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Abstract: The decay of the kinetic energy of a turbulent flow with time is not necessarily monotonic.
This is revealed by simulations performed in the framework of discrete mechanics, where the kinetic
energy can be transformed into pressure energy or vice versa; this persistent phenomenon is also
observed for inviscid fluids. Different types of viscous vortex filaments generated by initial velocity
conditions show that vortex stretching phenomena precede an abrupt onset of vortex bursting in high-
shear regions. In all cases, the kinetic energy starts to grow by borrowing energy from the pressure
before the transfer phase to the small turbulent structures. The result observed on the vortex filament
is also found for the Taylor–Green vortex, which significantly differs from the previous results on
this same case simulated from the Navier–Stokes equations. This disagreement is attributed to the
physical model used, that of discrete mechanics, where the formulation is based on the conservation
of acceleration. The reasons for this divergence are analyzed in depth; however, a spectral analysis
allows finding the established laws on the decay of kinetic energy as a function of the wave number.

Keywords: turbulence cascade; vortex stretching; vortex bursting; discrete mechanics; conservation
of acceleration; Helmholtz–Hodge decomposition; inertial curvature

1. Introduction

The phenomena of vortex stretching and bursting are the main mechanisms for
the appearance of turbulence and interactions between the different scales of energy
transfer: [1–4]. From the physical point of view, these phenomena are related to the balance
of the different actions associated with the terms of the equations of motion, inertia, com-
pression, diffusion, and dissipation. The production of turbulence, the transfer of energy,
and energy decay are described by the different contributions of the law of motion. The
progress on the physical understanding of turbulence analyzed on experiments has been
corroborated by simulations produced from the Navier–Stokes equation.

An alternative to the Navier–Stokes equation was recently implemented to search
for solutions related to fluid flows or two-phase flows. The corresponding equation of
motion [5] was also used to represent fluid–structure interactions or heat transfer on small
time scales. The solutions of the discrete formulation and the Navier–Stokes equation for
fluids or the Navier–Lamé equation for solids are the same despite important differences in
the physical models.

The discrete formulation is here implemented in the framework of turbulent vortex
flows. Indeed, the discrete formulation includes a different modeling of the physical
effects; this is the case, in particular, for the inertia that is formulated in two terms of a
Helmholtz–Hodge decomposition [6]. These terms play a very important role in the energy
transfer mechanism of vortices on different spatial scales. The form of the equation of
motion causes inertial effects to be intertwined with compressive effects. In a turbulent flow,
pressure plays a regulating role, allowing local energy storage and energy redistribution in
the form of kinetic energy; this phenomenon is present in all turbulent flows, including
incompressible ones. The analysis of a rotating flow of a solid body clearly shows that
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the discrete formulation satisfies the rotational invariance of the equation of motion. In
this sense, it extends the Galilean invariance of translational motion to the rotations of the
solid body.

Several cases of inviscid or viscous vortex filament are analyzed in a first step to
understand and verify that energy exchanges between turbulent structures are due to both
vortex stretching and, occasionally, vortex bursting. The evolution of the mean kinetic
energy and pressure fields shows inverse variations even for inviscid flows. The last part is
devoted to the simulation of a Taylor–Green vortex at a Reynolds number of Re = 1600. The
result is consistent with the previous long-term validations but shows a different behavior
of the variation in the mean kinetic energy in the first instants of the flow. Contrary to the
simulations performed with the Navier–Stokes equation, the kinetic energy increases by
transforming the potential energy. As in a vortex filament, the velocity increases in the
core at the expense of the pressure energy, while maintaining its angular momentum. A
thorough analysis is provided to explain the observations and to give the reasons for the
disagreements with the Navier–Stokes equation.

2. Discrete Mechanics Framework
2.1. Physical Principles

The fundamental principles of discrete mechanics have already been described Cal19a,
Cal21b. Its presentation is developed here in a more synthetic way by specifying the most
essential aspects related to the described phenomena. Some concepts of classical mechanics
are abandoned, such as the existence of a global inertial reference frame, which forces us to
abandon the principles of one-point derivation, integration, and analysis in general. At the
same time, the notion of continuous medium is disregarded, it is the very reason for the
creation of a global reference frame. Similarly, mass is an abstraction that is not necessary
for the description of the laws of physics, as is momentum; in fact, the physical quantities
that are expressed using mass are all of the first order, which allows the same quantities to
be defined per unit of mass.

The main concepts introduced by discrete mechanics can be summarized by:

• A primary one-dimensional view of mechanical equilibrium governed by acceleration,
thus preserving the notion of relativity of velocity. The one-dimensional geometrical
description is fixed by the existence of a rectilinear segment delimited by two extremi-
ties and a length dh, called a discrete horizon. The extension of the physical model to
several dimensions of space is realized by cause and effect, with the interactions being
established through the extremities common to several segments.

• A translation invariance in time that, according to Noether’s theorem, ensures the
conservation of energy. The discrete equation of motion is therefore the same at all
times. With the exception of acceleration, which is an absolute quantity, the other
quantities of physics are subject to the principle of invariance, which allows us to
evaluate the value of a quantity at time t from its knowledge at an earlier time to.
This incremental process allows building a continuous memory model where velocity,
energy, and other quantities are updated by a time integration.

• A local reference frame linked to a segment, which inhibits any change in reference
frame, allows building an equation of motion on a geometrical structure, where the
spatial dependencies from one segment to another are ensured by the principle of
causality. The dynamics of a material medium or a particle in a one-dimensional space
is limited by the velocity of the medium (the propagation of the swell, the acoustic
signal, and the light). To use the concept of change in reference frame, the velocity
must be constant, which is not guaranteed. Therefore, any interaction is limited by a
horizon defined by the velocity of the medium.

• Classical notions of scalar, vector, pseudo-vector, and tensor are replaced by a unique
concept of amplitude parameter defining the value of the intensity of the quantity
attached to a point, segment, surface, etc. If this parameter is attached to a point, it is a
scalar; if it is attached to a segment, it is a vector, etc. For example, kinetic energy is a
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scalar when it is defined at a point and becomes a vector when it is associated with a
segment.

