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Abstract. The aim of this paper is to test a simple damage model of a cohesive granular medium to
study the relationship between the damage and velocity of elastic waves. Our numerical experiments
of edometric compression show that the microscopic deformation quickly becomes very heteroge-
neous, while our simulations of elastic waves propagation show that a small amount of damage in-
duces a dramatic decrease in the elastic velocity. This shows that cohesive discrete media are very
sensitive to strain field heterogeneity, and that the wave velocities in these media can measure subtle
transient deformation processes, such as earthquake initiation phases.
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1. Introduction

The damage state of rocks in a fault core is a con-
trolling element of seismic rupture and of the char-
acteristics of fault evolution [Lyakhovsky et al., 1997,
Cappa et al., 2014]. The interaction between slip and
damage processes is poorly understood, especially as
the nature and actual level of rock damage at depth
are also poorly known despite some recent studies
[Delorey et al., 2021]. On a geological time scale (i.e.,
over several seismic cycles), fault zones evolve, with
the development of damage structures in their vicin-
ity, partly due to dynamic stresses during rupture
[Chester, 1993]. The existence of this damaged zone

∗Corresponding author.

is traditionally shown at depth by seismic tomogra-
phy, which indicates a lower velocity zone that ex-
tends several kilometers in depth [Zigone et al., 2015,
Roux et al., 2016, Allam et al., 2014]. More recently, it
has been shown that the existence of a several kilo-
meters thick zone of strong scattering around the
North Anatolian Fault is required to explain the re-
gional distribution of multiply scattered coda wave
energies [van Dinther et al., 2021]. Passive scatterer
imaging was made possible by a novel aberration cor-
rection method [Touma et al., 2022] that confirmed
the presence of intense fracturing at depth around
the San Jacinto fault in California.

Indeed, measurements of the temporal evolution
of seismic wave velocities give information on the
mechanical state of the medium [Poupinet et al.,
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1984, Schaff and Beroza, 2004, Langlois and Jia, 2014].
Noise-based passive monitoring allows to envision
long-term continuous monitoring of the seismic ve-
locity [Brenguier et al., 2008, 2014, Sens-Schönfelder
and Wegler, 2006, Rivet et al., 2014]. Examples of
these changes are now well documented, and it is
possible to detect them continuously with unprece-
dented precision that can reach a few 10−5 for relative
velocity changes [Wang et al., 2017] and very short
time resolution [Mao et al., 2019b, Sens-Schönfelder
and Eulenfeld, 2019].

One difficulty with these measurements is to dis-
tinguish between changes related to internally in-
duced deformations and changes related to exter-
nal forcing, such as precipitation [Sens-Schönfelder
and Wegler, 2006, Barajas et al., 2021], temperature
[Meier et al., 2010], or tides [Sens-Schönfelder and
Eulenfeld, 2019]. As the causes of external forcing
are fairly well known, correction strategies have been
proposed [Wang et al., 2017]. Assessing these changes
in the vicinity of rupture zones will improve through
the development of sensitivity kernels for spatial in-
version methods [Margerin et al., 2016, Obermann
et al., 2016, van Dinther et al., 2021, Barajas et al.,
2021, Zhang et al., 2021].

With the striking increase achieved in quantity
and quality of seismic observations and the novel
methods now possible, a way is opening to revisit the
vision of earthquake processes. At the same time, ge-
odetic measures reach impressive precision. At time
scales from days to years, evidence for changes in
elastic moduli in response to earthquakes [Bren-
guier et al., 2008] and transient tectonic deformations
[Rivet et al., 2014] has been shown in the form of a
velocity drop followed by a slow recovery similar to
laboratory observations [TenCate et al., 2000]. These
changes are also observed at the time scale of days in
a mining environment [Olivier et al., 2015] and in lab-
oratory experiments of stick-slip and slow slip [Scud-
eri et al., 2016], where a drop in the elastic moduli
starts even before the slip is observed.

Such effects have been largely studied in rocks
with laboratory experiments. They have revealed that
the application of a uniaxial stress involves elastic
wave velocity anisotropy [Nur and Simmons, 1969]
that could be linked to the elastic nonlinear be-
havior of rocks [Johnson et al., 1996, Johnson and
Rasolofosaon, 1996, Pasqualini et al., 2007]. Direct
comparisons between rock degradation (linked to

a damage quantified by the distribution of micro-
cracks) and wave velocity measurements could be
highlighted experimentally [Hamiel et al., 2009]. Fur-
thermore, theoretical considerations based on the in-
version of the measured wave velocities and resulting
microcrack density tensors allowed to describe the
microcracks evolution and anisotropy [Sayers and
Kachanov, 1991, 1995, Schubnel and Guéguen, 2003,
Stanchits et al., 2006, Hall et al., 2008]. For the follow-
ing numerical simulations, we consider granular ma-
terials rather than real rocks as they have been stud-
ied as synthetic rocks in previous experiments [Lan-
glois and Jia, 2014, Canel et al., 2020].

An important issue is to explain how the very small
macro-scale deformation that is associated with tec-
tonic deformation can induce an observable veloc-
ity drop. In this study, we focus on the drop effect
without consideration of the slow logarithmic type
relaxation effect [TenCate et al., 2000] observed in the
earth after a strong drop [Brenguier et al., 2008].

Here we use a simple cemented granular media
model [Dvorkin et al., 1994, Langlois and Jia, 2014,
Hemmerle et al., 2016] to represent the behavior of
rocks around faults that are intensely fractured and
cemented by precipitation due to fluid transfer. Our
interest in this simulation is to link it to the observed
temporal variations of seismic wave propagation ve-
locities. More precisely, in the following, we use nu-
merical simulation models to analyze the relation be-
tween the wave velocity drop and the damage evolu-
tion. We focus on numerical simulations in an edo-
metric experimental setup, such that some compar-
isons with real experiments can be done. The edo-
metric experiment is a typical experiment in soils
and granular materials [Evesque, 2000, Sawicki and
Swidzinski, 1995, Langlois and Jia, 2014], which in-
volve macroscopic deformation of up to 15%. In
the first stage, the goal is to deform and damage a
medium in which we will later study wave propaga-
tion [Langlois and Jia, 2014]. Only small overall de-
formation (up to 1.5%) will be considered here. How-
ever, as even for small macroscopic strain the micro-
scopic bond deformation is large and very heteroge-
neous, large deformation modeling will be consid-
ered at the microscopic scale.

The numerical granular material considered
in this paper is made from a dense elastic bead
packing that includes some cement. The numerical
simulations can highlight the microscopic hetero-
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geneities. For this we used the finite element method,
instead of the discrete element method [Radjai and
Dubois, 2011], and we meshed both the beads and
the bonds. As far as we know, this approach has not
been used in granular modeling. In contrast with
the discrete element method approach, which is
widely used in granular physics, the finite element
method approach provides a fine description of the
damage mechanism at bonded contacts and of the
elastic wave propagation through the bonds and the
particles (beads).

To limit the computational load, we consider only
two-dimensional (2D) numerical simulations. The
mechanical modeling of the bonds relies on a simple
elasto-plastic model with damage, while the beads
are assumed to be elastic and isotropic. Following
the edometric experimental setup, we first detail the
adopted geometry for the cemented granular mate-
rial, and then we distinguish two processes in the
following sections. The first process is quasi-static
loading of the heterogeneous macroscopic sample
that involves damage to the bonds. This first mod-
eling aims at creation of a realistic state of deforma-
tion at the microscopic scale. The second modeling
is the dynamic propagation of a small perturbation
in a linear elastic regime for a given state of dam-
age of the material. This second process can be con-
sidered as the dynamic version of the “tangent prob-
lem” associated to the quasi-static evolution. It repre-
sents the actual situation encountered in geophysical
monitoring of active faults: an elastic, weak ampli-
tude wave propagates in a medium where damage re-
sults from a slow internal deformation. Note that the
macroscopic damage of the sample, which is defined
from the variation of the macroscopic elastic coeffi-
cients, cannot be found from the strain–stress curve
obtained from quasistatic unidirectional loading. For
this, we would need several unloading/reloading ex-
periments. The macroscopic damage is therefore
probed by the wave propagation, as in the seismolog-
ical measurements of the wave speed.

