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Let G be a finite group and let ψ(G) denote the sum of element orders of G; later this concept has been used to define R(G) which is the product of the element orders of G. Motivated by the recursive formula for ψ(G), we consider a finite abelian group G and obtain a similar formula for R(G).

Introduction

Let G be a finite group. For any non-empty subset S of G, let ψ(S) denote the sum of element orders of S. This has been introduced in [START_REF] Amiri | Sums of element orders in finite groups[END_REF] and later in [START_REF] Tarnauceanu | A note on the product of element orders of finite abelian groups[END_REF], the notion R(G) was introduced which stands for the product of element orders of G. In the same paper, a formula for computing R(G) when G is a finite abelian group was obtained. In [START_REF] Chew | A recursive formula for the sum of element orders of finite abelian groups[END_REF], [START_REF] Saha | Sum of the powers of the orders of elements in finite abelian groups[END_REF], an explicit recursive formula for computing ψ(G) were obtained in case G is abelian. Motivated by these results, in this paper, we obtain a similar recursive formula for computing R(G) when G is a finite abelian group.

Throughout this paper, we let ϕ(n) denote the Euler totient function of the positive integer n and let p denote a prime number. A cyclic group of order n will be denoted by C n whereas C (r) p will denote the elementary abelian p -group of rank r. We always assume G to be finite. For a group G and element x ∈ G, the notation o(x) denotes the order of x. For any group G, we take

R(G) = x∈G o(x).
For a group G, the notation exp(G) denotes the exponent of G which is the smallest positive integer z such that g z = 1 G for all g ∈ G where 1 G is the identity element of G; without any ambiguity we will denote this identity element as 1.

198

Subhrajyoti Saha

Explicit formulas for finite abelian groups

In this section, we obtain explicit recursive formula for R(G) where G is a finite abelian group. We present this in different cases starting from a finite cyclic group. This format is inspired by [START_REF] Chew | A recursive formula for the sum of element orders of finite abelian groups[END_REF]Section 2]. We will then consider the direct product of a finite cyclic p-group and a (not necessarily abelian) p-group. Finally, we will consider a the most general case of finite abelian groups. The proofs of our results in this section are motivated by the methods used in [START_REF] Chew | A recursive formula for the sum of element orders of finite abelian groups[END_REF]. We begin with the following important preliminary results.

Theorem 2.1 ([4, Proposition 1.1]). Let G 1 , G 2 , . . . , G k be finite groups having co-prime orders and G ∼ = G 1 × G 2 × • • • × G k . Then R (G) = k i=1 R (G i ) n i , where n i = k j=1,j =i |G j | , i = 1, 2, . . . , k. Lemma 2.2 ([3, Lemma 2.6]). Let H ∼ = C p r 1 × C p r 2 × • • • × C p r n where 1 ≤ r 1 ≤ r j for all j with 2 ≤ j ≤ n. Then for any i ∈ {1, . . . , r 1 }, there are (p i ) n -(p i-1 ) n elements of H of order p i
The following lemma, motivated by [3, Lemma 1.1], follows easily from the fact that C n has exactly ϕ(d) elements of order d for each divisor d of n. Lemma 2.3. Let n be any positive integer. Then

ψ (C n ) = d|n dϕ(d) and R (C n ) = d|n d ϕ(d)
.

Finite Cyclic Groups

Let G be a cyclic group of order n. Then we know that

G ∼ = C m 1 × • • • × C m k , where m 1 , . . . , m k are co-prime to each other and n = m 1 . . . m k .
Lemma 2.4. Let G be a cyclic group of order p n where p is a prime number and n is a

positive integer, then R(G) = p p+np n+2 -(n+1)p n+1 p(p-1) . Proof. Using Lemma 2.3, we get R(G) = n r=1 p ϕ(p r )r = p n r=1 ϕ(p r )r . So we have R(G) = p z where z = n r=1 r(p r -p r-1 ) = (1 -1 p
) n r=1 rp r . Now the sum n r=1 rp r is an arithmeticgeometric series with common difference 1 and common ration p. Thus

n r=1 rp r = p + np n+2 -(n + 1)p n+1 (p -1) 2 .
This shows that z = p+np n+2 -(n+1)p n+1 p(p-1)

. So we get R(G) = p p+np n+2 -(n+1)p n+1 p(p-1)
.

