
HAL Id: hal-03997568
https://hal.science/hal-03997568v1

Submitted on 20 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A microservice migration approach to controlling
latency in 5G/6G networks

Kiranpreet Kaur, Fabrice Guillemin, Francoise Sailhan

To cite this version:
Kiranpreet Kaur, Fabrice Guillemin, Francoise Sailhan. A microservice migration approach to con-
trolling latency in 5G/6G networks. ICC 2023: IEEE International Conference on Communications,
May 2023, Rome, Italy. �10.1109/ICC45041.2023.10279178�. �hal-03997568�

https://hal.science/hal-03997568v1
https://hal.archives-ouvertes.fr

A microservice migration approach to controlling
latency in 5G/6G networks

Kiranpreet Kaur1,2, Fabrice Guillemin1, Francoise Sailhan2
1 Orange Labs, 2 Avenue Pierre Marzin, Lannion, France.

1{firstName.lastName}@orange.com
2 Cedric Laboratory, CNAM Paris, 292 rue St Martin, Paris, France.

2{firstName.lastName}@cnam.fr

Abstract—The microservice paradigm is widely adopted in the
design of Virtualized Network Functions (VNFs). Still, 5G/6G
networks require to carefully orchestrate the allocation and re-
arrangement of (micro)services to avoid a largely segmented
solution space while services arrive and leave the network.
To support latency-effective service provisioning, we introduce
a novel placement and migration strategy that chooses the
microservice(s) to migrate and selects the optimal destination
(data center) while considering the impact of the migration on
other microservices. For this purpose, we devise fast and effective
heuristics and we implement a prototype that maps the service in
the deployment field. Extensive simulations show our proposed
approach significantly reduces the service latency.

Keywords-Microservices migration; Containerized network
function

I. INTRODUCTION

Network Function Virtualization (NFV) has been introduced
to facilitate the management and provision of network ca-
pabilities using virtualized software applications hosted on
Commercial off-the-shelf (COTS) servers [1]. Initially, VNFs
were based on Virtual Machines (VMs) with the aim of re-
placing hardware-based physical networking functions. Then,
the current trend in the evolution of NFV design involves
the usage of containers to support the so-called cloud-native
network functions (CNFs). In practice, the cloud-native ap-
proach adopted by many telecom network operators involves
small and loosely-coupled microservices that are deployed in
containers and scaled (up and down) as needed [1], [2].

The growing use of microservices for 5G/6G based ser-
vices is driving the telecom industry to find efficient ways
of exploiting new communication and computing technol-
ogy. In particular, various placement strategies [3], [4] have
been proposed to initially allocate VNFs and allow efficient
usage of computing resources while inducing reduced load
or latency. However, the initial placement of services is
sometimes not able to continuously meet the Service Level
Agreement (SLA), resulting in degradation of communication
network performance across time. Microservices also tend to
naturally scatter throughout the softwarized network while
performing repetitive allocation operations, e.g., addition or
removal of a service. Meanwhile, real-time applications in

the 5G/6G network require to be placed close to the end-
user and migrated to follow the mobile user that moves from
one position to another. Such situations tend to degrade the
performances due to the fact that there is an increase in the
number of communication among microservices that are split
into multiple servers and/or data centers. In this case, online
reallocation/migration of services can significantly improve the
efficiency of a softwarized network.

Aiming to support an efficient migration of NFVs at a scale
while meeting the latency requirements is the topic addressed
by this article that introduces a novel migration strategy
that (re-)allocates microservices on the optimal data center(s)
considering the server load and service latency. The design
rationale puts the more forth on user-centric and highly-active
microservice while selecting and migrating them vertically
(from the edge up to the cloud) or horizontally (between the
data centers at the same layer). This approach tends to select
few microservices to migrate instead of all which positively
impacts the global latency factor of the whole network.

After positioning the proposed solution with respect to the
state of the art in the next section, the paper details the
following contributions:

• We formalize the problem of migrating microservices
across several data centers. In particular, we are trying to
solve this ever-demanding migration problem by ensuring
the lesser number of microservices are moved while
keeping the placement optimal.