2. Quasistatic loading

2.1. Macroscopic setting

Let us first describe the numerical edometric ex-
periment. The “sample” (or cell) of the cemented
granular material initially occupies the 2D domain

Dmacro
0 = (0,L) × (0, l0) (with L the constant length

and l0 the initial width of the sample, see Figure 1)
in the plane strain configuration. On its boundary,
the sample is in contact without friction with four
rigid walls. Three of them are at rest while the upper
one moves slowly in the vertical direction. The pro-
cess is strain driven: the sample width l and then the
macroscopic displacement∆l = |l−l0| evolve linearly
with time. The microscopic deformation process is
heterogeneously activated by the macroscopic defor-
mation εmacro = ∆l/l0, which increases slowly from
0 to the final strain εf

macro = 1.58%. During the load-
ing process, to find the macroscopic stress σmacro =
Fmacro/L, we compute the resultant force Fmacro that
acts on the upper plate. In this configuration, the
macroscopic Hooke’s law at the macroscopic level is
written as σmacro = Mmacroεmacro, where Mmacro is
the macroscopic uniaxial strain modulus or P-wave
modulus (M =λ+2µ= E(1−ν)/((1+ν)(1−2ν)) with
λ and µ the macroscopic first and second Lamé coef-
ficients and E andν the macroscopic Young and Pois-
son moduli respectively).

2.2. Microscopic setting

The cemented granular material, which occupies at
the moment t ∈ [0,T quasi-static] the domain Dt ⊂
Dmacro

t is composed of grains, denoted by Gt , and
bonds, denoted by Bt , i.e. D̄t = Ḡt ∪B̄t and Gt ∩Bt =
;. For the initial geometric settings of grains G0 we
used 382 disks (to model glass beads) of radii 300
µm to 600 µm. The beads are connected by the ce-
ment B0 composed of 956 bonds and gathered in a
cell Dmacro

0 of size 3 cm × 1 cm. The word “bond”
stands for the deformable region which links two
beads. The packing fraction (i.e., the ratio between
the beads area and the total area of the sample) is
initially 77.2% and increases slowly during the com-
pression, to reach 78.4% at the final strain εf

macro. The
ratio between the bonds area and the beads area is
6.32%, while the ratio between the bond area and the
total initial area of the sample is 4.88%. Even if the
bonds area is small compared to the beads area, the
bonds are modeled as a set of continuum 2D bodies.

After creation of the packing, we checked that the
bonds are isotropically generated, so as not to induce
any geometric anisotropy from the fabric that might
hide or perturb possible anisotropic effects due to the
future quasi-static loading. Figure 2b shows the polar
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Figure 1. Representation of the quasi-static edometric numerical experiment.

Figure 2. Geometric statistics of the initial isotropic packing. (a) Bond length as a function of the
orientation angle of the corresponding bond. (b) Polar probability distribution of the orientation angles
of the bonds. (c) Probability distribution of the lengths of the bonds. (d) Definition of the orientation
angle θ of a bond.

probability distribution of the orientation angles of
the bonds (i.e., angle between the (Ox) axis and the
axis that connects the center of the beads, as schema-
tized in Figure 2d). Half the polar diagram is shown,
as it is π-periodic: each bond is indeed indexed on
the basis of both its associated bead, with an angle θ,
and the other associated bead, with an angle θ+π.
The distribution is globally isotropic (a sample with
more bonds would exhibit a smoother distribution).

Figure 2c shows the distribution of the length of
the bonds, defined as the distance between the cen-
ters of the beads concerned and the sum of their
radii; this then represents a length along the bond

symetrical axis. The minimal values correspond to
the closest beads and tend towards zero, as there is
no minimal limit for the generation of bonds in the
sample considered. The majority of the bonds have a
length less than 0.05 mm.

Further geometric anisotropy can come from cor-
relations between the lengths and the orientations of
the bonds. Indeed, as we expect that short bonds are
more affected by the macroscopic deformation, we
verified that there is no privileged direction for them.
Figure 2a shows the lengths of the bonds as functions
of the orientation angles of the corresponding bonds
in a polar plot. The isotropic distribution shows that
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Table 1. Parameters for simulations

ρ (kg/m3) E0 (GPa) ν0 (GPa) M0 (GPa) cp0 (m/s) cs0 (m/s)

Beads 2600 60 0.24 70.72 5200 3100

Bonds 1200 3.5 0.33 5.18 2100 1000

The index 0 refers to the state without damage.

there is no correlation between length and orienta-
tion angle.

2.3. Mechanical modeling

For the mechanical modeling of the bond material,
which is detailed in Appendix, we chose the model
of Lemaitre and Chaboche [Lemaitre and Chaboche,
1994] coupling isotropic ductile plastic damage and
with an elasto-plastic law in the framework of an
Eulerian (large deformations) description [see for in-
stance Belytschko et al., 2000].

For this, we considered the additive decomposi-
tion of the rate deformation tensor in the elastic and
plastic rates of deformation. For the elastic range,
we considered an isotropic hypo-elastic law (i.e., the
large strain generalization of Hooke’s law with the
Lamé coefficients λ and µwritten in terms of the Jau-
mann rate of the Cauchy stress tensor and the elastic
rates of deformation). The plastic rate of deformation
is related to the Cauchy stress tensor through the flow
rule associated to the classical Von-Mises yield cri-
terion (without hardening). The weakening effect is
characterized by a damage (phenomenological) pa-
rameter d ∈ [0,1] and its evolution law is related to
the cumulated plastic strain ϵp .

The model parameters used here have not been
characterized or calibrated experimentally. This im-
portant task is beyond the scope of present numeri-
cal study. However, the mechanical parameters have
been chosen to correspond to a very ductile cement,
as tetradecane or eicosane, that has been used in
laboratory experiments showing seismic velocity re-
duction during compression [Langlois and Jia, 2014,
Canel et al., 2020]. The elastic coefficients of the un-
damaged material are given in Table 1 and the yield
limit is κ0 = 135 MPa. For simplicity, the dependence
of damage rate on the cumulated plastic strain is
given through a piecewise linear function. When the
cumulated plastic strain reaches an activation level

ϵp,activation = 2%, we consider the beginning of dam-
age process, while the maximal level of damage is
dmax = 0.8 corresponding to ϵp,max = 20%.

The beads material was supposed to be purely
elastic (see Table 1 for the Lamé coefficients corre-
sponding to glass), with no damage effects or plas-
tic strains. This choice could appear too simple but
corresponds to a granular material made from glass
beads used in laboratory experiments for which no
bead crushing has been observed [see for instance
Langlois and Jia, 2014, Canel et al., 2020]. Moreover,
this choice allows us to focus on the bond material,
and to analyze the crucial role played by the bonds
damage in the wave velocity drop. This is due to
damage localization in the bonds, which are pointed
out in the next numerical results obtained with the
choice of damage parameters presented above. The
presence of a maximal level of damage in the model
prevents total bonds failure (that would be very diffi-
cult to handle in an elasto-plastic FE computation of
a large number of bonds) but is not expected to affect
the overall results at the low levels of macroscopic de-
formation at which we limit our simulations.

2.4. Numerical modeling

As the bonds are submitted to large deformation
(even for small macroscopic deformation), we used
an arbitrary Lagrangian Eulerian (ALE) description
[Huerta and Casadei, 1994, Wang and Gadala, 1997,
Ghosh and Raju, 1996, Rodríguez-Ferran et al., 2002].
This description incorporates the advantages of the
Lagrangian and Eulerian descriptions, and can avoid
some of their drawbacks. Usually in solid mechanics,
where we do not deal with large mass fluxes among
different parts of the sample and the strains are not
too large, the Lagrangian kinematics formulations
are intensively used. However, because of severe dis-
tortion of elements in some practical problems, the
determinant of the Jacobian matrix can become neg-
ative, which results in numerical errors. Eulerian
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Figure 3. The initial mesh used for the quasi-static computations.

methods coupled with an ALE description (which ei-
ther uses a fixed mesh or adapts the mesh at each
time step) can eliminate the problems associated
with distorted meshes. With the ALE method adopted
here, the computational grid can be moved arbitrar-
ily, to optimize element shapes independently of ma-
terial deformation.

