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Abstract
Fibrosis, defined as an excessive accumulation of extracellular
matrix, is the end point of a defective regenerative process,
unresolved inflammation and/or chronic damage. Numerous
muscle disorders (MD) are characterized by high levels of
fibrosis associated with muscle wasting and weakness.
Fibrosis alters muscle homeostasis/regeneration and fiber
environment and may interfere with gene and cell therapies.
Slowing down or reversing fibrosis is a crucial therapeutic goal
to maintain muscle identity in the context of therapies. Several
pathways are implicated in the modulation of the fibrotic pro-
gression and multiple therapeutic compounds targeting fibro-
genic signals have been tested in MDs, mostly in the context of
Duchenne Muscular Dystrophy. In this review, we present an
up-to-date overview of pharmacotherapies that have been
tested to reduce fibrosis in the skeletal muscle.
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Introduction
Fibrosis, defined as an excessive accumulation of extra-
cellular matrix (ECM) components such as collagens,
proteoglycans or fibronectin has been described in several
organs, such as liver, lung, skin, heart as well as in skeletal
muscle [1]. In damaged or diseased skeletal muscle, the
orchestration of several cell populations is required to

restore muscle homeostasis [2]. This orchestration
www.sciencedirect.com
involves a sequence of events: a phase of inflammation
that enables the removal of damaged fibers, followed by
the activation and differentiation of the satellite cells
(muscle resident stem cells) and the remodeling of the
ECM by fibroblast-like cells also called fibro-adipogenic

progenitors (FAPs) [3]. Since their discovery, FAPs have
been considered as an essential regulator of muscle
regeneration and one of the key actors in fibrosis [4]. In
skeletal muscle, fibrosis modifies the whole environment,
creating an imbalance in both the cell populations
involved and in the availability of soluble factors within
thematrix, which in turn impactsmuscle homeostasis and
regeneration, and affects the muscle stem cell niche [5].
Several muscle disorders (MD) are characterized by high
levels of fibrosis associated with muscle wasting and
weakness, and among them, Duchenne muscular dystro-

phy (DMD) has been extensively studied [6,7].
Numerous actors of fibrosis have been identified
including transforming growth factor b (TGFb), connec-
tive tissue growth factor (CTGF), matrix metal-
loproteinases (MMPs), abnormal level of intracellular
calcium associated with aberrant activation of the Renin
angiotensin system (RAS) [8], oxidative stress and
inflammation [1,9]. The multifactorial causes of muscle
fibrosis and the numerous cell types potentially involved
make it a complex process to target. However, a growing
number of pharmacological agents have been tested in

both preclinical and clinical trials and have shown evi-
dence that targeting fibrosis can ameliorate muscle
function. Here, we propose an up-to-date review on the
pharmacological anti-fibrotic strategies developed for
skeletal muscle at both preclinical and clinical stages.

Targeting TGFb or downstream effectors
The TGFb pathway has been established as a key player
in the development of fibrosis in almost all tissues [10]
and the overexpression of TGFb1 in skeletal muscle is a
hallmark of many MDs [11]. TGFb is produced (mainly
by macrophages and FAPs within muscle) in its latent
form and is kept inactive by binding to latent TGFb
binding proteins (LTBPs) (Figure 1). TGFb binds to
TGFbR1 and operates through the phosphorylation of
Smad2/3. The further recruitment of Smad4 allows the
complex to translocate to the nucleus and regulate the
transcription of fibrogenic factors, such as collagen I,
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Figure 1

Key signaling pathways regulating fibrosis in the skeletal muscle. In speech, bubbles are mentioned molecules with anti-fibrotic potential. TGFb,
Transforming growth factor beta; CTGF, connective tissue growth factor; LTBP4, latent TGFb-binding protein 4; LAP, latency-associated peptide; TGFbR,
TGFb receptor; PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth factor receptor; ET-1, endothelin 1; ETR, endothelin receptor;
TNFa, tumor necrosis factor a; TNFR, tumor necrosis factor receptor; ECM, extracellular matrix; MMP, matrix metalloproteinase; Ang (1–7), angiotensin
1-7; Ang 1, angiotensin 1; Ang 2, angiotensin 2; AT1/2 angiotensin 2 type 1/2 receptor; ACE1, angiotensin-converting enzyme 1; ROS, reactive oxygen
species; NAC, N acetyl cysteine; HDAC2, histone deacetylase 2; nNOS, nitric oxide synthase; PDE, phosphodiesterase; itg, integrin; NFkB, nuclear
factor-kappa B; IL6, interleukin 6; IL6-R, interleukin 6 receptor.
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fibronectin, alpha-smooth muscle actin and CTGF [10]
(Figure 1). The dysregulation of the TGFb pathway in
muscular disorders leads to the activation of FAPs and an
excessive ECM deposition. Several antifibrotic strate-
gies target directly TGFb. For example, decorin -a small
extracellular proteoglycan that interacts with TGFb and
ECM proteins- or anti-TGFb antibodies, modulate its