• We introduce an approximate problem-solving solution
with three heuristics that considerably reduce run time of
the migration algorithm.

• We provide a simulation-based evaluation that shows that
the migration of services is efficient using our proposed
heuristic algorithm and minimizes the latency.

This paper is organized as follows: in Section II, we
review existing work on microservice migration. The model
considered in this paper (in particular the cloud infrastructure)
is presented in Section III. The dynamic system as well as
the metrics considered as quality indicators are presented
in Section IV. The placement and migration algorithms are
described in Section V. Simulation results are reported in
Section VI. Concluding remarks are presented in Section VII.978-1-7281-7705-2/21/$31.00 ©2021 IEEE

II. RELATED WORK

The problem of allocating VNFs or Cloud-Native Network
Functions (CNFs) is getting the attention of researchers and
practitioners. As detailed below, various heuristics and ma-
chine learning-based approaches [4] have been proposed to
support the dynamic migration of VNFs/CNFs instances.

In [5], authors address the VNF migration problem and
propose a Mixed Integer Linear Programming (MILP) model
that attempts to minimize the Service Function Chain (SFC)
delays, considering constraints related to resources (CPU &
memory) requirements, network delay, based on affinity &
anti-affinity factors, migration delay (time required to dis-
cover service and to propose new placement). Based on their
MILP model they analyse the impact of migration on VNF
and choose accordingly a greedy approach that reduces the
downtime while considering the established constraints.

In [6], a migration strategy for edge and containerized
applications is introduced. In particular, an Integer Linear
Programming (ILP) model minimizes the service downtime
and latency while handling the migration across a cloud-edge
environment. For instance, a re-instantiating is considered in
case of node failure. In such a case, a heuristic that minimizes
downtime has been implemented to address the computational
complexity and lack of scalability faced by the proposed
mathematical model.

In [7], the migration strategy is framed as multiple dimen-
sional Markov Decision Process (MDP) for fog computing,
which is solved using combined algorithms of Deep Q-
learning and Deep Neural Networks (DNN). The system states
are delay, power consumption and migration cost. Further,
the actions are following a greedy approach which contains
the selection policy that chooses the source container to be
migrated depending on under-/over-utilization of nodes. At
under-utilized node, all the containers are migrated to mini-
mize the power consumption whereas at over-utilized node, the
container with minimum migration cost is migrated; allocation
policy selects the target node for each migrated container. To
support faster learning, the reinforcement learning (Double
DQN) and Prioritized Experience Replay (PER) is used during
the training process. The outcome of the resulting solution
shows better results in comparison with existing baseline Q-
learning-based strategies, considering VNF and CNF.

The work [8] focuses on reassigning the containers of
the same service close to each other. The placement maps
the new containers with the aim of balancing the load and
reducing the communication cost, using a customized version
of Worst Fit Decreasing (WFD). Re-assignment approach
relies on Sweep&Search algorithm that re-optimizes the initial
placement by minimizing the total cost associated with com-
munication, occupied resource and residual resource balance.

In [9], an online container placement strategy considers
the inter-container traffic. First, a one-shot offline integer
programming optimization problem has been formulated with
quadratic constraints to fetch the traffic flow. Further, an online
scheme following a primal-dual method has been proposed:

the placement is taking place at each service arrival.
Load balancing strategy [10] is applied only on long-lived

containers that occupy the resources for a long duration. Long-
lived containers are arranged according to the CPU resource
they require; then highly occupied hosts are selected to swap
containers with low occupied hosts. The scheduling algorithm
is based on a random-first-fit algorithm. These processes are
run continuously to uniform the load.

In [11], a migration problem for shared VNFs in a multi-
domain federated network is addressed. In case of failure, the
coordination algorithm migrates the shared and chained VNFs
using the information provided by each orchestrator.

