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    9.1   Introduction: Terminology and Concepts 

 Of all the signals human auditory cortex has to process, the one with the most 
compelling relevance to the listener is arguably speech. Parsing and decoding 
speech—the conspecifi c signal affording the most rapid and most precise transmis-
sion of information—must be considered one of the principal challenges of the audi-
tory system. This chapter concentrates on what speech perception entails and what 
the constituent operations might be, emphasizing a neurophysiological perspective. 

 Research on speech perception is profoundly interdisciplinary. The questions 
range from (1) characterizing the relevant properties of the acoustic signal ( acoustic 
phonetics ,  engineering ) to (2) identifying the various (neurophysiological, neuro-
computational, psychological) subroutines that underlie the perceptual analysis of 
the signal ( neuroscience ,  computation ,  perceptual psychology ) to (3) understanding 
the nature of the representation that forms the basis for creating meaning ( linguistics , 
cognitive  psychology ). The entire process comprises—at least—a mapping from 
mechanical vibrations in the ear to abstract representations in the brain. 

 One terminological note merits emphasis.  Speech perception  refers to the map-
ping from sounds to internal linguistic representations (roughly, words). This is not 
coextensive with  language comprehension . Language comprehension can be medi-
ated by ear (speech perception), but also by eye (reading, sign language, lip reading), 
or by touch (Braille). Thus,  speech perception proper comprises a set of auditory 
processing operations prior to language comprehension . The failure to distinguish 
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between speech and language has led to much unfortunate confusion; because the 
goal is to identify the critical component operations that underlie speech (and ulti-
mately language) comprehension, a meticulous subdivision of the relevant cognitive 
science and linguistics terminology is essential. How does this translate into research 
practice? Insofar as we are interested in studying properties of words that are central 
to comprehension, but abstract and independent of the input modality, we would aim 
to fi nd features that are stable across auditory, visual, or tactile presentation. In con-
trast, when we study speech perception, we are interested in the attributes that under-
lie the transformation from an acoustic signal to the possible internal representations. 
Because speech perception can thus be viewed as a subroutine of language compre-
hension in which the computation of meaning is not required, it can be approached, 
at least in part, by investigating the perception of isolated speech sounds (e.g., vow-
els or consonant-vowel syllables) or single words. 

 Current models of speech perception (and the associated neurobiological litera-
ture) tend to derive from studies of the perception of single speech sounds, syllables, 
or words. For example, the phenomenon of categorical perception (Liberman et al., 
 1967  )  as well as the work on vowel inventories (e.g., Näätänen et al.,  1997  )  has 
stimulated an enormous literature on understanding sublexical perceptual processes. 
Aspects related to categorical perception have been examined and reviewed in detail 
(e.g., Harnad,  1987  )  and continue to motivate neurobiological studies on category 
formation and processing (Sharma & Dorman,  1999 ; Blumstein et al.,  2005 , Chang 
et al.,  2010  ) . Similarly, the experimental research on spoken word recognition 
(e.g., using tasks such as lexical decision, gating, priming, or shadowing) has laid 
the basis for prominent perception models, including the cohort model (Gaskell & 
Marslen-Wilson,  2002  ) , the lexical access from spectra approach (Klatt,  1989  ) , the 
TRACE model (McClelland & Elman,  1986  ) , and others. 

 The literature has been ably reviewed and examined from different perspectives 
(Hawkins  1999 ; Cleary & Pisoni,  2001 ; Pardo & Remez,  2006  ) , including from a 
slightly more linguistically motivated vantage point (Poeppel & Monahan,  2008 ; 
Poeppel et al.,  2008  ) . In addition, the related body of engineering research on auto-
matic speech recognition has added important insights; this work, too, has been 
extensively reviewed (Rabiner & Juang,  1993  ) . A recent book-length treatment of 
speech perception bridging acoustics, phonetics, neuroscience, and engineering is 
provided in Greenberg and Ainsworth  (  2006  ) . 

