 a Pareto distribution [46, 47]: 

{

1, 0 ≤ dij < xmin
(

xmin
dij

)α+1

, dij ≥ xmin

•	 a power-law function [50, 54, 55]: 1− e
−

(

δ
dij

)ρ

•	 or a logistic expression [56, 59, 67, 71, 74]: 1

1+

(

dij
r0

)α

The parameters of these kernels were all estimated 
(Table 4), except for Backer et al. [74] and Hill et al. [47], 
who used the same parameter values as Boender et  al. 
[71] and Hill et  al. [46], respectively. Rorres et  al. [54, 
55] and Pelletier et al. [50] estimated large values of the 
shape parameter ρ and very small values of the distance-
scaling parameter δ (Table 4), thus producing a step-like 
function where the relative risk of transmission between 
farms decreased sharply to very small values (Fig-
ure  3). However, in these articles, the force of infection 
accounted for the number of birds in the susceptible and 
infectious farms, meaning that the probability of trans-
mission between farms remained substantial even at high 
distances. Hill et  al. [46] also found a rapidly decreas-
ing probability, but with long right-tails depending on 
the epidemic used to parameterize the kernel (Figure 3; 
Table  4). Similar values of the shape parameter α were 
found in Boender et al. [71], Dorigatti et al. [67] and Bon-
ney et  al. [56], thus producing similar shapes. However, 
they estimated different values of the half-kernel dis-
tance r0, with local transmission being more important in 
Boender et al. [71] and Dorigatti et al. [67], while trans-
mission at moderate distances remaining substantial in 
Bonney et al. [56]. Conversely, Salvador et al. [59] found a 
similar half-kernel distance r0 to Dorigatti et al. [67], but 
a smaller shape parameter α, indicating a larger role of 
long-distance transmission (Figure 3, Table 4).

Finally, the remaining 14 articles considered transmis-
sion within and/or between areas, with individuals or 
administrative areas as epidemiological units (i.e., not 
modeling farms). Eleven estimated both the transmis-
sion rate and the Rh, three estimated the average dura-
tion of the infectious period, and two estimated the 
average duration of the incubation period and spatial 
kernel parameters. However, variations between the epi-
demiological units and spatial scales considered limit 
comparisons and the possibility to use values for differ-
ent settings. Therefore, we did not report the estimated 
values here (but they are presented in Additional file 3).
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3.4 � Mitigation strategies
Out of the 46 articles selected, 20 evaluated the effective-
ness of control measures in containing AIV outbreaks 
through numerical simulations (Table  5). Most focused 
only on HPAI outbreaks, with one exception that focused 
on both LPAI and HPAI H7N9 in China (Table  5). Five 
studies used PBMs and 15 used IBMs. Most articles 
(15/20) studied the effect of control measures solely on 
epidemiological parameters in the poultry population 
(epidemic size and duration, reproduction number, num-
ber of culled flocks). The economic impact of the meas-
ures implemented was considered in only three articles 
[38, 74, 75]. Finally, in two studies [52, 80], the authors 
estimated the effectiveness of mitigation strategies in 

poultry for controlling the disease in humans (e.g., reduc-
tion of the number of infected humans).

The most commonly evaluated strategy was poultry 
culling (15 articles, Table  5), either in the form of reac-
tive culling (culling of infected flocks, five articles) or pre-
emptive culling (culling of at-risk flocks not necessarily 
infected, 12 articles), with two articles evaluating both.

Reactive culling was most of the time included in the 
model baseline mitigation strategy without evaluating 
its effectiveness on its own [36, 38, 40, 47, 49, 50, 56, 
59, 60, 63, 67, 70, 71, 74, 75, 80]. There were two excep-
tions: (1) Lee et al. [52] showed that reducing the num-
ber of infectious poultry led to a substantial reduction 
in the number of H5N1 infections in humans compared 

Figure 3  Comparison of spatial transmission kernels used in between-farm transmission model. Hill et al. [47] and Backer et al. [74] used 
the same kernel and same parameter values as Hill et al. [46] and Boender et al. [71], respectively. Note that for Rorres et al. [54, 55] and Pelletier et al. 
[50], estimated parameter values were close and therefore the three curves are indistinguishable. For these three models, although the relative risk 
of transmission between farms decreased to very low values at small distances, the absolute probability of transmission remained substantial even 
at long distances because the sizes of both susceptible and infectious farms were included in the force of infection.
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Table 4  Estimates of spatial kernel parameters used in between-farm transmission models of highly pathogenic avian 
influenza.

For estimated parameter values, the mean/median and 95% confidence/credible interval (when reported) are indicated. dij is the distance between an infectious 
farm i  and a susceptible farm j  . In the Pareto distribution, xmin is the minimum possible value of the function and α ≥ −1 determines the shape of the kernel: α = −1 
corresponds to distance-independent transmission, with increasing values of α increasing local transmission and diminishing long-range transmission. In the Power-
law function, the distance-scaling parameter δ is the distance at which the relative risk of transmission is 1− 1

e
 (or about 0.63), and ρ determines whether the decrease 

from probability 1 to 0 is gradual (small ρ ) or step like (large ρ ). In the logistic expression, the half-kernel distance r0 corresponds to the distance at which the relative 
risk of transmission is 0.5, and the shape parameter α determines whether the decrease from probability 1 to 0 is gradual (small α ) or step like (large α).