• Conservation of the total energy per unit of mass: mass and energy are two homolo-
gous forms of the equivalence principle of relativity. The laws of classical mechanics
require several equations to translate the conservation of mass, momentum, and energy;
they are redundant. The conservation of discrete energy also conserves acceleration as
well as angular momentum, so it is not necessary to explicitly conserve mass.

• The association to the principles of equivalence and relativity of an additional concept,
the Helmholtz–Hodge decomposition, which consists of writing that any acceleration
is the sum of a solenoidal contribution and an irrotational one. The intrinsic acceler-
ation of the particle or of the material medium is thus the sum of the gradient of a
scalar potential and of the curl of a vector potential. This decomposition gives very
valuable properties to the conservation laws written in this form.

• A principle included in Maxwell’s analysis to synthesize the laws of electrostatics
and magnetism by introducing the time dependence of the fields. Direct and in-
duced unsteady currents are the two possible alternatives for the creation of fields in
electromagnetism. These two forms are associated with the two components of the
Helmholtz–Hodge decomposition. The extension of these concepts to mechanics leads
to consider compressive effects as direct actions and viscous effects as induced actions.

2.2. One-Dimensional Model

Discrete mechanics is developed from a one-dimensional view of dynamic equilibrium.
Figure 1 represents a rectilinear segment Γ oriented by the vector t bounded by the two
vertices a and b; its length dh = [a, b] is named a discrete horizon in reference to the
maximum distance perceived by an observer located on one of the ends. This distance is
related to the wave velocity c (swell, acoustic, and light) and to a duration dt corresponding
to the observation time of the phenomenon by the relationship dh = c dt.

The intrinsic acceleration of the material medium or of a particle on the segment Γ
is denoted γ; it is both a scalar γ defined on the oriented segment and a vector γ = t,
but also the component of the acceleration vector of a space for which knowledge is not
necessary. In the same way, the velocity v is the component of a vector of space V projected
on Γ. While the velocity is relative and is given only at a constant, the acceleration γ is
considered absolute. The derivation of the equation of motion in discrete mechanics is
based on the equality of the accelerations: those due to the external actions h and the
intrinsic acceleration γ of the material medium or of a particle. This law expresses the
conservation of acceleration, it is written as:

γ = h (1)

where h is the sum of the accelerations: those of the effects of compression and shear but
also all the other potential source terms: gravitation, capillary acceleration, etc.

The law (1) does not disagree with the fundamental principle of dynamics m : γ = F;
in the case where the force is associated with gravity, we have m : γ = m : g, where m is
the moving mass, or γ = g. Galileo’s principle of equivalence expresses that the effects of
inertia and gravitation are of the same nature. However, the presence of mass poses two
problems: (i) its generalization to any acceleration other than gravity; (ii) the association of
a necessarily volumetric quantity, mass, and another essentially vectorial one, acceleration.
Paradoxically, the force seen as a vector in the context of classical mechanics is the product
of two disjoint quantities. The law (1) restricts the principle of equivalence to accelerations
only by expressing that the intrinsic acceleration of a medium is equal to the sum of the
accelerations applied to it.

Mass is at the center of Copernican and Galilean mechanics, which is attributed to the
understanding of planetary motion. This importance continues today even if the theory of
special relativity introduces the equivalence between mass and energy; moreover, mass
is still present in the expression of energy e = m c2. In the same way, the actual law of
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fluid mechanics is a conservation of momentum, q = m v, the product of mass and velocity.
Discrete mechanics abandons the notion of momentum to define an equivalent quantity
per unit of mass, the acceleration.

Figure 1. Local frame of reference of discrete mechanics; the rectilinear segment Γ oriented by t is
the constitutive element of the primal structure and the support of the intrinsic acceleration γ or
imposed by the exterior h. This segment, limited by its extremities a and b, is of length dh and called
the discrete horizon. The dual structure is schematized by the contour ∆, which defines the induced
actions then projected on Γ.

The principle of relativity must be respected; the velocity is a relative quantity that has
no absolute reference, not even the velocity that is a strictly independent physical quantity.
Velocity v at time to + dt is calculated from the acceleration in the form v = vo + γ dt,
where vo is the velocity at time to. In the same way, the displacement u is calculated from
the velocity in the form u = uo + v dt. These two quantities are thus updated from their
values at time to. Many other quantities are relative, in particular energy, which is defined
only to a constant. If we define the total energy per unit mass Φ, then its variation along
the segment takes the form:

Φb −Φa =
∫ b

a
γ · t dl (2)

The intrinsic acceleration γ is that of an isolated particle that follows the trajectory
Γ or that of the material medium, and the acceleration h of the law (1) is the sum of
the external accelerations on Γ. In one dimension of space, the intrinsic acceleration is
written as γ = dv/dt = ∂v/∂t +∇

(
|v|2/2

)
. The quantity |v|2/2 is the kinetic energy; it

is also written as 1/2(v · v). It is both a scalar assigned to the oriented segment Γ and
the vector 1/2(v · v) t. This quantity can also be defined on the extremities a and b of the
segment, where ∇

(
|v|2/2

)
represents an acceleration opposing the increase or decrease in

the velocity over time. This is the principle of inertia, which tends to establish a uniform
motion in the absence of any external acceleration h.

2.3. Extension of Physical Model to Other Dimensions

The discrete physical model is one-dimensional, represented by the segment Γ on
which all direct and induced accelerations are projected, whether intrinsic or applied. The
extension to a higher dimension is immediate; it is realized by assembling the segments by
their extremities. These extremities become the vertices of the primal structure formed of
planar polygons delimited by the collection Γ∗ of the sides of the triangle in Figure 2. This
primal structure is thus composed of vertices, segments, and polygonal facets; contrary to
other approaches coming from differential geometry, mimetic methods, discrete exterior
calculus, or the cell method, discrete mechanics does not address volumes even if the
assembly of facets forms polyhedra with planar faces.
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The absence of a global reference frame is both a disadvantage and an advantage. It
is no longer possible to express the invariance of the system of equations in a change of
reference frame, for example, or to project each term on axes in an inertial reference frame
to ensure mechanical equilibrium, as in continuum mechanics. The advantage is the ability
to extend the principle of inertia to uniform rotational motions. The interactions from
one local reference frame to another are realized by cause and effect. The celerity c of the
waves is defined locally including for the celerity of light c0, which can vary according to
the medium.

