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Abstract: Object pre-localization from computer-generated holograms is still an open problem in the
current state of the art. In this work, we propose the use of the hologram phase space representation to
determine a set of regions of interest where the searched object can be located. The extracted regions
can be used to pre-locate the object in 3D space and are further refined to produce a more accurate
depth estimate. An iterative refinement method is proposed for 1D holograms and is extended in a
parsimonious version for 2D holograms. A series of experiments are conducted to assess the quality
of the extracted regions of interest and the sparse depth estimate produced by the iterative refinement
method. Experimental results show that it is possible to pre-localize the object in 3D space from
the phase space representation and thus to improve the calculation time by reducing the number of
operations and numerical reconstructions necessary for the application of s (DFF) methods. Using
the proposed methodology, the time for the application of the DFF method is reduced by half, and
the accuracy is increased by a factor of three.

Keywords: 3D imaging; holography; depth estimation; phase space; short-term Fourier transform;
Fourier optics

1. Introduction

Holography [1], introduced by Dennis Gabor in 1948, was originally a two-stage
coherent imaging technology for recording and reconstructing the light wave scattered by
an illuminated object through interference. While initially restricted to monochromatic
still models captured in optics laboratories, its modern evolution into digital holography
has recently allowed the processing of completely general content, such as color-animated
hologram sequences.

A hologram contains the entire light field of the recorded object, including intensity
and phase information. It therefore requires larger storage space, but this additional infor-
mation can be used for a wider range of applications. In most computer vision applications,
only the intensity image and depth map of the scene are used to completely describe the
3D scene. Both of them are contained in the hologram but require a preprocessing step in
order to extract them. The simplest and most effective approach for this purpose is to use
the depth-from-focus (DFF) method [2]. This technique starts from a reconstruction volume,
built using several numerical reconstructions performed at different sampled depths. It
then estimates a depth map of the recorded scene by detecting the reconstruction depth
at which the focus is locally optimal using a focus measure (FM) for each pixel. Once the
depth map has been estimated, the intensity map is constructed by assigning to each pixel
the intensity present at the same position in the numerical reconstruction performed at the
estimated depth.

Although the DFF approach gives convincing results, it has many limitations. First, it
requires carefully choosing several hyperparameters, including the reconstruction interval,
the number of reconstructions to be performed, the focus operator, and how it applies to the
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reconstruction volume. Each of these factors can greatly affect the estimation performance.
Second, this approach is computationally expensive, since it requires computing a large
number of numerical reconstructions and in some particular cases pre-processing the
hologram to remove the zero-order, twin image, and speckle noise from the reconstructed
images, resulting in additional computational overhead.

In this work, we propose a PS-DFF (phase-space-based DFF), a region of interest (ROI)
extraction procedure based on the phase space representation of holograms to pre-localize
the scene in 3D space. The extracted regions can be used to select an appropriate numerical
reconstruction interval, as well as the spatial location where the focus measure should
be applied. In addition, an iterative method is proposed to refine the extracted regions
of interest and produce a finer depth estimate. A series of experiments are conducted
to evaluate the quality of the extracted regions of interest, the gain in computation time
with respect to the classical DFF method, and the accuracy of the sparse depth estimate
produced by the iterative refinement method.

The main contributions of this paper can be summarized as follows:

• A novel methodology to estimate a complex and deep depth map with multiple values
based on the phase space representation of the hologram.

• An iterative voting process to extract regions containing scene objects (called ROIs in
the paper) from the hologram phase space transform support.

• An ROI-constrained DFF method to improve speed and accuracy with respect to
classical DFF.

The remainder of this article is organized as follows: Section 2 reviews previous
works that use phase space to process holographic data. Then, Section 3 presents the
proposed method. In Section 4, a series of experiments are conducted to validate the
proposed approach. Finally, in Section 5, we discuss the advantages and limitations of the
proposed approach.

2. Related Works

In this section, we review the two main approaches that can be used to estimate
the depth map from a digital hologram: depth-from-focus methods and phase-space-
based methods.

2.1. Depth-From-Focus Methods

A simple depth estimation method is the use of the DFF method [3–5]. First, a re-
construction volume is built from the input hologram, with a predefined number of holo-
graphic reconstructions within a fixed depth interval. Each numerical reconstruction can
be computed using the angular spectrum method [6] defined as

Pzi{H} = F−1
{
F (H)ej2πzi

√
λ−2− f 2

x− f 2
y

}
, (1)

where H is the hologram, F is the Fourier transform, λ is the acquisition wavelength, fx
and fy are the spatial frequencies along the X- and Y-axis, λ is the acquisition wavelength,
and zi is the reconstruction depth, given by

zi =
zmax − zmin

N
i + zmin, (2)

where N is the total number of holographic reconstructions, and zmin, zmax are the bound-
aries of the reconstruction interval. Then, the focus level of each pixel (m, n) in the recon-
struction volume is evaluated locally using a focus measure FM applied on a centered
patch Rm,n around the pixel. Finally, the pixel depth is set to the depth dm,n at which the
maximum focus level FM(R) is reached. More formally,

dm,n = arg max
i∈[1,N]

{FM(Rm,n,i)}, (3)
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where
Rm,n,i(u, v) = |Pzi{H}|(m + u− s/2, n + v− s/2), (4)

and s is the used patch size. Despite its time-consuming nature, the DFF method can
produce relevant results under optimal conditions in which the holographic reconstruction
parameters, focus measure, and patch sizes are carefully chosen.