The dynamic migration approach [12] introduces a novel
heuristic to reduce workload, deal with user-mobility and keep
to a minimum migration time. The algorithm shortlists the
containers characterised by high latency. For each selected
container, the selected neighbor is the one that is less or
moderately utilized and geographically near the user.

The ongoing research works on VNFs placement and re-
arrangement ignore the joint problem of chaining the microser-
vices: in practice, network functions are placed focusing on the
resource availability/need and/or migration time while omit-
ting to consider the latency associated with the communication
between the chained microservices and the end-user that would
allow the end-to-end latency to be optimized.

Our goal in this paper is not only to find an optimal target
node while satisfying load, delay or latency constraint but also
to acquire a way that must co-join the chain of microservices.
Therefore, compared to previous works, the proposed work
jointly tackles the optimal placement and migration strategy
for real-time scenarios, aiming at minimizing the network
delay and end-to-end latency between users and services.

III. MODEL DESCRIPTION

A. Cloud infrastructure

We consider in Fig. 1 a network that includes several
clouds organized in three levels. Upper level is composed of
a centralized cloud corresponding to a national cloud with
huge capacity. The second level consists of series of regional
clouds with intermediate capacities; those regional clouds are
connected to the central cloud and to other cloud nearest to
end users. This last level of cloud is composed of edge clouds
with limited capacity but close to end users; edge clouds are
connected to their respective regional cloud. This three level
hierarchy reasonably represents the cloud infrastructure of a
network operator hosting VNFs.

B. Placement of services

We consider the problem of placing a set of services on
a cloud infrastructure composed of the set of data centers
D1, . . . , DN ; where N is the number of data centers. Each
service S is composed of JS microservices σ1, · · ·σJS

; each
microservice σj (for j = 1, . . . , Js) requires a certain amount
of CPU, disk and RAM. In practice, RAM and CPU are both
the most scarce in cloud infrastructures. We denote by c(σj)

Fig. 1. Cloud infrastructure of a network

and r(σj) the resource requirements of microservice σj in
terms of CPU and RAM, respectively.

The placement problem consists of finding a mapping
function h from the set S of services to the set D of data
centers. More precisely, we consider the mapping h : S ∈
S → (h(σ1), . . . , h(σJS

)) ∈ DJS , where h(σj) = Dn if
microservice σj is placed on data center Dn. If microservice
σj cannot be placed because of resource exhaustion, then we
set h(σj) = 0. In that case, no microservices of S are placed
and h(S) = 0

def
= (0, . . . , 0).

Let M(h)
n denote the set of microservices placed on data

center Dn under placement h. Given Cn and Rn denoting the
CPU and RAM capacities of data center Dn, respectively, the
following constraints apply:∑

σ∈M(h)
n

c(σ) ≤ C(Dn) and
∑

σ∈M(h)
n

r(σ) ≤ R(Dn). (1)

The set of services having a microservice hosted by data
center Dn is S(h)

n = {S ∈ S | ∃σ ∈ S and h(σ) = Dn}.
The set of services (resp. microservices) that can be placed
is S(h) =

⋃N
n=1 S

(h)
n (resp. M(h) =

⋃N
n=1 M

(h)
n). The

mapping h has to satisfy constraint (1) while additional criteria
can be introduced, e.g., load balancing between data centers,
maximization of the number of placed services, etc. In the
former case, the following optimization problem in which only
CPU is considered, needs to be solved:

min
h

max
n∈{1,...,N}

1

Cn

∑
σ∈M(h)

n

c(σ) (2)

while h has to satisfy global placement objectives, for instance
the maximum utilisation of the global capacity of the cloud
infrastructure, whose objective reads

max
h

∑
S∈S(h)

∑
σ∈S c(σ)∑N

n=1 Cn

, (3)

or the maximum fraction of services which can accepted in
the system, that is, maxh

|S(h)|
|S| . Finally, anti-affinity rules can

be introduced to prevent two microservices being placed on
the same data center (for instance for security or resilience
reasons).