Spatial kernel K
(

dij
)

Reference Parameters

Pareto distribution
{

1, 0 ≤ dij < xmin
(

xmin
dij

)α+1

, dij ≥ xmin

[46, 47] xmin = 0.1km α = −0.358(−0.666,−0.159)

α = 0.0136 (−0.122, 0.143)

Power-law

1− e
−

(

δ
dij

)ρ

[54] δ = 1.529× 10−5km ρ = 2.2

[55] δ = 9.334× 10−5km ρ = 2.5

[50] δ = 5.899× 10−5km ρ = 2.009

Logistic expression
1

1+

(

dij
r0

)α

[71]; [74] r0 = 1.9km (1.1, 2.9) α = 2.1(1.8, 2.4)

[67] r0 = 3.160km (1.770, 4.549) α = 2.192(1.894, 2.490)

[56] r0 = 7.02km (3.07, 16.16) α = 2.46(1.80, 4.38)

[59] r0 = 3.4km (1.001, 10.0) α = 1.4 (1.001, 5.0)

Table 5  Mitigation strategies evaluated in articles included in the review.

a Outcome considered by the authors to compare mitigation strategies: Epi, epidemiological parameters in poultry; Eco, economic impact of measures evaluated; 
Epi H, epidemiological parameters in humans.
b Mitigation strategies evaluated: RC, reactive culling; PEC, pre-emptive culling; Vacc, vaccination; Surv, surveillance.

Reference Pathotype Outcome for 
comparisona

Mitigation strategies evaluatedb

RC PEC Vacc Surv Others

[36] HP Epi x

[38] HP Epi + Eco x x

[40] HP Epi x x

[42] HP Epi x x

[47] HP Epi x x x

[49] HP Epi x

[50] HP Epi x x

[52] HP Epi H x

[56] HP Epi Early marketing

[58] HP Epi x Quarantine

[59] HP Epi x x

[60] HP Epi x

[63] HP Epi x x x

[66] HP Epi x Biosecurity measures 
and closure of live 
poultry markets

[67] HP Epi x Ban on restocking

[70] HP Epi x x x National movement ban

[71] HP Epi x

[74] HP Epi + Eco x x

[75] HP Epi + Eco x

[80] LP and HP Epi H Biosecurity measures 
and closure of live 
poultry markets
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to a scenario without reactive culling; and (2) Chen 
et  al. [66] showed that reactive culling could substan-
tially decrease the number of poultry outbreaks, but 
could not control the epidemic on its own. In addition, 
the impact of the timeliness of reactive culling was eval-
uated in three articles, which all consistently showed a 
strong positive impact of this parameter on the effec-
tiveness of reactive culling [49, 63, 70]. For example, 
Andronico et  al. [63] showed that reducing the time 
between detection and culling (from 5 to 2 days) cut in 
half the expected size of the outbreak in poultry.

Pre-emptive culling consisted of culling flocks within 
a given radius around detected infected flocks [38, 47, 
50, 59, 60, 63, 67, 70, 71, 74, 75]. The radius was under 
10 km in most articles, except for Kim et al. [42], who 
evaluated radii up to 56.25  km. All articles reported 
the effectiveness of pre-emptive culling on reducing 
the number of infected flocks and the duration of the 
epidemic. The effectiveness increased when the cull-
ing radii increased. However, the economic costs of the 
epidemic were also the highest for the highest culling 
radii [74, 75].

Moreover, the improvement brought by increasing the 
pre-emptive culling radius saturated rapidly when limited 
culling capacity was considered [47, 50, 60, 63, 70, 74, 
75]. This is because further increasing the culling radius 
did not change the number of culled flocks once the 
maximum culling capacity was reached. Limited culling 
capacity was introduced to represent limited resources 
and logistical difficulties presented by mass culling over 
a short period of time. It was modeled either as a number 
or proportion of preventively culled farms around each 
infected farm [63, 70], as a maximum number of farms 
culled at each time step [47, 50, 74, 75], or as a nonlin-
ear culling rate depending on the number of reported 
farms [60]. Increasing the culling capacity substantially 
increased the effectiveness of pre-emptive culling on the 
size and duration of an epidemic [47, 74].

The effectiveness of pre-emptive culling came at the 
cost of culling more flocks. In most cases, the total num-
ber of culled flocks (by reactive and pre-emptive culling) 
increased as the pre-emptive culling radius increased. 
This means that reactive culling without pre-emptive 
culling would be preferred if the objective was to reduce 
the number of culled flocks instead of reducing the epi-
demic size [38, 47, 63, 67, 74, 75]. However, in some cases 
the total number of culled flocks was non-monotonic as 
the pre-emptive culling radius increased [42, 59, 60]. The 
total number of culled flocks first decreased, as the num-
ber of infected flocks decreased faster than the number 
of pre-emptively culled flocks increased. The total num-
ber of culled flocks then increased again as there were 
more and more pre-emptively culled flocks. Therefore, 

there was a minimum number of culled flocks at an opti-
mal radius, which ranged from 1 to 18.75 km depending 
on the epidemiological setting [42, 59, 60]. In Lee et  al. 
[60], this non-monotonic behavior was only observed in 
areas with R0 above one, but not in areas with R0 below 
one.