In practice, determining the proper reconstruction parameters is difficult. It is simpler
to use a very large reconstruction interval [0, z] that spans the entire space and a high
sampling rate N to cover all possible depths. Even if this methodology appears to be
advantageous, the obtained results will depend on the focus measure FM, which must be
sensitive enough to distinguish the correct optimal focus plane.

A detailed benchmark of focus measurement operators can be found in [7]. More
recently, [8] studied various types of focus measurements and how different choices of
hyperparameters can affect their performance when used in CGH. The results obtained
demonstrate that the focusing curves are subject to a change in polarity depending on
the region treated. Therefore, the authors propose an automatic switching method to
automatically choose the global minimum or maximum depending on the offset from the
mean value.

2.2. Phase-Space-Based Methods

One of the pioneer works on the extraction of depth information directly from a
hologram without any numerical reconstruction was published in [3]. The proposed
method is based on Wigner’s analysis of a 1D cross section of 2D in-line holograms. Each
particle that was used to record the hologram is represented by a cross-shaped pair of line
impulses in Wigner’s analysis of the hologram. The authors showed analytically that if
one of the two straight lines slopes is known, the distance between the particle and the
hologram plane can be obtained. The experiments were conducted using several holograms
with a varying number from one to three particles that are spaced far enough. The obtained
results confirmed the analytical formula and showed that the proposed approach can be
used to obtain an accurate estimate of the particle depth.

Ozgen et al. [9] extended the previous work by replacing the Wigner–Ville distribution
by the Cohen bilinear class with fixed kernels given by analytical expressions in order
to improve the precision in the case of multiple particles. The proposed method was
compared to a scaling of the chirp transformation [10] and showed better results in terms
of automation of the algorithm and a better visual interpretation of the obtained results.

In the same spirit, Zhang et al. [11] used the Gabor transform to extract the depth
information of small particles from in-line holograms by using the analytical relation
between the Gabor angle and the object distance from the CCD camera. The experiments
were performed on a 1D cross section of a 2D in-line hologram of three particles located at
the same depth. The 1D cross section was analyzed using the Gabor transform, and the
Gabor angle was calculated manually in order to obtain a depth estimate. The estimated
depth is very close to the ground truth with an approximation error of 3 µm. The authors
pointed out that the estimation error may be due to the high signal-to-noise ratio caused by
the acquisition conditions.

Other applications based on the phase space transform are discussed in [12].

2.3. State-of-the-Art Limitations

As shown in this section, while depth-from-focus methods enable estimation of ac-
curate depth maps from digital holograms, they require a set of hyperparameters to be
carefully chosen. In addition, since multiple numerical reconstructions need to be com-
puted, their computational complexity increases for scenes with a large depth range. On the
other hand, phase-space-based methods do not require computing numerical reconstruc-
tions. Nevertheless, state-of-the-art works were limited to scenes composed of a small
number of particles, and their application to complex scenes with a large depth range was
never studied in the literature.
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In this work, we propose using these two approaches together: we use a phase-space-
based method to extract regions of interest (ROIs) from the input hologram, which are then
exploited to determine the depth range to apply a DFF method to extract the scene depth
map from the hologram.

3. Proposed Methodology

The following sections introduce the proposed method illustrated in Figure 1 for phase
space depth estimation. The proposed methodology is designed for 1D holograms and is
applied to 1D slices of 2D holograms.

1D Hologram

W× 3

R

G

B

𝑆𝑇𝐹𝑇

Phase space representation

Convolutional Neural Network R

G

B

Predicted phase space masks Regions of Interest

𝑅𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡

𝑀 × 𝑁 × 3 𝑀 ×𝑁 × 3

Figure 1. An illustration of the different components of the proposed method. First, the phase
space representation of the input hologram is computed. Then, a neural network is used to predict
phase space masks, which will be back-projected to extract regions of interest. Finally, the proposed
refinement algorithm is used to extract the final depth estimate.

3.1. Overview

Our proposed methodology comprises 4 steps for 1D holograms and an additional
step when processing 1D slices of 2D holograms. First, considering a 1D hologram obtained
from a 2D scene, the hologram phase space representation is computed using the short-term
Fourier transform (STFT), producing for each color channel a 2D matrix of size N × M
corresponding to the axis (x, ξ). This matrix represents the decomposition of the hologram
as local frequencies ξ around the specified position x. Since frequencies are related to
light propagation through the grating equation, each couple (x, ξ) represents a light beam
passing through x and oriented according to ξ. The phase space transform is a compact
representation of the hologram and contains a sufficient amount of information to fully
describe it.

Second, a neural network is used to estimate the support of the hologram phase space
representation, resulting in a set of binary masks. The phase space segmentation makes it
possible to consider only the shape of the representation created by the scene in phase space
without taking into account the values of the transform, which are subject to variation
from one hologram to another. Furthermore, by using this segmentation step, a unique
thresholding value that is not affected by the color intensity or phase value of the input
hologram can be defined.

Third, the predicted masks are used to detect regions of interest containing the scene
objects. The probability for each 2D position to belong to the scene is estimated based on
the binary masks, and points exceeding a given threshold define the region of interest.

Finally, the initial regions of interest are refined using an iterative method to reduce
their depth extent and obtain a set of straight lines that represent the final depth estimate
of the scene.