 The goal of this chapter is to focus explicitly on the processing of naturalistic, 
connected speech, that is,  sentence level speech analysis . The motivation for focus-
ing on connected speech is threefold. First, there is a renewed interest in focusing 
on ecologically relevant, naturalistic stimulation. The majority of laboratory research 
places participants in artifi cial listening situations with peculiar task demands (e.g., 
categorical perception, lexical decision, etc.), typically unrelated to what the lis-
tener does in real life. That the execution of such task demands has a modulatory 
infl uence on the outcome of neurobiological experiments and leads to serious inter-
pretive problems has been discussed at length (e.g., Hickok & Poeppel,  2000,   2004, 
  2007  ) . Second, investigating speech perception using sentence level stimuli has a 
prominent history worth linking to; however, only in the last decade is it playing an 
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increasing role in cognitive neuroscience and neurophysiology (e.g., Scott et al., 
 2000 ; Luo & Poeppel,  2007 ; Friederici et al.,  2010  ) . Early and formative contribu-
tions to understanding speech research were made by focusing on signal-to-noise 
ratio and intelligibility of sentences. An infl uential monograph by Miller  (  1951  )  
summarized some of this early work, which is also deeply infl uenced by engineering 
demands (for a recent discussion, see Allen,  2005  ) . This early work highlighted the 
relevance of temporal parameters for speech. Third, some of the most provocative 
new insights into speech processing come from data on listeners exposed to sentence 
level input. As mentioned, the focus on single speech sounds placed a large emphasis 
on the relevance of detailed spectral cues (e.g., formant patterns) and short-term 
temporal cues (e.g., formant transitions) on recognition performance. In contrast, 
the recent work on sentence-level stimuli (i.e., materials with a duration exceeding 
1–2 s), and using experimental task demands such as intelligibility, demonstrate the 
fundamental importance of long-term temporal parameters of the acoustic signal. 
A growing literature in human auditory neuroscience has identifi ed attributes of the 
system that underlie processing of communicative signals at this level. Important 
new principles have been discovered. 

 The chapter proceeds as follows. First, some of the essential features of speech 
are outlined. Next, the properties of auditory cortex that refl ect its sensitivity to 
these features are reviewed (Section  9.2 ) and current ideas about the processing of 
connected speech are discussed (Section  9.3 ). The chapter closes with a summary 
of speech processing models at a larger scale that attempt to capture many of these 
phenomena in an integrated manner (Section  9.4 ).  

    9.2   Processing Speech as an Acoustic Signal 

    9.2.1   Some Critical Cues 

 Naturalistic, connected speech is an aperiodic but quasi-rhythmic acoustic signal 
with complex spectrotemporal modulations, that is, complex variations of the frequency 
pattern over time. Figure  9.1  illustrates two useful ways to visualize the signal: as a 
waveform (A) and as a spectrogram (B). The waveform represents energy variation 
over time—the input that the ear actually receives. The outlined “envelope” (thick 
line) refl ects that there is a temporal regularity in the signal at relatively low modu-
lation frequencies. These modulations of signal energy (in reality, spread out across 
a fi lterbank) are below 20 Hz and peak roughly at a rate of 46 Hz (Steeneken & 
Houtgast,  1980 ; Elliott & Theunissen,  2009  ) . From the perspective of what auditory 
cortex receives as input, namely the modulations at the output of each frequency 
channel of the fi lterbank that constitutes the auditory periphery (cf. Hall and Barker, 
  Chapter 7    ), these energy fl uctuations can be characterized by the modulation spec-
trum (Kanedera et al.,  1999 ; Greenberg & Kingsbury,  1997  ) . Importantly, these 
slow-energy modulations correspond roughly to the syllabic structure (or syllabic 
“chunking”) of speech. The syllabic structure as refl ected by the envelope, in turn, 
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is perceptually critical because it signals the speaking rate, it carries stress and tonal 
contrasts, and cross-linguistically the syllable can be viewed as the carrier of the 
linguistic (question, statement, etc.) or affective (happy, sad, etc.) prosody of an 
utterance (Rosen,  1992  ) . As a consequence, a high sensitivity to envelope structure 
and envelope dynamics is critical for successful speech perception.  