For the numerical integration of the equilibrium
of the hypo-elastic-plastic model described above, to
find the Eulerian unknowns acting on the domain
Dt+∆t , we used a classical implicite backward radial
return mapping scheme [e.g., see Belytschko et al.,
2000] with explicit treatment of the damage field on
the finite element discretization of domain Dt . The
discretization was done with [P2-continuous] finite
elements for the velocity fields and [P1-discontinous]
for the other unknowns (e.g., stress, damage, plastic
deformation).

Since the investigated processes are very different,
the quasi-static and dynamic problems require two
distinct meshes (one can see the difference by com-
paring Figures 3 and 8). For the quasi-static problem,
as the beads are almost not deformed outside of their
peripheral zone, it is not necessary to mesh them
finely at the core, but only close to the bonds that
need a fine mesh to correctly describe their large de-
formation. The initial mesh is then finer in the bonds
and the periphery of the beads, with a given ratio
between the size of the edges (see Figure 3). More-
over, to capture the shear bands, we used an adaptive
mesh technique with respect to the plastic strain rate
norm |Dp |. This means that regions where the plastic
strain rate is larger will have a fine mesh, while else-
where the mesh is coarse. The ratio between the sizes
of the fine and coarse meshes was 1/4.

2.5. Results

2.5.1. Macroscopic level

Figure 4 shows the macroscopic normal load
σmacro versus the imposed strain on the sample
εmacro. The macroscopic load initially increases lin-
early with the displacement, which highlights an
elastic behavior. The linear fit close to the origin (see
Figure 4) gives an estimation of the initial (undam-
aged) macroscopic uniaxial strain modulus (P-wave
modulus) M 0

macro ≈ 12.6 GPa, which is larger than
the modulus of the bonds but much less than the
bead modulus. After some point, the macroscopic
strain–stress curve deviates from this linear trend
and then reaches a plateau, which is a typical strain–
stress curve for an elasto-plastic material without
hardening.

However, the macroscopic damage dmacro of the
sample, defined as

dmacro = 1− Mmacro

M 0
macro

,

cannot be found from the strain–stress curve only. In-
deed, to get the macroscopic uniaxial stress modulus
we cannot use the secant strain–stress modulus and
several unloading and reloading experiments during
the main loading process are needed.

This kind of quasi-static unloading/reloading ex-
periments with fluid pressure are possible at the lab-
oratory scale or at a small geophysical scale corre-
sponding to reservoirs for example (in the frame-
work of the oil and gas industry). However, as far
as we know these techniques have never been ap-
plied in Nature to a fault zone at the scale relevant



Vincent Canel et al. 7

Figure 4. (a) Macroscopic stress σmacro (black; in × 33 MPa) and the averaged damage dave (blue; in %)
as functions of the strain εmacro (in %). A linear fit of the load (red) highlights its first elastic trend. The
chosen states for the dynamic computations are indicated with vertical green lines. (b) Zoom in around
the low strains.

to earthquake studies. One can think about the tides
effect but our study does not target it. Indeed, dif-
ferent techniques have been used to study the tide
effect and actually highlighted the velocity depen-
dence on tide deformation independently from the
presence of a fault system [Sens-Schönfelder and Eu-
lenfeld, 2019, Mao et al., 2019a, Reasenberg and Aki,
1974, Takano et al., 2014, Delorey et al., 2021]. Nev-
ertheless, the continuous nature of tides implies that
they are not a source of evolution damage, or over
time scales and amplitudes that are incompatible
with their measurements. In our perspective, non-
linearity and damage evolution are quite different.
This is why we did not use the quasi-static unload-
ing/reloading technique to measure the macroscopic
damage but the wave speed probing (see next sec-
tion), which is much more adapted to the targeted
geophysical measurements.

We computed and plotted the microscopic aver-
aged damage dave(t ), defined as the ratio between
the integral of the damage, that vanishes outside the
bonds, and the area of the sample |Dt | which is the
area of the set of grains and bonds. Since plastic de-
formations preserve the area (volume in 3D) the only
variation of the area |Dt | is due to elastic deforma-
tions. The deviation of the macroscopic load from
a linear trend is clearly correlated to the accumula-
tion of damage. Even when the load reaches a sta-
tionary value, dave(t ) keeps increasing (which can be

associated to anisotropic effects of the compression;
see Section 4 for more details).

2.5.2. Microscopic level

Even for small macroscopic deformation, local
plastic irreversible deformation occurs in the bonds.
The first microscopic plastic and damage effects oc-
cur at εmacro = 0.096% and εmacro = 0.132%, respec-
tively (see Figure 4 for the damage). This is consis-
tent with the chosen microscopic laws with succes-
sive plastic and damage thresholds (see Section 2.3
and the Appendix for more details). The damage pro-
cess is very heterogeneous as it occurs along the
force chains. Some of the bonds are not damaged,
and some of them are completely damaged, although
there are a lot of bonds in an intermediary state
where the damage is localized in microscopic shear
bands. We note that there is no macroscopic localiza-
tion of the damage (i.e., no noticeable development
of a macroscopic shear band).

Figure 5 shows the deformed configuration at the
end of the edometric numerical experiment (εf

macro =
1.58%), with a map of the deviatoric stress (top) that
shows mainly vertical heterogeneous force chains,
and a map of the mean stress (bottom). The dam-
age distribution is plotted in Figure 6. Several exam-
ples of deformed and damaged bonds are shown in
the enlarged boxes, and illustrate the heterogeneity
of the local deformation. Even if at the macroscopic
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Figure 5. Top: Map of the (Von-Mises) equivalent stress (in MPa) that describes force chains in the
cemented packing at the final stage of compression. Bottom: Map of the mean stress (in MPa).

Figure 6. Top: Map of the damage distribution at the final stage of compression. Bottom: Zoom in boxes
with the cumulated plastic strain on a color scale.
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scale we deal with small strain-driven compression
of the sample, at the microscopic scale the bonds are
submitted to combinations of different large defor-
mations: compression, traction, rotation, and shear.
This is due to the geometrical complexity of the ce-
mented granular material. In almost all cases the
bond deformation is localized in a shear band that
acts in each damaged bond. The orientation of these
shear bands is also very heterogenous.

Even at this low level of compaction we found that
new contacts between the grains and the walls are es-
tablished, but no new contact between the grains ap-
pear during the loading. That means that the P-wave
propagation is not facilitated by these new inter-
grains contacts as discussed in the context of “non-
classical nonlinearity” or “clapping interface model”
[Chaboche, 1992, Lemaitre and Desmorat, 2005, Pec-
orari and Solodov, 2006, Lyakhovsky et al., 2009].

3. Elastic wave probing

In this section, we present the simulations of the
wave propagation, to highlight the wave speed sen-
sitivity to the damage state of the sample. We want to
show that it is possible to monitor the macroscopic
damage through the wave speed record. For this, we
model the propagation of small amplitude, purely re-
versible, non-destructive waves in the damaged ma-
terial at different stages of the quasi-static loading.
These stages are chosen to better understand the im-
pact of large and small increments of damage and
different regimes of the loading process (i.e., elas-
tic at the beginning, then inelastic with increased
damage).

3.1. Problem setting

3.1.1. Macroscopic level

At different stages ε∗macro, which correspond to the
time t∗ ∈ [0,T quasi-static] of the quasi-static loading
process described in the previous section (indicated
by green vertical lines in Figure 4), we analyze the
wave propagation in the sample D∗

macro = Dmacro
t∗ . At

the zero acoustic time (here t represents the acous-
tic time, while the real time is t∗ + t ), a single sinu-
soidal longitudinal overstress pulse σ∗

macro(t ) (the to-
tal stress is σmacro(t∗) +σ∗

macro(t )) is emitted at the
top of the sample (y = l ) in the y-direction and

propagates along the y-axis (see Figure 7). The trans-
mitted P-wave is recorded on the bottom of the sam-
ple (y = 0). On the lateral walls, we impose friction-
less contact boundary conditions. Two series of sim-
ulations are made for two frequencies of the pulse.
The first one for 150 kHz, which is a low frequency
for this sample as the corresponding wavelength is
20 mm in the glass, almost 50 times the mean radius
of the beads. The second simulation is for 1.50 MHz,
which we designate as a “medium” frequency as it
corresponds to a wavelength of 2 mm in the glass,
which is close to five times the mean radius of the
beads. As expected, high-frequency simulations (at
7.50 MHz, corresponding to a wavelength of 0.4 mm,
as the mean radius of the beads) show that the
pulse does not (or hardly) propagate any more due
to intense scattering, and these are not investigated
here.

