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Abstract: As an antibody-free sensing membrane for the detection of the antibiotic tetracycline (TC), a
liquid PVC membrane doped with the ion-pair tetracycline/θ-shaped anion [3,3′-Co(1,2-C2B9H11)2]−

([o-COSAN]−) was formulated and deposited on a SWCNT modified gold microelectrode. The chosen
transduction technique was electrochemical impedance spectroscopy (EIS). The PVC membrane was
composed of: the tetracycline/[o-COSAN]− ion-pair, a plasticizer. A detection limit of 0.3 pg/L was
obtained with this membrane, using bis(2-ethylhexyl) sebacate as a plasticizer. The sensitivity of
detection of tetracycline was five times higher than that of oxytetracycline and of terramycin, and
22 times higher than that of demeclocycline. A shelf-life of the prepared sensor was more than six
months and was used for detection in spiked honey samples. These results open the way to having
continuous monitoring sensors with a high detection capacity, are easy to clean, avoid the use of
antibodies, and produce a direct measurement.

Keywords: tetracycline; electrochemical impedance spectroscopy; single-walled carbon nanotubes;
tetracycline/[o-COSAN]− ion-pair complex; polyvinyl chloride; selectivity

1. Introduction

Sensors are devices that detect and respond to some type of input from the physical
environment. They are found everywhere in our daily lives and the aim is to make them
practical and easy to handle, moving away from expensive complex instrumentation
to small inexpensive systems that can be operated by anyone. In the chemical sensing
field, potentiometry is the archetype of simplicity: simple sensing material commonly
made of a membrane with standard and low-weight electronic equipment. The sensing
material is responsible for interacting with the analyte, producing a change in the interfacial
potential that is then transformed into a readable signal by the transducer [1–13]. For
the popular ion-selective electrodes (ISE), the sensing membrane consists of a polymer
matrix usually based on plasticized poly(vinyl chloride) and one electroactive additive,
commonly a lipophilic salt [4,14,15]. The selectivity of these membranes has been related
to the Hofmeister series, however when a such relationship is not sought, the membrane
composition is complemented with a second electroactive additive or ionophore, usually
a complexing selective ligand, e.g., valinomycin for K+. Despite many ongoing theories
about the mechanism of charge transfer at the interfaces, the reality is that the reasons
behind the sensing and the selectivity are still not well inferred. Far less complex are the
biosensors, for which the selectivity to the analyte is conceptually well interpreted because
of the specific complementarity between enzyme or antibody, or aptamer and the analyte.
It is generally accepted that an interaction between the analyte and the sensing material is
a necessary condition for the feasibility of any chemical sensor. Non-covalent interactions
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may lead to a reversible or partially reversible response. Conversely, covalent bonding,
which can provide high selectivity and sensitivity, often leads to an irreversible response.
On the other hand, potentiometry, in practical terms, shows low detection limits near 10−6

or 10−7 M, whereas electrochemical antibodies or aptamer biosensors can go down to the
pg [1,3,16]. As they are based on biological material, biosensors have associated problems
such as the influence of the environment, temperature, and atmosphere, among others,
which make them especially delicate and require rigorous storage conditions.

A few years ago we introduced, in potentiometry [1,3,5,17], the θ-shaped molecule
[3,3′-Co(1,2-C2B9H11)2]− ([o-COSAN]−) into PVC membranes made of PVC: plasticizer
in a ratio of 1:2. The principal motivation was that [NRR’R”R”’][3,3′-Co(1,2-C2B9H11)2]
salts are highly insoluble in water, whereas they are highly soluble in many organic sol-
vents. At that time, we did not know much more about the physicochemical characteristics
of the θ-shaped molecule [3,3′-Co(1,2-C2B9H11)2]−. The membrane did not contain any
other components besides the cation of the analyte and the plasticizer. The potentiometry
results on the macroscopic electrodes were excellent, with the membrane set on a solid
support made of graphite powder mixed with Epoxy Resin, providing very good selectivity;
whereas the low limit of detection (LOD) remained in most cases about 10−6 M. Electrodes
for antibiotics [18], amino acids [19] and other biomolecules [20,21] were developed. The
most surprising aspect was that such a simple membrane composition was able to discrimi-
nate a chiral amino acid from its enantiomer, with selectivity coefficients Kxy between 10−2

and 10−3 [22].
Since our first publications in the area of potentiometry with [NRR′R′′R′′′][3,3′-Co(1,2-