 The second analytic representation, the spectrogram, decomposes the acoustic 
signal in the frequency, time, and amplitude domains (Fig.  9.1B ). Textbook sum-
maries often suggest that the human auditory system captures frequency information 
between 20 Hz and 20 kHz (and such a spectrogram is plotted here), but most of the 
information that is extracted for effective recognition lies below 8 kHz. It is worth 
remembering that speech transmitted over telephone landlines contains a much 
narrower bandwidth (200–3600 Hz) and is comfortably understood by normal listen-
ers. A number of critical acoustic features can be identifi ed in the spectrogram. 
The faintly visible vertical stripes represent the glottal pulse, which refl ects the 
speaker’s fundamental frequency, F0. This can range from approximately 100 Hz 
(male adult) to 300 Hz (child). The horizontal bands of energy show where in fre-
quency space a particular speech sound is carried. The spectral structure thus refl ects 
the articulator confi guration. These bands of energy include the formants (F1, F2, 
etc.), defi nitional of vowel identity; high-frequency bursts associated, for example, 
with frication in certain consonants (e.g., /s/, /f/); and formant transitions that signal 
the change from a consonant to a vowel or vice versa. 

 The fundamental frequency (F0) conveys important cues about the speaker, for 
example, gender and size, and its modulation signals the prosodic contour of an 

  Fig. 9.1    Waveform ( a ) and spectrogram ( b ) of the same sentence uttered by a male speaker. Some 
of the key acoustic cues in speech comprehension are highlighted in black       
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utterance (including, sometimes, lexical boundaries) and intonation (stress); F0 can 
also convey phonetic information (in tonal languages). The formants, mainly F1, 
F2, and F3, defi ne the identity of vowels. The ratio between F1 and F2 is relatively 
characteristic of each vowel. Cues for vowel discrimination are thus mainly of spec-
tral nature, if we assume that the auditory system computes F1/F2 ratios. It has also 
been suggested that the ratio of F3/F2 and F3/F1 can be computed online; this mea-
sure has high utility for speaker normalization (Monahan & Idsardi,  2010  ) . It goes 
without saying that to compute such ratios, the auditory system must fi rst extract the 
frequency structure of the sound. 

 Consonants are often associated with more transient acoustic properties, and 
with a broader spectral content. The energy bursts underlying consonants can range 
from partial obstructions of air fl ow (e.g., in fricatives such as /f/) to the release of 
energy after full occlusion (e.g., in stop consonants /p/, /t/, or /k/). Consonants can 
be discriminated either by the spectral content of their initial burst, that is, by the 
fast formant transitions that bridge consonant and vowels, or by the presence of 
voicing (Rosen,  1992  ) , which corresponds to vocal chord vibrations occurring 
before and during the consonant burst. This means consonants are (or can be) dis-
criminated on the basis of a mixture of spectral and temporal cues. All of these cues 
are present within the acoustic fi ne structure, that is, signal modulations at faster 
rates, say above 50 Hz. The capacity of the auditory brain to capture the speech fi ne 
structure is therefore important to recovering important details of the signal. 

 There exist excellent summaries of acoustic phonetics. Some emphasize the 
aspect of the productive apparatus (Stevens,  1998  ) ; others highlight a cross-linguistic 
perspective (Laver,  1994  ) . There is a large body of data on the acoustic correlates of 
different attributes of speech, covered in dedicated textbooks (e.g., Pickett,  1999  ) . 
Based on this brief and selective summary, two concepts merit emphasis: fi rst, the 
extended speech signal contains critical information that is modulated at rates of 
less than 20 Hz, with the modulation peaking around 5 Hz. This low-frequency 
information correlates closely with the syllabic structure of connected speech. 
Second, the speech signal contains critical information at modulation rates higher 
than, say, 50 Hz. This rapidly changing information is associated with fi ne spectral 
changes that signal speech sound identity and other relevant speech attributes. 
Thus, there exist  two surprisingly different timescales concurrently at play in the 
speech signal . This important issue is taken up in the text that follows. 