Note that in the seismological context, and for
fault monitoring, the seismic velocity monitoring re-
lies on relatively low frequency waves (less than a few
Hz) due to the rapid attenuation of the waves in the
complex, highly fractured rocks of the fault core. This
mean that the probe has a wavelength much larger
than the typical grain size.

The macroscopic computations of the P-wave
speed V ∗

P can be used to compute the macroscopic
damage d∗

macro = 1− M∗
macro/M 0

macro (here Mmacro is
the macroscopic uniaxial strain modulus). We know
that V ∗

P = √
M∗

macro/ρ∗
macro and by mass conserva-

tion, that ρ0
macro = (1−ε∗macro)ρ∗

macro; then, we get the
formula

d∗
macro = 1−

(
V ∗

P

V 0
P

)2
1

1−ε∗macro
. (1)

3.1.2. Microscopic level

At different stages of the quasi-static loading pro-
cess described in the previous section, and as indi-
cated by green vertical lines in Figure 4, we stored
the deformed meshes and the damage distributions.
Let us denote the domain occupied by the cemented
granular material by D∗ = Dt∗ (with the partition
into the phase grains G∗ = Gt∗ and the phase bonds
B∗ = Bt∗ ), and the damage distribution computed
in the quasi-static finite element simulations by d∗ =
dt∗ : B∗ → [0,1].
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Figure 7. Representation of the ultrasound probing numerical experiment.

Figure 8. The initial mesh used for the dynamic computations.

3.2. Mechanical and numerical modeling

As the waves have a small amplitude, there is no
evolution of the damage and plastic strain during the
dynamic process, which is said to be nonperturbative
or nondestructive. This is why the small perturbation
assumption can be considered to be valid and the
material can be supposed to be linear elastic, with
the mass density ρ∗ and the elastic coefficients λ∗,
µ∗, given by

ρ∗ =
{
ρg , in G∗,

ρb , in B∗,
λ∗ =

{
λg , in G∗,

(1−d∗)λb , in B∗,

µ∗ =
{
µg , in G∗,

(1−d∗)µb , in B∗.

The dynamic problem is discretized in time by the
classical implicit Newmark method, with β= 1/4 and
γ = 1/2 [e.g., see Fung, 1997], which is uncondition-
ally stable and thus allows much larger values of the
time step than the critical Courant–Friedrichs–Lewy
time step. For the space discretization, we used [P2-
continuous] finite element discretization for the dis-
placement field and [P1-discontinous] for the stress
field.

The quasi-static mesh used previously is not ap-
propriate for wave propagation. For the dynamic
wave propagation simulation, the domain D∗ was re-
meshed to obtain a uniformly fine mesh (see Fig-
ure 8). Indeed, as the waves propagate everywhere
in the sample, for the dynamic problem we need a
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Figure 9. Snapshots of the longitudinal stress σy y field (as a color scale) at t = 2 µs after the low-
frequency excitation (top) and at t = 2.64 µs after the medium-frequency excitation (top), in the un-
damaged sample (left) and after compression (right) corresponding to ε∗macro = 1.2% and dave(t∗) =
0.54%.

regular mesh without any size contrast between the
peripheral and the core edges of the beads. Since the
open space results in a free boundary condition for
the propagating waves, the beads size and the open
spaces sizes are important in choosing the wave-
length to probe the average material properties (see
the discussion in the next section about the wave be-
havior for different frequencies).

3.3. Results

The low-frequency pulse (for which the wavelength
in the glass is almost 50 times the mean radius of the
beads) generates a well-established coherent wave,
without remarkable multiply scattered waves. It is
visible at t = 2 µs after the excitation in the first line
of Figure 9, which shows several snapshots of the lon-
gitudinal stress σy y field in all of the sample. The left
row shows the undamaged sample (ε∗macro = 0% and
dave(t∗) = 0%), in which the coherent front has not
yet reached the reception wall. The right row shows
the same snapshot, but computed with a damaged
sample (ε∗macro = 1.2% and dave(t∗) = 0.54%). This
highlights a short delay of the coherent wave, which
is especially visible in the beads close to the lower
wall.

For the 1.50 MHz pulse (for which the wavelength
in the glass is almost 5 times the mean radius of the
beads), a similar delay can be observed between clear

coherent waves computed with the undamaged state
and the same damaged state, as seen in the second
line of Figure 9. However, in this case, the coherent
waves are followed by multiply scattered waves, pro-
ducing a tail in the signal similar to the seismic coda.
Note the complexity of the field distribution at both
the macroscopic scale and the bead scale, due to the
high heterogeneity of the granular material.

The transmitted σy y -waves are recorded along
the bottom wall (called the “reception wall”), as dis-
cretized in 1000 spatial points and shown for the
1.5 MHz pulse in Figure 10. They are gathered when
they belong to the same bead of the reception side,
making voids appear between the 26 beads of this
side. One of these signals is plotted in Figure 11 (in
green) for different states of damage of the sample.
The sum of all these signals is visible as the blue curve
inside the right box of Figure 10, which enhances the
coherent arrivals. Indeed, unlike the coherent wave
that is almost uniform along the y-axis, the codas
depend on the recording position. So their sum,
which is physically defined in the experiments by the
large transducer in contact with all of the beads of the
reception wall, tends to cancel, whereas the summed
amplitudes of the coherent wave and its reflections
are enhanced.

The signals plotted in Figure 11 are associated
with different levels of damage as they correspond to
the macroscopic strains εmacro = 0%, εmacro = 0.51%,



12 Vincent Canel et al.

Figure 10. (a) Acoustic signals recorded along the reception wall (represented above) for a 1.5 MHz pulse.
The green arrow indicates the position chosen to compare the codas in Figure 11. (b) Summed waves
along the reception wall.

Figure 11. The transmitted acoustic signals recorded for a 1.5 MHz pulse at the same position of the
reception wall (indicated in green in Figure 10) for the undamaged sample (black) and after different
steps of compression: εmacro = 0.51% (red), εmacro = 0.54% (green), and εmacro = 0.84% (blue).

εmacro = 0.54% and εmacro = 0.84%. We observe that
the second and third signals in Figure 11 are very sim-
ilar, which is understandable, with the weak strain
and the damage difference between them. The third
signal in Figure 11 is slightly delayed compared to the
second one, with a small amplitude loss, and this de-
lay increases visibly with the acoustic time t between
7 and 20µs. After 20µs, these signals are not coherent
anymore. Similar, but more pronounced, observa-
tions can be made between these two signals and the
first one computed with the undamaged sample. We
note that the first coherent peak, which corresponds
to the direct transmitted ballistic wave, has almost
the same amplitude and time of flight for these three
signals. This is not inconsistent, as at the same time

the thickness of the sample decreases and the wave
velocity decreases. The contrast between the signals
is much more obvious with the fourth signal com-
puted, when the quasistatic loading begins to satu-
rate after important damage to the sample. We ob-
serve a loss of amplitude of the transmitted ballis-
tic wave and a time of flight increase. At later times,
we observe important changes in the coda. These
can be explained by the increasing scattering pro-
cess of the waves due to two changes: the first one is
the increasing impedance contrast between the glass
and the damaged cement at the interface bead/bond
linked to the degradation of the elastic parameters of
the cement; the second one is the slight geometric
evolution of the sample without true rearrangement,
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Figure 12. The wave velocity V in the sample
during a quasistatic process versus the macro-
scopic strain εmacro. The velocity is calculated
with the time of flight of the summed signals
along the reception wall for a low-frequency
pulse (150 kHz).

as the contacts remain the same (i.e., no loss, no
creation).

The sum of the signals along the reception wall al-
lows estimation of the time of flight of the transmit-
ted pulse, and therefore of the velocity of the lon-
gitudinal coherent wave, as the ratio of the time of
flight and the thickness of the numerical sample at
the considered state of damage. We choose the time
of flight measured from the first peak. The veloc-
ities obtained are shown in Figure 12 for the low-
frequency pulse, to ensure that the coherent regime
is well established, and validate the approximation of
the effective medium theory [Digby, 1981]. The veloc-
ity can also be calculated from the mean time of flight
over the statistics of the signals recorded at 1000 posi-
tions along the reception wall, which gives very close
results, as can be seen in Figure 14b for a 1.5 MHz
pulse.

