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A recursive formula for the product of element orders of
finite abelian groups

Subhrajyoti Saha

Abstract. Let G be a finite group and let ψ(G) denote the sum of element orders
of G; later this concept has been used to define R(G) which is the product of the
element orders of G. Motivated by the recursive formula for ψ(G), we consider a
finite abelian group G and obtain a similar formula for R(G).

1 Introduction

Let G be a finite group. For any non-empty subset S of G, let ψ(S) denote the
sum of element orders of S. This has been introduced in [2] and later in [4], the notion
R(G) was introduced which stands for the product of element orders of G. In the same
paper, a formula for computing R(G) when G is a finite abelian group was obtained.
In [3], [5], an explicit recursive formula for computing ψ(G) were obtained in case G is
abelian. Motivated by these results, in this paper, we obtain a similar recursive formula
for computing R(G) when G is a finite abelian group.

Throughout this paper, we let ϕ(n) denote the Euler totient function of the positive
integer n and let p denote a prime number. A cyclic group of order n will be denoted by
Cn whereas C

(r)
p will denote the elementary abelian p -group of rank r. We always assume

G to be finite. For a group G and element x ∈ G, the notation o(x) denotes the order of
x. For any group G, we take

R(G) =
∏
x∈G

o(x).

For a group G, the notation exp(G) denotes the exponent of G which is the smallest
positive integer z such that gz = 1G for all g ∈ G where 1G is the identity element of G;
without any ambiguity we will denote this identity element as 1.
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2 Explicit formulas for finite abelian groups

In this section, we obtain explicit recursive formula for R(G) where G is a finite abelian
group. We present this in different cases starting from a finite cyclic group. This format is
inspired by [3, Section 2]. We will then consider the direct product of a finite cyclic p-group
and a (not necessarily abelian) p-group. Finally, we will consider a the most general case
of finite abelian groups. The proofs of our results in this section are motivated by the
methods used in [3]. We begin with the following important preliminary results.

Theorem 2.1 ([4, Proposition 1.1]). Let G1, G2, . . . , Gk be finite groups having co-prime
orders and G ∼= G1 ×G2 × · · · ×Gk. Then

R (G) =
k∏

i=1

R (Gi)
ni , where ni =

k∏
j=1,j 6=i

|Gj| , i = 1, 2, . . . , k.

Lemma 2.2 ([3, Lemma 2.6]). Let H ∼= Cpr1 × Cpr2 × · · · × Cprn where 1 ≤ r1 ≤ rj for all
j with 2 ≤ j ≤ n. Then for any i ∈ {1, . . . , r1}, there are (pi)

n − (pi−1)
n

elements of H of
order pi

The following lemma, motivated by [3, Lemma 1.1], follows easily from the fact that
Cn has exactly ϕ(d) elements of order d for each divisor d of n.

Lemma 2.3. Let n be any positive integer. Then

ψ (Cn) =
∑
d|n

dϕ(d) and R (Cn) =
∏
d|n

dϕ(d)

.

2.1 Finite Cyclic Groups

Let G be a cyclic group of order n. Then we know that G ∼= Cm1 × · · · × Cmk
, where

m1, . . . ,mk are co-prime to each other and n = m1 . . .mk.

Lemma 2.4. Let G be a cyclic group of order pn where p is a prime number and n is a

positive integer, then R(G) = p

(
p+npn+2−(n+1)pn+1

p(p−1)

)
.

Proof. Using Lemma 2.3, we get R(G) =
∏n

r=1 p
ϕ(pr)r = p

∑n
r=1 ϕ(p

r)r. So we have R(G) = pz

where z =
∑n

r=1 r(p
r − pr−1) = (1− 1

p
)
∑n

r=1 rp
r. Now the sum

∑n
r=1 rp

r is an arithmetic-
geometric series with common difference 1 and common ration p. Thus

n∑
r=1

rpr =
p+ npn+2 − (n+ 1)pn+1

(p− 1)2
.