 Notwithstanding the importance of the spectral fi ne structure, there is a big 
caveat: speech can be understood, in the sense of being intelligible in psychophysical 
experiments, when the spectral content is replaced by noise and only the envelope 
is preserved. Importantly, this manipulation is done in separate bands across the 
spectrum, for example, as few as four separate bands (e.g., Shannon et al.,  1995  ) . 
Speech that contains only envelope but no fi ne structure information is called 
vocoded speech (Faulkner et al.,  2000  ) . Compelling demonstrations that exemplify 
this type of signal decomposition (Shannon et al.,  1995 ; Ahissar et al.,  1995 ; Smith 
et al.,  2001  )  illustrate that the speech signal can undergo radical alterations and 
distortions and yet remain intelligible. 



230 A.-L. Giraud and D. Poeppel

 Such fi ndings have led to the idea that the temporal envelope, that is, temporal 
modulations of speech at relatively slow rates, is suffi cient to yield speech compre-
hension (Scott et al.,  2006 ; Loebach & Wickesberg,  2008 ; Souza & Rosen,  2009  ) . 
When using stimuli in which the fi ne structure is compromised or not available at 
all, envelope modulations below 16 Hz appear to suffi ce for adequate intelligibility. 
The remarkable comprehension level reached by most patients with cochlear 
implants, in whom about 15–20 electrodes replace 3000 hair cells, remains the best 
empirical demonstration that the spectral content of speech can be degraded with 
tolerable alteration of speech perception (Roberts et al.,  2011  ) . A related demonstra-
tion showing the resilience of speech comprehension in the face of radical signal 
impoverishment is provided by sine-wave speech (Remez et al.,  1981  ) . In these 
stimuli both envelope and spectral content are degraded but enough information is 
preserved to permit intelligibility. Typically sine-wave speech preserves the modu-
lations of the three fi rst formants, which are themselves replaced by sine-waves 
centered on F0, F1, and F2. In sum,  dramatically impoverished stimuli remain 
intelligible insofar as enough information in the spectrum is available to convey 
temporal modulations at appropriate rates .  

    9.2.2   Sensitivity of Auditory Cortex to Speech Features 

    9.2.2.1   Sensitivity to Frequency 

 This section reviews the equipment of auditory cortex to process spectral and tem-
poral cues relevant to speech. Primary auditory cortex (A1) is organized as a series 
of adjacent territories (cf. Clarke and Morosan,   Chapter 2    ), which retain cochlear 
tonotopy, much like visual cortex is organized as series of retinotopic regions 
(cf. Hall and Barker,   Chapter 7    ). This means that the spectral content of speech 
signals that is physically decomposed by the basilar membrane in the cochlea and 
encoded in primary auditory neurons (cochlear fi lters) is still place-coded at the 
level of core auditory cortex, and possibly in some adjacent territories. A place code 
can be important to discriminate speech sounds that differ with respect to their spec-
tral content. Tonotopic maps are organized in auditory cortex as multiple “mirrors,” 
resulting in an alternation of regions coding high and low frequencies (Formisano 
et al.,  2003 ; Petkov et al.,  2006  ) . One of these functionally early auditory territories 
seems to be specifi cally involved in the processing of periodicity pitch (Patterson 
et al.,  2002 ; Bendor & Wang  2006 ; Nelken et al.,  2008  ) , which corresponds to a 
sensation of tonal height conveyed by the temporal regularity of a sound, rather than 
by its audiofrequency content (see Griffi ths et al.,  2010  ) . This region is located in 
the most lateral part of Heschl’s gyrus overlapping with a region that is sensitive to 
very low frequency sounds, that is, the frequencies that correspond to pitch per-
cepts, usually referred to as “the pitch domain” (for some discussion, see Hall 
and Barker,   Chapter 7    ). Experiments using magnetoencephalography (MEG) have 
implicated the same area when pitch is constructed binaurally (Chait et al.,  2006  ) , 
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extending the role of such an area to pitch analysis more broadly. The reason for the 
clustering of periodicity pitch and other pitch responses within this region is not 
well understood. A possible and parsimonious explanation could be that auditory 
neurons (not only cortical) with very low characteristic frequencies (CFs) respond 
equally well to an input from a cochlear fi lter with very low CF, and to the modula-
tion at CF rate of other cochlear fi lters. In cortex, such an overlap can be envisaged 
as a transition between place and temporal coding principles (cf. Cariani and 
Micheyl,   Chapter 13    ). Accordingly, the pitch domain corresponds to the lowest 
edge of the range of frequencies that can be decomposed by the basilar membrane’s 
physical properties. With respect to speech processing, the pitch center should play 
an essential role in coding speaker identity and prosody/intonation contour. In line 
with this, functional magnetic resonance imaging (fMRI) studies in humans show, 
on the one hand, that the pitch center is more developed in right than left auditory 
cortex (Zatorre & Gandour,  2008  ) , and on the other hand that identity of both vow-
els and speakers is better represented in right temporal cortex (Formisano et al., 
 2008  ) , even though strong interactions across cortical hemisphere are necessary to 
complete complex speaker recognition tasks (von Kriegstein et al.,  2010  ) .  