Figure 12 shows that for a low frequency pulse
(150 kHz), the velocity first increases slightly in the
elastic part of the deformation, when there is no
damage (dV /V close to +1%); it then decreases dra-
matically (dV /V close to −10%). The first phase is as-
sociated to a slight increase of the wave velocity and
can explained easily on the basis that at the begin-
ing some additional disks enter into contact with the
rigid piston, which creates new force chains that fa-
cilitate the wave propagation. The decrease in wave

velocity begins when the bonds are damaged; i.e.,
when the microscopic damage average dave starts
increasing significantly (see Figure 4). It is remark-
able that a very small amount of microscopic damage
average can imply such a dramatic loss. Moreover,
when the load reaches its stationary value, the veloc-
ity keeps decreasing, although by less, despite the al-
most constant microscopic damage average rate ḋave

(as also seen in Figure 4). This can be explained on
the basis that simulated waves propagate along the
deformation axis, which is also the privileged axis of
the first bond damaging, while in the last phase, the
microscopic damage concerns mainly the bonds ori-
entated mostly in the other directions (see Section 4
for more details). Moreover, it should not be forgotten
that in our simple mechanical model there is damage
saturation at dmax = 0.8, which implies that the veloc-
ity drop is also saturated in some sense.

In all of these considerations, it appears clear that
the microscopic damage average dave, defined as the
ratio between the integral of the damage and the area
of the sample |Dt | and associated to the quasi-static
process, is not adapted to measure the damage of
the sample. Figure 13 shows the macroscopic dam-
age dmacro, given by (1) and computed with the elas-
tic wave probing method. This overall damage pa-
rameter, which can be found without any computa-
tion of the quasistatic process, appears to be more
adapted to describing the complexity of the problem.
Indeed, for εmacro = 1% for instance, we found a value
of dmacro that was almost 40 times greater than dave,
and in the last phase associated to the load plateau,
the damage dmacro also has a plateau, as expected.

To check the validity of the velocities calculated
with the time of flight in the case of a 1.5 MHz
pulse, we use the doublet technique [Poupinet et al.,
1984], which is also called the moving-window cross-
spectrum technique [Clarke et al., 2011] or coda wave
interferometry [Snieder et al., 2002]. We apply this to
all the consecutive couples i − 1, i corresponding to
the consecutive chosen quasistatic steps for the dy-
namical simulations. This ensures good temporal co-
herence between the signals i −1 and i , as shown in
Figure 11, which is necessary to apply this technique.
This technique is especially interesting for subtle
changes of the material velocity, and it consists of
the evaluation of the relative velocity change δvi j =
(v j − vi )/vi of the medium at a given position be-
tween two temporal states i and j . We can also write
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Figure 13. The macroscopic damage dmacro

computed with elastic wave probing (with a
low-frequency pulse of 150 kHz) versus the
macroscopic strain εmacro.

δvi j = δli j −δti j with δli j linked to the strain (cal-
culated from the quasistatic loading), δti j = dti j /t
as the relative change of the time of flight dti j of
the wave through the sample, and t as the acous-
tic time, which is zero at the beginning of the exci-
tation pulse. The procedure to evaluate δti j has two
steps: calculation of dti j (t ) for different times t in the
whole range of the acoustic time (so with the ballis-
tic parts and the codas), as sufficient for the second
step, which is linear regression of dti j with t . This re-
gression goes through the origin and its slope is di-
rectly δti j . Figure 14a shows the two contributions
δli j (t ) and δti j (t ) as functions of the macroscopic
deformation. The two contributions were calculated
between consecutive pairs i −1, i and were accumu-
lated, to be compared to the initial step 0. The cu-
mulative error from the last regression of the doublet
technique is also plotted in Figure 14a. It increases
with the macroscopic deformation, until almost 0.5%
at the last step, as the nondeformed configuration is
taken as the reference here.

Figure 14b shows the velocity change δvi j (t ),
which is the difference between these two contribu-
tions. The same error bars are also plotted. The veloc-
ity changes obtained with the times of flight and both
of the summed signals and from their statistics (from
the same dynamic simulations) are also plotted here.
The results are very close.

4. Induced damage anisotropy

In this section, we investigate how the induced dam-
age is related to the loading direction. We also inves-
tigate the loss of isotropy of the macroscopic wave
propagation. As the effects are similar and more pro-
nounced in the x-axis than in the y-axis direction,
we consider the quasistatic edometric compression
along the x-axis. For this simulation, the final strain
is εmacro = 2.17%.

The “norm” of the deviatoric stress tensor is shown
in Figure 15a, which corresponds to the last step of
the computation. It shows that the force chains tend
to be oriented along the axis of the loading. This
assumes that the bonds oriented along this same axis
are more solicited for the transmission of the stress,
and as a consequence they would be more damaged
than the others. This can be seen in Figure 15b, which
shows the distribution of the damage parameter d in
the bonds at the last step. To rigorously demonstrate
this observation, Figure 15c shows the value of the
damage integrated over each bond independent of
the others, as a function of its angle. Clear anisotropy
appears and confirms the previous hypothesis: the
damage is concentrated in the bonds with angles in
[π/6;5π/6] modulo π.

Therefore we define the “x-bonds” and “y-bonds”
as the two groups of bonds with angles between
[−π/6;π/6] and [π/3;2π/3] modulo π, respectively.
Figure 15d shows the values of the damage d x

ave and
d y

ave of the average damage dave integrated over these
two groups as functions of the macroscopic strain.
The x-bonds concentrate always the greatest part of
the total damage, and almost three times the damage
of the y-bonds at the last step. The average damage
initially increases quickly in the x-bonds, then keeps
increasing, although more slowly, while it increases
later in the y-bonds, with an intermediary and sta-
ble slope. First the x-bonds are mainly damaged and
then the damage appears in the y-bonds, which are
the last bonds possible to damage. This can explain
why the normal load in the axis of the loading be-
comes stationary, whereas the total damage keeps in-
creasing, as can be seen for compression along the y-
axis in Figure 4.

These computations on the damage average sug-
gest that the bounds orientated along the propa-
gation axis are mainly implied in the speed wave
drop. To confirm this assumption, we can test the
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Figure 14. Velocity changes computed with the doublet technique for a 1.5 MHz pulse. (a) Thickness
(red) and delay (blue) changes as functions of the quasistatic step. Error bars on the delay come from
the last regression of the doublet technique. (b) Velocity changes as a function of the quasistatic step and
computed with the doublet technique (black), from the time of flight statistics (red) and the time of flight
of the summed signals (blue).

Figure 15. Edometric compression along the x-axis. (a,b) Maps of the deviatoric stress and damage
parameter d , respectively, at the last step of the quasi-static computation. (c) Damage integrated over the
bonds independently as a function of their angle for different macroscopic strains. (d) Damage integrated
over the “x-bonds” and “y-bonds” as a function of the macroscopic strain.

anisotropy of the wave propagation by measuring the
wave velocity along the x-axis and y-axis (called Vx

and Vy , respectively) in the configuration of this sec-
tion with compression along the x-axis. We use low
frequency pulses (150 kHz), as defined in Section 3,
at six different steps of the same quasi-static com-
pression simulation. With the associated wavelength
of 20 mm, we consider that no multiple scattering
occurs, which would considerably change the com-
parison between the two axes, as the wall is three
times longer than the other one and would accumu-
late more scattering effects. The velocities are plot-
ted in Figure 16 and are computed with the time of

flight of the first peak of the summed signals recorded
along the corresponding wall and the thickness (con-
stant for the propagation along the y-axis).

First, we check that Vx and Vy are almost the same
at the initial state without compression (step 0), as
there should not be any source of anisotropy at this
step. We indeed find values that are close, as 2740
and 2690 m/s respectively, with a relative deviation
of 1.8%. The small difference might be due to the ge-
ometry of the sample and the boundary conditions.
Then we observe that both velocities are impacted by
the loading and the induced damage, even Vy , and
where Vx shows a decrease of 7%, twice the decrease
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Figure 16. dVx /Vx and dVy /Vy divided by
their respective initial values as functions of
the macroscopic deformation. The velocities
are calculated with the time of flight of the
summed signals along the reception wall for a
low-frequency pulse (150 kHz).

of Vy . This confirms the induced damage anisotropy
for the wave propagation.