Vaccination strategies were evaluated less frequently 
than culling strategies (six articles; Table  5). Vaccina-
tion was applied either within a radius of 1 to 10  km 
around infected flocks [47, 50, 74] or to a proportion of 
the total poultry population [38, 40, 50, 58]. One arti-
cle evaluated the impact of a vaccination strategy that 
was applied in real life and not as a theoretical scenario 
[40]. The results showed that the countrywide vac-
cination strategy implemented in Vietnam starting in 
2005 with ~60% coverage allowed the transmissibility 
of HPAI infection to be substantially reduced. How-
ever, this was coupled with a substantial increase of 
the time from infection to detection, possibly because 
lower levels of mortality and symptomatic infections 
made outbreaks harder to detect [40]. When consid-
ering hypothetical vaccination strategies, the results 
showed the effectiveness of vaccination from an epi-
demiological point of view in most articles, although 
ring vaccination was found ineffective in some cases 
[47, 50]. Pelletier et  al. [50] showed that ring vaccina-
tion was less effective than countrywide vaccination 
with 92–97% coverage. The effectiveness of country-
wide vaccination was further improved when the order 
in which premises were vaccinated was determined by 
known risk factors, such as flock size or proximity to 
an infected flock [50]. Increasing the vaccination radius 
brought limited improvements when considering lim-
ited capacity [47].

Vaccination was compared to pre-emptive culling in 
four articles [38, 47, 50, 74]. Their respective effective-
ness depended on the objective behind their implemen-
tation: vaccination was more effective in reducing the 
number of culled flocks, while pre-emptive culling was 
more effective in reducing epidemic size and duration 
[38, 47, 50, 74]. In Pelletier et al. [50], countrywide vacci-
nation was the most effective in reducing the number of 
culled flocks, while at the same time having similar effec-
tiveness as pre-emptive culling in reducing the epidemic 
size. However, the effort required by these two control 
strategies was substantially different: 92 to 97% of flocks 
were vaccinated while only 17 to 27% were culled [50]. 
Increasing the management capacity was less effective for 
ring vaccination than for ring culling [47, 74].

Only two studies compared the relative costs of pre-
emptive culling and vaccination strategies [38, 74]. 
Backer et  al. [74] found that the duration and size of 
the epidemics were lower for pre-emptive culling than 
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for ring vaccination for a same radius (3 km). However, 
the total costs (direct costs—such as compensation 
of culled poultry, costs of culling, cleaning and disin-
fecting, costs of vaccine doses and vaccination, and 
surveillance costs—as well as indirect costs—such as 
lower prices for eggs and slaughtered poultry, and loss 
of revenue) of the two strategies were only marginally 
different. Retkute et  al. [38] showed that the choice of 
a strategy depended on the relative costs of pre-emp-
tive culling and vaccinating compared to the economic 
impact of an infected flock (e.g., costs of reactive cull-
ing, compensation paid for destroyed animals, or costs 
associated with potential zoonotic transmission to 
poultry professionals). If the cost of culling was low 
compared to the cost of an infected flock, pre-emptive 
culling was preferred regardless of the cost of vaccina-
tion. If the costs of culling and vaccinating were both 
high compared to the cost of an infected flock, then 
neither strategy were preferred and reactive culling 
alone minimized the total costs of the epidemic. How-
ever, if the cost of culling was high compared to the 
cost of an infected flock but the cost of vaccination was 
low, then vaccination was preferred [38].

Seven articles evaluated the effectiveness of surveil-
lance strategies (Table  5). Andronico et  al. [63] demon-
strated that the surveillance zone implemented as part 
of the mandatory EU strategy during the 2016–2017 
H5N8 epidemic in France was effective in reducing trans-
mission. Walker et  al. [36] found that intensive surveil-
lance campaigns reduced the period between infection 
and reporting during the 2004–2005 H5N1 epidemic in 
Thailand. The other five articles all showed that improv-
ing surveillance to reduce the time between infection 
and detection had a large effect on the epidemic [40, 42, 
47, 59, 70]. For instance, reducing the average duration 
between infection and detection by 35% reduced the epi-
demic size by 66.8% in Walker et al. [40]. Hill et al. [47] 
even concluded that improving surveillance was in most 
cases a more effective strategy than pre-emptive culling 
or ring vaccination.

Various other strategies (e.g., movement bans, biosecu-
rity measures, closure of live poultry markets) were eval-
uated in eight articles (Table  5). Most articles assumed 
that farms emptied of poultry during an epidemic, 
either because they had completed a production cycle or 
because their flocks had been culled, were banned from 
restocking. However, only Dorigatti et  al. [67] demon-
strated the effectiveness of this mitigation measure. They 
showed that if the ban on restocking had not been imple-
mented, the epidemic size would have been 155% times 
higher on average [67]. During the HPAI H5N2 epidemic 

in Minnesota (US) in 2015, a strategy called “early mar-
keting” was used [56]. This strategy consisted in sending 
flocks to slaughter earlier than the normally scheduled 
date to reduce the density of poultry farms. By suffi-
ciently decreasing densities, it was possible to decrease 
the reproduction number to below one in a high-density 
area, thereby reducing virus spread [56]. The authors 
therefore considered this strategy to be an interesting 
alternative or complement to conventional pre-emptive 
culling [56].