    9.2.2.2   Sensitivity to Time 

 Most neurons in primary auditory cortex are sensitive to temporal properties of 
acoustic stimuli. Their discharge pattern easily phase-locks to pulsed stimuli of up 
to about 40–60 Hz (Bendor & Wang,  2007 ; Middlebrooks,  2008 ; Brugge et al., 
 2009  ) . Yet, this ability is limited compared to subcortical neurons that can phase-
lock to much higher rates. The ability to represent the temporal modulation of 
sounds by an “isomorphic” response pattern that precisely mimics the stimulus tem-
poral structure with the discharges (Bendor & Wang,  2007  )  decreases from the 
periphery to auditory cortex. Whereas thalamocortical fi bers can phase-lock up to 
around 100 Hz, neurons in the inferior colliculus, superior olive, and cochlear 
nucleus are able to follow even faster acoustic rates (Giraud et al.,  2000 ; Joris et al., 
 2004  ) . Thus, there is a dramatic temporal down-sampling from subcortical to corti-
cal regions— and what follows from this architectural feature of cellular physiology 
is the need for different neural coding strategies. For acoustic modulations faster 
than 30–40 Hz, auditory cortical neurons respond only at the onset of stimulus, with 
remarkable precision (Abeles,  1982 ; Heil,  1997a,   b ; Phillips et al.,  2002  ) . In awake 
marmosets, Wang and colleagues identifi ed two main categories of auditory cortical 
neurons. Whereas “synchronized” (phase-locking) neurons use a faithful temporal 
code (isomorphic) to represent stimulus temporal modulation, “unsynchronized” 
neurons use a rate code. In each of these categories, Bendor and Wang  (  2006  )  
describe neurons that respond either by increasing (positive monotonic) or decreas-
ing (negative monotonic) their discharge rate with stimulus modulation. Synchronized 
neurons that are able to phase-lock to the stimulus are essentially found in primary 
auditory cortex (A1). When moving away from A1, the proportion of unsynchro-
nized “onset” neurons increases. Their response in several dimensions, that is, the 
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amount of spikes per time unit, the delay between stimulus and response onset, the 
duration of the spike train (Bendor & Wang,  2006  ) , and the precise spike-timing 
(Kayser et al.,  2010  ) , may be used to form abstract temporal information and to 
perform more elaborate and integrated computations, such as speech segmentation, 
grouping, etc. (Wang,  2007  ) . 

 While phase-locking seems to saturate around 40 Hz in A1, Elhilali et al.  (  2004  )  
observed that primary auditory neurons can follow stimulus modulations at faster 
rates (up to 200 Hz) when fast modulations ride on top of a slow modulations. With 
respect to speech, this ability means that when carried by the speech envelope, 
aspects of the fi ne structure can be “isomorphically” encoded by auditory cortical 
neurons. This suggests that there may be two different mechanisms for encoding 
slow and fast temporal modulations (Ding & Simon,  2009  ) . Slow-amplitude modu-
lations gate fast phase-locking properties, because slow modulations permit a peri-
odic reset of synaptic activity and a regeneration of the pool of neurotransmitters 
(synaptic depression hypothesis). Although periodic synaptic regeneration is plausible, 
one could question why individual auditory neurons would have fundamentally dif-
ferent properties and biophysical limitations than subcortical auditory neurons. It is 
conceivable that the specifi city of auditory cortical neurons lies in the fact that they 
are more massively embedded in large corticocortical networks, which requires that 
they not only faithfully follow and code input but also temporally structure output 
transmission. In sum,  the role of the auditory cortex is not only to effi ciently repre-
sent the auditory input effi ciently ,  but also ,  and perhaps primarily ,  to convert input 
structure into a code that will possibly be matched with other types of representa-
tions.  As exposed in the text that follows, ensemble  neuronal oscillations may 
help by temporally structuring neuronal output and facilitating the “packaging” 
and transformations to more abstract neural codes  and representations, and pooling 
together neuronal ensembles according to endogenous principles.  