C2B9H11)2], we and others have contributed very much to the understanding of the physic-
ochemical properties of [Co(C2B9H11)2]−. With regards to its sensing ability, we would
construe that its tunable reversible redox potential [23–26], its self-assembling capacity
in solid and aqueous solution [27,28], its capacity to produce hydrogen and dihydrogen
bonds [29–31], its ability to dope conducting organic polymers [26,32], and its amphiphilic
character [33], among others, are key points to explain the extraordinary performance of
this anion. However, as stated above, it was not possible to overcome the Low LOD. We
wondered if this problem could be solved with another electrochemical transducer, while
keeping the same membrane composition so that this sort of electrochemical measurement
could approach the biosensors in terms of low LOD. Hopefully, this would lead to the
sensing materials being able to amalgamate the good points of potentiometry with the low
LOD, and the selectivity of biosensors. We sought to use the electrochemical impedance
spectroscopy (EIS) technique, and we decided to initiate our works with tetracycline. The
aim was to discover if the impedance increased with increasing concentrations of analyte,
and whether there was any selectivity with structurally closely related chemicals. For ex-
ample, the set of tetracycline (TC) antibiotics, that would show the necessity for the analyte
inside the membrane, whether there was a relationship between signal and concentration,
and whether there was any real hope of getting a low value of the low detection limit.

As we shall see in this paper, the results are highly encouraging. We have made an
ISE PVC membrane incorporating protonated tetracycline compensated by [3,3′-Co(1,2-
C2B9H11)2]− and, as an extra component, carbon nanotubes as an inner conductivity-
enhancing layer. Tetracycline was chosen because there is a set of antibiotics all having
the same tetracycline skeleton which, because of their very similar structures, will allow
appreciation of the selectivity that can be achieved. Tetracycline is used to treat infec-
tions caused by bacteria in the respiratory tract, lymphatic, intestinal, genital and urinary
systems, on the skin and eyes and certain other infections that are spread by infected
animals [34–36]. The molecular structure of tetracycline and of selected similar molecules
are shown in Figure 1a.
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Based on the literature, there are several analytical methods that have been described
for tetracycline monitoring, including: high performance liquid chromatography coupled
with mass spectrometry [37], capillary electrophoresis coupled with electrochemilumines-
cence [38], ELISA (enzyme-linked immune-sorbent assay) [39,40], liquid chromatography-
mass spectroscopy (LC-MS) [41], and spectroscopy analysis [42,43]. However, these meth-
ods suffer from a lack of sensitivity compared to chromatographic techniques [44]. Com-
monly, the principal limitations of these steps lie in the lack of sensitivity, high cost,
time-consuming implementation and the requirement for sophisticated technical skills [45].
New solutions need rapid, simple and accurate methods for the on-site screening of low
TC residues without any supplementary steps such as extraction or clean-up. Owing to
their advantages of high selectivity and rapid detection, several optical and electrochemical
biosensors have been investigated [46]. For this reason, aptamer-based sensing techniques
were widely used for the food safety determination. Above all, there is a growing rise in
aptasensor fabrication for TC detection [47,48], with only some applications to honey sam-
ples [49,50]. Unfortunately, the mean disadvantage of these systems is their relatively low
detection signals [51]. In addition, in some recent works, a molecularly imprinted sensor
had been successfully applied to the analysis of antibiotic residues in honey samples [52,53].
However, these types of sensors suffer from reversibility and a short shelf-life when the
imprinted membrane is fragile.

Tetracycline and tetracycline antibiotics (shown in Figure 1) all have a common linear
fused tetracyclic nucleus that differ with the functional groups attached. All of them
contain only one protonable amine group N(Me)2. Therefore, the salt [tetracycline-H][3,3′-
Co(1,2-C2B9H11)2] was expected. It was thus anticipated that PVC/plasticizer/carbon
nanotubes/[tetracycline-H][3,3′-Co(1,2-C2B9H11)2] would be an excellent candidate to test
the feasibility of the electrochemical sensor based on an EIS transducer. Indeed, this proved
to be the case with a lower detection limit with excellent selectivity.