activity [12,13] (Table 1). Both approaches have been
shown to reduce fibrosis in the diaphragm of the mdx
mouse model of DMD [14,15]. Other strategies
targeting TGFbR1 with the antagonist suramin
demonstrated an attenuation of fibrosis in the mdx
diaphragm and limb muscles [16,17]. However,
TGFbR1 activation triggers several other non-canonical
Current Opinion in Pharmacology 2023, 68:102332
pathways involved in many different biological processes
[18] including regulation of the immune system. The
TGFb pathway has also been shown to be implicated in
regulating the pace of fusion of myoblasts in regener-
ating muscles [19]. Indeed, given the central role of
TGFb and the broad action on many cell types, its direct
targeting is unlikely to be a viable therapeutic strat-

egy [20].

Strategies targeting downstream effectors of the TGFb
pathway ensure a more selective effect and avoid off-
target effects. For example, halofuginone, that inhibits
Smad3 phosphorylation, preventing its entrance into the
nucleus, reduced the increase of fibrosis in the diaphragm
www.sciencedirect.com
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Table 1

Overview of studies using pharmacotherapies to target fibrosis in skeletal muscle.

Compound CT
(DMD)

FDA
approved

Mechanism of action Model Pathology Effect Ref

TGFb pathway modulators
Decorin TGFb1 ligand binder mdx mice DMD Decreased collagen I

levels
(Gosselin et al.,

2004)
Anti-TGFb

antibody
TGFb1 ligand binder mdx mice DMD Decreased total and

endomysial
connective tissue

(Andreetta et al.,
2006)

Suramin x TGFb1 receptor
antagonist

mdx mice DMD Decreased fibrosis in
skeletal
muscle but not
heart,
decreased CK
levels

(Taniguti et al., 2011)

mdx mice DMD Decreased cardiac
and
skeletal muscle
fibrosis

(De Oliveira Moreira
et al., 2013)

Halofuginone
(HT-100)

x Smad3
phosphorylation
inhibitor

mdx mice DMD Decreased collagen
levels

(Turgeman et al.,
2008)

mdx mice DMD Decreased fibrosis
and
increased fiber
diameter

(Mordechay et al.,
2021)

dysf -/- mice Dysferlinopathy Decreased fibrosis
and p
Smad3 levels

(Barzilai-Tutsch
et al., 2020)

ActRIIB:ALK4Fc TGFb receptor
inhibitor

Adult and aged
mdx mice

DMD Decreased fibrosis,
improved PMO
treatment

(Li et al., 2021)

LTBP4 antibody LTBP4 inhibitor mdx mice DMD Decreased fibrosis,
improved
respiratory
functions

(Demonbreun et al.,
2021)

CWHM12 aV integrin inhibitor Adult mice muscle injury Decreased cardiac
and
skeletal muscle
fibrosis

(Murray et al., 2017)

CTGF inhibitor
Pamrevlumab

(FG-3019)
x x CTGF inhibitor mdx mice DMD Decreased fibrosis

and CK
levels, improved
satellite
cells engraftment

(Morales et al., 2013)

Rat + exercice muscle injury Decreased fibrosis,
TGFb
and macrophages,
improvement of
mean
voluntary grasp
force

(Barbe et al., 2019)

Rat + exercice muscle injury Reduction of
established
fibrosis,
improved motor
function

(Barbe et al., 2020)

hSOD1G93A

mice
ALS Decreased

fibronectin
expression,
improved
locomotor function
and NMJ

(Gonzalez et al.,
2018)

(continued on next page)
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Table 1 (continued )

Compound CT
(DMD)

FDA
approved

Mechanism of action Model Pathology Effect Ref

ECM remodeling blockers
Batimastat (BB-

94)
MMPs inhibitor mdx mice DMD Reduction of fibrosis

and
centronucleated
fibers

(Kumar et al., 2010)