In the case of 1D slices of the 2D hologram, a fixed-size ROI centered on the estimated
straight lines is defined and used with the DFF method to further recover the curvature of
the extracted lines.
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3.2. Step 1: Computing the Phase Space Representation of the Hologram

We assume that a 1D hologram of a 2D scene has been generated. Given the 1D input
hologram denoted H ∈ CW , its 2D phase space transform is computed using the STFT
based on sub-sampled hologram points x and sampled frequencies ξ defined as{

x[n1] :=
W∆x

2N
(2n1 − N + 1) : n1 = 0, 1, . . . , N − 1

}
, (5)

{
ξ[m1] :=

1
2∆x M

(2m1 −M + 1) : m1 = 0, 1, . . . , M− 1
}

, (6)

where W is the hologram size, ∆x is the hologram pixel pitch, and N and M are the number
of sampled points and frequencies.The 2D phase space representation of the hologram is
therefore given by

L[n1, m1] =
L−1

∑
s=0

w[n1 − s]H[s]e−jsξ[m1], (7)

where w is a Hann window of size M + 1 defined as

w(m) = 0.5(1− cos(2π
m
M

)), 0 ≤ m ≤ M + 1. (8)

For a colored hologram, the STFT transform is applied to each color channel (R, G, B)
of the hologram producing a complex-valued tensor of size N ×M× 3.

3.3. Step 2: Extraction of Phase Space Masks

In this step, a binary mask representing the support of the hologram phase space
representation is computed through binarization. To do so, the computed phase space
representation L is fed to a convolution neural network (CNN) denoted by G based on the
U-Net architecture [13] to binarize the phase space representation and estimate phase space
masks, with one M× N binary mask per color channel. The network is supervised using
ground truth masks computed from the scene point cloud P which produces the hologram
H using the analytical formula proposed in [14]. The function Ω mapping the 2D point
cloud P onto phase space can be defined as

Ω(P) =
N−1⋃
n1=0

⋃
p=(y1,y2)∈P

Λp(n1) (9)

where

Λp(n1) =

{
(x[n1], fξ(n1)) | −

1
2∆x

≤ fξ(n1) ≤
1

2∆x
,
}

(10)

and fξ(n1) is the frequency component related to the sampled point x[n1], which is given as

fξ(n1) := − (x[n1]− y1)

λ
√
(x[n1]− y1)2 + (y2)2

. (11)

From there, the ground truth binary mask defining the phase space projection support
can be computed as

Mb[n1, m1] = 1(x[n1],ξ[m1])∈Ω(P). (12)

where 1 is the indicator function.
Using the resulting phase space representation as input, the network is trained to out-

put a binary mask M̂b as close as possible to the ground truth binary mask Mb. The training
process can be formalized as follows:

M̂b = Gθ{(Re{L}, Im{L})}, L ∈ CN×M (13)
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min
θ
L = BCE(M̂b, Mb), Mb, M̂b ∈ RN×M (14)

where (Re{L}, Im{L}) is the concatenation of the real and imaginary parts of the hologram
phase space representation L defined in Equation (7), θ are the parameters of the network,
and BCE is the binary cross-entropy loss.

The use of a CNN model was preferred to thresholding the values of the matrix L
for two main reasons. First, the threshold value varies from one hologram to another; it
is therefore necessary to compute an optimal threshold value for each hologram. Second,
the resulting binary mask from thresholding is coarse and requires an additional processing
step using filters with sizes adapted to the level of degradation. This is an additional
operation that requires significant computation time and often results in a degradation of
the initial outline of the object. Using a CNN model ensures fast and accurate phase space
segmentation without the need for manual editing or an additional post-processing step.

3.4. Step 3: Regions of Interest First Estimate

The goal of this step is to extract an area of the 2D scene, further called ROI (region of
interest), the 2D points belonging to the scene. To do so, each point p = (x, y) belonging
to the 2D scene is mapped into phase space using the mapping Ω defined in Equation (9).
The obtained phase space representation of the 2D candidate point is intersected with the
binary mask estimated M̂b in Step 2. The relative intersection provides the candidate point
score. More formally:

score(p, M̂b) =

∣∣∣Ω̂M̂b
(P) ∩Ω(p)

∣∣∣
|Ω(p)| , p = (x, z) ∈ R2 (15)

where
Ω̂M̂b

(P) = {(x[n1], ξ[m1]) | 1M̂b [n1,m1]=1}. (16)

The score for a candidate point (x, z) defined in Equation (15) quantifies how much
active frequencies that define this point in phase space are also active in the support M̂b of
the input hologram phase space representation. For a candidate point to truly belong to the
scene, all those frequencies should be active. Therefore, a thresholding step is performed in
order to keep only the points (x, z) with a score equal to 1, i.e., all points fulfill the condition
of active frequencies, as follows:

ROI(M̂b) = P̂ = {(x, z) | 1score(p,M̂b)=1 ∀p = (x, z) ∈ R2}. (17)

A score less than 1 can also be encountered with a point that really belongs to the
scene but with a degraded mask M̂b.

Figure 2 gives two mapping examples with the extracted ROI colored in blue. In the
first case, the extracted ROI consists of perfect diamonds that encapsulate the scene points
colored in red. In this specific case, the geometry of the scene can be estimated using the set
of lines that connect the two extremities of each diamond along the X-axis. In the second
case, the extracted ROI does not have a perfect diamond shape due to the proximity of the
different scene points.
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Figure 2. Illustration of the two different cases that can be observed during the ROI extraction. The
first case, shown at the top of the figure with a scene composed of 3 segments, is a perfect mapping
that produces diamond shapes that encapsulate the scene points. The second case, shown at the
bottom of the figure, is a more common mapping case of larger scene segments where diamonds
are hidden due to lack of space between scene points. In both of these cases, the iterative method
produces relevant results.