Lemma 2.5. Let G be a cyclic group of order s = p r 1 1 . . . p r k k where the p i are distinct primes with r i ≥ 1 for i = 1, . . . , k. Then

R(G) = k i=1 p p i +r i p r i +2 i -(r i +1)p r i +1 i p i (p i -1) n i i , n i = p -r i i k j=1 p r j j . Proof. We know that G ∼ = C p r 1 1 × • • • × C p r k k
and p i are all distinct primes. Hence we can apply Theorem 2.1. Thus by Lemma 2.4, we arrive at the required result.

Direct product of a cyclic p-Group and a p-Group

In this section, we obtain a recursive formula for R(G) where G is a direct product of a finite cyclic p-group and any p-group. We begin with the following lemma from [3, Lemma 2.3].

Lemma 2.6. If H and K are p-groups, then o((x 1 , x 2 )) = max {o(x 1 ), o(x 2 )} for all for any x 1 ∈ H and x 2 ∈ K.

We now prove the following using techniques motivated by [START_REF] Chew | A recursive formula for the sum of element orders of finite abelian groups[END_REF].

Proposition 2.7. Let G = C p r × H where r ≥ 1, and H is a p-group with exp(H) ≥ p r . Let N j be the number of elements in H that have order p j . Then

R(G) =    p p-1 R(H) p r r i=2 i-1 j=1 (p i-j ) N j p i -p i-1 , if r > 1 p p-1 R(H) p , if r = 1
Proof. Note that G is a finite group whose elements are of the form (x, y) where x ∈ C p r and y ∈ H. We now partition G based on the order of the elements in the first component.

In particular we have, G = r k=0 F k where

F k = (x 1 , x 2 ) ∈ G | o(x 1 ) = p k . Since the F i ∩ F j = ∅ for i = j, we have R(G) = r k=0 R (F k ). Now let x 1 ∈ C p r with o(x 1 ) = p i for some i with 0 ≤ i ≤ r. For each such x 1 , define F i,x 1 = {(x 1 , x 2 ) | x 2 ∈ H}. Then we have F i = x 1 ∈C p r ,o(x 1 )=p i F i,x 1 and R(F i ) = x 1 ∈C p r ,o(x 1 )=p i R (F i,x 1
) for i = 0, 1, . . . , r. There are (p i -p i-1 ) elements of order p i in C p r , see Lemma 2.2. As a result,

R (F i ) = R (F i,x 1 ) (p i -p i-1 ) .
Taking i = 0, we have F 0 = F 0,1 and thus, R (F 0 ) = R(H). For i = 1, each element (x 1 , x 2 ) in F 1,x 1 has order same as o(x 2 ) except for (x 1 , 1) which has order p. Thus

R(F 1,x 1 ) = pR(H). So R(F 1 ) = (pR(H)) p-1 . If r = 1 then R(G) = R (F 0 ) R (F 1 ) = p p-1 R(H) p . Now consider r > 1 and let i ∈ {2, . . . , r}. For (x 1 , x 2 ) ∈ F i,x 1 with o(x 2 ) = p j , we have 200 Subhrajyoti Saha o((x 1 , x 2 )) = p i if j < i and o((x 1 , x 2 )) = p j if j ≥ i. If r = exp(H) then R (F i,x 1 ) = i-1 j=0 (p i ) N j r j=i (p j ) N j = p i i-1 j=1 (p i ) N j r j=i (p j ) N j = p i r j=1 (p j ) N j i-1 j=1 (p i-j ) N j = p i R(H) i-1 j=1 (p i-j ) N j Thus r i=2 R (F i ) = R(H) (p r -p) r i=2 i-1 j=1 (p i-j ) N j p i -p i-1
and finally the result follows

from a direct calculation R(G) = R (F 0 ) R l (F 1 ) r i=2 R l (F i ).