Figure 2. Geometric structures of discrete mechanics: the primal structure (in blue) is composed of a
collection of segments Γ oriented by a unit vector t bounded by the ends a or b; these segments form
a polygonal planar surface S , whose barycenter, denoted c, defines the normal n that is positively
oriented according to Maxwell’s rule. The dual structure (in red) has a flat polygonal surface D
bounded by segments ∆. The unit vectors are orthogonal by construction, n · t = 0.

Energies per unit volume of compression carried by φo and of rotation, represented
by ψo, are defined at time to and are named the retarded potentials in reference to the
electromagnetic potentials of Liénard [7].

φo = −
∫ to

0
c2

l ∇ · v dτ; ψo = −
∫ to

0
c2

t ∇× v dτ (3)

where cl and ct are the longitudinal and transverse celerities.
They express the accumulation of the respective energies over time from an initial

state, where all quantities (v, φo, ψo) satisfy the equation of motion. From this point of
view, the discrete equation of motion is a physical model with continuous memory.

2.4. Discrete Equation of Motion

The conservation of the total energy Φ corresponds to the integration of the acceler-
ation on the segment Γ, but γ and the velocity v are average values on this segment. It
is then possible to derive an equation of motion whose unknowns are the velocities v on
the basis of discrete operators, the divergence ∇ · v, gradient of a scalar ∇φ, primal curl
∇× v, and dual curl ∇d ×ψ. The law of discrete mechanics (1) expresses that the intrinsic
acceleration of an isolated particle or of the material medium is equal to the sum of the
accelerations imposed by the exterior, mainly the compressive and rotational accelerations.
Intrinsic acceleration is simply the material derivative γ = dv/dt.

Discrete mechanical equilibrium corresponds to the equality on the accelerations
γ = h, which becomes γ = −∇φ +∇d × ψ in the framework of a Helmholtz–Hodge
decomposition where φ = φo + dφ is the scalar potential, and ψ = ψo + dψ is the potential
vector of the intrinsic acceleration; φo and ψo are named the retarded potentials in reference
to the electromagnetic potentials [7,8]. Physical modeling of the increases in potentials, dφ
and dψ, can be found in the references associated with discrete mechanics [9,10]. The relative
increase in compression is a function of the divergence of the velocity, and that of the
rotation is obtained by the primal curl of the latter. The equation of motion becomes:
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

dv
dt

= −∇
(

φo − c2
l dt∇ · v

)
+∇d ×

(
ψo − c2

t dt∇× v
)
+ hs

αl φo − c2
l dt∇ · v 7−→ φo

αt ψo − c2
t dt∇× v 7−→ ψo

(4)

where hs represents the acceleration due to sources, gravitation, capillary effects, etc.; αl
and αt are the attenuation factors for longitudinal and transverse waves, respectively. For
a Newtonian fluid, αl ≈ 1 and the factor αt is equal to zero for characteristic times lower
than t ≈ 10−11 s; transverse waves are dissipated very quickly.

The discrete equation of motion is accompanied by two updates of the scalar φo and
vector ψo potentials computed from the divergence and the primal curl of the velocity.
Symbol 7−→ means that the potentials are updated from the retarded potentials. The
discrete equation is self-contained: it does not require any additional mass conservation
law or constitutive laws. The variable is the velocity v on each of the segments of the
primal structure. The quantity dt is the time lapse between two observations of the physical
system. It is closely related to the physical phenomenon studied, and its value can be very
large for the simulation of stationary phenomena, at 10−20 s to translate the propagation
of light, where c0 ≈ 108 ms−1. In all unsteady cases, it is necessary to choose a time span
dt << dh/c. Even if the velocity of the medium is very large, the compression energy is not
zero. Indeed, the grouping dφ = dt c2∇ · v is the energy increase between two observations
of the evolution of the physical system; dφ remains constant because ∇ · v ≈ 1/c2. Thus,
a medium considered rather incompressible can propagate sound waves, for example, in
water. The discrete equation of motion applies to any incompressible or compressible flow.

The system (4) is an alternative to the Navier-Stokes equation and the conservation of
mass. It is primarily a law of conservation of total energy per unit mass, i.e., acceleration.
As mass is a form of energy, it is not necessary to keep the mass or density in the equation
of motion; it would be an overabundant quantity. Moreover, all the quantities of physics
that are currently functions of mass make this one appear at the order one, which allows the
definition of equivalent quantities per unit of mass. The length dh and time dt are the only
two fundamental quantities to define any law of mechanics and, more generally, of physics.

Finally, the acceleration or the material derivative [6] in one or more space dimensions
is written as:

γ =
dv
dt

=
∂v
∂t

+∇
(
|v|2

2

)
−∇d ×

(
|v|2

2
n
)

(5)

This discrete form significantly differs from that of continuum mechanics. In particular,
the last term is here a dual curl with zero divergence, whereas the corresponding term
in continuum mechanics, the Lamb vector, L = −V×∇×V, is the gradient of another
potential. The two terms of inertia or the equivalent form V · ∇V have projections on each
of the three axes of a global reference frame. In discrete mechanics, the two terms of inertia
(5) have as support the same segment Γ of the local reference frame.

The cornerstone of the discrete model is precisely the formulation of the inertia;
Figure 1 well schematizes the competition between the compression term and the rotation
term of the relation (5). The first contribution is fixed by the gradient of the inertial potential
|v|2/2 defined on the vertices a and b,and the second contribution is represented by the
dual curl of the vector potential |v|2/2n. Within a turbulent flow, the energy exchange
between these two forms of inertial acceleration is most likely the force driving the transfer
between the different spatial scales.
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2.5. Discrete Kinetic Energy Theorem

It is important to specify the differences in the kinetic energy theorem between contin-
uum mechanics and discrete mechanics. These differences are not so much related to the
presence or absence of mass as to the fact that we consider the integration on an elemen-
tary volume specific to the notion of continuous medium. Let us take the Navier-Stokes
equation multiplied by the velocity vector of space V and, to simplify the matter, let us
consider the only contribution of the pressure and an incompressible flow. Let us consider
an elementary volume Ω limited by an impermeable surface Σ; the conservation of kinetic
energy is written as follows:

∫
Ω

ρ
d|V|2

dt
dv = −

∫
Ω

V · ∇p dv (6)

The term V · ∇p can be transformed into the form V · ∇p = ∇ · (p V)− p∇ ·V; the last
term in (6) vanishes when incompressibility is taken into account, and the equation becomes:

∫
Ω

ρ
d|V|2

dt
dv = −

∫
Σ

p V · n ds (7)

and, as the surface is impermeable, V · n = 0, we obtain:

∫
Ω

d|V|2
dt

dv = 0 (8)

This observation translated by (8) is perfectly legitimate if we stick to the equilibrium
on the volume Ω. For a material point dEk/dt = 0, the kinetic energy remains constant
when we follow the medium in its motion; this local form is, however, questionable. In the
presence of viscous forces, the form adopted by many authors Bra84, Van11, Wan13 only
takes into account the latter terms, and the energy decay becomes:

−d|V|2
dt

= ε (9)

considered as the evolution of the only dissipation ε = 2 ν S : S, where S denotes the
deviating part of the rate-of-strain tensor. The problem remains for compressible flows
where the divergence is not zero.