Finally, the early implementation of mitigation strate-
gies was always more effective than implementing them 
later in an epidemic [67, 70, 80]. When considering the 
impact of mitigation strategies on zoonotic transmission 
to humans, it was demonstrated that combining meas-
ures in poultry with measures in humans was better than 
implementing measures in poultry alone [52]. Given the 
potential difficulties of implementing a single strategy at 
highly effective levels, the joint implementation of two 
strategies at less effective levels may be both easier and as 
(or even more) effective, thus representing an interesting 
alternative [52].

4 � Discussion
The results presented in this study summarize the state 
of the art in mechanistic modeling applied to field out-
breaks of low pathogenicity and highly pathogenic avian 
influenza in poultry. Our objectives were to describe the 
models and their epidemiological context, to list cur-
rent estimates of AIV transmission parameters, to pro-
vide insights on avian influenza transmission and the 
impact of control strategies, and finally to discuss future 
avenues for modeling AIV transmission. We limited our 
analysis to articles describing a model fitted to epidemic 
data to ascertain the articles’ relevance for this review. 
The search was restricted to three online databases for 
articles in English based on a selected set of keywords. 
Therefore, it is possible that we missed a few relevant 
publications in the gray literature which did not have the 
selected keywords or were in a language other than Eng-
lish. However, we are confident that this analysis provides 
an accurate literature synthesis.

4.1 � Epidemiological insights
4.1.1 � Parameter estimates
Two recent studies reviewed values of the transmission 
rate, the basic reproduction number, and the average 
durations of the latent and infectious periods estimated 
from experimental studies [31, 32]. In addition, Kirkeby 
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and Ward [32] included estimates from field data, but 
only if no disease control strategies had been imple-
mented when the data used to perform the estimation 
was collected. Our review of parameter values therefore 
differed from these previous studies, as we excluded 
studies based on experimental infections and included 
all estimates from field data, including those from peri-
ods with active disease control strategies. This was in line 
with our objectives, which were to review both parameter 
values and effectiveness of disease control strategies esti-
mated using mechanistic models fitted to field outbreaks.

In our study, only two articles estimated the average 
durations of the latent and infectious periods in indi-
vidual birds (Additional file 4) [64, 77], preventing com-
parisons with the previous reviews. In Kirkeby and Ward 
[32], the average latent period ranged from 0.2 to 2 days 
for HPAI, and from 0.02 to 8.6 days for LPAI. The average 
infectious period for HPAI ranged from 1 to 6.8 days in 
[32], and from 1.47 days to 13.4 days in [31]. For LPAI, the 
average infectious period ranged from 2.3 to 13.32 days 
in [32], and from 4.25 to 10.03 days in [31].

As in our study, both of these reviews found a large 
variation in the estimated between-individual transmis-
sion rates and basic reproduction number R0 [31, 32]. 
The values of the between-individual reproduction num-
ber ranged from 2.18 to 86 for HPAI viruses in our study 
(Table 3), from 0.17 to 208 in [32] and from 1.6 to 34 in 
[31]. For LPAI, R0 ranged from 4.7 to 45.9 in our study 
(Table 3), from 0.3 to 15.6 in [32] and from 0.22 to 15.3 
in [31].

In our review, estimates of the average duration of the 
infectious period at the farm level ranged between 6.4 
and 17.22 days for HPAI (Additional file 5). In compari-
son, estimated values of this parameter ranged between 
7.9 and 13.8 days in Kirkeby and Ward [32]. The between-
farm reproduction number Rh for HPAI ranged from 0.03 
to 15.7 in our review (Additional file 5), and from 0.85 to 
22.4 in [32].

The estimates presented in the studies selected for the 
current review were from a wide range of geographi-
cal regions and virus subtypes. This will undoubtedly 
improve risk analysis and the creation of future mod-
els by constructing more realistic simulation studies. 
While some insights may be gained into the virus spread 
dynamics in these areas, caution should be taken to 
extrapolate parameters from one region to the next as 
disease dynamics depend on numerous factors, including 
local conditions, farm density, and production systems 
[81].

4.1.2 � Transmission mechanisms
As illustrated in Figure  3, different transmission mod-
els used distance-based kernels to study HPAI spread 

between poultry farms. The estimated kernel param-
eters (Table  5) suggest that most HPAI transmissions 
happened at a short to moderate distance range, irre-
spective of the subtype or geographical location. This is 
in line with results from observational studies [27, 82]. 
However, it does not mean that long-distance transmis-
sion is impossible. For example, the spatial kernels used 
in Bangladesh [46] and the Philippines [59] were long-
tailed, indicating that some transmission events were 
often sourced over long distances. Differences in spatial 
kernels were observed between epidemics in different 
countries. Differences also could appear between differ-
ent epidemics of the same subtype in a given country, as 
highlighted in Hill et  al. [46], or even between different 
waves in a given epidemic, as suggested in Bonney et al. 
[56]. Such differences could arise from differences in 
poultry production, distinct characteristics of different 
HPAI subtypes, or specific control strategies.