The closer the points are to each other, the larger the extracted ROI and the bigger its
depth extent. In contrast, the further apart the points are, the finer the ROI and the smaller
the depth extent. Therefore, if the scene points are very close to each other and extend
along the entire X-axis, then the extracted ROI will be very large with a high depth extent.

3.5. Step 4: Regions of Interest Iterative Refinement

To better control the depth extent of the extracted regions of interest, a proposed
iterative refinement algorithm is introduced in the next section and is applied to the
extracted ROI in order to calculate the optimal representation line. Then, a new ROI of
fixed size centered on the predicted line is defined and used as the final ROI.

The initially extracted ROI is a subset of the minimal set of points that produce the
same binarized phase space representation as M̂b. As a result, the ROI can be further
refined to produce the smallest set of points that when mapped into phase space produce
the same representation as M̂b. To reduce combinatorial complexity, primitives larger than
the points, namely lines, are chosen as the set of candidates to be combined in order to
produce the same representation as M̂b, as shown in Figure 3.

The decomposition into a minimal set of lines is described in Algorithm 1. First,
the set of candidate points P̂ is decomposed into a set of disjoint regions ROIs(P̂) using the
findContours from the Opencv Library [15]. Then, all lines that are completely embedded
in each subregion are extracted. Each line is mapped into phase space, and its contribution
to the estimated phase space representation M̂b is evaluated. The line that contributes the
most is selected. Finally, all candidate points that are in the same interval along the X-axis
as the selected line are removed.

As shown in Figure 4, the contribution of the selected line is not removed from the
matrix M̂b because other candidate lines may share the same points as the selected line in
phase space. Therefore, removing the line contribution would remove candidate lines that
may actually belong to the scene. To prevent this from happening, a buffer Mpred is used
and is incremented with the phase space representation of the selected line at each iteration.
The iteration stops when the contribution of the newly selected line is less than 5% overlap
of the input phase space representation. An example of phase space decomposition is given
in Figure 5.



Appl. Sci. 2023, 13, 2463 8 of 19

𝑍

𝑋

2D Space Phase Space

Fr
e
q
u
en

cy

Space
𝑍

𝑋

2D Space

𝑍

𝑋

2D SpacePhase Space

Fr
e
q
u
en

cy

Space𝑍

𝑋

Extracted ROI

Extracted ROI

Candidate line

Figure 3. Illustration of the ROI refinement method. The initial ground truth 2 d scene is composed
of a curved line, and its phase space representation is a band with a very large thickness and a slight
slope. The region of interest colored in blue completely encompasses the scene points; however,
it does not represent the minimal set of points that generate the same representation as the scene
points. From all possible lines that are fully embedded inside the ROI, the red line is selected as the
optimal candidate line that produces the same phase space representation as the scene points and
will represent the final depth estimate of the scene in 1D.

Algorithm 1 Iterative decomposition into a set of lines

Require: Set of candidate points P̂, and the estimated phase space representation M̂b.
1: Mpred ← zeros(size(M̂b));
2: Slast ← 0;
3: Ω̂M̂b

(P) = {(x[n1], ξ[m1]) | 1M̂b [n1,m1]=1}
4: repeat
5: ROIs(P̂) = f indContours(P̂);
6: linesscores ← [];
7: for R ∈ ROIs(P̂) do
8: Extract the set Θ(R) of horizontal lines that are completely included in R;
9: for l ∈ Θ(R) do

10: γ =
|Ω(l)∩Ω̂M̂b

(P)|
|Ω(l)|

11: linesscores.append(γ)
12: end for
13: end for
14: Select the optimal line l = arg max linesscores
15: Scurrent ← max linesscores
16: if (Scurrent − Slast) ≥ 0.05 then
17: Slast ← Scurrent
18: else
19: Break
20: end if
21: Mpred ← (Ω(l) ∪Mpred)

22: Remove contribution of line l in set P̂,

P̂← {(x, z) : x /∈ [minx(l), maxx(l)] ∀(x, z) ∈ P̂}

23:
24: until (Scurrent − Slast) < 0.05.
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Figure 4. An illustrative example that motivates the use of a buffer in the proposed algorithm. Given
the input phase space representation, the ROIs colored blue are extracted. The extracted regions of
interest encapsulate all the points of the scene colored in red and are completely disjoint in 2D space.
However, their representation in the phase space is not disjoint. A first candidate line colored in
green which is fully embedded in one of the regions of interest and contributes the most to the input
mask is selected. Since no buffer is used, the contribution of the selected line is directly removed
from the inputted phase space representation, and the resulting representation is mapped again in
the 2D space. The resulting ROI encapsulates only two objects, and no ROI is associated with the
third object which shares similar points in the phase space as the candidate line.

Decomposition into a set of straight linesGround Truth

Figure 5. Result of the application of the iterative method for the decomposition of phase space into
sets of straight lines. The proposed algorithm provides a minimal set of lines that when mapped
in the phase space produce the same representation as the input phase space representation. Each
2D line is represented in phase space by a band with a slope and a thickness which are given by the
depth and the length of the 2D line segment. Even though 2D lines are spatially disjoint in 2D space,
their representation in phase space can intersect.