Finite abelian groups

We can now state how to compute R(G) for any finite abelian group G. In view of Theorem 2.1, the following is a direct application of Proposition 2.7 and Lemma 2.2. Theorem 2.8. Let G be a finite abelian group with G ∼ = H 1 × • • • × H k where each H i is an abelian p i -group and p i are distinct primes for i = 1, . . . , k. Then

R(G) = R (H 1 ) . . . R (H k )
where R (H i ) for i = 1, . . . , k are computed as follows:

a) If H i ∼ = C p n i then R(H i ) = p p i +np n+2 i -(n+1)p n+1 i p i (p i -1) i . b) If H i ∼ = C p r 1 i × C p r 2 i × • • • × C p rn i , where 1 ≤ r 1 ≤ r 2 ≤ • • • ≤ r n , and r 1 + . . . + r n = r then R (H i ) can be determined recursively as follows i) If r 1 > 1 then R(H i ) = p p i -1 i R(C p r 2 i × • • • × C p rn i ) p r 1 r 1 z=2 z-1 j=1 (p z-j i ) N j p z i -p z-1 i ,
where

N j = p j i n-1 -p j-1 i n-1 ii) If r 1 = 1 then R(H i ) = p p i -1 i R(C p r 2 i × • • • × C p rn i ) p i .
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3 Some Examples

In this final section we compute some examples using Theorem 2.8. .

Then by part b) of Theorem 2.8 we have

R(C p × C p n ) = p p-1 p p p+np n+2 -(n+1)p n+1 p(p-1) = p (p-1) 2 +(p+np n+2 -(n+1)p n+1 ) (p-1)
.

Similarly

R(C p × C p × C p n ) = p (p-1) 2 (1+p)+p(p+np n+2 -(n+1)p n+1 ) (p-1)
.

Thus inductively it is easy to show that

R(C (r) p × C p n ) = p (p-1) 2 (1+p+...+p r-1 )+p r-1 (p+np n+2 -(n+1)p n+1 ) (p-1)
.

Thus we have

R(C (r) p × C p n ) = p (p-1)(p r -1)+p r-1 (p+np n+2 -(n+1)p n+1 ) (p-1)
.

The next example is an application of Theorem 2.8 in the case where r 1 > 1. ) .

Example 3 . 1 .

 31 We compute R(C (r) p × C p n ) where n and r are positive integers. By part a) of Theorem 2.8 we have R(C p n ) = p p+np n+2 -(n+1)p n+1 p(p-1)

Example 3 . 2 . 1 .

 321 In this example we compute R(C p 2 × C p n ) where n is a positive integers. By part a) of Theorem 2.8 we haveR(C p n ) = p p+np n+2 -(n+1)p n+1 p(p-1).Then by part b) of Theorem 2.8 we haveR(C p 2 × C p n ) = p p-1 p p 2 p+np n+2 -(n+1)p n+1 p(p-1) p p(p-1)(p n-1 -1) .This givesR(C p 2 × C p n ) = p (p-1) 2 (p n +1-p)+p(p+np n+2 -(n+1)p n+1 ) p-In the following example we compute R(C (r) p × C p 2 × C p n ) where n and r are positive integers with n ≥ 2. Example 3.3. In example 3.2 we have computed R(C p 2 × C p n ). Then by part b) of Theorem 2.8 we have R(C p × C p 2 × C p n ) = p p-1 p p (p-1) 2 (p n +1-p)+p(p+np n+2 -(n+1)p n+1 ) p-1

Subhrajyoti Saha

This gives

)

.

Then inductively one can show that

where n and r are integers with n ≥ 2.

Note that formulas obtained in Examples 3.1, 3.2 and 3.3 are straightforward to compute even when n and r are large. For any finite abelian p-group, an explicit formula for computing R(G) was obtained in [4,