    9.2.2.3   Sensitivity to Spectrotemporal Modulations 

 Speech signals are characterized by modulations in both spectral and temporal 
domains. Two separate possible codes to represent complex stimuli such as speech 
have been implicated in the preceding text, a place code for spectral modulations and 
a temporal code for temporal modulations. Whether spectral and temporal modula-
tions are encoded by a single or by distinct mechanisms remains an open question. 
The idea of a single code for spectrotemporal modulations is supported by the pres-
ence of neurons that respond to frequency modulations but not amplitude modulations 
(Gaese & Ostwald,  1995  )  and by complex responses to spectrotemporal modulations 
(Schönwiesner & Zatorre,  2009 ; Pienkowski & Eggermont,  2010  ) . Luo et al.  (  2006, 
  2007b  )  and Ding and Simon  (  2009  )  tested, based on MEG recordings in human listen-
ers, whether FM and AM used the same coding principles. Figure  9.2  schematizes the 
stimulus confi guration and the hypothesized neural coding strategies (see legend). 
The authors argue that if coding equivalence (or similarity) is the case, cortical 
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responses as assessed by MEG should be the same when the carrier of slow AM is 
rapidly frequency modulated, or when a slowly changing carrier sound is amplitude 
modulated at fast rate (AM–FM comodulation experiments). Yet, they observed that 
only the phase of fast AM auditory responses (auditory steady state responses at 40 
Hz) is modulated by slow FM, while both the phase and the amplitude of fast FM 
auditory responses (auditory steady state responses at 40 Hz) are modulated by slow 
AM. That AM and FM interact nonlinearly is beyond doubt. However, the mere fact 
that the spectral place-coding present in several auditory territories plays a more 
important role in FM processing than in AM processing could account for the asym-
metry in the results. Whereas FM, by hypothesis, is encoded by a combination of 
place and temporal coding, AM is mostly encoded by temporal coding. Figure  9.2  
depicts a model to characterize how AM and FM, critical features of speech signals, 
may plausibly be encoded, based on processing units that have a tonotopic axis and 
incorporate distinct thresholds for temporal stimulus modulations. 

 The asymmetric response pattern to fast and slow AM/FM might also depend on 
coding differences for fast and slow modulations. Whereas very slow frequency 
modulations are perceived as pitch variations, fast modulations are perceived as 
varying loudness. On the other hand, slow-amplitude modulations are perceived 
as variations of loudness, whereas fast modulations are perceived as roughness, or 