Poultry farming systems vary widely regarding the spe-
cies raised, farm sizes, and management systems [83]. 
This heterogeneity likely plays a role in epidemic dynam-
ics, but it was rarely accounted for explicitly. However, 
when species heterogeneity was explicitly modeled, it 
was possible to determine the respective contribution of 
each species to transmission, which appeared to depend 
on the virus subtype. For example, Andronico et al. [63] 
explicitly modeled galliformes (e.g., chickens) and palmi-
peds (e.g., ducks and geese) to account for their contribu-
tion to the 2016–2017 HPAI H5N8 propagation dynamics 
in France. They were able to show that palmiped farms 
were 2.6 (95% CI: 1.2–10) more susceptible and 5.0 (95% 
CI: 3.7–6.7) times more infectious than galliform farms. 
Similar results were found in the Republic of Korea for 
the 2016–2017 HPAI H5N8 spread, with transmissibility 
between duck farms being as much as 1.6 times higher 
than either between chicken farms or between different 
farm types [60]. In contrast, chicken farms were up to 
10.7 times more infectious than palmiped farms during 
the 2004 HPAI H5N1 epidemic in Thailand [36].

Similarly, heterogeneity between management systems 
was explicitly accounted for in three articles by consid-
ering separate compartments for commercial and back-
yard poultry farms [36, 68, 72]. Both Bavinck et  al. [72] 
and Smith and Dunipace [68] found that backyard farms 
played a limited role in HPAI transmission, with repro-
duction numbers below one for transmission between 
backyard farms and between commercial and backyard 
farms (note that Walker et al. [36] used a common com-
partment for backyard poultry and wild birds, preventing 
comparison).

Wild birds were sometimes included to account for 
sources of infection other than domestic poultry farms. 
Different approaches were used, either by implementing 
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a constant parameter fitted to the epidemic data and 
implicitly considering various sources of transmission 
(including wild birds) [38, 46, 56, 63], by including sea-
sonal introductions into poultry farms via migratory 
birds [45], or by considering a specific compartment for 
the number of wild birds in the vicinity of domestic farms 
[36, 49]. When the relative role of wild birds and domes-
tic poultry was assessed, commercial poultry farms were 
found to be the main sources of infection [45, 49, 63]. 
For instance, Andronico et  al. [63] quantified that wild 
birds and backyard poultry only accounted for 11% of 
transmission events. However, wild birds may be playing 
an important role in introducing and re-introducing the 
virus to the local environment [45, 49].

4.1.3 � Control strategies
About half of the included articles evaluated control 
strategies (20/46). Overall, both reactive and pre-emptive 
culling remained the most studied control measures, 
reflecting the widespread use of these measures in real 
life. In contrast, vaccination was evaluated more rarely. 
The use of vaccination as a routine component of the 
control strategy was until 2023 prohibited in the EU [84], 
and currently remains prohibited in the US [16] because 
of the trade implications. However, it was authorized 
in the EU in 2023 [17] due to the recent devastating 
epidemics.

The effectiveness of control measures likely depends on 
the virus subtype and on local conditions, such as farm 
density and the distribution of farm types (backyard/
commercial) and poultry species. For instance, the opti-
mal radius minimizing the number of preventively culled 
flocks varied between locations and epidemic years [42, 
59, 60]. Similarly, the optimal strategies minimizing the 
costs of HPAI epidemics depend on the relative costs of 
various control measures [38], which may vary over time 
and between countries. Therefore, whenever possible, 
modeling approaches should consider the local context 
and time period when assessing control strategies.

Nonetheless, we identified two general findings regard-
ing the evaluation of control strategies. First, the optimal 
control measure depended on the objective. The best 
strategy often differed depending on whether the objec-
tive was to reduce the epidemic duration and size or 
whether it was to reduce the number of culled flocks [38, 
47, 50, 74]. In particular, vaccination was often the strat-
egy associated with the lowest number of culled flocks, 
thus possibly reducing the costs of an epidemic (e.g., 
median of 278 culled farms for the baseline scenario vs 
only 163 culled farms in the same scenario but with ring 
vaccination [74]). However, vaccination strategies may 
incur other costs by increasing epidemic durations (e.g., 
median of 67  days for ring vaccination compared to a 

minimum of 26 days for ring culling [74]) or by disrupt-
ing international trade. It should be noted that losses due 
to restrictions on exports were not included in the three 
models that compared control strategies based on eco-
nomic costs [38, 74, 75]. Therefore, a careful definition 
of the objective and costs associated with each measure 
is necessary to have a more comprehensive evaluation of 
the cost-effectiveness of each strategy.

Second, the early implementation of control measures 
supported by effective surveillance was always beneficial. 
For instance, reactive culling of infected flocks soon after 
their detection had a substantial impact on the course of 
HPAI epidemics [49, 63, 70]. Similarly, improving surveil-
lance to reduce the time between infection and detection/
reporting, thus allowing earlier implementation of vari-
ous strategies (e.g., reactive culling of the infected flock, 
pre-emptive culling around it), substantially reduced the 
impact of HPAI epidemics [36, 40, 42, 47, 59, 70]. Moreo-
ver, the effectiveness of control strategies increased as the 
period between the first detected outbreak and the first 
implementation of control measures decreased [67, 70, 
80]. For the 1999–2000 HPAI H7N1 epidemic in Italy, the 
number of outbreaks would have been reduced from 385 
to 222 on average if preventive culling had been imple-
mented 20 rather than 54 days after the epidemic started 
[67]. All of these results highlight the importance of epi-
demic preparedness, with effective surveillance systems 
and quick responses of policy makers and veterinary 
services.