The major objection to this conclusion lies in the notion of the continuous medium itself;
the use of a transformation of a weak integral formulation leads to a loss of information:
it amounts to asserting that locally one imposes V · ∇p = 0 but these two vectors are
not necessarily orthogonal. In continuum mechanics, the kinetic energy theorem specifies
that the sum of the forces applied to a material medium is equal to the variation in its
kinetic energy.

Its transposition into discrete mechanics is immediate: the sum of the accelerations
applied to a material medium is equal to the variation in the kinetic energy per unit of
mass; this is noted ek. It is both a scalar attached to the vertices of the primal structure and
a vector related to the Γ segment, ek = 1/2 (v · v) t because the vector v is associated with
the segment Γ. This is not a new law; it is deduced from the equation of motion. In discrete
mechanics, the equation of motion (4) is multiplied by v and integrated over the length of
the segment:

∫
Γ

1
2

d|v|2
dt

= −
∫

Γ
v · ∇φ +

∫
Γ

v · ∇d ×ψ (10)

The potential φ =
(
φo − c2

l dt∇ · v
)

is the compression or translational kinetic energy
and ψ =

(
ψo − c2

t dt∇× v
)

is the rotational energy or angular kinetic energy. The form (4)
of the equation of motion includes from the start the balance of the sum of the forces but
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also the moments. The acceleration γ is not only related to the translational motion but
also translates the conservation of angular momentum.

Contrary to classical mechanics, where the vector V is not necessarily collinear with
the pressure gradient vector ∇p and similar to viscous forces, the discrete formulation
removes any interpretation on the orientation of the terms in the kinetic energy equation. v
is well collinear to ∇φ and to ∇d ×ψ; the results of the scalar product allow us to consider
that −v · ∇φ and v · ∇d × ψ are, at the same time, scalars on the oriented segment and
vectors. With the unknown of the equation of motion being v, the local kinetic energy is
simply obtained by a scalar product ek = 1/2(v · v) = 1/2|v|2. The quantity ek considered
as an average on a segment allows the definition of the discrete theorem of the local
kinetic energy:

dek
dt

= −v · ∇φ + v · ∇d ×ψ (11)

It is possible to define an average value Ek on the whole physical domain of the kinetic
energy per unit of mass from its value on each segment of the primal structure ek:

Ek =
1

[Γ∗]

∫
Γ∗

1
2
|v|2 dl (12)

where [Γ∗] is the length measure of all segments. Similarly, the global compression energy
Ec is represented by an integral over the primal volume Ω:

Ec =
1
[Ω]

∫
Ω

φo dv (13)

Returning to the local form (11), the velocity v is aligned not only with ∇φ but also
with ∇d ×ψ. This last term corresponds to the rotation of the medium but only reflects
dissipation in the case of a viscous fluid for which the potential vector is of the form
ψ = ν∇× v. In this situation, the transverse waves are completely attenuated over very
small time constants (τ ≈ 10−11s). The local variation in the kinetic energy of a material
medium during its motion can thus be positive or negative, but the most important aspect is
that the integration to the whole volume Ω of the considered flow cannot be limited a priori
to a monotonous decay. Indeed, the discrete law of motion (4) expresses the conservation of
the total energy Φ = Ec + Er, where Ec is the compression energy per unit of mass, and Er
is the rotation energy. The kinetic energy Ek is only a part of the total energy. In the absence
of viscous friction for a fluid, there remain two energies, Ec and Ek, the sum of which is
indefinitely conserved over time from an Eulerian view. For a given flow, the velocity v and
the potential φ are nonzero and fixed by the initial condition. The evolution in time of the
system is governed by only the equation of motion (4). Equation (11) is only a consequence
of it. Like any mechanical system, the kinetic energy and the potential energy evolves in
such a way as to preserve the total energy. The following form of the equation of motion
allows us to be convinced of this:

∂v
∂t

= −∇
(

φo +
1
2
|v|2 − c2

l dt∇ · v
)
+∇d ×

(
ψo +

1
2
|v|2 n− c2

t dt∇× v
)

(14)

The two terms of the right-hand side are two Lagrangians associated, respectively,
with the conservation of the compression and rotation accelerations. Noether’s theorem
applied to laws of physics in the form of Lagrangians or Hamiltonians allows us to invoke
the invariances of a mechanical system. In particular, the pressure energy defined by φo

and the kinetic energy 1/2 |v|2 can change over the course of time while keeping the total
energy. In particular, the total kinetic energy can increase while the pressure decreases.

In the case of a vortex filament where the angular velocity is v and the potential φ
depend only on the distance to the axis of rotation, these two quantities are orthogonal
and v · ∇φ = 0, and the flow remains axial. When a modulation of the velocity along
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the axial direction is introduced, this condition is no longer met and axial currents are
generated to try to re-establish the axisymmetric equilibrium; this is the phenomenon of
vortex stretching.

2.6. Conservation of Angular Momentum

The equation of motion (4) is a law of conservation of total energy per unit mass, but
it also conserves angular momentum along with momentum. In continuum mechanics, the
angular momentum theorem is a separate law from the equation of motion expressing the
conservation of the quantity r× p, where p is the momentum, and r is the distance from
the axis of rotation.