3.6. Step 5: Curvature Estimation Using a DFF Method

The three steps described in the previous sections implicitly assume that the 2D scene
is composed of piece-wise planar objects and are thus not suited for curved objects. In this
section, we propose to refine the set of linear segments into a set of curved segments when
processing 1D slices of a 2D hologram by using the DFF method presented in the following.

It is not possible to extract 1D holograms corresponding to each of the 2D space slices
directly from the 2D hologram. However, it is possible to extract a 2D phase space (x, ξ)
corresponding to one slice (x, z) from 4D phase space (x, y, ξ, η) computed from a 2D
hologram by selecting only the 2D phase space representation along a specific frequency.
More formally, given a 2D hologram, the 4D representation in phase space is calculated
using STFT producing a four-dimensional complex-valued matrix of size N × N ×M×M
which represents the axes x, y, ξ, η, given as:
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{
x[n1] :=

W∆x

2N
(2n1 − N + 1) : n1 = 0, 1, . . . , N − 1

}
, (18){

y[n2] :=
H∆y

2N
(2n2 − N + 1) : n2 = 0, 1, . . . , N − 1

}
, (19){

ξ[m1] :=
1

2∆x M
(2m1 −M + 1) : m1 = 0, 1, . . . , M− 1

}
, (20){

η[m2] :=
1

2∆y M
(2m2 −M + 1) : m2 = 0, 1, . . . , M− 1

}
, (21)

where H, W are the height and width of the hologram, and ∆x, ∆y are the pixel along the X
and Y directions.

By rearranging the axes of the matrix to y, η, (x, ξ), the phase space representation
can be seen as a set of 2D phase space representation (x, ξ) of oriented 2D planes with
an orientation and a position that depend on η and y, respectively, as shown in Figure 6.
The choice of frequency η corresponds to a certain orientation of the 2D plane, and the
central frequency η = 0 produces a set of 2D planes (x, z) which cut the scene horizontally
at y without containing occlusion, i.e., two points cannot share the same x position at
different depths.

Hologram plane

y[1]
y[2]

⋮

⋮

⋮

⋮
y[N]

𝜂 =
1

2 Δ𝑦

𝜂 = 0

𝜂 =
−1
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𝑍

𝑌

𝑋

𝑍

H
o
lo
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ra
m
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n
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x[
1
]

x[
2
] ⋮ ⋮ ⋮ ⋮

x[
N
]

ξ=
1

2 Δ𝑦
𝜉 = 0 𝜉 =

−1

2 Δ𝑦

Geometric interpretation

Visual interpretation

Figure 6. Illustration of the geometric and visual interpretation of the 4D phase space transform
(x, y, ξ, η) of a 2D hologram. The 4D phase space transform represents propagation value along rays
that have an orientation determined by ξ and η and a position determined by x and y. By fixing the
values for a position–frequency pair (x, ξ), the 2D matrix (y, η) can be interpreted as the phase space
transform of the 1D hologram produced by the intersection points between the oriented 2D plane
(whose orientation and position are determined by the selected values of ξ and x, respectively) and
the 3D scene.

In the present work, only a sub-part of the phase space representation defined from
a central frequency η = 0 is kept, thus producing a tensor denoted L of size N × N ×M
corresponding to a 2D phase space representation (x, ξ) of a 2D horizontal plane (x, z) with
a height equal to y. The choice of the frequency fη = 0 is motivated by two reasons. First, it
produces horizontal slices which do not contain an occlusion. Second, it makes it easier
to extract 2D patches for the application of the DFF method, which does not need to be
oriented in the same direction as the plane defined by the frequency feta.
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The ROIs are extracted for each of these 2D phase space representations (x, ξ) as shown
in Figure 7, and then the minimal representation lines are extracted from the extracted ROIs
using the iterative algorithm. More formally:

M̂b(y[n2]) = Gθ{(Re{L[n2]}, Im{L[n2]})}, (22)

P̂(y[n2]) = {(x, z) | 1score(p,M̂b(y[n2]))=1 ∀p = (x, z) ∈ R2}, (23)

D̂(y) = Re f inement(P̂(y[n2])). (24)

Finally, a new fixed-size ROI centered on the predicted lines is defined and used for
the DFF method using the auto-switch proposed in [8] as follows:

d(x, y) = arg max
i∈[D̂(y)[x]−[Nz/2],D̂(y)[x]+[Nz/2]]

| FM(Rx,y,i)− µ |, (25)

µ =
1

Nz

D̂(y)[x]+[Nz/2]

∑
D̂(y)[x]−[Nz/2]

FM(Rx,y,i) (26)

Rx,y,i(u, v) = Ii(x + u− s/2, y + v− s/2), (27)

where d is the final depth map, Nz is the interval size, FM is the focus measure function, Ii
is the intensity of the holographic reconstruction performed at the i-th distance, and s is
the patch size fixed at 17 which showed the best performance in the experiments through
hyperparameter tuning.

Ground Truth Initial ROI Refined ROI Final Estimate

Front View

Top View

Lateral View

Figure 7. An illustrative example that shows the initially extracted ROI, the refined ROI, and the final
estimate produced by the DFF method using a fixed-size ROI of size 31 centered on the refined ROIs
at different viewing angles. The extracted ROI can be used to pre-localize the scene in the 3D space.
They thus define an appropriate reconstruction interval and contain the pixels on which the focus
measurement applies in the reconstruction volume.