Dysfprmd mice/
murine
FAP cells

LGMD2B Reduction of
adipogenic
replacement, no
effect on
fibrosis and FAPs
proliferation

(Hogarth et al., 2019)

ADAMTS1
antibodies

ADAMTS1 inhibitor mdx mice DMD Decreased fibrosis,
improved
muscle strength

(Wang et al., 2021)

Renin-Angiotensin pathway modulators
Losartan x x AT1 inhibitor mdx mice DMD Decreased cardiac

fibrosis but
not skeletal
muscle

(Spurney et al.,
2011)

mdx mice DMD Decreased collagen
and
fibronectin
deposition

(Cabello-Verrugio
et al., 2012)

Dysftm1Kcam

mice
LGMD2B Increased fat and

fibrosis,
exacerbated
muscle
wasting and
damage

(White et al., 2019)

Enalapril x x ACE inhibitor mdx mice +
exercice

DMD Decreased fibrosis,
improved
muscle strength

(Morales et al., 2013)
bis

Angiotensin 1-7 mdx mice DMD Decreased fibrosis (Acuña et al., 2014)
rat + exercice Muscle injury Reduction of

collagen levels
(Totou et al., 2021)

CD-1 mice+
radiation

Radiation-
induced
fibrosis

Decreased interstitial
and
perivascular
fibrosis,
decreased levels
of TGFb
and CTGF

(Willey et al., 2016)

Tyrosine kinase blockers
Nilotinib x Tyrosine kinase

inhibitor
Adult mice DMD Decreased FAPs

survival and
collagen
deposition

(Lemos et al., 2015)

murine primary
myoblasts

Increased myoblasts
proliferation,
impairment of
myogenesis

(Contreras et al.,
2018)

Crenolanib Tyrosine kinase
inhibitor

mdx mice DMD Decreased fibrosis in
skeletal
muscle and heart,
enhanced
regeneration

(Ieronimakis et al.,
2016)

Nintedanib x Tyrosine kinase
inhibitor

mdx mice/
human
fibroblasts

DMD Decreased
fibroblasts
proliferation
and secretion,
decreased fibrosis
in mdx mice

(Piñol-Jurado et al.,
2018)
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Table 1 (continued )

Compound CT
(DMD)

FDA
approved

Mechanism of action Model Pathology Effect Ref

Inflammation modulators
Infliximab

(Remicade)
x TNFa inhibitor mdx mice DMD Decreased collagen I

levels after
low dose long term
treatment
but cardiotoxicity

(Ermolova et al.,
2014)

Edasalonexent
(CAT1004)

x x NFkB inhibitor mdx mice/
GRMD dogs

DMD Decreased fibrosis (Hammers et al.,
2016)

IL-6R antibody
(MR16-1)

x Interleukin-6
receptor antibody

dKO mice DMD Reduced fibrosis in
quadriceps,
no effect on
cardiac muscle

(Wada et al., 2017)

PKCq inhibitor
(C20)

Protein kinase
q inhibitor

mdx mice DMD Decreased fibrosis in
the diaphragm
and inflammatory
infiltrates

(Lozanoska-Ochser
et al., 2018)

N acetyl
cysteine
(NAC)

x Antioxydant mdx mice DMD Decreased fibrosis
and inflammatory
infiltrates

(Burns et al., 2019)

Other molecules
Celecoxib x COX2 inhibitor Adult mice Muscle injury Decreased fibrosis,

inhibition of
myofibroblasts
differentiation

(Chen et al., 2021)

Simvastatin x HMG Coa reductase
inhibitor

mdx mice DMD Decreased fibrosis
and
inflammation in
aged mice

(Whitehead et al.,
2015)

mdx mice DMD Prevention of cardiac
fibrosis
after long-term
treatment

(Kim et al., 2019)

mdx mice DMD Failed to decrease
fibrosis
or inflammation

(Verhaart et al.,
2021)

Sildenafil x x Phosphodiesterase
inhibitor

mdx mice DMD Decreased fibrosis,
TGFb,
TNFa and MMP13
levels

(Percival et al., 2012)

Piclamilast Phosphodiesterase
inhibitor

mdx mice DMD Decreased collagen I
and
fibronectin levels

(Nio et al., 2017)

Bosentan Endothelin receptor
inhibitor

human primary
cells (FAPs)