2. Materials and Methods
2.1. Materials and Chemicals

Tetracycline (TC), N-hydroxysuccinimide (NHS), 11-amino-1-undecanethiol, phos-
phate buffer solution (PBS) tablets, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC),
Ethanol, sodium dodecyl sulfate (SDS), Polyvinyl chloride (PVC), o-nitro phenyl octyl ether
(NPOE), di-octyl phthalate (DOP), dibutyl phthalate (DBP), dibutyl sebacate (DBS), hy-
drochloric acid (HCl), diethyl ether, tetrahydrofuran (THF), di-octyl phthalate, bis(2-ethyl
hexyl) sebacate were purchased from Sigma-Aldrich (France). The standard solutions and
buffers were prepared with Millipore Milli-Q nanopure water (resistivity > 18 MW cm)
which is produced by a Millipore Reagent Water System (France). Epoxy resin EPO TEK
H70E 2LC was from Epoxy Technology, France. Cs[o-COSAN], was synthesized from 1,2-
closo-C2B10H12 from Katchem Spol.sr.o (Kralupy nad Vltavou, Czech Republic), as reported
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in the literature [54]. The Na[o-COSAN] was obtained by means of cationic exchange resin
from Cs[o-COSAN] following the previously described procedure [31].

2.2. Preparation of the Ion-Pair Complex [tetracycline-H][Co(C2B9H11)2]

Tetracycline hydrochloride (40 mg, 0.083 mmol) was dissolved in diluted hydrochloric
acid (~25 mL). After agitating and obtaining a clear solution, Na [3,3′-Co(1,2-C2B9H11)2]
(0.083 mmol) in 10 mL of diluted hydrochloric acid (1 or 3 M) were added. Almost instantly
a precipitate appeared. The mixture was stirred for 5 min and left to rest for an additional
15 min. The orange solid was filtered through a Buchner funnel with filter paper. After
rinsing first with 10 mL diluted hydrochloric acid (0.1 M) and then 2 × 10 mL of deionized
water, the filter paper was carefully removed and placed in a round bottom flask with
a ground glass joint for active 0.1–0.01 mm vacuum at room temperature. After 4–5 h,
the solid was collected and was ready for the membrane preparation. The formula of the
ion-pair complex is shown in Figure 2.
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Figure 2. (A) Schematic view of microelectrodes based on silicon technology; (B) Cross section of one
planar microelectrode.

2.3. Preparation of the Gold Microelectrode Modified by Single-Walled Carbon Nanotubes and
Electrochemical Measurements

The microelectronics fabrication process for the microelectrodes was performed at
Centro Nacional de Microelectronica (CNM). The process started with a thermal oxidation
process to grow a thick oxide layer (8000 Å) on 100 mm diameter P-type <100> silicon
wafers with a nominal thickness of 525 mm. The working microelectrode was made with
a metal layer consisting of a thin titanium film (10 nm) promoting gold adhesion plus
250 nm of gold. After that, photoresist layer was spin-coated with a spinning speed of
3000 rpm and was exposed in UV light with a pattern mask. Etching away the exposed
photoresist was performed with the developer OPD4262 from Fujifilm. The remaining
photoresist corresponded exactly to the microelectrodes, and then the gold, unprotected by
the photoresist, was etched away. The next step consisted of the deposition of two PECVD
(Plasma-Enhanced Chemical Vapor Deposition) layers of SiO2 (4000 Å) and Si3N4 (4000 Å),
to act as a passivation layer. The second photolithographic process was performed to open
the passivation on the active Au microelectrodes (300 µm × 300 µm; area: 9 · 10−4 cm2)
and on the soldering pads. The structure of the microelectrodes is shown schematically in
Figure 3. Wire bonding was performed using a Kulicke & Soffa 4523 A Digital instrument
from Kulicke & Soffa, Singapore.
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Figure 3. Characterization of gold microelectrode by cyclic voltammetry (CV), before and after
immobilization of aminothiol in 5 mM [Fe(CN)6]3−/4− and PBS, from −0.4 to +0.6 V at a scan rate of
80 mv/s. Insert: Enlarged cyclic voltammetry (CV) after immobilization of aminothiol.