  Fig. 9.2    Principles of amplitude and frequency modulations encoding in auditory cortex (Luo et al., 
Journal of Neurophysiology [2006], used with permission of APS). ( a ) In radio engineering mod-
ulation is used to encode acoustic stimuli, which can be either amplitude (AM; upper row) or phase 
modulated (PM; second row). ( b ) Proposals for neural AM and PM encoding. A stimulus is made 
of a frequency varying signal (upper row) and an amplitude modulation (second row). Using a PM 
encoding (third row), a neuron fi res one spike per stimulus envelope cycle (dotted line) and the 
fi ring precise timing (phase) depends on the carrier frequency. Alternatively, using AM encoding 
(last row), a neuron changes its fi ring rate according to the instantaneous frequency of the carrier, 
while keeping constant the fi ring phase. ( c ) AM coding is illustrated in more detail in three differ-
ent conditions, slow AM (upper row), fast AM (second row), and when AM and FM covary (last 
row). CF, characteristic frequency       
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fl utter, or pitch. These sharp perceptual transitions could be underpinned by both the 
size and the place of the population recruited by each of these stimulus types. 
Whereas slow FM presumably allows for both a temporal and spatial segregation of 
cortical responses, entailing distinct percepts varying in pitch, fast FM presumably 
phase-locks together at FM the entire population stimulated by the varying carrier. 
A slight jitter in phase-locking could then account for the roughness of the sensation. 
In a similar way, fast AM is possibly no longer perceived as variations of loudness 
when the ability of neurons to phase-lock is overridden (beyond 40 Hz). Flutter 
(and then pitch sensations) for AM higher than 40 Hz superimposed on the primary 
spectral content of the modulated sound might refl ect the additional excitation of 
neurons with very low CF (pitch neurons). 

 The spectral place-code, the transition from phase-locking to rate-coding for 
higher stimulus rates, and ensemble neuronal behavior, that is, the size of the popu-
lation targeted by a stimulus, provide enough representational complexity to account 
for nonlinear neuronal responses to spectrotemporal acoustic modulations without 
invoking a specifi c AM/FM code.   

    9.2.2.4   Sparse Representations in the Auditory Cortex 

 The described response properties in auditory cortex need to be interpreted with 
caution. Electrophysiological recordings necessarily rely on a selection of neurons, 
a selection that is often biased toward units that  fi re  in response to auditory stimuli 
(Atencio et al.,  2009  ) . Many neurons, however, are silent. The picture that arises 
from electrophysiological studies is one of “dense” coding because we extrapolate 
population behavior from a few recorded neurons. Hromádka and Zador  (  2009  )  
argue that no more than 5% of auditory neurons fi re above 20 spikes/s at any instant. 
These authors suggest that, rather than “dense,” auditory responses are “sparse” and 
highly selective, which permits more accurate representations and a better discrimi-
nation of auditory stimuli. Sparse coding implies the existence of population codes 
relying strongly on topographical organization and spatial patterns. The behavioral 
relevance of such  mesoscopic  cortical organization has been recently demonstrated 
using functional neuroimaging (Formisano et al.,  2008 ; Eger et al.,  2009  ) . Rather 
than looking at the mean of the response to repeated stimulation, these methods 
analyze the variance across trials and show that what differs from one trial to the 
next is meaningfully represented in the spatial pattern of the response. This spatial 
pattern can be distributed across functional areas, for example, across tonotopic 
auditory areas (Formisano et al.,  2008 ; Chang et al.,  2010  ) . The bottom line of these 
studies is that percepts are individually encoded in mesoscopic neural response 
patterns on a millimeter–centimeter scale. The notion of hierarchical processing 
across several tonotopically organized functional regions is somewhat deemphasized 
by this new perspective, which is more compatible with an analysis-by-synthesis or 
Bayesian view in which higher and lower processing stages conspire to generate a 
percept (elaborated in the last section).    
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    9.3   Cortical Processing of Speech as a Continuous Stream 

 Experimental research on the neural basis of speech has tended to focus on processing 
individually presented speech sounds, such as vowels, syllables, or single words. 
This approach has led to good progress, and the fi ndings underpin most current 
models of speech. That being said, a large part of naturalistic speech comes at the 
listener as a continuous stream, in phrases and sentences, and not well “prepackaged” 
in perceptual units of analysis. Indeed, this  segmentation  problem remains a major 
challenge to contemporary models of adult and child speech perception as well as 
automatic speech recognition. Interestingly, in psychophysical research on speech, 
especially through the 1950s, a large body of work studied speech perception and 
intelligibility using phrasal or sentential stimuli (see, e.g., Miller  [  1951  ]  for a summary 
of many experiments and Allen  [  2005  ]  for a review of the infl uential work of Fletcher 
and others). There exist fascinating fi ndings based on that work, for example, on the 
role of signal-to-noise ratio, but the feature that arises is that speech as a continuous 
signal has principled and useful temporal properties that merit attention and that may 
play a key role in the problem of speech parsing and decoding. 