This shows that z = p+npn+2−(n+1)pn+1

p(p−1) . So we get R(G) = p

(
p+npn+2−(n+1)pn+1

p(p−1)

)
.
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Lemma 2.5. Let G be a cyclic group of order s = pr11 . . . p
rk
k where the pi are distinct primes

with ri ≥ 1 for i = 1, . . . , k. Then

R(G) =
k∏

i=1

p

(
pi+rip

ri+2
i

−(ri+1)p
ri+1
i

pi(pi−1)

)
ni

i , ni = p−rii

k∏
j=1

p
rj
j .

Proof. We know that G ∼= Cp
r1
1
× · · · × Cp

rk
k

and pi are all distinct primes. Hence we can
apply Theorem 2.1. Thus by Lemma 2.4, we arrive at the required result.

2.2 Direct product of a cyclic p-Group and a p-Group

In this section, we obtain a recursive formula for R(G) where G is a direct product
of a finite cyclic p-group and any p-group. We begin with the following lemma from [3,
Lemma 2.3].

Lemma 2.6. If H and K are p-groups, then o((x1, x2)) = max {o(x1), o(x2)} for all for
any x1 ∈ H and x2 ∈ K.

We now prove the following using techniques motivated by [3].

Proposition 2.7. Let G = Cpr × H where r ≥ 1, and H is a p-group with exp(H) ≥ pr.
Let Nj be the number of elements in H that have order pj. Then

R(G) =

pp−1R(H)p
r ∏r

i=2

(∏i−1
j=1(p

i−j)Nj

)pi−pi−1

, if r > 1

pp−1R(H)p, if r = 1

Proof. Note that G is a finite group whose elements are of the form (x, y) where x ∈ Cpr

and y ∈ H. We now partition G based on the order of the elements in the first component.
In particular we have, G =

⋃r
k=0 Fk where Fk =

{
(x1, x2) ∈ G | o(x1) = pk

}
. Since the

Fi ∩ Fj = ∅ for i 6= j, we have R(G) =
∏r

k=0R (Fk). Now let x1 ∈ Cpr with o(x1) = pi for
some i with 0 ≤ i ≤ r. For each such x1, define Fi,x1 = {(x1, x2) | x2 ∈ H}. Then we have
Fi =

⋃
x1∈Cpr ,o(x1)=pi Fi,x1 and R(Fi) =

∏
x1∈Cpr ,o(x1)=pi R (Fi,x1) for i = 0, 1, . . . , r. There

are (pi − pi−1) elements of order pi in Cpr , see Lemma 2.2. As a result,

R (Fi) = R (Fi,x1)
(pi−pi−1) .

Taking i = 0, we have F0 = F0,1 and thus, R (F0) = R(H). For i = 1, each ele-
ment (x1, x2) in F1,x1 has order same as o(x2) except for (x1, 1) which has order p. Thus
R(F1,x1) = pR(H). So R(F1) = (pR(H))p−1.

If r = 1 then R(G) = R (F0)R (F1) = pp−1R(H)p.
Now consider r > 1 and let i ∈ {2, . . . , r}. For (x1, x2) ∈ Fi,x1 with o(x2) = pj, we have
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o((x1, x2)) = pi if j < i and o((x1, x2)) = pj if j ≥ i. If r′ = exp(H) then

R (Fi,x1) =
i−1∏
j=0

(pi)Nj

r′∏
j=i

(pj)Nj

= pi
i−1∏
j=1

(pi)Nj

r′∏
j=i

(pj)Nj

= pi
r′∏
j=1

(pj)Nj

i−1∏
j=1

(pi−j)Nj

= piR(H)
i−1∏
j=1

(pi−j)Nj

Thus
∏r

i=2R (Fi) = R(H)(p
r−p)∏r

i=2

(∏i−1
j=1(p

i−j)Nj

)pi−pi−1

and finally the result follows

from a direct calculation R(G) = R (F0)Rl (F1)
∏r

i=2Rl (Fi).

2.3 Finite abelian groups

We can now state how to compute R(G) for any finite abelian group G. In view of
Theorem 2.1, the following is a direct application of Proposition 2.7 and Lemma 2.2.