Microelectrodes were exposed to UV using UV/ozone ProcleanerTM (BioForce, Ger-
many) for 30 min for cleaning and activation by creating –OH groups. These were modified
by adsorption of 11-amino-1-undecanthiol-HCl (aminothiol), by dipping the electrode in
a 10 mM solution of the aminothiol in ethanol (EtOH) for one night at 4 ◦C. Then, the
microelectrode was rinsed with ethanol to remove unbound thiols and dried with N2. In a
separate beaker, (0.17 g/L, 0.25 mL) of COOH-SWCNT (Carboxylic functionalized single-
walled carbon nanotubes) were added to an aqueous solution of SDS (sodium dodecyl
sulfate, 0.1 M), 0.1 M in NHS (N-hydroxysuccinimide) and 0.4 M in EDC (1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide-HCl), and the reagents were left in contact for one
hour. Then, the microelectrode functionalized with aminothiol was placed with the solution
containing the activated SWCNTs-COOH for 2 h at room temperature. Finally, the SWCNTs
functionalized microelectrode was rinsed with ultrapure water to remove the unbounded
SWCNTs and dried with N2.

All electrochemical measurements were carried out in a Faraday cage at room tem-
perature (r.t., 22 ± 2 ◦C). The electrochemical experiments were carried out using a VMP3
multichannel potentiostat (Biologic-EC-Lab, Seyssinet-Pariset, France). Data were acquired
and analyzed using EC-Lab software V11.30. The EIS data were fitted by using the Ran-
domize + Simplex method.

2.4. Liquid Membrane Preparation

In earlier potentiometric works related to [3,3′-Co(1,2-C2B9H11)2]−, it was found that
the most suitable mix of electroactive material, plasticizer, and PVC powder for membranes
was either 3% or 7% of the electroactive material, 63% of plasticizer and 34% or 30% of PVC
powder, all in weight percentages that were dissolved in THF. The membrane solution was
prepared as follows: 43 mg of PVC were dissolved by stirring in 1.5 mL of tetrahydrofuran
(THF) until a viscous but clear solution was obtained. Then, 10 mg of [tetracycline-H]/[3,3′-
Co(1,2-C2B9H11)2] and 90 mg of plasticizer were added. The resulting dispersing solution is
deposited on the surface of the electrode body. In this paper, the results of three membranes
(membranes named 1,2,3) are reported; the differences between the three membranes lie in
the concentration of HCl in the preparation of the ion-pair complex (1 or 3 M) and in the
plasticizer used: Membrane 1, HCl 1 M, 91.75 µL di-octylphthalate; Membrane 2, HCl 3 M,
91.75 µL di-octylphthalate, Membrane 3, HCl 3 M, 98.5 µL bis (2-ethyl hexyl) sebacate.
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The membrane was drop-cast (2 µL drop) onto the gold microelectrode already func-
tionalized with the SWCNTs layer, and the solvent was allowed to evaporate at an ambient
temperature for 24 h [1,5]. Once the membrane had dried, the microelectrode was then
immersed for 24 h at 4 ◦C in tetracycline at 10−3 M in order to achieve appropriate con-
ditioning of the PVC tetracycline membrane. The microelectrodes were stored at room
temperature for future use.

3. Results and Discussion
3.1. Characterization of the [o-COSAN]−/Tetracycline Ion-Pair Complex

In order to characterize our ion-pair complex, different techniques were used such
as Proton Nuclear Magnetic Resonance (1H NMR), Carbon Nuclear Magnetic Resonance
(13C{1H} NMR), Fourier Transform Infrared Spectroscopy (FTIR), Matrix-Assisted Laser
Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) and
Elemental Analysis.

The ratio [tetracycline-H]/[3,3′-Co(1,2-C2B9H11)2] (Figure 1b) is calculated from 1H-
NMR, in d6-acetone, given the areas of the unquestionable key hydrogen atoms of the
cation and the anion. The C-H resonances at the aromatic region of the spectrum (close to
7 ppm) correspond to the aromatic hydrogen atoms of the tetracycline cation, and the signal
that appears close to 4 ppm corresponds to the four hydrogen atoms (Ccluster-H) of the
anionic [3,3′-Co(1,2-C2B9H11)2] cluster. Additionally, the 1H NMR spectrum displays the
other signals corresponding to [o-COSAN]− and tetracycline that unambigously indicates
the presence of the [o-COSAN]- anion, and the protonated tetracycline cation in the ion-pair
complex. By integration, the ratio [tetracycline-H]/[o-COSAN]− in the ion-pair complex
was calculated (Figure S1); there are three aromatic protons in each protonated tetracycline
cation, and its integration area is around 3.5 per the 4 area corresponding to each [o-
COSAN]− anion, which indicates that there is one molecule of [o-COSAN]− per one
molecule of protonated tetracycline.