4.1.4 � Different insights from different modeling approaches?
Different modeling approaches have been used to evalu-
ate AIV transmission during the same epidemics in the 
same countries (Table 1). This was the case for the 2003 
HPAI H7N7 epidemic in the Netherlands [69–72, 74, 75] 
and for the 2004 HPAI H5N1 epidemic in Thailand [36–
38]. In these epidemics, different modeling approaches 
were applied to the same datasets with varying levels of 
details, providing varying parameter estimates. The 2003 
HPAI H7N7 epidemic in the Netherlands was by far the 
most studied (Table  1), and provided a good case study 
of how various modeling approaches influence param-
eter estimations and recommendations to policy mak-
ers. Two population-based models neglected the spatial 
aspect of between-farm transmission [69, 72]. Contrary 
to Stegeman et al. [69], Bavinck et al. [72] accounted for 
backyard flocks and neglected temporal changes in trans-
mission rates and infectious periods during the study 
period (22 February-3 April 2003). Nonetheless, they 
estimated a between-farm reproduction number (Rh) of 
1.33 (Table 3), quite similar to the 1.2 (95% CI: 0.6–1.9) 
estimates for the same area between 1 March 2003 and 3 
April 2003 in Stegeman et al. [69]. Bavinck et al. [72] had 
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the additional advantage of estimating the contribution 
of backyard and commercial flocks to transmission. They 
showed that culling backyard flocks may not be necessary 
as these flocks only played a minor role [72].

Compared to PBMs, spatial IBMs had the additional 
ability to produce at-risk maps [71] and to evaluate spa-
tially-explicit control strategies such as preventive cull-
ing around infected flocks [70, 74, 75]. Various ways of 
accounting for spatial heterogeneity in transmission 
during the 2003 HPAI H7N7 epidemic have been used. 
Le Menach et al. [70] estimated three transmission rates 
depending on the distance between farms, and found 
substantially lower transmission rates for long-distance 
ranges (above 10 km) than for short and medium-ranges 
(under 3 km and between 3 and 10 km, respectively – Fig-
ure 3). Boender et al. [71] used a parametric kernel with 
a logistic functional form to represent how the relative 
risk of transmission decreased with increasing between-
farm distance (Figure  3). The same kernel was re-used 
by Backer et al. [74]. The estimates of the spatial kernel 
parameters indicated a rapid decrease of the relative risk 
of transmission with increasing distance, where the risk 
was already halved at 1.9 km and reached very low values 
beyond 10 km (Figure 3; [71]). Finally, Seymour et al. [75] 
developed a nonparametric kernel to represent the same 
phenomenon but in a more flexible way. The estimated 
nonparametric kernels were of similar shape and scale 
as the parametric kernel used in Boender et al. [71], but 
with a higher degree of uncertainty, especially at lower 
distances [75]. The authors therefore argued that the 
assumptions imposed by parametric kernels may under-
estimate the uncertainty, and that nonparametric kernels 
may better reflect the actual uncertainty in the data [75].

The last point of comparison is the evaluation of con-
trol strategies, and more specifically of pre-emptive 
culling. Boender et al. [71] concluded that culling farms 
within a 1  km radius was not very effective in reduc-
ing the Rh, but that culling farms within a 5  km radius 
reduced the Rh of all farms below one, and thus was 
fully effective. In contrast, Backer et  al. [74] and Sey-
mour et al. [75] both found a strong effect of pre-emptive 
culling within a 1  km radius on the number of infected 
farms compared to no pre-emptive culling. This differ-
ence may be explained by the way the control strategies 
were evaluated. In Boender et al. [71], the effectiveness of 
pre-emptive culling was evaluated on the Rh of all farms. 
The other two studies simulated the epidemics under dif-
ferent scenarios and compared the model outputs, such 
as the number of infected and culled farms. Therefore, 
the criteria used to evaluate the effectiveness of control 
strategies need to be chosen carefully. Interestingly, Sey-
mour et al. [75] found that increasing the culling radius 
beyond 1 km did not substantially reduce the number of 

infected farms despite a larger number of culled farms. 
In contrast, Backer et al. [74] found that the effectiveness 
increased when expanding the radius from 1 to 3 km, but 
not from 3 to 10 km. This difference in the optimal pre-
emptive culling radius (1 vs 3 km) could be explained by 
the different culling capacity used, up to 20 farms per day 
in Backer et al. [74] vs only up to six farms per day in Sey-
mour et al. [75]. This difference highlights the importance 
of this parameter on the evaluation of control strategies. 
Overall, these results also emphasize the importance of 
comparing several models with different structures and 
assumptions to inform policy recommendations [85, 86].

4.2 � Model limitations and future avenues for modeling 
AIV transmission

4.2.1 � Research gaps on avian influenza transmission 
and control

It is worth noting that until the winter of 2021–2022, 
the HPAI H5N8 subtype was responsible for the largest 
epidemics ever recorded in the EU in terms of the num-
ber of poultry outbreaks, geographical extent, and the 
number of dead wild birds, spreading across more than 
29 European countries in the winters of 2016–2017 and 
of 2020–2021 [87]. However, only three studies in our 
review focused on parameter estimation and evaluation 
of control strategies of HPAI H5N8 in the EU [62–64]. 
Given the animal welfare and economic impact that these 
epidemics had, further research is needed on mechanistic 
modeling of HPAI H5N8 to better understand how the 
virus spread and how best to control it [32]. Since 2021, 
the HPAI H5N1 subtype has become predominant and 
caused thousands of outbreaks in domestic poultry [87–
89]. Modeling studies will therefore also be required for 
this new devastating and widespread epidemic. In par-
ticular, the evaluation of vaccination in some European 
countries should be a priority given that it may become 
part of their strategy to mitigate the impact of HPAI [16].