C. Latency of services

In the following, we are interested in the global la-
tency experienced by a service S composed of microservices
σ1 · · ·σJS

. A dummy microservice σ0 is added to represent
the location of the user, which is attached to an edge node
of the cloud infrastructure (Fig. 1). Any microservice σj

(with j = 0, . . . , JS) may exchange messages. We define the
message exchange matrix νS = (ν(σi, σj)) for service S,
where ν(σi, σj) for i, j = 0, . . . , JS , is the global number
of messages exchanged between microservices σi and σj .
We clearly have ν(σi, σj) = ν(σj , σi) and ν(σi, σi) = 0.
Moreover, νS is a (jS + 1)× (jS + 1) symmetric matrix.

If microservices σi and σj are not placed on the same
data center, then the transmission across the links connecting
the two data center introduce latency in the execution of the
service. Let dn,m denote the delay between data centers n
and m. In the following, we neglect the delay inside a data
center (i.e., dn,n = 0) as this delay is low compared with
transmission delays between remote data centers.

For a given placement h, let us define the (jS +1)× (jS +

1) delay matrix ∆
(h)
S = (dh(σi),h(σj)) for service S under

placement h. Then, the latency affecting service S is

ℓ
(h)
S =

∑
0≤i<j≤JS

ν(σi, σj)dh(σi),h(σj) (4)

Owing to the symmetry of matrices,

ℓ
(h)
S =

1

2
Tr(νS∆

(h)
S), (5)

Tr is the trace operator.
The global latency of the system under placement h is

defined as
L(h) =

∑
S∈S(h)

ℓ
(h)
S (6)

and the average latency as

L(h)
=

1

|S(h)|
∑
S∈Sh

ℓ
(h)
S . (7)

With regard to placement, we can introduce the follow-
ing optimization problems: Minimizing global (resp. aver-
age) latency minh L(h) (resp., minh L

(h)
) or minimizing the

maximum latency of services minh maxS∈S(h) ℓ
(h)
S with h

satisfying in addition criterion (3) and achieving maximum
acceptance rate.

IV. DYNAMICAL SYSTEM AND ASSOCIATED METRICS

A. Dynamical setting

While many studies in service placement assume a static
setting, where the global set of services to be placed is known
in advance and fixed, we consider a dynamic system where
services join and leave the system. In that case, the placement

strategy should take account of the service dynamic in the
sense that:

• Each arriving service has to be placed by taking into
account the current state of the system, possibly by
migrating some microservices in order to control the
latency of the new service while also controlling the
latency of services with migrated microservices;

• At each departure of a service, resources are released and
can be used for microservices migration so as to reduce
latency of services in the system, e.g., according to the
optimization problems (see Section III-C).

If services are accepted on a capacity basis only, then we
have a blocking system (see the seminal paper [13]). As long
as the service can be placed, the service is accepted regardless
of incurred latency.

In the following, we assume that there are K classes of
services. Those services of class k (k = 1, . . . ,K) arrive
according to Poisson processes with rate λk. A service of
class k, if accepted, stays for a random amount of time with
mean 1/µk. A service Sk of class k has a global resource
requirement Ak =

∑
σ∈Sk

c(σ). The global capacity of the
system is C =

∑N
n=1 C(Dn).

If the global capacity C is finite then we have a multirate
loss network [13]; this kind of model has been used to dimen-
sion multiservice circuit switched networks and the blocking
probability which gives an estimation of loss probabilities
in different regimes. When the capacity is infinite (as it is
assumed in the following), the number of services of class K
is Poisson with mean λk/µk.

In analogy with this kind of networks, the problem we
consider in this paper is similar to assigning the circuits (mi-
croservices) of a multi-rate bundle (a service) to transmission
capacities (data centers). Migrating microservices is similar to
repacking circuits. The concept of latency of services however
does not easily translate into a criterion for repacking circuits.
Hence, algorithms designed for circuit repacking cannot be
easily adapted to the context considered in this paper.