Theorem 2.8. Let G be a finite abelian group with G ∼= H1 × · · · × Hk where each Hi is
an abelian pi-group and pi are distinct primes for i = 1, . . . , k. Then

R(G) = R (H1) . . . R (Hk)

where R (Hi) for i = 1, . . . , k are computed as follows:
a) If Hi

∼= Cpni
then

R(Hi) = p

(
pi+npn+2

i
−(n+1)pn+1

i
pi(pi−1)

)
i .

b) If Hi
∼= Cp

r1
i
× Cp

r2
i
× · · · × Cprni

, where 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn, and r1 + . . . + rn = r

then R (Hi) can be determined recursively as follows
i) If r1 > 1 then

R(Hi) = ppi−1i R(Cp
r2
i
× · · · × Cprni

)p
r1

r1∏
z=2

(
z−1∏
j=1

(pz−ji )Nj

)pzi−p
z−1
i

,

where Nj =
((
pji
)n−1 − (pj−1i

)n−1)
ii) If r1 = 1 then

R(Hi) = ppi−1i R(Cp
r2
i
× · · · × Cprni

)pi .
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3 Some Examples

In this final section we compute some examples using Theorem 2.8.

Example 3.1. We compute R(C
(r)
p ×Cpn) where n and r are positive integers. By part a)

of Theorem 2.8 we have

R(Cpn) = p

(
p+npn+2−(n+1)pn+1

p(p−1)

)
.

Then by part b) of Theorem 2.8 we have

R(Cp × Cpn) = pp−1p
p

(
p+npn+2−(n+1)pn+1

p(p−1)

)
= p

(
(p−1)2+(p+npn+2−(n+1)pn+1)

(p−1)

)
.

Similarly

R(Cp × Cp × Cpn) = p

(
(p−1)2(1+p)+p(p+npn+2−(n+1)pn+1)

(p−1)

)
.

Thus inductively it is easy to show that

R(C(r)
p × Cpn) = p

(
(p−1)2(1+p+...+pr−1)+pr−1(p+npn+2−(n+1)pn+1)

(p−1)

)
.

Thus we have

R(C(r)
p × Cpn) = p

(
(p−1)(pr−1)+pr−1(p+npn+2−(n+1)pn+1)

(p−1)

)
.

The next example is an application of Theorem 2.8 in the case where r1 > 1.

Example 3.2. In this example we compute R(Cp2×Cpn) where n is a positive integers. By
part a) of Theorem 2.8 we have

R(Cpn) = p

(
p+npn+2−(n+1)pn+1

p(p−1)

)
.

Then by part b) of Theorem 2.8 we have

R(Cp2 × Cpn) = pp−1p
p2
(

p+npn+2−(n+1)pn+1

p(p−1)

)
pp(p−1)(p

n−1−1).

This gives

R(Cp2 × Cpn) = p

(
(p−1)2(pn+1−p)+p(p+npn+2−(n+1)pn+1)

p−1

)
.

In the following example we compute R(C
(r)
p × Cp2 × Cpn) where n and r are positive

integers with n ≥ 2.

Example 3.3. In example 3.2 we have computed R(Cp2 ×Cpn). Then by part b) of Theo-
rem 2.8 we have

R(Cp × Cp2 × Cpn) = pp−1p
p

(
(p−1)2(pn+1−p)+p(p+npn+2−(n+1)pn+1)

p−1
)

)
.
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This gives

R(Cp × Cp2 × Cpn) = p
p

(
(p−1)2(1+p−p2+pn+1)+p2(p+npn+2−(n+1)pn+1)

p−1
)

)
.

Then inductively one can show that

R(C(r)
p × Cp2 × Cpn) = p

p

(
(p−1)2(1+p+...+pr−pr+1+pn+r)+pr+1(p+npn+2−(n+1)pn+1)

p−1
)

)

where n and r are integers with n ≥ 2.

Note that formulas obtained in Examples 3.1, 3.2 and 3.3 are straightforward to
compute even when n and r are large. For any finite abelian p-group, an explicit for-
mula for computing R(G) was obtained in [4, Theorem 1.1]. By expanding and simpli-
fying the formula obtained in [4, Theorem 1.1] one can compare the computations for

R(C
(r)
p × Cp2 × Cpn); the recursive formula used in Example 3.3 provides a more efficient

method for obtaining R(C
(r)
p × Cp2 × Cpn).
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