In this final stage, the depth of each point (x, y) in the initial line segment D̂(y)[x] is
refined by the DFF process, which assesses the depth i for which the focus of the patch Rx,y,i
is optimal inside a reconstruction interval of size Nz + 1 centered around the initial depth
estimate D̂(y)[x]. The obtained results will depend on the choice of the focus measure,
the size of the chosen interval, and the obtained result from the iterative method.
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4. Experimental Results

The following section details the experiments that were conducted to validate the
proposed approach. Section 4.1 presents the holographic dataset used for the experiments.
Section 4.2 analyzes the phase space masks extracted in the second step of our method,
and Section 4.3 provides the depth estimation results obtained with our method. Finally,
the calculation time of our method is analyzed in Section 4.5.

4.1. Holographic Dataset

For training the G network, a large-scale dataset consisting of 4200 RGB holograms was
obtained from three different scenes (piano, table, wood). The holograms were acquired
using a layer-based method [16] with a resolution of 1024× 1024, a pixel pitch of 1 µm,
and 1400 acquisition angles. The evaluation phase was performed on two sets: a test set
consisting of 300 holograms evenly distributed over the training classes and a validation
set consisting of 200 holograms from two additional scenes (cars, dice). Table 1 summarizes
the depth in centimeters of each object that makes up each scene.

Table 1. Scene object sizes along the X/Y/Z, in centimeters.

Object 1 Object 2 Object 3 Object 4 Object 5

Piano 0.044/0.054/0.052 0.023/0.017/0.01

Table 0.039/0.026/0.038 0.018/0.037/0.016 0.016/0.037/0.018 0.018/0.037/0.016 0.016/0.037/0.018

Woods 0.03/0.045/0.03 0.021/0.046/0.023 0.034/0.032/0.028 0.025/0.042/0.025 0.031/0.042/0.022

Dice 0.02/0.017/0.021 0.028/0.029/0.034 0.023/0.025/0.028 0.0512/0.0512

Cars 0.085/0.014/0.052 0.082/0.016/0.052 0.049/0.025/0.082 0.046/0.03/0.073

For each hologram of the dataset, its 4D phase space representation L of size of
N × N ×M×M and the associated phase space masks Mb of size N × N ×M×M are
computed using 3D formulas proposed in [14]. Then, the two tensors L and M are reorga-
nized as a 3D tensor of size (N× N)×M×M and used as the initial batch for the network
training. Finally, for each iteration, a sub-sample of size 1024 is randomly sampled from
the initial batch to constitute the final network input/output data.

The network was trained for a total of 100 epochs, using the stochastic gradient descent
and an exponential learning rate decay.

4.2. Phase Space Segmentation

In the following, we analyze the binary phase masks extracted in the second step
of our method. The Dice and Jaccard metrics [17] are used to evaluate the quality of the
overlap between the predicted binary mask and the ground truth. Table 2 gives the results
obtained for the test and validation set.

Table 2. Segmentation metric for the test (piano, table, woods) and validation set (cars, dice).

Piano Table Woods Cars Dice

Dice 0.97 0.97 0.98 0.94 0.94

Jaccard 0.94 0.94 0.96 0.89 0.88

From the obtained results, we can see that for the test part, the network has an
overall accuracy of 95%. This performance drops by 5% on the validation set, but the
general performance remains high enough to hope for good results in the next steps of the
algorithm. The low difference in segmentation performance between the validation and
test set suggests that the network is not subject to overfitting, which can occur when the
network is over-parameterized and the amount of data is not sufficient.

A bad segmentation performance leads to a bad estimation of the phase space repre-
sentation. Therefore, fewer candidate points can be extracted during the back projection
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operation, and some scene points may not be included in the extracted ROIs as shown
in Figure 8. By using multiple color channels those areas that are missing on one color
channel can be filled in on another channel. It is therefore important but not mandatory
when processing RGB holograms to merge the extracted ROIs. The merged ROIs can be
projected back into a selected color channel phase space representation and used as a target
for the iterative algorithm. More formally,

Rb = Gθ{(Re{LR}, Im{LR})}, (28)

Gb = Gθ{(Re{LG}, Im{LG})}, (29)

Bb = Gθ{(Re{LB}, Im{LB})}, (30)

P̂ =
⋃

M∈{Rb ,Gb ,Bb}
ROI(M), (31)

M̂b = Ω(P̂), (32)

where Rb, Gb, and Bb are the estimated phase space representation for each color chan-
nel. Their mappings in the 2D space are unified by selecting all the points that fall in at
least one of the three mappings and projected back into phase space using a single color
channel. The set of candidate points P̂ and its projection M̂b are used as input to the
iterative algorithm.
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Figure 8. An illustrative example of the importance of color blending. The segmentation masks made
for each color channel contain small defects, which lead to a bad extraction of the regions of interest
because the points that are defined on the segmentation defects will not be selected. By unifying the
results produced by the different color channels, imperfections related to segmentation performance
can be bridged, and a greater number of points are included in the extracted regions of interest.

4.3. Depth Estimation Results

To evaluate the depth estimation performance of our proposed method, three experi-
ments illustrated in Figure 9 are conducted:

• Without ROI: in this experiment, the depth extent in Equation (25) spans the interval
[0, z], where z is the maximum possible depth value set to 0.20 cm in the experiment.