OPMD Decreased
proliferation and
secretion,
improved
myoblasts fusion

(Bensalah et al.,
2022)

Tranilast x Ca2+ channel
inhibitor

mdx mice DMD Decreased fibrosis (Swiderski et al.,
2014)

Givinostat x x HDAC inhibitor mdx mice DMD Decreased fibrosis,
fat deposition
and inflammation

(Consalvi et al.,
2013)

mdx mice DMD Decreased fibrosis in
skeletal
muscle but not
heart

(Licandro et al.,
2021)

CT: clinical trial, AT1: angiotensin II type 1 receptor, ALS: amyotrophic lateral sclerosis, FAPs: fibro adipogenic progenitors, OPMD : oculopharyngeal
muscular dystrophy, DMD: duchenne muscular dystrophy, LGMD2B : limb-girdle muscular dystrophy type 2B, ACE : angiotensin-converting enzyme,
NMJ : neuromuscular junction, HDAC : histone deacetylase, NFkB : nuclear factor-kappa B, TNFa: tumor necrosis factor alpha, TGFb : transforming
growth factor beta, MMP : matrix metalloproteinase, CTGF : connective tissue growth factor, LTBP4: latent TGFb binding protein 4, ADAMTS1 : a
disintegrin and metalloproteinase with thrombospondin motifs 1, PMO : phosphorodiamidate morpholino oligomer, dKO : dystrophin/utrophin double
knock out, CK: creatine kinase.
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6 Musculoskeletal
of aged mdx mice [21,22] as well as in a mouse model of
dysferlinopathy [23]. Recently, the use of a novel Fc
fusion protein ActRIIB:ALK4-Fc inhibited the interac-
tion between the receptors ActRIIB and ALK4. This dual
selectivity allows for a blocking downstream of the TGFb/
activin pathway without impacting the BMP pathway,
involved in vascularization. ActRIIB:ALK4-Fc treatment
decreased collagen deposition, partially reversing the

fibrotic phenotype in the injured muscle of the
mdx mouse [24].

In dystrophic mice and DMD patients, LTBP4 con-
tains polymorphisms that alter its proteolytic stability
[25]. The blocking of the LTBP4 hinge region, more
prone to cleavage, allows a better stabilization of its
protective effect on TGFb. LTBP4 antibody treatment
improved muscle fibrosis and increased muscle force
production in mdx mice, suggesting that targeting
LTBP4 could be a good strategy to locally reduce TGFb
in tissue [26]. Binding to aV integrin is one of the
modes of activation of TGFb (Figure 1). The blockade
of aV integrins by the small molecule CWHM12 at-
tenuates established fibrosis with inhibition of collagen
I expression in PDGFRbþ mesenchymal cells. This
small molecule targeting all the aV integrins has potent
effect in several tissues [27]. These strategies would
allow for a more precise targeting of the TGFb
signaling but it is necessary to study first the implica-
tion of the precise downstream cascades for each
fibrotic disease.

Blocking CTGF/CCN2
Connective tissue growth factor (CTGF or CCN2) is

another essential player in fibrosis, present in the ECM
and overexpressed in MDs. No canonical receptor has
been described yet, but CTGF can bind to integrins,
tyrosine kinase receptors, ECM proteins and several cy-
tokines [28].CTGFplays a role in themodulation ofECM
and has been shown to interact with several profibrotic
molecules including TGFb (potentializing its effect),
angiotensin as well as endothelin [28]. Those interactions
make CTGFa regulator of multiple signaling pathways.

In the skeletal muscle, pamrevlumab (FG3019), a

CTGF blocking antibody, has been shown to decrease
fibrosis and reduce the number of activated fibroblasts
and macrophages in mdx mice [29]. A 6-weeks treat-
ment with pamrevlumab reduced the early progression
of fibrosis [30] as well as reversed established fibrosis in
a rat model of chronic overuse [31]. Improvement was
also observed in a murine model for amyotrophic lateral
sclerosis (ALS) characterized by increased number of
FAPs and fibrosis [32] highlighting a potential broad
effect in MDs. A phase 2 clinical trial in DMD is ongoing
(NCT02606136) and a phase 3 has just star-