Only five studies in our review included data on LPAI 
viruses, including three studies on the LPAI H7N9 
viruses that were first discovered in China in 2013. Given 
their zoonotic potential and the ability of H5 and H7 
LPAI viruses to mutate into HPAI, further research is 
needed on this topic [32]. This is especially true as each 
virus subtype and context is unique, and therefore a bet-
ter understanding of the transmission of LPAI viruses in 
different settings is needed.

4.2.2 � Fine‑tuning models
Models are created for a specific situation with three 
key (and often opposing) characteristics to be balanced: 
accuracy (the ability to reproduce the observed data), 
tractability (the capacity to solve and understand the 
model analytically or numerically), and flexibility (the 
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ease with which the model can be adapted to new situ-
ations) [90]. The trade-off between these characteristics 
depends on the question being addressed and the availa-
bility of data. Even when data are available, simplification 
is often necessary, for example to get a more flexible and 
tractable model or save computational time. In doing so, 
some processes that could impact transmission dynamics 
may be overlooked.

In the articles reviewed, this was the case for the 
impact of host species and production systems. Many 
models (24/46) considered a homogeneous “poultry” 
population. However, as was demonstrated in some of 
the articles, galliformes and palmipeds contributed dif-
ferently to different epidemics [36, 60, 63], and transmis-
sion parameters may vary between species depending on 
the virus subtype [32, 36, 60, 63] and between commer-
cial and backyard farms [68, 72]. Thus, caution should be 
taken in pooling all poultry populations into one. When-
ever possible and according to the available data, models 
should account for heterogeneity between host species 
and production systems to gain a better understanding of 
the contribution of each poultry population to AIV trans-
mission and design control strategies accordingly. Even 
if host heterogeneity is not included in the model, future 
studies should at least report information on which poul-
try populations are included, e.g., to clarify which param-
eter values are applicable to which species [32].

Another modeling assumption that should be refined 
is the homogeneous mixing of individual birds, espe-
cially at the national [52, 53, 66] and global scales [44, 
45]. This assumption means that every host interacts uni-
formly and randomly with every other host with the same 
probability, thus neglecting any heterogeneity that may 
arise from differences in age, behavior, and most impor-
tantly, spatial location [90]. This assumption helps sim-
plify models in the absence of detailed data, and may be 
appropriate at small scales, such as for within-farm epi-
demic dynamics [35, 57, 62, 64, 65, 73, 74, 76, 77]. How-
ever, it may not adequately reflect transmission dynamics 
at larger scales.

Similarly, the homogeneous mixing of farms [39, 41, 43, 
48, 68, 69, 72] may not be adequate, especially for large 
geographical areas. To refine this assumption and intro-
duce spatial heterogeneity, spatial kernels were most 
of the time included at the between-farm transmission 
scale (Figure  3). This may represent a simple but ade-
quate alternative that is more representative of the spatial 
spread of AIV than homogeneous mixing.

Finally, the scale of the epidemiological unit was also 
important. Eight articles used administrative areas as the 
epidemiological unit [36, 37, 40, 49–51, 53, 55]. These 
administrative areas ranged from villages or communes 
up to US counties or Nigerian states. In all these articles, 

the administrative area was considered as a single unit, 
i.e., the whole area became exposed or infectious at the 
same time, neglecting within-area dynamics. Rorres 
et al. [55] compared models using three different epide-
miological units in Pennsylvania (US): farms, ZIP-codes 
and counties. Interestingly, the epidemic dynamics were 
consistent with those at the farm level when aggregating 
at the ZIP-code level, but not at the county level. These 
results suggest that US counties are too large to neglect 
the within-area transmission dynamics [55]. Similar 
results were found when producing risk maps in the 
Netherlands: similar risk maps were obtained at the farm 
or municipality level, but not at the regional level [31]. 
Therefore, we recommend, depending on the available 
data and the modeling objective, to use the smallest spa-
tial resolution possible.

4.2.3 � Estimating parameters from field data
In most studies, only the transmission parameter was 
estimated using field data (Table  3). Other parameters, 
such as the frequently used average durations of the 
latent and infectious periods, were more often assumed 
(Additional files 4 and Additional file 5).

For instance, most within-farm model parameters were 
assumed based on experimental studies for the same or 
different virus subtype. However, the course of the infec-
tion could be different in field situations compared to 
experimental studies, and could also differ between virus 
subtypes. Therefore, further insights could be gained on 
within-farm transmission dynamics and on the course 
of infection in individual birds by estimating parameters 
such as the durations of the latent and infectious peri-
ods from field outbreak data, when possible. Of course, 
results from experimental studies could still be used 
when these parameters cannot be estimated, or as a pri-
ori knowledge if the estimation is performed in a Bayes-
ian framework [64]. The introduction time of the virus is 
another parameter that was estimated in only a few stud-
ies, despite its importance for contact tracing and iden-
tifying risk factors for the introduction of AIVs in a farm 
[62]. Using modeling approaches and epidemic data to 
estimate this parameter thus represents a potential ave-
nue for future research. Moreover, this parameter could 
be used to inform the time between the onset of infection 
and its detection (incubation period) in between-farm 
transmission models.