• With ROI: in this second experiment, the depth extent in Equation (25) is reduced
to the interval [zmin, zmax] where zmin, zmax are the maximum and minimum depth
values present in the extracted ROI.

• With refined ROI: in this third experiment, the depth extent in Equation (25) is reduced
to a fixed-size interval of size Nz + 1 centered on the minimal representation lines
extracted from the initial ROI using the iterative method.
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𝑍

𝑋
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Figure 9. An illustrative figure of the three experimental configurations: (a) the depth value is
searched over the whole space; (b) regions of interest are used to delimit the search interval; (c) the
regions of interest are refined, and a fixed size interval of size Nz + 1 centered on the predicted
optimal representation line is used as the search interval.

Those experiments have two objectives: (1) to assess the quality of the extracted
regions of interest (ROIs), as any degradation of the ROI can negatively impact the DFF
method, especially if a few scene points fall within it, and (2) to evaluate the efficiency of
the iterative method by aiming to produce an estimate that is as close as possible to the
ground truth. This is crucial in order to minimize the number of reconstruction planes
required for the DFF, specified by Nz.

In our experiments, the DFF method was performed using the six most performing
focus measures in [8] and detailed in Table 3. The operators used are highly parallelizable
and offer a good compromise between performance and speed.We evaluated the perfor-
mance of each focus measure using the `1 norm between the predicted and ground truth
depth maps used by the layer-based method.

Table 3. Abbreviations of focus measure operators used in the experiments.

Focus Operator Abbr. Focus Operator Abbr.

Variance of
Laplacian [18] LAPV Image contrast [19] CONT

Variance of wavelet
coefficients [20] WAVV Ratio of the wavelet

coefficients [20] WAVR

Gray level variance [21] GLVA Normalized Gray level
variance [22] GLVN

Table 4 gives the obtained results with and without the proposed ROI approach,
Figure 10 gives the obtained results with an additional ROI refinement step using the
iterative method with different Nz values, and Figure 11 gives some visual results.

First, we can observe that the WAVR, WAVV, and GLVA operators are the best focus
measure operators for the without ROI case. The FM performance varies depending on the
processed scene, with a mean `1 norm of roughly 15 reconstruction planes. Performance
may be lower if the scene contains many flat areas with no texture variation. The fo-
cus operators generally work best on regions with high texture variances such as edges
and corners.

Second, using extracted regions of interest results in improved performance, with gray-
level variance-based operators being the most optimal. This is because the depth extent
used in Equation (25) is reduced, providing a more accurate estimate of the depth of each
pixel. The performance variance between the first and second cases may be due to the
quality of the extracted ROI or to multiple extremum values present in the focus curve.
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Table 4. The obtained `1 norm for the test (piano, table, woods) and validation set (cars, dice).

Piano Table Woods Cars Dice

Without ROI

LAPV 28.80 42.61 71.57 85.65 68.34

WAVV 18.27 43.09 12.28 34.87 17.72

WAVR 14.99 32.84 15.89 31.96 30.03

GLVN 14.87 38.54 15.97 34.82 26.65

GLVA 14.30 39.26 12.09 33.06 18.53

CONT 22.67 54.47 42.88 59.94 74.01

With ROI

LAPV 26.22 38.67 29.50 83.80 15.82

WAVV 11.36 23.78 25.37 31.97 23.61

WAVR 8.63 23.68 25.04 46.17 14.73

GLVN 6.84 20.86 13.55 32.42 9.72

GLVA 11.26 23.00 28.62 41.23 22.24

CONT 24.86 35.46 36.28 65.55 29.56

ROI Refinement

11 9.28 11.04 10.42 25.58 5.31

21 7.44 10.22 8.65 24.84 4.05

31 6.33 10.03 7.53 24.28 3.8

41 5.65 10.32 6.97 24.18 3.93

51 4.94 10.79 6.90 24.03 4.37

61 4.86 11.08 6.76 24.13 4.98

71 4.73 11.48 6.68 22.87 5.83

81 4.81 12.10 6.57 21.72 6.68

91 4.88 13.00 6.38 20.73 7.54

Piano Table Woods

Dices Cars

Figure 10. Norm `1 with respect to the selected size Nz of the new ROI region around the refined ROI
used in the DFF method for the five different scenes. The optimal representation lines computed from
the extracted regions of interest using the iterative method are relatively close to the scene points but
lack curvature which limits the overall performance of the algorithm. By using the DFF method on a
fixed size interval centered on computed lines, the curvature can be recovered, resulting in a finer
depth estimate closer to the scene points and therefore a low `1 norm.
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Ground truth Initial estimate Refined estimate 

Figure 11. Result of the application of the iterative method on 2D holograms.

Finally, the refinement of the initial ROI and the use of a new fixed-size interval allows
an additional gain in performance. From Figure 10, we can observe that optimal perfor-
mance (except LAPV and CONT operators) can be controlled by changing the parameter
Nz in Equation (25), and a minimum value can be reached around Nz = 41. Then, the
performance degrades with a larger choice of Nz. For the LAPV and CONT operators,
the overall performance degrades as Nz increases which indicates that the operators are not
sensitive enough to the slight focus change between different images of the reconstruction
volume. For the Cars scene, where the objects that compose the scene are very large,
the optimal performances are achieved for the largest value of Nz regardless of the choice
of the FM function.