The 13C{1H} NMR spectrum (Figure S2) displays the signals of the different carbons
of the protonated tetracycine molecules, which are represented with letters, as well as
the signal of Ccluster-H vertices of the [o-COSAN]− that appear at 51.0 ppm. The signals
without letters correspond to the solvent (deuterated acetone and other solvents used in
the preparation).

On the other hand, to observe if in the sample there is [o-COSAN]−, a signal should
appear in the range 2520–2550 cm−1 in the IR spectrum (Figure S3).

FTIR spectrum of our ion-pair complex displays the ν(O-H) stretching vibration at
3611 cm−1; ν(N-H; O-H) at 3370–3611 cm−1; ν(Caryl-H, Ccluster-H) at 3047 cm−1; ν(B-H) at
2539 cm−1; ν(C=O) at 1659 cm−1; ν(C=Oamide; C=C; C=Caromatic; N-H) at 1529–1612 cm−1;
ν(C-H) at 1322–1452 cm−1; ν(C-O; C-C; C-N) at 1097–1322 cm−1; ν(C-H; C=C) at 721–983 cm−1.

In MALDI-TOF-MS we can see the mass spectrum of the negative and positive part
of the sample, and know the molecular mass of both species. In Figure S4 we can see the
positive part of the mass spectrum of our prepared ion-pair complexes; the negative part
is the signal of [o-COSAN]− at 324 m/z. These spectra were created with a matrix. The
Mass Spectra was recorded on a matrix, therefore not all signals correspond to the mass of
the cation.

In addition, Table S1 shows the elemental analysis of our ion-pair complex, which
contains the theoretical values of %C, %H, %N and %S and the real values. The real values
are very similar to the theory, so we can confirm that our sample has the correct structure.

3.2. Electrochemical and Physical Characterization of the Gold Microelectrode
3.2.1. Characterization of the Gold Surface Before and After Immobilization of Amino
Thiol Using Cyclic Voltammetry

The gold electrodes were characterized by cyclic voltammetry (CV) before and after
the immobilization of the amino thiol. The CV scan was carried out from −0.4 to +0.6 V,
with a scanning rate of 80 mV/s in 5 mL of PBS in the presence of the redox couple
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[Fe(CN)6]3−/4−. Figure 3 shows that the oxido/reduction peaks of bare gold disappear
after the immobilization of aminothiol. The disappearance of the oxido/reduction peaks
was caused by the blocking of the aminothiol layer of the gold surface, thus creating a low
electron transfer rate.

3.2.2. EIS Characterization of the Gold Microelectrode at the Different Stages
of Modification

The electrode performance was studied by EIS by applying a potential of −0.4 V in a
frequency range of 100 kHz to 6 Hz at each individual step of preparation: 1) to the bare
Au electrode, 2) after functionalization with the aminothiol, and 3) after grafting of carbon
nanotubes. Figure 4 shows the evolution of the conductance of the Nyquist diagrams at
the different microelectrode functionalization stages. As expected, the most conductive
is the bare electrode, whose conductivity decreases upon the addition of the aminothiol
with its long carbon chain (C11). This conductivity is slightly increased by the grafting of
carbon nanotubes.
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Figure 4. Nyquist diagram (-Im (Z) vs. Re (Z)) corresponding to the impedance measurements by
applying a potential of −0.4 V and amplitude potential of 10 mV between a frequency range of
100 kHz to 6 Hz for the various grafted layers on the gold microelectrode. Bare gold (black), after the
immobilization of the aminothiol (red) and after grafting SWCNTs (blue).

3.2.3. SEM Characterization

Scanning Electron Microscopy (SEM) was employed to investigate the surface mor-
phology of the SWCNTs, fixed on to the gold microelectrode using FEI Quanta FEG 250.
Figure 5 confirms the grafting of SWCNTs onto the gold microelectrode functionalized
with amine thiol-SWCNTs. The immobilization of SWCNTs onto the microelectrode was
confirmed by the small white rods, however, the black spots in the image indicate some
spots not covered by SWCNTs.
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3.2.4. Characterization by Fourier-Transform Infrared Spectroscopy (FTIR)

The presence of different compounds of our membrane, such as polymer matrix,
plasticizer, and [o-COSAN]−/tetracycline ion-pair complex, were confirmed after depo-
sition onto the microelectrode. First, the FTIR spectrum of membrane 3 after deposition
onto the microelectrode was carried out. In parallel, three different reference FTIR spec-
tra of PVC, bis (2-ethylhexyl) sebacate and [o-COSAN]−/tetracycline ion-pair complex
were performed.