The duration of the incubation period at the farm level 
was estimated in only four of the 24 articles that con-
sidered between-farm transmission (Additional file  5). 
Results from within-farm modeling could be used to 
better inform this parameter and how it varies between 
farms according to their characteristics (species, size…). 
Alternatively, this parameter could be estimated, as was 
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done in Kim et  al. [42], Hill et  al. [46] and Andronico 
et al. [63]. This would provide useful information on the 
effectiveness of surveillance.

4.2.4 � Improving the evaluation of control strategies
Given the frequency of devastating epidemics and the 
potential switch toward endemic circulation of HPAI 
viruses worldwide, preparedness and prevention strate-
gies are critical for the sustainability of poultry produc-
tion. Mechanistic models of AIV transmission are highly 
valuable since they provide the possibility to compare 
several strategies in a given epidemiological setting, 
which is rarely feasible in the field. The evaluation of dif-
ferent combinations of AIV control strategies deserves 
further attention. Yet except for combining various strat-
egies with the conventional practice of reactive culling, 
most articles included in this review compared strategies 
in isolation. However, the repeated occurrence of dev-
astating HPAI H5Nx epidemics around the world raises 
serious concerns about the capacity of existing strategies 
to control HPAI viruses, and highlights that no strategy 
alone is sufficient [18]. For instance, investigating the use 
of vaccination in combination with other control strate-
gies could provide useful insights. The barriers to vaccine 
usage in the EU are progressively being removed, espe-
cially with the catastrophic impact of the recent epidem-
ics of HPAI H5N1. The Netherlands and France, among 
others, already have performed clinical trials of vaccines 
[91, 92]. Mechanistic models can help assess the effec-
tiveness of control strategies, including vaccination. The 
implementation of additional mitigation approaches, 
such as reinforcing biosecurity measures and reducing 
the density of poultry farms, is a prerequisite to success-
ful vaccination campaigns [18]. In this context, mecha-
nistic models offer a promising route to decipher the 
effects of associated mitigation and control strategies.

Furthermore, greater attention needs to be paid to the 
economic costs of control strategies. Effective control 
strategies from an epidemiological point of view do not 
necessarily translate into efficient strategies from an eco-
nomic point of view. In this review, only three articles 
evaluated the economic costs of an epidemic under vari-
ous control strategy scenarios [38, 74, 75]. Further work 
combining mechanistic epidemiological models with 
economic models is therefore needed.

While no strategy can be used in every context, future 
investigations could be done with optimization algo-
rithms that incorporate the parameters defining the 
mitigation strategies as input to determine the set of 
strategies required to attain the desired outcomes (e.g., 
minimize the overall epidemic or economic impact) [93]. 
This approach could complement the traditional method 
of comparing a set of predefined control strategies. 

Examples of parameters could be pre-emptive culling 
and vaccination efforts, and this method would find the 
optimal strategy (i.e., how much culling and how much 
vaccination is required) to reach the objective (e.g., mini-
mizing the epidemic impact). Moreover, this could also 
help in designing time-varying control strategies [94]. 
The optimal control measure may indeed change over 
time according to epidemic dynamics and the effects 
of the interventions themselves. Such optimization 
approaches were used, for example, to determine the 
cost-effective surveillance strategies for invasive species 
management in Australia [95] and to choose the optimal 
allocation of resources between quarantine and surveil-
lance for protecting islands from pest invasion [93].

Real-time modeling could also provide useful insights 
to decision makers by comparing scenarios in the early 
stages of an ongoing epidemic [96]. However, limited 
data and the resulting uncertainty in parameter values 
may limit the ability of models to provide useful insights. 
In this review, only one article retrospectively assessed 
the ability of its model to be used in real-time by evaluat-
ing interventions with models fitted to available data at 
different time points during the epidemic [38]. Interest-
ingly, despite high uncertainty in model projections, the 
ranking of control measures was consistent early on dur-
ing the course of the epidemic (even when using only the 
first 10 days of the epidemic) when the objective was to 
reduce the epidemic size or the number of culled flocks. 
Similar results were found for two epidemics of foot-and-
mouth disease [96], indicating the ability of models to 
provide accurate comparisons of interventions relatively 
early during an epidemic. However, when the objec-
tive was to reduce the epidemic duration, using more 
data (25 days) was needed to obtain consistent rankings. 
This means that recommendations made to policy mak-
ers could be wrong if they were made before a sufficient 
amount of data was available [38]. Further research is 
therefore needed to assess the models’ ability to be used 
in real-time for the evaluation of control strategies.

Finally, we identified in our review the importance of 
accounting for limited management capacity in mech-
anistic models of HPAI. Not accounting for limited 
resources may overestimate the efficacy of interventions 
[47, 50, 60, 63, 70, 74, 75], which may lead to suboptimal 
or even wrong recommendations to policy makers. How-
ever, it may be difficult to quantify culling or vaccination 
capacities and how these change over the course of an 
epidemic. Different assumptions regarding this param-
eter may lead to different conclusions, as seen for the 
2003 HPAI H7N7 epidemic in the Netherlands [74, 75]. 
How to accurately model limited management capac-
ity, and how this capacity changes over the course of 
an epidemic, is therefore an avenue for future research. 
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Collaboration with veterinary services and policy makers 
will be crucial to make realistic assumptions about this 
parameter, among others.
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