Let us consider an incompressible rotational motion without longitudinal effects; in
these conditions, the discrete equation of motion becomes:

∂v
∂t

= ∇d ×
(

ψo +
1
2
|v|2 n− c2

t dt∇× v
)
+ hs (15)

The first term of the parenthesis is the potential ψo, which would represent a possible
mechanical action that would be associated with a storage of the mechanical energy of
rotation, for example, a balance spring of a watch or a pendulum. The second term is
a kinetic energy per unit of mass; it is the rotational inertia and ∇d × ψi is the inertial
acceleration related to the rotation. The term −c2

t dt∇× v is the instantaneous energy
that is redistributed to the other components of the equation over time. In an unsteady
rotational motion, all these terms are related, but the total rotational energy is conserved.
The dual curl of the sum of these is the rotational acceleration, i.e., the angular momentum
per unit mass. In the absence of viscous dissipation, the angular momentum is conserved.

For example, the application of Equation (15) to a simple pendulum oscillating under
the effect of the acceleration of gravity hs = −g sin θ t allows us to find the result of
Newtonian or Lagrangian mechanics, including in the nonlinear regime. In the linear
domain, the solution is then θ(t) = θ0 cos(

√
g/rt), and the period T = 2 π

√
r/g, where

θ0 is the initial angle of the pendulum, and r is its length.
In the case of a purely viscous flow, the term dt c2

t is replaced by the kinematic viscosity
ν, and the attenuation factor αt is equal to unity, the transverse waves are attenuated in a
very short time. The retarded vector potential at time to is equal to ψo = −ν∇× vo, but
the exchanges between the rotational inertia and the other terms of the equation, including
pressure terms, persist. In classical mechanics, the formulation of the inertia is not at all
the same as in discrete mechanics, and the Navier–Stokes equation does not preserve a
priori the angular momentum. In turbulence, this discrepancy can be of the first order in
the representation of the interactions between vortices.

3. Turbulent Flows in Vortex Filaments

Examples of vortex filaments for a perfect or viscous fluid are analyzed in order to
highlight the phenomena of vortex stretching and bursting in configurations simpler than a
developed turbulent flow. The objective is to show that the kinetic energy can increase, even
in cases of decreasing turbulence. Finally, the reference case of the Taylor–Green vortex at a
Reynolds number of Re = 1600 is taken again to highlight these same phenomena and to
demonstrate to a disagreement with the previous results and to attribute it to the chosen
physical model.

3.1. Inviscid Vortex-Filament

The appearance of turbulence is first analyzed on a cylindrical vortex of an inviscid
fluid in the first moments of the flow before the creation of small structures leads to its
divergence. The physical domain corresponds to a cylinder of dimensions [(0, π/2), (0, 2 π),
(−π, π)]. In cylindrical coordinates (r, θ, z), the initial velocity field is given by the vector:

V = [0, cos r (1 + α cos z), 0] (16)
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where α is a modulation factor of the velocity perturbation along the z direction. The initial
scalar potential (pressure) is directly deduced from the equation of motion and the imposed
velocity (16).

If α = 0, the initial streamlines are circles, vθ = cos r, and the potential field φ(r) is
purely radial. Under these conditions, the vector quantities v and ∇φ are orthogonal, and
the evolution of the kinetic energy per unit mass during its motion given by:

dek
dt

= −v · ∇φ (17)

is zero. We notice that the components v and ∇φ are carried by the same segment Γ; they
are thus collinear. This is not a paradox because they are components of the velocity V
and not of the velocity vector itself. Moreover, when v and ∇φ are oriented along the
radius, the velocity component is indeed null and vice versa for the orthoradial direction.
The simulation of this case with the system (4) leads to a strictly angular motion with
constant velocity and a kinetic energy ek constant in time. Contrary to a common idea,
the nonexistence of a 2D turbulent motion is not due to a 2D restriction of the physical
space. By applying the curl operator to the Navier–Stokes equation, we find the form on
ω = ∇×V:

∂ω

∂t
+ V · ∇ω−ω · ∇V = ν∇2ω (18)

where V · ∇ω represents the advection of the vortex, and a term ω · ∇V, which cancels
out in the two dimensions of space because the velocity is defined in this planar surface
whereas ω is orthogonal to it. The result obtained in discrete mechanics shows that a
vortex without longitudinal modulation leads to an invariance of the kinetic energy, even
in three dimensions.

In the case where there is a velocity modulation along the z direction with α = 0.2, the
problem is different. Indeed, V and∇φ are no longer orthogonal, and a longitudinal motion
is superimposed on the rotational motion of the vortex. As the flow is incompressible and
the boundary conditions are such that V ·n = 0, the motion generates positive and negative
longitudinal velocities, which in turn generate pressure variations along the axis of the
vortex. This phenomenon of stretching and compression of the vortex can be observed in
Figure 3 from an initial condition fixed by the velocity field (16). This vortex stretching
shows that the axial velocities in the core of the vortex are higher than on the periphery.
In the image of the center, we can see that the kinetic energy is more important in the
central core.

Figure 3. Inviscid vortex filament initiated by the velocity field (16); initial potential field φo (left),
potential field at t = 6 decorated by the local kinetic energy (center), and a snapshot of stream-
lines (right).
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Figure 4 shows the evolution over time of the kinetic energy defined by the average
over all segments of the local energy on each segment 1/2|v|2. We observe that the varia-
tions in the kinetic energy Ek and potential are in phase opposition even if the definitions of
these quantities are different. They reflect the periodic movements of the vortex stretching
phenomenon. To understand these oscillations, we return to the equation of motion for an
inviscid flow:

∂v
∂t

= −∇
(

φo +
1
2
|v|2 − c2

l dt∇ · v
)

(19)

First, it is necessary to recall that the incompressibility of the flow is not fixed a priori
but established by the term c2

l dt∇ · v, which becomes constant for a lapse of time dt
because the divergence of the velocity is of the order of magnitude of the inverse of c2

l .
This term corresponds to the update of the scalar potential linked to a modification of the
equilibrium between the compression energy characterized by the retarded potential φo

and the kinetic energy. Equation (19) is solved for an inviscid flow (ν = 0) for several
spatial approximations and the solution well converges, but, in all cases, the numerical
solution diverges for a time t > 15. It is not possible to obtain a very long-term solution
without viscosity. However, a stable flow can be maintained by introducing a very low
viscosity in order to find the behavior obtained for Re = ∞.