B. Metrics

When dealing with a QoS requirement like latency, we could
impose that when a service joins the system and the QoS
objectives for this service cannot be met, then the service is
rejected. This may however lead to under-utilization of the
system. Instead, we propose to accept all services and we use
the capability of migrating microservices to keep the latency
under control. An issue is to determine control metrics.

So far, we have defined in Section III-C latency of services
in a static situation. We can nevertheless define a random
variable ℓ(h) taking values in the set {ℓ(h)S , S ∈ S(h)}. When
dealing with a dynamic system, we compute the latency of
those services that are in the system. Contrary to the static
case, the service latency can vary in time due to migration. If
a service S has a holding time τS , then we define the mean

latency under a migration strategy m as

ℓ
(m)

S =
1

τS

∫ tS+τS

tS

ℓ
(m)
S (u)du,

where tS is the arrival date of service S and ℓ
(m)
S (t) is the

latency experienced by service S at time t.
When considering a population of services under service

migration policy m and placement h, we define the mean
latency

E(ℓ(m)) =
1

|S(h)|
∑

S∈S(h)

ℓ
(m)

S).

This is a global metric reflecting the efficiency of a migration
policy m in terms of latency.

V. ALGORITHMS FOR PLACEMENT AND MIGRATION OF
SERVICES

We consider in this section several algorithms to place new
services (§V-A) and migrate the services when needed (§ V-B).

A. Placement of new services

In order to place arriving services, we consider two greedy
algorithms: the Greedy First Fit algorithm and the Greedy Best
Fit algorithm.

1) The Greedy First Fit (GFF) algorithm: This one greedily
allocates the services on the various data centers by proceeding
as follows:

1) Place randomly the user of the service at a edge node n
(the user does not consume any resources).

2) Place as many microservices (a service is an ordered
chain of interacting microservices) as possible on this
edge node. If all microservices can be placed, then stop.

3) Otherwise, place the remaining microservices on the
fog node to which the edge node is attached to. If all
remaining microservices can be placed on the fog node,
then stop the placement.

4) Otherwise, continue to place the remaining microser-
vices on the cloud node. (Recall that we assume that
the capacity of the central cloud is infinite.)

2) Greedy Best Fit (GBF) algorithm: This other algorithm
aims at reducing the service fragmentation (i.e., the number
of data centers hosting the microservices of the serivce) by
greedily placing all the microservices as much as possible on
the same data center.

The GFF or GBF algorithms are adopted to place the
microservices on each service arrival while microservices
migration is suitable when a service leaves.

B. Migration Strategy

Upon departure, a service releases resources in data cen-
ter(s) that may be overloaded (e.g., typically the edge or fog
data center) and some microservices could be migrated to
reduce the service latency. Thus, it is worth identifying the
set of fragmented microservices which (i) incur high latency
because they are located on distant data centers and/or (ii)
exchange many messages with end-user. In such a case, it

is suitable to migrate the microservices to the data center(s)
hosting the paired microservice which increases the latency.

To migrate a microservice S, resources should be available
on the destination data center. If no resources are available in
the saturated data center, it may be envisaged to migrate some
candidate microservices, which are placed on the same data
center (or a neighbouring data center) and which exchange the
least number of messages with the other microservices of the
candidate service. This happens only if sufficient resources
are released to host the microservices of S and if there is
a latency gain, i.e., if the difference between the latency
reduction achieved by migrating the microservice of S and
the latency increase due to the migration of the candidate
microservices is positive. Overall, the migration strategy has
been explained in Algorithm 1.