ted (NCT04632940).
Current Opinion in Pharmacology 2023, 68:102332
Inhibiting matrix metalloproteinases (MMPs)
The ECM is in constant remodeling and the main en-
zymes implicated in its degradation are matrix metal-
loproteinases (MMPs). Within ECM, MMPs also cleave,
and therefore modulate, a large number of chemokines
and cytokines. Elevated levels of MMPs were reported
in MDs including inflammatory myopathies [33]. Bati-
mastat (BB-94), a pan inhibitor of MMPs reduced
fibrosis in the mdx muscles [34] and inhibited the
adipogenesis of FAPs in dysferlin deficient mice [35]
showing an interesting dual role of this molecule that

could act on two sides of the muscle diseases spectrum;
decreasing fibrosis and reducing the adipogenesis
replacement. However, first generation of MMPs in-
hibitors like batimastat have been shown to trigger
adverse effects after chronic treatments in clinical trials
for cancer [36], probably due to their broad effects on
other biological processes. The most recent generation
of MMPs inhibitors with higher specificity for single
MMP led to several clinical trials in a variety of diseases
and could be translated in the future to skeletal
muscle [37].

More recently, another member of the metalloproteinase
family, ADAMTS1, was found upregulated in mdx mice
and in the serum of DMD patients, increasing with age. A
treatment with an antibody directed against ADAMTS1
decreased fibrosis and increased muscle strength in the
gastrocnemius of the mdx mouse [38], while the exact
mechanism is not yet really understood.

As the role of MMPs is context dependent and their
beneficial or detrimental action can vary through the

course of the disease, further studies are needed to
clearly identify specific MMPs implicated in each dis-
ease before clinical trials can be conducted.

Blocking the renin-angiotensin system
In the renin-angiotensin system (RAS), angiotensin I is
converted into angiotensin II by angiotensin converting
enzyme (ACE) which signals via two receptors, AT1 and
AT2 (Figure 1). The RAS has been shown to be acti-
vated in dystrophic muscles and contributes to fibrosis
notably via the regulation of TGFb and CTGFactivity in
skeletal muscle cells [8,39].

Losartan, an angiotensin II type 1 (AT1) receptor blocker
has been shown to decrease cardiac and skeletal muscle
fibrosis in the mdx mouse [40,41]. A randomized 1-year
human clinical trial showed that losartan treatment
significantly improved the cardiac function in DMD pa-
tients with cardiomyopathy, but skeletal muscle fibrosis
was not analyzed [42]. Subsequent studies in a limb
girdle muscular dystrophy (LGMD) type 2B mouse
model showed contradictory results since its administra-
tion aggravated quadriceps muscle damage [43]
www.sciencedirect.com
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suggesting a different effect of losartan on signaling in
dysferlinopathic mice. Enalapril -an inhibitor of the ACE-
diminished ECM production in sedentary and exercised
mdx mice and reduced the CTGF expression and its
profibrotic activity, without affecting TGFb signaling
when losartan did. Its action, upstream of losartan activ-
ity, directly affects the availability of Ang-II and promotes
the synthesis of Ang1-7, which has opposite effects [44].

Indeed, Ang 1e7 has been shown to diminish fibrosis in
mdxmice via an inhibition of the TGFb-smad dependent
pathway through the Mas receptor [45], the “protective”
arm of the RAS pathway (Fig. 1). Recently, Ang1-7 has
been shown to prevent fibrosis in rats after eccentric
exercise [46] and in a mouse model of radiation-induced
fibrosis. It therefore could act as a radioprotectant against
skeletal muscle fibrosis [47].

Inhibiting tyrosine kinase
Aberrant activation of Tyrosine kinase receptors, such as
the platelet derived growth factor receptors (PDGFR),
impacts homeostasis and leads to fibrosis through the
activation of fibroblasts [48]. PDGFRa is predominantly

expressed in FAPs, and one of its ligands, PDGF-AA, has
been shown as profibrotic in MDs [49]. Nilotinib is a
tyrosine kinase inhibitor (TKI) that targets several tyro-
sine kinases including PDGFR [50]: it induces the
apoptosis of murine FAPs and therefore decreases
collagen I deposition in mdx where fibrosis is induced by
chronic damage [51]. However, off-target effects on
myoblasts were also described [52] stressing the fact that
read-out drug assays should take into account potential
detrimental effects on muscle cell differentiation. Some
cardiovascular adverse events have also been reported