As they are calculated with the same method, we
can also compare Vx and Vy to V , the velocity ob-
tained from the compression and the wave propaga-
tion along the same y-axis represented in Figure 12a.
V and Vx are very similar, with very close values and
the same trend for εmacro between 0.3% and 1.5%,
with maximal velocity losses dV /V and dVx /Vx close
to 10%. However, unlike Vx , Vy and V show a slight
increase for short strains, which is due to the shorter
size along the y-axis.

5. Conclusion and discussion

We have presented a series of numerical experiments
to discuss the phenomenology responsible for the
changes in seismic velocities during deformation of
a cohesive granular medium. Our model is simpli-
fied to highlight the most important elements, and of
course to guarantee the numerical stability of our re-
sults. We have considered a 2D model of a cohesive
granular medium in an edometer compression test
configuration, for which only monotonic loading ex-
periments have been considered. The damage is as-
sociated with the nonlinear behavior of the bonds, in
the form of a plasticity law. During compression, the

deformation quickly becomes very heterogeneous,
with a concentration on the force chains where the
bonds undergo all of the deformation modes.

In practice, the propagation of waves allows the
changes in elastic properties to be highlighted by
measuring the propagation speed. Our simulations
allow us to observe the velocity drop in the deforma-
tion domain where the model is not very sensitive to
the maximum damage characteristics that we had to
introduce. We can deduce from the propagation ve-
locity an effective macroscopic damage parameter,
which turns out to be about 40 times larger than the
average damage, which indicates the strong sensitiv-
ity of the waves to the deformation and the predom-
inance of the weakening of the force chain elements.
We have also shown the anisotropic character of the
velocity reduction controlled by the direction of the
imposed deformation.

At the microscopic level the damage model used
for the bonds is isotropic and involves a Poisson ra-
tio (or equivalently a ratio between P and S-wave ve-
locities) which is not affected by damage. In contrast,
at the macroscopic level the model loses the initial
isotropy and we have noticed the differences in the
P-wave velocities according to the direction of prop-
agation. It will be interesting to see how the S-wave
speeds are affected and to analyze how the ratio be-
tween P and S-wave speeds depends on the propaga-
tion direction. We note that the evolution of the ratio
between P and S-wave velocities during the damage
evolution is still an observational challenge for seis-
mology. The reason is mainly the difficult localiza-
tion and spatial extension of the changes that make
precise quantitative measurement of the evolution of
this ratio very difficult with present-day techniques.

To compare our results with seismic observations,
a first order observable is the velocity itself. The
earth crust has been subject to damage for a long
time and damage has accumulated and persisted
in the regions of strongest deformations, as active
fault zones. The observed velocity in the shallow
crust is diminishing in the vicinity of faults [Zigone
et al., 2015], which show the presence of damage.
The model qualitatively predicts these observations.
Furthermore, measurable temporal changes in veloc-
ity can be observed in the Earth in response to var-
ious processes, which range from earthquake shak-
ing to rain and Earth tides. These perturbations cor-
respond to very small deformations, typically ranging
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from 10−6 to 10−8. They would not induce significant
global changes, but can affect locally the wave veloc-
ity. Our numerical experiments are limited to mono-
tonic compressions and we do not have the preci-
sion to analyze the deformation levels encountered
in seismology.

We have nevertheless shown high sensitivity of
the wave velocity with the deformation during the
damaging process for a cohesive granular medium as
it has been reported before [Langlois and Jia, 2014].
We can try to put into perspective the simulations for
our simplified model and the observations.

We can deduce from the simulations the slope
of the velocity-deformation curve (e.g., Figure 12),
which measures the sensitivity of the wave velocity.
The curve shows an increase in sensitivity with dam-
age. Natural observations do show significant varia-
tions in sensitivity as a function of rock conditions.
This has been clearly shown on a regional scale in
Japan [Brenguier et al., 2014], with active, highly frac-
tured volcanic structures being the regions where the
largest velocity drops are observed after large earth-
quakes.

The model we have studied allows us to highlight
the importance of stress heterogeneity and local-
ized nonlinearity at the microscopic scale for macro-
scopic behavior. Nevertheless, the model is very sim-
ple in terms of its geometry, and corresponds to a
case where the jumps are few, leaving an important
part to the elastic granular behavior. The parame-
ters will have to be adapted so that the simulations
correspond quantitatively to seismological observa-
tions. The complexity of geophysical environments,
with multi-scale heterogeneities and the likely pres-
ence of fluids, makes the exercise impossible with the
numerical means implemented here.

Based on Figure 12, the sensitivity of the relative
velocity to deformation is of the order of 10 for our
model in compressional experiments. Natural ob-
servations are for much smaller deformations than
what is resolved in our simulations. It should be
noted, however, that the observed sensitivity is much
greater than that calculated in this study. For tecton-
ically driven static expansions of the order of 10−6,
a sensitivity of the order of 100 has been reported
[Rivet et al., 2014]. This suggests very high spatial
concentration of force chains and nonlinearity. In
the extreme case of the response to Earth tides, the
deformation is of the order of 108 and the sensitivity

for very shallow materials would reach 10,000 [Mao
et al., 2019b, Sens-Schönfelder and Eulenfeld, 2019].
The differences are significant, but the increase in
sensitivity for the model can be produced by chang-
ing the geometry and the distribution of the elas-
tic elements within the phenomenology described
here, although at the cost of heavy computational
effort. The most important aspect for comparison
is the 2D limitation of the model. We have seen in
2D that the ratio between the macroscopic dam-
age which governs the effective wave velocity and
the mean damage is about 40, due to the concen-
tration of the stresses on the force chains. In the
transition to the 3D case, this concentration towards
linear chains might result in a different (larger or
equal) ratio. This leads to sensitivities of the order
of some of those observed in Nature. The high-
est sensitivities to transient or periodic perturba-
tions suggest a model for which the macroscopic re-
sponse is controlled by very sparse and very localized
chains of forces that are extremely sensitive to small
macroscopic deformation perturbations. These con-
ditions will be considered in further numerical
studies.
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Appendix. Mechanical model description

The movement (flow) in the Eulerian description is
given by the velocity field, denoted v(t , ·) : Dt → Rd .
The rate of deformation and the spin rate are denoted
by D = D(v) = (∇v+∇T v)/2 and by W = W (v) = (∇v−
∇T v)/2, respectively. If we denote the Cauchy stress
tensor by σ(t , ·) : Dt → Rn×n , then the momentum
balance law for the quasi-static loading reads:

div σ(t )+ρb(t ) = 0, in Dt ,



18 Vincent Canel et al.

where ρ is the mass density and b are the body
forces.

For the grains, we consider an isotropic hypo-
elastic law [e.g., see Belytschko et al., 2000]

σ∇(t ) =λg trace (D)I +2µg D, in Gt ,

where λg ,µg are the elastic coefficients of the grains,
σ∇ = σ̇−Wσ−σW is the Jaumman time derivative,
and σ̇= ∂tσ+v ·∇σ is the material (total) time deriv-
ative.

For the mechanical modeling of the bond ma-
terial, we chose a very simple elasto-plastic model,
which couples isotropic ductile damage with Von-
Mises plasticity. For this, we considered the additive
decomposition of the rate deformation tensor into
the elastic De and plastic rates Dp of deformation

D = De +Dp .

The weakening effect is characterized by the (phe-
nomenological) damage parameter d ∈ (0,1). Fol-
lowing the strain equivalence principle proposed by
Lemaitre [Lemaitre and Plumtree, 1979], the strain of
damaged material (d > 0) subjected to the effective
stress is the same as that of material without damage
(d = 0). This means that the Lamé elastic coefficients
have to be replaced by (1−d)λb and (1−d)µb , respec-
tively, where λb ,µb are the elastic coefficients of the
undamaged bond material (see Table 1). For the elas-
tic range, as for the grains, we considered the gener-
alization of Hooke’s law written in terms of the Jau-
mann rate of the Cauchy stress tensor

σ∇(t ) = (1−d)λb trace (De )I +2(1−d)µb De , in Bt .