Algorithm 1: Migration(D, C) algorithm for the mi-
gration of a service after the departure of a service on
a set of data centers D with capacity C

Input : Set of Data centers D; Total available capacity C ;
Required CPU capacity c(σ) for microservice σ ∈ S ;
Output: Updated set D of data centers;

1 S∗
f : set of fragmented services;

2 DS= current placement in the datacenters ;
3 S∗

f = sortDescendOrder(S∗
f);

4 for each iteration i = length(S∗
f) do

5 Si = MaxFragmentedService(S∗
f);

6 find(σi, σj); // find 2 µservices in different DCs and inducing the
maximum delay;

7 find(Dσi
,Dσj

) // Get current location of µservice and end-user;
8 if c(σj) > C(Dσi

) then
9 Sj = MinFragmentedService(S∗

f , D(σi));
10 select(σ) == c(σj) // Select the set of µservices equals to

capacity required to place the migrated µservice;
11 FirstF it(Dσ);
12 end
13 if newLSj

+ newLSi
< oldLSj

+ oldLSi
then

14 Migrate(σj , Dσi
); Update[DS];

15 remove Si from S∗
f

16 end
17 end

VI. EXPERIMENTAL RESULTS

A. Simulation setting

We consider a cloud infrastructure as the one illustrated in
Fig. 1; this infrastructure is composed of a cloud node (with
infinite capacity), 3 fog nodes (with 100 capacity each) and
9 edge nodes (with 20 capacity each). Further, we have two
types of services differing in the number of microservices:

• Small services: They correspond to lightweight applica-
tions (e.g., a firewall) and are composed of a small num-
ber of microservices, namely 3 microservices exchange
messages with ν(σ1

1 , σ
1
2) = 2 and ν(σ1

2 , σ
1
3) = 4; the

number ν(σ1
0 , σ

1
1) of messages between the end user and

the first microservice may change.
• Large services: They are related to large and heavy-

weight applications; we specifically assume that each
service comprises 10 microservices exchanging messages
with ν(σ2

1 , σ
2
2) = ν(σ2

4 , σ
2
5) = ν(σ2

6 , σ
2
7) = ν(σ2

7 , σ
2
8) =

3, ν(σ2
2 , σ

2
3) = ν(σ2

3 , σ
2
4) = ν(σ2

5 , σ
2
6) = 2, ν(σ2

8 , σ
2
9) =

4 and ν(σ2
9 , σ

2
10) = 1; as above, the number ν(σ1

0 , σ
1
1)

may change.
The required capacity of each microservice equals to 1.

Services arrive according to Poisson processes with rate λk

for class k = 1, 2 and stay in the system for an exponentially
distributed period of time with mean 1/µk.

B. Numerical results

In the following, we compare the proposed approaches: the
Greedy First Fit (GFF), the Greedy Best Fit (GBF) and the
Migration strategy taking place along with GBF based on
number of departures, considering the latency and fragmen-
tation associated with small and large services. The latency
(see Eq. (4)) accounts for: (i) the messages exchanged between
the microservices itself as well as those exchanged with the
end-user and (ii) the distance between the data centers. The
average fragmentation reflects to which extent microservices
are fragmented on different data centers.

TABLE I
MEAN OF GLOBAL LATENCY

Service Methods Number of messages
Type 2 5 10 20

Small
GFF 5.95 13.944 27.223 53.931
GBF 4.422 11.151 22.246 44.817

Migration 4.873 10.291 19.197 37.821

Large
GFF 8.136 8.114 8.160 8.129
GBF 7.647 7.627 7.622 7.606

Migration 7.637 7.640 7.606 7.648

In a first step, we let vary the number of the messages
exchanged between the end user and the first microservice.
As shown in Table I, our migration algorithm results in a
lower average global latency for small and large services.
As expected, the global latency increases with the number of
messages exchanged between the microservices and the end-
user since the first microservices may be placed in fog and
cloud data centers.

Figure 2 compares the strategies in terms of the probability
mass function (pmf) of latency ℓ

(h)
S for small and large services

with a number of exchanges equal to 50 and 2, respectively.
We observe that the migration strategy (Fig. 2 (c)) minimizes
the service latency in comparison to the GFF and GBF
strategies (Fig. 2 (a) & (b)).