Figure 4. Evolutions of the mean kinetic energy Ek and the scalar potential φo where Ek and φo are
given in m2 s−2 and t in s.

The exchange between kinetic energy and pressure energy is a major element for
the understanding of turbulent flows, including for incompressible flows. The discrete
equation of motion (4) has the essential characteristic of interweaving the compression
and rotation accelerations with the two components of inertia within the same law. Any
splitting aiming at separating the conservation of the total energy from the conservation of
the mass can lead to unpredictable artifacts.

3.2. Vortex Filament at Re = 1600

The case treated now is of another nature: the modulation of the initial velocity of
the previous problem is replaced by a very important shear generated by the inversion
of the direction of rotation of the flow along the longitudinal direction. It is close to
the Taylor–Green vortex benchmark discussed later. For a physical domain defined by
L3 = [(−π/2, π/2), (−π/2, π/2), (−π, π)], the initial condition of the vortex is fixed by
the velocity in Cartesian coordinates:

u = − cos x sin y cos z
v = sin x cos y cos z
w = 0

(20)

The potential field φ, the pressure in the presence of a density ρ = 1, is defined
unilaterally as the quantity which translates the mechanical equilibrium by the equation of



Fluids 2023, 8, 16 12 of 19

motion for the velocity field (21). Indeed, in the case of an incompressible flow, it is useless
to specify the pressure field corresponding to this equilibrium. From this, simulations
were carried out for three configurations representing a vortex filament: (i) a cylinder of
radius π/2 and height 2 π tessellated by curvilinear hexahedra in cylindrical coordinates,
(ii) a prism circumscribed to the previous cylinder represented by a mesh based on prisms
with triangular sections, and (iii) a parallel channel with square section whose meshes
are Cartesian hexahedra. The approximations used have approximately the same number
of cells, about 2203, which corresponds to a number of unknowns ne = 30 × 106, the
number of edges of geometric structure. The Reynolds number adopted in the three cases
is Re = v0 L/ν = 1600, where v0 = 1. Details of the numerical methodology are provided
in several cited papers including [10]. The objective of this section is to show that although
the geometries of the three configurations are different, the turbulence appears in the same
way; however, the turbulent structures generated are impacted by the shape of the vortex
filament considered.

Figure 5 shows three snapshots corresponding to time t = 10 s. The Bernoulli scalar
potential field φo

B = φo + |v|2/2 is colored by the local kinetic energy.

Figure 5. Snapshots of potential fields decorated by kinetic energy for three vortex filaments with
circular, hexagonal, and square bases.

In all three cases, we observe that the turbulent structures are animated by an impor-
tant velocity in the zones of important shear. The number of structures resulting from vortex
busting closely depends on the geometry of the chosen physical domain. Figure 6 shows
the evolution of the mean kinetic energy Ek over time for the cases of the cylindrical and
square-based filaments; the evolution corresponding to the prismatic structure is roughly
the same as for the cylinder. In the cases, we observe a rapid increase in the mean kinetic
energy over time for a time t < 4, which is accompanied, as for the inviscid filament, by a
decrease in the scalar potential φo.

The potential energy characterized by φo is transformed from the first instants into
kinetic energy, while the impact of viscosity is negligible. In the case of the cylinder, we
observe the effect of the vortex stretching phenomenon similar to that of inviscid vortex-
filament. Beyond a time t ≈ 4, the vortex bursting creates finer and finer structures, which
are then dissipated by viscosity; for the hexahedral geometry, the evolution of the kinetic
energy presents three phases: (i) an increase until the appearance of the vortex bursting at
t < 4, (ii) a decrease characterizing the transfers between the large and small structures, and
(iii) a decreasing exponential evolution for t > 18 characterizing the viscous dissipation.
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Figure 6. Evolution of the kinetic energy with time in the case of a cylinder (left) and for the geometry
with square base (righ).

The mechanisms leading to the appearance of vortex bursting turbulence in viscous
and nonviscous cases having now been described, it is necessary to confront the discrete
physical model with a reference case that has been the subject of numerous theoretical
studies and numerical simulations: the Taylor–Green vortex at Re = 1600.

3.3. Taylor–Green Vortex at Re = 1600

The Taylor–Green vortex test case is emblematic of the turbulence decay of a three-
dimensional velocity field, initially introduced into a cubic cavity of dimensions
L3 = [−π, π]3, where the boundary conditions are periodic for velocity and pressure.
This test case is widely used to verify the convergence properties of numerical methods;
the results are broadly reported in the literature, for example, [11]. The Reynolds number
chosen is the one whose results are most often found, namely Re = 1600, a value adopted
for the benchmark corresponding to [12]. The Reynolds number is defined by Re = v0 L/ν,
where L = π, v0 = 1, and ν = (v0 : L)/Re is the kinematic viscosity, assumed constant.
The initial condition is defined in Cartesian coordinates by the components of the vector
V = u ex + v ey + w ez: 

u = − sin x cos y cos z
v = cos x sin y cos z
w = 0

(21)

The potential field φo is obtained from the conservation of acceleration Equation (4),
consistent with the constraint ∇ · v = 0, where v is the discrete velocity. The simulation
from this initial condition allows us to obtain at each instant the solution (v, φ, ψ). The
associated instantaneous quantities, the kinetic energy per unit of mass Ek, the dissipation
ε, and the enstrophy per unit of mass are saved in time. The time evolutions of the global
kinetic energy Ek and the compression energy Ec as a function of time are shown in Figure 7.

As for the vortex filament cases, the kinetic energy Ek increases until a time t ≈ 3.5,
where the first turbulent structures appear in the form of vortex bursting, mainly in the
shear zones generated by the initial conditions (21).

In correlation with the growth of the kinetic energy, the compression energy Ec de-
creases; the mechanical equilibrium defined by the invariance of the total energy imposed
by the Equation (4) allows the exchanges between the two terms of inertia, pressure, and
effect of the limited viscosity in this phase. From a time t ≈ 3.5 begins the energy cas-
cade phase toward the small structures, which is marked by a quasilinear decrease in
the kinetic energy in time and irregular variations in the pressure energy. Beyond a time
t = 18 begins the dissipation phase, marked by a decay toward zero of the kinetic and
compression energies.
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Figure 7. Global kinetic energy Ek and compression energy Ec at Reynolds number Re = 1600 for
nc = 2563 cells and ne ≈ 50× 106 unknowns.