FTIR spectra of the different compounds of our membrane: bis (2-ethylhexyl) sebe-
cate (plasticizer) (Figure S6), PVC polymer matrix (Figure S7), and ionophore of cobalt
bis(dicarbollide) (Figure S8) were superimposed with the FTIR spectrum of membrane 3
after deposition onto the microelectrode (Figure 6).
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Figure 6. FTIR Spectrum of membrane 3 after deposition onto the microelectrode (black), bis (2-
ehylhexyl) sebacate (red), PVC (blue), Ionophore of Cobalt bis(dicarbollide)–Tetracycline (pink).

Figure 6 confirms the presence of the different compounds of the membrane, since
the absorption peaks are localized at the characteristic wavelengths of the membrane
immobilized on the microelectrode. These results confirm the success of the immobilization
of the membrane onto the microelectrode.
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3.3. Detection of Tetracycline by Electrochemical Impedance Spectroscopy (EIS)

Impedance was measured using an electrochemical cell consisting of three electrodes
(Figure 4). The reference electrode was a saturated calomel electrode, the auxiliary electrode
was a platinum wire of 1 mm in diameter and the working electrode was the microelectrode
described above. The measurements of tetracycline were carried out in a PBS buffer solution
(pH = 7.4), varying the tetracycline concentration from 1 pg/L to 5 ng/L. All experiments
were repeated three times to confirm the reproducibility of our biosensor. The experiments
were performed in darkness to protect tetracycline, which is a fluorescent compound from
degradation, and in a Faraday box to eliminate electrical interference. The Nyquist plots
(-Im (Z)/Re (Z)) obtained with the three membranes were recorded while increasing the
concentration of tetracycline. The reported results are the mean of the three sensing areas
for one electrode (Figure 2).

From the Nyquist diagrams presented in Figure 7, it is noticeable that there is a marked
response from the picogram quantities of tetracycline, as can be seen from the separation in
the Nyquist plot between 0 pg and 1 pg. There is a steady increase of both Re(Z) and –Im(Z)
in parallel with an increasing amount of analyte. In addition, we have noticed that the HCl
concentration influences the preparation of [o-COSAN]−/tetracycline ion-pair complex
and of the used plasticizer.
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Figure 7. Nyquist diagrams of gold electrode/membrane interface (membrane 1, 2, 3) for different
concentrations of tetracycline from 1 pg/L to 5 ng/L in a frequency range between 100 kHz and 6 Hz
by applying a potential of −0.4 V and amplitude potential of 10 mV. (a) membrane 1; (b) membrane
2; (c) membrane 3.

Data fitting on EIS spectra was achieved by using the Randomize + Simplex method
using Randles equivalent circuit model [Rs + Q2/ (Rct + ZW)], in which Rs corresponds to
the resistance of the electrolyte solution; Q2 is the phase constant element that is in parallel
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with Rct, which is the charge transfer resistance; and ZW represents the Warburg impedance
(Table S2). The standardization plots were obtained by drawing tetracycline concentrations
vs. Rct normalized data (∆R/R= (Rsample − RRef)/RRef). The example of the calibration
curve of the sensor with membrane 3 is presented in Figure S9. The reproducibility is 6%.

The sensitivity of the tetracycline sensor is the slope of the straight line. With mem-
brane 3, the sensitivity is 1.83 ± 0.4 ng−1·L, as presented in Figure 8. The RSD of 22% is the
repeatability obtained between 4 sensors. The sensitivity of the tetracycline sensor with
membrane 1 is 0.5± 0.2 ng−1·L and that of the sensor with membrane 2 is 0.5 ± 0.08 ng−1·L,
showing the high influence of the used plasticizer and the negligible influence of the HCl
concentration in the preparation of the [o-COSAN]−/tetracycline ion-pair complex.
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Figure 8. Sensitivities of membrane 1, membrane 2, membrane 3 sensors for tetracycline (blue) (con-
centrations ranging from 1 pg/L to 5 ng/L). Sensitivities for oxytetracycline (orange), demeclocycline
(grey), and terramycin (yellow).

3.4. Selectivity of the Tetracycline Sensors

The selectivity of the tetracycline sensors was obtained by testing oxytetracycline,
terramycin, and demeclocycline dissolved in a solution of PBS (pH = 7.4) in quantities
ranging from 1 pg/L to 5 ng/L. The electrodes and the setup used were the same as those
used for tetracycline, and the impedance of the system were measured. All experiments
were done thrice to confirm the reproducibility of the sensor.