[53]. Nintedanib, already clinically tested in idiopathic
pulmonary fibrosis, reduced the proliferation and ECM
secretion of human fibroblasts and reduced skeletal
muscle fibrosis in mdx mice [54], however the potential
effect of inhibition on the vascular endothelial growth
factor receptor (VEGFR) needs to be considered before
going to clinical trials in young DMD patients. Cren-
olanib, a more selective PDGFRa inhibitor, reduced
fibrosis in the diaphragm of mdx mice [55]. This treat-
ment could be safer than TKI with a broad spectrum.
Recently, several TKIs, including nilotinib, sorafenib,

masitinib were tested on murine TGFb-treated FAPs
[56]. In vitro, Sorafenib presented a dose dependent
reduction in the number of COL1A1-positive FAPs while
masitinib was effective only at high doses. In vivo, none of
these drugs were able to clearly decrease fibrosis in the
diaphragm of mdx:utr þ/� mice. These discrepancies
could be explained by the effect of those drugs on other
skeletal muscle cell actors including immune and
muscle cells.

Targeting muscle inflammation
Persistent inflammation is strongly linked to fibrosis in
pathological regeneration processes.
www.sciencedirect.com
It has been reported that dystrophic muscles show over-
expression of pro-inflammatory cytokines including
TNFa and Interleukin-6 (IL-6). TNFa is released pre-
dominantly by infiltrating macrophages and its long-term
secretion activates theNF-kB signaling cascade leading to
a chronic inflammation [57,58]. The targeting of TNFa
by the antibody Infliximab significantly reduced fibrosis
and increased muscle strength in mdx mice, but had a

negative effect on cardiac function [59]. Several trials
with infliximab in other diseases (sepsis, multiple scle-
rosis) have been suspended due to increased severity of
the symptoms after treatment. Those results highlight
the difficulty to block inflammatory mediators without
risking negative effects on the immune system.

Edasalonexent (CAT-1004) and CAT-1041, NF-kB in-
hibitors, decreased fibrosis in skeletal muscle of mdx
mice and in GRMD dogs [60]. However, although well
tolerated [61], a phase 3 clinical trial (NCT03703882)

on < 8 years DMD patients did not show any significant
effect on muscle [62].

The MR16-1 antibody, targeting IL-6 receptor, inhibits
the activated IL-6 signaling pathway resulting in a
reduced fibrosis in quadriceps of dKO mice, a more
severe model of DMD [63], at advanced stages. It had,
however no effect on cardiac muscle. Already approved
for children with systemic juvenile idiopathic arthritis,
this treatment could potentially be used in DMD [64].

Early activation of T cells plays a critical role in pro-
moting fibrosis early in the disease pathology. The in-
hibition of protein kinase q (PKC-q), a key effector of T
cells activation, reduced inflammation, necrosis and
fibrosis in the diaphragm [65] and maintained muscle
performance [66] of mdx mouse. The advantage of this
strategy is the specific targeting of activated effector T
cells without causing a global immune suppression.
However, a study of the long-term effect of this inhi-
bition needs to be considered.

A close relationship between inflammation and oxida-

tive stress has been demonstrated in MDs [67].
Targeting oxidative stress with N-acetyl-cysteine
(NAC), an antioxidant, reduced fibrosis and immune
cell infiltration in the diaphragm of mdx mice [68]. NAC
treatment also reduced TNFa levels in the diaphragm
of mdx mice [69]. However, side effects of NAC treat-
ment in mdx mice included loss of muscle mass and the
suppression of a gain in body weight. Cyclooxygenase-2
(COX2), the enzyme that synthesizes prostaglandin,
regulates inflammation and oxidative stress. It is found
increased in activated fibroblasts. Celecoxib, a COX2

inhibitor, prevented myofibroblast differentiation and
reduced fibrosis formation in a skeletal muscle injury
mouse model, via several pathways including canonical
and non-canonical TGFb pathway [70].
Current Opinion in Pharmacology 2023, 68:102332
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Molecules targeting other pathways
Statins (HMG Coa reductase inhibitors) in addition to
their lipid lowering purposes, have pleiotropic effects
especially on redox signaling, ultimately reducing
oxidative stress [71]. Although statins have been
considered to be toxic to skeletal muscle [72], Simva-
statin showed a functional improvement in DMD with a
reduction of fibrosis in mdx mice diaphragm [73] as well
as in heart [74]. However more recent work did not
confirm these effects on fibrosis in the mdx mouse
diaphragm [75].