4.4. Hyperparameter Tuning

When each object in the scene spans the entire 3D space, the value Nz must be large
enough in order to correctly refine the depth of each object. However, as shown in Figure 12,
there is a trade-off between choosing the right interval size and the used focus measure.
The larger the interval size, the greater the risk of having a large estimation error due to
the lack of sensitivity of the focus measures. Therefore, when increasing the size of the
interval, some points may converge to the correct value that will be included in the chosen
interval, and others may diverge because the used focus measure is not robust enough to
detect the optimal focus plane given a very large number of images, which may lead to a
bad final result.
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Figure 12. An illustrative figure of the trade-off between the choice of the best interval size Nz and
the accuracy of the focus measure on a 1D slice of the Cars scene. The initial estimate of the optimal
representation lines is relatively close to the scene points, with exception of some regions located
at the bottom of the scene where the distance between the estimated points and the ground truth
is quite large. With a very small value of Nz, the distance of the badly estimated points will not be
strongly reduced; only the points close to the initial estimate can be well-refined. With a large value
of Nz, the badly estimated points start to be close to the ground truth value. However, since the focus
measure is not sensitive enough to the focus change, the initial correctly estimated points diverge
strongly from the initial estimate, producing a bad final result.

A visual example of the different steps involved in our proposed methodology is
given in Figure 7, where the initially extracted ROI perfectly encapsulate the scene points,
and their refinement falls either close to the objects or inside them. The curvature is
estimated in the last step of the algorithm using the DFF method on a new fixed-size ROI
of size 31 around the refined ROI. It can be observed that the final estimate is relatively
close to the ground truth value; however, some regions are poorly estimated by the GLVN
operator, which results in a dispersion of the point cloud clearly visible in the figure.

In summary, depth estimation without ROI is a tedious task since the possible depth
values for each pixel span a large interval. The performance can be improved using the ROI
which reduces the possible depth interval for each pixel and therefore reduces uncertainty
during the final estimation. However, if the processed scene has complex geometry with
points that are close to each other and span over the entire X-axis, then the extracted ROI
may have a large depth extent; therefore the gain when using the ROI is reduced.

The ROI refinement and the use of fixed-size ROI can manage the large depth extent
and produce better interval bounding. The use of refined ROI may not be the best choice
when processing scenes with objects spanning a large depth range. In that case, the best
choice for Nz may be large, and the produced depth interval can be approximately [0, z].

The Nz values in the DFF method can be selected adaptively by starting from the
ends of the representation lines with a small Nz value, and gradually increasing it as the
process moves towards the center of the line, with the maximum value determined by prior
knowledge about the object’s curvature.

4.5. Calculation Time

Table 5 gives the number of operations needed for each approach. The table does not
include the calculation of pre-operators, such as Laplacian for LAVP which are applicable
to the whole image, and the performed holographic reconstructions which are not a good
criterion. As shown in the bottom of Figure 2, if the scene points on one of the 1D hologram
slices are spatially very close to each other and extend across the entire X-axis, the extracted
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regions of interest will have a large depth extent, which can extend in the interval [0, z] and
thus require the same number of holographic reconstructions as without ROI.

Table 5. Calculation time in seconds to calculate the final depth map with and without ROI.

Piano Table Woods Cars Dice

Without ROI

LAPV 3.89 4.10 4.92 5.91 4.97

WAVV 11.80 13.00 14.29 17.84 14.35

WAVR 6.87 6.88 7.78 9.20 7.28

GLVN 4.65 4.82 5.31 6.42 5.35

GLVA 3.64 4.19 4.70 5.75 4.50

CONT 2.90 3.16 3.46 4.30 3.51

With ROI

LAPV 1.18 1.17 1.46 2.98 1.23

WAVV 2.58 2.38 3.39 8.64 2.54

WAVR 1.37 1.29 1.82 3.85 1.35

GLVN 1.26 1.31 1.62 3.09 1.43

GLVA 1.12 1.10 1.44 2.71 1.19

CONT 0.87 0.87 1.09 2.05 0.92

From the table, we observe that the computation time is significantly reduced by using
the extracted regions of interest. The calculation time is variable depending on whether the
operator needs to calculate the mean, the variance, or a ratio.

For the same number of holographic reconstructions performed, the post-processing
of the reconstruction volume can be performed more quickly, and better results can be
expected with the extracted regions of interest.

5. Conclusions

In this work, we proposed a regions of interest extraction procedure from the hologram
phase space representation. The extracted regions are used to bound the numerical recon-
struction interval and the spatial delimitation when applying the focus measure during
the DFF approach. Moreover, an iterative refinement method is proposed to refine the
extracted regions of interest and produce a more accurate depth estimate.

Experimental results have shown that the use of extracted regions of interest with the
DFF method can reduce the number of calls to focus measure operators while improving
the initial performance. In addition, the refinement of the extracted regions of interest
and the use of a fixed-size interval when applying the DFF method allows better control
of the depth extent of the provided regions of interest and an improvement in the final
performance. The proposed methodology halved the computation time while increasing
the accuracy by a factor of three.

The iterative method can be an alternative to the depth-from-focus method if the
following two limitations are solved. First, the curvature must be directly recovered from
the phase space representation without requiring any numerical reconstruction. Second, an
appropriate fusing method to merge the estimations produce using different angle values
η must be designed.

Future works will be dedicated to the design of an efficient end-to-end learning-based-
method for fast and accurate depth estimation from a hologram phase space representation
without requiring any additional post- or pre-processing steps, such as numerical recon-
struction.
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