The plastic rate of deformation is related to the
Cauchy stress tensor through the flow rule associ-
ated to the classical Von-Mises yield criterion with no
hardening. To be more precise, let F (σ,d) =σeq/(1−
d) − k be the yield function, with k the yield limit
and σeq = p

2/3|σD | the Von-Mises stress (σD = σ−
(1/3)trace(σ)I is the stress deviator). If we denote the
accumulated plastic strain by εp (given through the
differential equation ε̇p = p

2/3|Dp |), then the flow
rule reads

Dp = ε̇p

σeq
σD ,

while the loading–unloading conditions read

ε̇p ≥ 0, F (σ,d) ≤ 0, ε̇pF (σ,d) = 0.

We have considered here a very simple basic dam-
age law [following Lemaitre and Chaboche, 1994],

where the damage is related only to the (accumu-
lated) plastic strain εp .

d = d p (εp ).

For simplicity the dependence of the damage on
the accumulated plastic strain will be a piecewise
linear function that involves an activation plastic
strain ε

p
activation (damage threshold) and a maximal

level of damage dmax, corresponding to the plastic
strain ε

p
max (which might represent the rupture plas-

tic strain), by

d p (εp ) =


x

dmax

ε
p
max −εp

activation

[εp −εp
activation]+, if εp < εp

max,

dmax, if εp ≥ εp
max,

where [x]+ = (x + |x|)/2 is the positive part function.
Even if the constants εp

activation,εp
max and dmax depend

generally on the tri-axiality ratio, in what follows we
will assume that they are constants.

References

Allam, A. A. et al. (2014). Seismic velocity struc-
ture in the hot springs and trifurcation areas of
the San Jacinto fault zone, California, from double-
difference tomography. Geophys. J. Int., 198(2),
978–999. ISSN: 1365-246X, 0956-540X.

Barajas, A. et al. (2021). Separation of poroelastic and
elastic processes of an aquifer from tectonic phe-
nomena using geodetic, seismic, and meteorologi-
cal data in the Pollino Region, Italy. Geochem. Geo-
phys. Geosyst., 22(11), article no. e2021GC009742.
ISSN: 1525-2027, 1525-2027.

Belytschko, T., Liu, W. K., and Moran, B. (2000). Non-
linear Finite Elements for Continua and Structures.
John Wiley & Sons, Ltd, Chichester.

Brenguier, F., Campillo, M., Hadziioannou, C., et al.
(2008). Postseismic relaxation along the San An-
dreas fault at Parkfield from continuous seismolog-
ical observations. Science, 321(5895), 1478–1481.
ISSN: 0036-8075, 1095-9203.

Brenguier, F., Campillo, M., Takeda, T., et al. (2014).
Mapping pressurized volcanic fluids from induced
crustal seismic velocity drops. Science, 345(6192),
80–82. ISSN: 0036-8075, 1095-9203.

Canel, V. et al. (2020). Monitoring of damage pro-
cesses in cemented granular materials with acous-
tic emissions and seismic velocity reduction. Tech-
nical Report EGU2020-21891, Copernicus Meet-
ings.



Vincent Canel et al. 19

Cappa, F. et al. (2014). Off-fault long-term damage: A
condition to account for generic, triangular earth-
quake slip profiles. Geochem. Geophys. Geosyst.,
15(4), 1476–1493. ISSN: 15252027.

Chaboche, J.-L. (1992). Damage induced anisotropy:
On the difficulties associated with the ac-
tive/passive unilateral condition. Int. J. Dam-
age Mech., 1(2), 148–171. ISSN: 1056-7895.

Chester, F. M. (1993). Internal structure and weaken-
ing mechanisms of the San Andreas fault. J. Geo-
phys. Res., 98(B1), 771–786.

Clarke, D. et al. (2011). Assessment of resolution
and accuracy of the moving window cross spectral
technique for monitoring crustal temporal varia-
tions using ambient seismic noise. Geophys. J. Int.,
186(2), 867–882. ISSN: 0956-540X.

Delorey, A. A. et al. (2021). Probing the damage
zone at Parkfield. Geophys. Res. Lett., 48(13), arti-
cle no. e2021GL093518. ISSN: 1944-8007.

Digby, P. J. (1981). The effective elastic moduli of
porous granular rocks. J. Appl. Mech., 48(4), 803–
808. ISSN: 00218936.

Dvorkin, J., Nur, A., and Yin, H. (1994). Effective
properties of cemented granular materials. Mech.
Mater., 18(4), 351–366. ISSN: 0167-6636.

Evesque, P. (2000). Eléments de mécanique quasi-
statique des milieux granulaires mouillés ou secs.
Poudres et grains, NS(1), 1–155.

Fung, T. C. (1997). Unconditionally stable higher-
order Newmark methods by sub-stepping proce-
dure. Comput. Methods Appl. Mech. Eng., 147(1),
61–84. ISSN: 0045-7825.

Ghosh, S. and Raju, S. (1996). R–S adapted arbi-
trary Lagrangian–Eulerian finite element method
for metal-forming problems with strain localiza-
tion. Int. J. Numer. Methods Eng., 39(19), 3247–
3272. ISSN: 1097-0207.

Hall, S. A. et al. (2008). Crack density tensor inversion
for analysis of changes in rock frame architecture.
Geophys. J. Int., 173(2), 577–592. ISSN: 0956-540X.

Hamiel, Y. et al. (2009). Brittle deformation and
damage-induced seismic wave anisotropy in rocks.
Geophys. J. Int., 178(2), 901–909. ISSN: 1365-246X.

Hemmerle, A., Schröter, M., and Goehring, L. (2016).
A cohesive granular material with tunable elastic-
ity. Sci. Rep., 6(1), 1–11. ISSN: 2045-2322.

Huerta, A. and Casadei, F. (1994). New ALE applica-
tions in non-linear fast-transient solid dynamics.
Eng. Comput., 11(4), 317–345. ISSN: 0264-4401.

Johnson, P. A. and Rasolofosaon, P. N. J. (1996). Non-
linear elasticity and stress-induced anisotropy in
rock. J. Geophys. Res. Solid Earth, 101(B2), 3113–
3124. ISSN: 2156-2202.

Johnson, P. A., Zinszner, B., and Rasolofosaon, P. N. J.
(1996). Resonance and elastic nonlinear phenom-
ena in rock. J. Geophys. Res. Solid Earth, 101(B5),
11553–11564. ISSN: 2156-2202.

Langlois, V. and Jia, X. (2014). Acoustic probing
of elastic behavior and damage in weakly ce-
mented granular media. Phys. Rev. E, 89(2), article
no. 023206.

Lemaitre, J. and Chaboche, J.-L. (1994). Mechanics
of Solid Materials. Cambridge University Press,
Cambridge. ISBN: 978-0-521-47758-1.

Lemaitre, J. and Desmorat, R. (2005). Engineering
Damage Mechanics. Ductile, Creep, Fatigue and
Brittle Failure. Springer, Berlin, Heidelberg.

Lemaitre, J. and Plumtree, A. (1979). Application of
damage concepts to predict creep-fatigue failures.
J. Eng. Mater. Technol., 101(3), 284–292. ISSN: 0094-
4289.

Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (1997).
Distributed damage, faulting, and friction. J. Geo-
phys. Res. Solid Earth, 102(B12), 27635–27649.
ISSN: 01480227.

Lyakhovsky, V. et al. (2009). Non-linear damage rhe-
ology and wave resonance in rocks. Geophys. J. Int.,
178(2), 910–920. ISSN: 0956540X, 1365246X.

Mao, S., Campillo, M., et al. (2019a). High temporal
resolution monitoring of small variations in crustal
strain by dense seismic arrays. Geophys. Res. Lett.,
46(1), 128–137. ISSN: 1944-8007.

Mao, S., Mordret, A., et al. (2019b). On the measure-
ment of seismic travel-time changes in the time-
frequency domain with wavelet cross-spectrum
analysis. Geophys. J. Int., 221(1), article no. ggz495.
ISSN: 0956-540X, 1365-246X.

Margerin, L. et al. (2016). Sensitivity kernels
for coda-wave interferometry and scattering to-
mography: Theory and numerical evaluation in
two-dimensional anisotropically scattering media.
Geophys. J. Int., 204(1), 650–666. ISSN: 0956-540X,
1365-246X.