The observation of the velocity and pressure fields shows that the energy cascade
where the kinetic energy is globally decreasing is due to the phenomena of vortex stretching
and vortex bursting at different scales. Instantaneous variations in the fields, in particular
of the pressure, reveal very sudden increasing variations of the pressure, which can reach
local values several times higher than v2

0/2, the initial maximum kinetic energy. Figure 8
shows the Bernoulli potential field φo

B decorated by the local kinetic energy for time t = 20.

Figure 8. Snapshot of the potential field decorated by the kinetic energy for t = 20, nc = 2563 et
ne ≈ 50× 106 unknowns

This representation of the turbulent field is quite consistent with the fields given by
the many authors who have simulated this benchmark.

The energy cascade in the inertial zone is very comparable to the evolutions previously
obtained by different authors. More precisely, the spectral analysis in wavelengths k for
Reynolds number Re = 1600 and time t = 20 allows us to show the spectrum Ek(k) in
Figure 9. The Kolmogorov law Ek ∝ k−5/3 is approximately satisfied by discrete mechanics.

However, if the energy decay phase in the domain seems to qualitatively be the
same, the first phase of increase in Ek presented in Figure 7 is radically different from the
results obtained by the many authors who have studied this configuration since 1983. The
following section provides an analysis of the underlying reasons for this disagreement.

3.4. Behavior as a Function of Reynolds Number

Like other simulations performed with the proposed model, the numerical solutions
obtained are convergent to order two in space and time. The specificity of turbulent
flow simulations lies in the ability to capture the smallest spatial and temporal scales of
turbulence by using adapted meshes and time steps. The decrease in the scales to capture
those related to viscosity is all the more important as the Reynolds number increases;
the range of Reynolds numbers studied is therefore necessarily limited. Considering the
available means, the Reynolds number of 1600 has been chosen in most of the simulations
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on this test case. In order to verify that this value corresponds to a case of developed
turbulence, other values of Reynolds number have been used for the numerical simulations:
Re = 100, Re = 500, and a case of flow for an inviscid fluid. For Re = 100, the flow is
clearly laminar, while the one corresponding to Re = 500 is transient but presents strong
similarities on the turbulence decay to the Re = 1600 case.

Figure 9. Energy spectrum as a function of the wave number Ek(k) for t = 20 on one-quarter of
the domain.

Figure 10 presents the evolutions of kinetic energy Ek for these values
(Re = 500, 1600, ∞) as a function of the time limited to t = 5 s; indeed, the solution
for the inviscid case explodes beyond this time, whereas it is perfectly represented for
the lower times. The structure of the flows is the same in all three cases at this time; the
shearing of the fluid filaments generates a vortex bursting similar to those observed on
the individual filaments simulated before. These results at different Reynolds numbers
show very similar behaviors even though, just after the vortex bursting, the decay shows
limited differences.

Figure 10. The evolution of the kinetic energy Ek corresponding to the Taylor–Green vortex case
shows a similar behavior at Reynolds numbers of Re = 500, 1600 and for an inviscid fluid.

4. Analysis

Let us take the incompressible Navier–Stokes equation with constant density used for
many decades for the Taylor–Green vortex and especially in reference [12]:



Fluids 2023, 8, 16 16 of 19


∂V
∂t
−V×ω = −∇

(
p +

1
2

V2
)
+ ν∇2V

∇ ·V = 0

(22)

where ω = ∇×V is the curl of the velocity vector. The inertia is here split into a part with
zero rotation to form the Bernoulli pressure and the Lamb vector −V×ω, which is a priori
not a curl. The incompressibility constraint −∇ ·V = 0 is taken into account in a different
way according to the authors, whereas others have used a compressible formulation at
low Mach numbers. In all cases, among which include [12–17], the results obtained with
the model (22) are very close. This problem is now considered as a benchmark to present
new physical models or innovative numerical methodologies of high accuracy. Direct
simulations of the TGV case at Reynolds number Re = 1600 can be summarized by the
time variations in the kinetic energy and dissipation ε = −dEk/dt; they are represented in
Figure 11,where the values are borrowed from W. van Rees [11].

The kinetic energy Ek on the volume decreases toward zero in a monotonic way over
time with a very slight decrease for times lower than t = 4 due to the viscosity of the
fluid. For times 4 < t < 18, the inertial zone is characterized by a fast decrease in Ek. The
dissipation ε = −dEk/dt, calculated from the expression ε = 2 ν S : S or directly from Ek,
shows a maximum of this quantity around t ≈ 9.5.

Figure 11. Taylor–Green vortex at Re = 1600; the spectral simulation provides the evolution of Ek
and dissipation rate ε = −dEk/dt for the Navier–Stokes model after W. van Rees [11], file Re-1600-
512.gdiag.

The comparison between the discrete kinetic energy in Figure 7 and the Navier–Stokes
one (11) reveals profound discrepancies in the behavior of the flow at t < 5. These
differences are not due to the method of performing the statistics or to the form of the
kinetic energy theorem because it is directly derived from the physical model used. The
numerous simulation results from discrete mechanics on reference flows all show a very
good agreement with those of continuum mechanics [5,6,18,19]. For the first time, for the
TGV flow, the results diverge.

In discrete mechanics, the unknowns of the equation of motion are the velocities v on
the segment Γ, and the velocity vector V is not necessary to model the flow. The kinetic
energy per unit mass ek = 1/2 v · v is a quantity attached to Γ but is also defined on the
vertices of the primal structure, a or b, and on the barycenters of the S facets. The global
kinetic energy Ek computed on the segments, on the dual volumes or on the facets has an
identical behavior over time; Ek(t) increases in the preinertial phase, whereas it remains
almost constant in continuum mechanics.