We further study the resulting placement of the services at
the different network layer (edge, fog and cloud) considering
the GFF, GBF and “best fit along with migration” approaches,
regarding small services (Fig. 3) and large services (Fig. 4). In
particular, we consider the number of microservices placed on
each layer which reflects the CPU resources that are consumed
by the services, at each service’s arrival. As expected, GFF
(Fig. 3 (a)) first consumes the edge resources and then moves
to the cloud layer. GBF consumes more of the edge and fog
for small services (Fig. 3 (b)) compared to large services
(Fig. 4 (b)) that are mostly placed on cloud DCs. Likewise,
migration strategy along with GBF (Fig. 3 (c) and 4 (c)) shows
a similar trend but performs better than the GBF strategy:

(a) Greedy First Fit (GFF) (b) Greedy Best Fit (GBF)
without migration

(c) GBF with Migration

Fig. 2. Latency of (Large versus Small) Services for 50 number of exchange b/w user & microservice

(a) First Fit (b) Best fit (c) Migration

Fig. 3. Placement of Small Microservices on Different Layers

(a) First Fit (b) Best fit (c) Migration

Fig. 4. Placement of Large Microservices on Different Layers

more microservices migrate near the end user while less-active
microservices moves on upper layer to make the space for
actively communicating microservices.

VII. CONCLUSION

This work aims at improving the placement of chains of
microservices in terms of load and end-to-end latency using
a migration approach. The proposed heuristic algorithms con-
sider distributed data-centers along with the ephemeral nature
of containerized services. The simulation based evaluation
shows that migration performs better and reduces the latency
in comparison with static placement (e.g., GBF and GFF
considered in this paper). This work may be extended by using
deep-learning approach through our future work.

REFERENCES

[1] Y. Hu, M. Song, and T. Li, “Towards full containerization in con-
tainerized network function virtualization,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2017.

[2] N. Alliance, “Cloud native enabling future telco platforms,” 2021.
[3] K. Kaur, F. Guillemin, V. Q. Rodriguez, and F. Sailhan, “Latency and

network aware placement for cloud-native 5g/6g services,” in IEEE
Annual Consumer Communications & Networking Conference, 2022.

[4] K. Kaur, F. Guillemin, and F. Sailhan, “Container placement and
migration strategies for cloud, fog, and edge data centers: A survey,”
International Journal of Network Management, vol. 32, no. 6, 2022.

[5] H. Hawilo, M. Jammal, and A. Shami, “Orchestrating network function
virtualization platform: Migration or re-instantiation?” in IEEE Interna-
tional Conference on Cloud Networking (CloudNet), 2017.

[6] S. Aleyadeh, A. Moubayed, P. Heidari, and al., “Optimal container
migration/re-instantiation in hybrid computing environments,” IEEE
Open Journal of the Communications Society, vol. 3, 2022.

[7] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration mod-
eling and learning algorithms for containers in fog computing,” IEEE
Transactions on Services Computing, vol. 12, no. 5, pp. 712–725, 2018.

[8] L. Lv, Y. Zhang, Y. Li, and al., “Communication-aware container
placement and reassignment in large-scale internet data centers,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 3, 2019.

[9] R. Zhou, Z. Li, and C. Wu, “An efficient online placement scheme
for cloud container clusters,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 5, pp. 1046–1058, 2019.

[10] U. Pongsakorn, Y. Watashiba, K. Ichikawa, and al., “Container rebal-
ancing: Towards proactive linux containers placement optimization in
a data center,” in IEEE Annual Computer Software and Applications
Conference (COMPSAC), 2017.

[11] J. C. Cisneros, S. Yangui, and al., “Coordination algorithm for migration
of shared vnfs in federated environments,” in IEEE NetSoft, 2020.

[12] S. Maheshwari, S. Choudhury, I. Seskar, and al., “Traffic-aware dynamic
container migration for real-time support in mobile edge clouds,” in
IEEE ANTS, 2018.

[13] F. P. Kelly, “Loss networks,” The Annals of Applied Probability, vol. 1,
no. 3, pp. 319–378, 1991.