The slope of each curve of the three membranes for the detection of tetracycline, oxyte-
tracycline, demeclocycline, and terramycin are drawn as bars in Figure 8. The sensitivity of
detection of tetracycline was 5 times higher than that of oxytetracycline and of terramycin,
and 22 times higher than that of demeclocycline.

Compared to the published tetracycline biosensors presented in Table 1, our tetra-
cycline sensor presents a detection limit in the lower range. Most presented biosensors
need aptamers/Ab TC and antibodies/Ag-TC, which are expensive compared to our
developed approach.

In addition, the use of antibodies and antigen requires storage at 4 ◦C of their sensor;
however, with our developed approach, our sensors could be stored at room temperature.
Due to the reversibility of the interactions, there is a limit to the reusability of the tetracycline
sensors. The shelf-life of the prepared sensor with membrane 3 was more than six months.
For tetracycline biosensors based on antibody, aptamer or MIP, the resusability is quite
limited. In Benvidi et al. [61], only five regenerations were possible without any loss
of sensitivity.
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Table 1. Comparison of the analytical performance of the prepared tetracycline sensor with membrane 3 and published electrochemical tetracycline biosensors.

Technique Electrode Immobilizing
Biomolecules Analyte Linear Range (mol/L) LOD (mol/L) Refs

Photoelectrochemical
aptasensor

cerium (Ce) doped CdS
modified graphene

(G)/BiYWO6
TC aptamer Drug 4.5 × 10−10−2.25 × 10−6 2.25 × 10−11 [47]

EIS
integrated bio

micro-electromechanical system
(Bio-MEMS) Au

Anti-TC Polyclonal
antibody Honey 2.25 × 10−13–2.25 × 10−9 2.7 × 10−12 [16]

EIS interdigitated array
microelectrodes (IDAMs) TC aptamer Milk 1 × 10−10–1 × 10−3 3 × 10−9 [55]

EIS Au TC aptamer Milk 2.25 × 10−8–6.75 × 10−6 2.25 × 10−8 [56]
EIS Au TC aptamer Milk 1.12 × 10−8–1.12 × 10−5 2.25 × 10−9 [57]

EIS
glassy carbon electrode (GCE)
modified with graphene oxide

nanosheets
TC aptamer Tablet/serum 1 × 10−13–1 × 10−5 29 × 10−15 [58]

EIS nano-porous silicon (PS) TC aptamer - 2.1 × 10−9–62.4 × 10−9 2 × 10−9 [59]

EIS nanomaterial modified with
pencil graphite electrode TC aptamer Milk 1 × 1016– 1 × 10–6 3 × 10–17 [60]

EIS glassy carbon electrode TC aptamer Honey 1 × 10−16–1 × 10−6 3.7 × 10−17 [61]

EIS carbon paste electrode (CPE) TC aptamer Drug/Milk/Honey/blood
serum 1 × 10−14–1 × 10−6 3.8 × 10−15 [62]

EIS interdigital array microelectrode
(IDAM) TC aptamer Milk 1 × 10−9– 1 × 10−3 1 × 10−9 [63]

differential pulse
voltammetry (DPV) Gold electrode Anti-TC monoclonal

antibody Milk 1.8 × 10−10–2.25 × 10−9 7.22 × 10−11 [64]

Amperometric
immunosensor

Screen-printed dual carbon
electrodes (SPdCEs)

Polyclonal sheep anti-TC
antibody Milk 1.12 × 10−12–1.12 × 10−7 1.93 × 10−9 [65]

LSV
Gold electrode

electropolymerization of PATP
functionalized AuNPs

MIP Honey 2.24 × 10−13–2.24 × 10−8 2.2 × 10−16 [53]