In DMD, the absence of dystrophin delocalizes and
downregulates Nitric oxide (NO) synthase, attenuating
the NO pathway [76]. This delocalization of nNOs is
found in several other myopathies [77]. Phosphodies-
terase inhibitors like Sildenafil can amplify this signaling
and was found to slow down the establishment of
fibrosis in the diaphragm of mdx mouse [78]. However,
the beneficial effects of this treatment in the mdx mice
[79] was not confirmed in a clinical trial conducted in
DMD and BMD adults, with no improvement of cardiac

function [80]. Piclamilast, another phosphodiesterase
inhibitor, decreased fibrosis in the gastrocnemius of mdx
mice [81]. Although it is still unclear which cell type is
targeted by those compounds, phosphodiesterase in-
hibitors have also been shown to exert an anti-
inflammatory effect by suppressing TNFa secretion,
as well as decreasing levels of pro fibrotic MMPs [78].

This deficient NO pathway is linked in DMD with an
increase of Histone deacetylase HDAC2 [82]. Thus,
epigenetic regulators, such as givinostat, an HDAC in-

hibitor significantly decreased fibrosis in several muscles
of the mdx and the more severe D2-mdx mouse models
of DMD [83,84]. The safety and efficacy of this com-
pound is currently being assessed in a phase 3 clinical
trial in ambulant patients with DMD (NCT02851797).

Endothelin (ET-1), a vasoconstrictor peptide, has been
shown to play a fundamental role in fibrosis, contrib-
uting to fibrotic disorders in several tissues [85]. Among
others, TGFb and AngII have been described to in-
crease ET-1 expression, while NO decreased it [86].

Recently, we demonstrated the potential of bosentan, an
inhibitor of ET-1 receptors, to block the secretion and
proliferation of human FAPs isolated from oculo-
pharyngeal muscular dystrophy (OPMD) affected
muscles. This compound reversed the negative effect of
the FAPs on the differentiation of myoblasts [87] and
could represent a new candidate to decrease fibrosis in
MDs. Further studies should determine if this drug,
already used in several pathologies, could be beneficial
in MDs.

Tranilast, a current anti-allergic agent and a Ca2þ
channel inhibitor is able to block the increased influx of
Ca2þ observed in DMD and other muscular dystrophies
Current Opinion in Pharmacology 2023, 68:102332
which also play a role in oxidative stress and leads to
muscle dysfunction [88].

Tranilast reduced fibrosis in the diaphragm of mdx mice
[89] as well as in a hamster model of LGMD [90].
Conclusion
So far, there is no treatment to effectively eradicate
fibrosis, therefore identifying compounds to reduce or
prevent fibrosis in the skeletal muscle is crucial. Anti-
fibrotic therapies have a great potential to improve the
evolution of MDs as they can help reverse pre-existing

fibrosis while preserving the skeletal muscle structure
and function. A growing number of pharmaceutical
compounds targeting fibrosis are currently emerging and
more of them are being tested in the skeletal muscle. As
the onset and development of MDs are multifactorial,
anti-fibrotic strategies include several targets, including
cellular actors like FAPs and immune cells or muscle
fibers themselves. Fibrosis is a complex process
involving several cellular actors and interconnected
pathways mediating multiple biological processes. Thus,
drug selectivity is crucial to avoid unwanted side effects,

but it requires a better understanding of the cell actors
involved in its development and the exact signaling
cascades impacting them throughout different diseases.
Combined therapies targeting several signaling path-
ways or different aspects of the pathologies might also
be a good option to have a better therapeutic impact in
MDs at advanced stages of fibrosis. On the look-out for
anti-fibrotic strategies, the selection of the animal
models for MDs and in particular fibrosis is paramount,
as these do not always recapitulate the severe charac-
teristics of human MDs. As an example, the bench-

marked DMD model mdx is known to develop
significantly less fibrosis than DMD patients, and
confined to the diaphragm. Moreover, DMD has been
the most studied MD, consequently more attention has
been focused on fibrosis associated with dystrophin
deficiency to the detriment of other MDs. However, the
course of these diseases and the level and establishment
of fibrosis are different. More work is therefore needed
to characterize fibrosis and to identify and analyze the
effect of anti-fibrotic therapies in different MDs. In
addition, among all the studies performed so far, few

have studied the effect of anti-fibrotic compounds on
human cells. Human FAPs from several MDs have now
been described and antifibrotic strategies should be
tested on those cells to investigate their potential in
future human clinical trials.
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