The growth of the kinetic energy can only be possible at the expense of the potential
energy represented by the Bernoulli scalar potential φo

B. Indeed, in the region t ∈ [0, 4], the
viscous effects are not perceptible. Numerous simulations at different Reynolds numbers
all show the same phenomenon, including for an inviscid flow; in this last case, the vortex
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bursting phenomenon for t ≈ 4 logically leads to a divergence in the simulation. The
conservation of the total energy given by the discrete Equation (4) associates the two inertia
terms, the compression term, and the viscous term. The energy exchanges due to inertia
and compression effects are reciprocal because compression does not lead to dissipation of
acoustic waves on these spatial scales. Thus, a decrease in compression energy φo can be
transformed into an increase in kinetic energy ek and vice versa. This is the phenomenon
observed in the first phase where the potential pressure energy is converted into kinetic
energy. Let’s take the inertia term from the Navier-Stokes equation:

V · ∇V = ∇
(

1
2
|V|2

)
−V×∇×V (23)

The two equivalent formulations are established within the concept of a continuous
medium and therefore valid at a point of it. To be able to calculate explicitly each term it
becomes necessary to project the equation on a global reference frame.

In discrete mechanics the mechanical equilibrium is realized within a local reference
frame. Solving the discrete equation of motion (4) implicitly entangle all the terms of
this nonlinear equation over time and it is difficult to predict the behavior of the solution.
Observation of the simulation results shows that the roles of the Bernoulli scalar potential
φo

B = φo + φi are related to compression and that they correspond to the rotational inertia ψi.
The inertial potentials φi and ψi also exchange their energy; the longitudinal compression
generates a modification of the rotation and vice versa. The inertial acceleration, κi, is
written as:

κi = ∇
(

1
2
|v|2

)
−∇d ×

(
1
2
|v|2 n

)
(24)

This quantity, κi, is globally conserved in the absence of external accelerations, notably
viscous effects. The physical meaning of the inertial vector κi is illustrated by the vortex
schematized in Figure 12.

Figure 12. Scheme of the inertia vector κi on the oriented segment Γ and the respective representations
of its two components such that κi = ∇φi −∇d ×ψi.

A change in the compression energy represented by ∇φi = (|vb|2 − |va|2)/( 2 dh)
generates a variation in the velocity v on Γ and, consequently, of the velocities on the other
segments of the four primal structures. The circulation of the velocities on these lead us
to define a potential vector ψi carried by the unit vector n. The dual curl of this vector,
∇d ×ψi, is in turn carried by the segment Γ. Thus, the compression energy is compensated
by an equivalent variation in the rotational kinetic energy, i.e., a variation in the velocity on
the dual contour ∆. More precisely, a stretching in the t direction associated with a decrease
in ∇φi leads to an increase in the rotational inertial term ∇d ×ψi. The vortex stretching
mechanism is closely related to the energy exchange between the two components of the κi
vector; while the angular momentum is conserved in the rotation of a vortex filament, the
kinetic energy increases.
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This expression of the inertia in the form of a Helmholtz–Hodge decomposition gives
the physical model particular properties, for example, when the divergence or curl operators
are applied to κi, which allows the suppression of one of its components. Let us consider the
velocity field corresponding to a solid body rotation Vr = Ω× r = ω r eθ . In the framework
of continuum mechanics, the inertia would be written as κi = ω2 r er + ω2 r eθ , which does
not conform to the classical view of a mechanical equilibrium defined by component. In
discrete mechanics, each v component has a direct acceleration and an induced acceleration,
both associated with the same Γ segment. The assembly of the segments in a geometrical
structure such as the one represented in Figure 2 leads to an entanglement of the inertia
terms. In turbulence, rotation and inertia play major roles in the production of kinetic
energy, in the exchange between vortices, and in the decay of energy at small scales. The
classical (23) and discrete (24) forms are very different and lead to divergences in the
specific cases of turbulence in rotating flows.

The law of motion of discrete mechanics represents the conservation of total energy per
unit mass, i.e., acceleration. It has the particularity of strongly entangling the terms of pres-
sure and inertia; this dynamic entanglement is a strict coupling of the scalar potential and
the divergence of the velocity. There is no adjoint equation; mass, or density, is absent from
the discrete equation of motion also for flows with variable density [10]. The scalar φo and
vector ψo potentials are completely subject to acceleration. There are also no constitutive
laws to take into account. Whether the flows are compressible or incompressible, the energy
increase associated with compression is always dφ = −dt c2

l ∇ · v and that of rotation at
dψ = −dt c2

t ∇× v; only the velocities cl and ct must be known. From a fixed velocity field,
we derive the scalar potential field φo satisfying the initial mechanical equilibrium. Then,
all the terms of the equation come into action and exchange energy in the course of time. It
is very difficult to predict the behavior of each term, but we know that the energy initially
introduced in the form of kinetic and potential energy decreases towards zero through
viscous dissipation. Thus, the TGV case solved in discrete mechanics shows an increasing
evolution of the kinetic energy in the first instants, in contradiction with the phenomenon
observed in continuum mechanics. The dynamic entanglement of inertia and compression
effects represents the essence of the creation of turbulence and its evolution in time.

5. Conclusions

The proposed formulation is essentially based on (i) the conservation of the total
energy, the sum of the compressive energy, and the rotational energy; and (ii) the form of
the inertia, which is decomposed into a curl-free part and a divergence-free part:

• The observation of the solutions on the turbulent vortex filament cases and on the
Taylor–Green vortex case shows a nonmonotonic decay in the kinetic energy. This
observation is consistent with the principle of conservation of angular momentum for
a vortex-like flow for an inviscid fluid where the potential and kinetic energies can
be mutually exchanged over time. However, the Taylor–Green vortex at Re = 1600,
considered as a reference for the study of turbulence decay and as a benchmark for
numerical methods, approached with the Navier–Stokes equation, shows a monotonic
decay over time of the kinetic energy. The reasons for this disagreement are attributed
to the essential discrepancies between discrete and continuum mechanics, and the
derivation of the equation of motion on a segment instead of a volume model. Discrete
mechanics leads us to consider the conservation of the total energy on the segment
as an equality between the intrinsic acceleration of the material medium and the
accelerations imposed on it.

• In the particular cases of turbulence in vortices, inertia plays a very important role
in the energy exchange; the very different form adopted in discrete mechanics helps
to explain the discrepancy in behavior in the inertial zone, even though the decay
in the kinetic energy in the transfer zone is very similar to the observations made
from the Navier–Stokes equation. The numerous simulations carried out from this
equation are not questioned: only the choice of the physical model can explain the
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differences observed. Discrete mechanics develops another point of view that remains
consistent with the fundamental principles of mechanics; it has particular properties
whose effects should be specified in the future.
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