EIS PVC liquid membrane [o-COSAN]−/TC
ion-pair complex Honey 2.25 × 10−15–1.12 × 10−11 7.5 × 10−16 This work
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The proposed mechanism is based on the exchange process that occurs at the mem-
brane interface with the analyte, and is a consequence of the geometry and chemical
composition of the cobalt bis(dicarbollide) [3,3′-Co(1,2-C2B9H11)2]−, particularly the exis-
tence of B-H and Ccluster-H bonds that can generate hydrogen and dihydrogen bonds. We
believe this is essential. In their absence, common ion exchangers will not generate strong
interactions with either the ammonium cation or with the plasticizer solvent. Therefore,
they have high mobility in the membrane. This is not the case with [3,3′-Co(1,2-C2B9H11)2]−

which does make these strong non-bonding interactions and generates more reticulate,
and therefore more stability and a precise concentration of the analyte in the membrane.
The cobalt bis(dicarbollide) has dimensions of 1.1 nm in length and 0.6 nm in width and
is surrounded by hydrogens, the mentioned B-H bonds, that have considerable hydride
character but not enough to be unstable in protic solvents. This sufficient hydride char-
acter of the B-H groups enables it to interact strongly with H-N units. The non-bonding
interactions B-H···H-N are weak, but if there are many, as is the case, they become a strong
interaction. This leads to a very stable concentration of the target analyte within the mem-
brane, and allows for an adequate ion exchange thanks to the ion exchanger capacity of
[3,3′-Co(1,2-C2B9H11)2]−, overall giving the appropriate stability and sensitivity.

The higher sensitivity for tetracycline compared to the similar molecules should be
explained by a higher stability of the [o-COSAN]−/tetracycline ion-pair complex, whereas
the similar molecules present a primary amine group which is a prerequisite, apart from ter-
ramycin. Demeclocycline presents a chloride group and oxytetracycline, a supplementary
OH group which can limit the ion-pair complex stability.

3.5. Determination of Tetracycline in Spiked Honey Samples with the Tetracycline Sensor
(Membrane 3)

Honey solutions were prepared as follows: 1 g of honey was added to 1 mL of
ethanol and maintained in an ultrasonic bath for 30 min. In order to reduce the matrix
effect, the samples were then diluted 1/10 (v/v) with PBS and filtered through a 0.8 mm
cellulose acetate filter. The samples were then spiked with standard TC solutions, and
measurements were carried out through the standard addition method. Three replicates
were made for each the two samples. Table 2 summarizes the tetracycline sensor results for
the determination of TC in spiked honey samples. Recoveries of 100% to 107% were found,
with an RSD of 6%. This indicates that the repeatability of the tetracycline sensor prepared
with membrane 3 is acceptable in practice.

Table 2. Determination of TC in spiked honey samples through the standard addition method, using
tetracycline sensor (membrane 3).

Samples Added
pg/L

Found
pg/L

Recovery
(%)

Honey 1 50 53.5 107 ± 6
500 515 103 ± 2

Honey 2 50 51 102 ± 6
500 500 100 ± 6

4. Conclusion

In this work, we have discussed the development process of a novel sensitive and
highly selective tetracycline sensor, based on gold microelectrodes modified by single-
walled carbon nanotubes (SWCNTs) and a plasticized PVC membrane doped with a
[o-COSAN]−/tetracycline ion-pair complex. The ion-pair complex was synthesized and
characterized using different techniques such as Proton Nuclear Magnetic Resonance
(1H NMR), Carbon Nuclear Magnetic Resonance (13NMR), Fourier-Transform Infrared
Spectroscopy (FTIR), Matrix-Assisted Laser Desorption/Ionization- Time-of-Flight Mass
Spectrometry (MALDI-TOF MS) and Elemental Analysis. The electrochemical detection was
performed by electrochemical impedance spectroscopy (EIS) for three different membranes.
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Membrane 3 with bis(2-ethyl hexyl) sebacate as the plasticizer, shows the highest sensitivity
compared to the other membranes. The high selectivity of our prepared tetracycline
sensors was demonstrated by analyzing solutions containing similar molecules, namely
oxytetracycline, demeclocycline, and terramycin. The proposed approach presents a high
sensitivity compared to published tetracycline biosensors; moreover, it is a cheap solution
compared to those requiring aptamers or antibodies, and it is a durable solution because of
the reversibility of the interactions with the [o-COSAN]−/tetracycline ion-pair complex,
and the shelf-life time of the prepared sensor was found to be more than six months. The
work carried out in this paper aims at providing a solution to the food or drug control of
improving portable instrumentations while incorporating new technologies.
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ated acetone); Figure S3: FTIR spectrum of [o-COSAN]−/tetracycline; Figure S4: MALDI-TOF
spectrum of [o-COSAN]−/tetracycline with matrix (positive part); Figure S5: FTIR spectrum of
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PVC; Figure S8: FTIR spectrum of [o-COSAN]−/tetracycline ion pair complex; Figure S9: Calibration
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