Meier, U., Shapiro, N. M., and Brenguier, F. (2010).
Detecting seasonal variations in seismic velocities
within Los Angeles basin from correlations of am-
bient seismic noise. Geophys. J. Int., 181(2), 985–
996. ISSN: 0956540X, 1365246X.



20 Vincent Canel et al.

Nur, A. and Simmons, G. (1969). Stress-induced ve-
locity anisotropy in rock: An experimental study.
J. Geophys. Res. (1896–1977), 74(27), 6667–6674.
ISSN: 2156-2202.

Obermann, A. et al. (2016). Lapse-time-dependent
coda-wave depth sensitivity to local velocity per-
turbations in 3-D heterogeneous elastic media.
Geophys. J. Int., 207(1), 59–66. ISSN: 0956-540X,
1365-246X.

Olivier, G. et al. (2015). Investigation of coseismic and
postseismic processes using in situ measurements
of seismic velocity variations in an underground
mine. Geophys. Res. Lett., 42(21), 9261–9269. ISSN:
1944-8007.

Pasqualini, D. et al. (2007). Nonequilibrium and
nonlinear dynamics in berea and fontainebleau
sandstones: Low-strain regime. J. Geophys. Res.
Solid Earth, 112(B1), article no. B01204. ISSN:
2156-2202.

Pecorari, C. and Solodov, I. (2006). Nonclassical non-
linear dynamics of solid surfaces in partial con-
tact for NDE applications. In Delsanto, P. P., ed-
itor, Universality of Nonclassical Nonlinearity: Ap-
plications to Non-Destructive Evaluations and Ul-
trasonic, pages 309–326. Springer, New York, NY.
ISBN: 978-0-387-35851-2.

Poupinet, G., Ellsworth, W. L., and Frechet, J. (1984).
Monitoring velocity variations in the crust using
earthquake doublets: An application to the Calav-
eras Fault, California. J. Geophys. Res. Solid Earth,
89(B7), 5719–5731. ISSN: 2156-2202.

Radjai, F. and Dubois, F. (2011). Discrete-Element
Modeling of Granular Materials. Wiley-Iste, Lon-
don.

Reasenberg, P. and Aki, K. (1974). A precise, contin-
uous measurement of seismic velocity for moni-
toring in situ stress. J. Geophys. Res. (1896–1977),
79(2), 399–406. ISSN: 2156-2202.

Rivet, D. et al. (2014). Seismic velocity changes, strain
rate and non-volcanic tremors during the 2009–
2010 slow slip event in Guerrero, Mexico. Geophys.
J. Int., 196(1), 447–460. ISSN: 0956-540X.

Rodríguez-Ferran, A., Pérez-Foguet, A., and Huerta,
A. (2002). Arbitrary Lagrangian–Eulerian (ALE)
formulation for hyperelastoplasticity. Int. J. Nu-
mer. Methods Eng., 53(8), 1831–1851. ISSN: 1097-
0207.

Roux, P. et al. (2016). A methodological approach to-
wards high-resolution surface wave imaging of the

San Jacinto fault zone using ambient-noise record-
ings at a spatially dense array. Geophys. J. Int.,
206(2), 980–992. ISSN: 0956-540X, 1365-246X.

Sawicki, A. and Swidzinski, W. (1995). Cyclic com-
paction of soils, grains and powders. Powder Tech-
nol., 85(2), 97–104. ISSN: 0032-5910.

Sayers, C. M. and Kachanov, M. (1991). A simple
technique for finding effective elastic constants of
cracked solids for arbitrary crack orientation statis-
tics. Intl J. Solids Struct., 27(6), 671–680. ISSN: 0020-
7683.

Sayers, C. M. and Kachanov, M. (1995). Microcrack-
induced elastic wave anisotropy of brittle rocks.
J. Geophys. Res. Solid Earth, 100(B3), 4149–4156.
ISSN: 2156-2202.

Schaff, D. P. and Beroza, G. C. (2004). Coseismic and
postseismic velocity changes measured by repeat-
ing earthquakes: Coseismic and postseismic veloc-
ity changes. J. Geophys. Res. Solid Earth, 109(B10),
article no. B10302. ISSN: 01480227.

Schubnel, A. and Guéguen, Y. (2003). Dispersion and
anisotropy of elastic waves in cracked rocks. J.
Geophys. Res. Solid Earth, 108(B2), article no. 2101.
ISSN: 2156-2202.

Scuderi, M. M. et al. (2016). Precursory changes in
seismic velocity for the spectrum of earthquake
failure modes. Nat. Geosci., 9(9), 695–700. ISSN:
1752-0908.

Sens-Schönfelder, C. and Eulenfeld, T. (2019). Prob-
ing the in situ elastic nonlinearity of rocks with
earth tides and seismic noise. Phys. Rev. Lett.,
122(13), article no. 138501. ISSN: 0031-9007, 1079-
7114.

Sens-Schönfelder, C. and Wegler, U. (2006). Pas-
sive image interferometry and seasonal variations
of seismic velocities at Merapi Volcano, Indonesia.
Geophys. Res. Lett., 33(21), article no. L21302. ISSN:
1944-8007.

Snieder, R. et al. (2002). Coda wave interferometry for
estimating nonlinear behavior in seismic velocity.
Science, 295(5563), 2253–2255. ISSN: 0036-8075,
1095-9203.

Stanchits, S., Vinciguerra, S., and Dresen, G. (2006).
Ultrasonic velocities, acoustic emission character-
istics and crack damage of basalt and granite.
Pure Appl. Geophys., 163(5), 975–994. ISSN: 1420-
9136.

Takano, T. et al. (2014). Seismic velocity changes
caused by the earth tide: Ambient noise correlation



Vincent Canel et al. 21

analyses of small-array data. Geophys. Res. Lett.,
41(17), 6131–6136. ISSN: 1944-8007.

TenCate, J. A., Smith, E., and Guyer, R. A. (2000). Uni-
versal slow dynamics in granular solids. Phys. Rev.
Lett., 85(5), 1020–1023. ISSN: 0031-9007, 1079-
7114.

Touma, R. et al. (2022). Distribution of seismic scat-
terers in the San Jacinto fault zone, southeast of
Anza, California, based on passive matrix imag-
ing. Earth Planet. Sci. Lett., 578, article no. 117304.
ISSN: 0012-821X.

van Dinther, C., Margerin, L., and Campillo, M.
(2021). Laterally varying scattering properties in
the North Anatolian fault zone from ambient noise
cross-correlations. Geophys. J. Int., 225(1), 589–607.
ISSN: 0956-540X.

Wang, J. and Gadala, M. S. (1997). Formulation and

survey of ALE method in nonlinear solid mechan-
ics. Finite Elem. Anal. Des., 24(4), 253–269. ISSN:
0168-874X.

Wang, Q.-Y. et al. (2017). Seasonal crustal seismic
velocity changes throughout Japan. J. Geophys.
Res. Solid Earth, 122(10), 7987–8002. ISSN: 2169-
9356.

Zhang, T., Sens-Schönfelder, C., and Margerin, L.
(2021). Sensitivity kernels for static and dynamic
tomography of scattering and absorbing media
with elastic waves: A probabilistic approach. Geo-
phys. J. Int., 225(3), 1824–1853. ISSN: 0956-540X,
1365-246X.

Zigone, D. et al. (2015). Seismic tomography of the
Southern California plate boundary region from
noise-based Rayleigh and love waves. Pure Appl.
Geophys., 172(5), 1007–1032. ISSN: 0033-4553,
1420-9136.


	1. Introduction
	2. Quasistatic loading
	2.1. Macroscopic setting 
	2.2. Microscopic setting
	2.3. Mechanical modeling 
	2.4. Numerical modeling
	2.5. Results
	2.5.1. Macroscopic level
	2.5.2. Microscopic level


	3.  Elastic wave probing
	3.1. Problem setting
	3.1.1. Macroscopic level
	3.1.2. Microscopic level

	3.2. Mechanical and numerical modeling
	3.3. Results

	4. Induced damage anisotropy
	5. Conclusion and discussion
	Conflicts of interest
	Acknowledgements
	Appendix. Mechanical model description
	References