    9.3.1   The Discretization Problem 

 In natural connected speech, speech cues are embedded in a continuous acoustic 
fl ow. Their on-line analysis and representation by spatial, temporal and rate neural 
encodings (see Cariani and Micheyl,   Chapter 13    ) needs to be read out (decoded) by 
mechanisms that are unlikely to be continuous. The fi rst step of these neural parsing 
and read-out mechanisms should be the discretization of the continuous input signal 
and its initial neural encoding. The generalization that perception is “discrete” has 
been motivated and discussed in numerous contexts (e.g., Pöppel,  1988 ; Van Rullen 
& Koch,  2003  ) . There is an important distinction between  temporal integration  
versus  discretization , which for expository purposes is glossed over in this chapter. 

 One particular hypothesis about a potential mechanism for chunking speech and 
other sounds is discussed here, namely that cortical oscillations could be effi cient 
instruments of auditory cortex output discretization, or discrete sampling. Neural 
oscillations refl ect synchronous activity of neuronal assemblies that are either 
intrinsically coupled or coupled by a common input. They are typically measured in 
animal electrophysiology by local fi eld potential recordings (review: Wang,  2010  ) . 
The requirements for measuring oscillations and spiking activity are different. 
When spiking is looked for, the experimenter typically tracks a response to a stimu-
lus characterized by a fast and abrupt increase in fi ring rate. Oscillations, on the 
other hand, can be observed in the absence of stimulation, and are modulated by 
stimulation in a less conspicuously causal way. The selection bias is therefore much 
stronger when measuring spikes than oscillations, because spiking refl ects activity 
of either a single neuron or a small cluster of neurons selective to certain types of 
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stimuli and ready to fi re at the right moment. Cortical oscillations are proposed to 
shape spike-timing dynamics and to impose phases of high and low neuronal excit-
ability (Britvina & Eggermont,  2007 ; Schroeder and Lakatos,  2009a,   b ; Kayser 
et al.,  2010  ) . The assumption that it is oscillations that cause spiking to be temporally 
clustered derives from the observation that spiking tends to occur in the troughs 
of oscillatory activity (Womelsdorf et al.,  2007  ) . The principle is illustrated in 
Figure  9.3A.  It is also assumed that spiking and oscillations do not refl ect the same 
aspect of information processing. Whereas spiking refl ects axonal activity, oscilla-
tions are said to refl ect mostly dendritic synaptic activity (Wang,  2010  ) . 

 Neuronal oscillations are ubiquitous in cerebral cortex and other brain regions, for 
example, hippocampus, but they vary in strength and frequency depending on their 
location and the exact nature of their neuronal generators (Mantini et al.,  2007  ) . 

  Fig. 9.3    The temporal relationship between speech and brain oscillations. ( a ) Gamma oscillations 
periodically modulate neuronal excitability and spiking. The hypothesized mechanism is that 
neurons fi re for about 12.5 ms and integrate for the rest of the 25-ms time window. Note that these 
values are approximate, as we consider the relevant gamma range for speech to lie between 28 and 
40 Hz. ( b ) Gamma power is modulated by the phase of theta rhythm (about 4 Hz). Theta rhythm is 
reset by speech resulting in keeping the alignment between brain rhythms and speech bursts       
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 In human auditory cortex, at rest, approximately 40 Hz activity (low gamma 
band) is strong and can be measured using stereotactic electroencephalography 
(EEG) in epileptic patients, MEG, or concurrent EEG and fMRI (Morillon et al., 
 2010  ) . Neural oscillations in this range are endogenous in the sense that one can 
observe a spontaneous grouping of spikes at approximately 40 Hz even in the 
absence of acoustic stimulation. This gamma activity is thought to be generated by 
a ping-pong interaction between pyramidal cells and inhibitory interneurons 
(Borgers et al.,  2005 ; Borgers & Kopell,  2008  ) , or even just among interneurons that 
are located in superfi cial cortical layers (Tiesinga & Sejnowski,  2009  ) . In the pres-
ence of a stimulus, this patterning at gamma frequencies becomes more pronounced, 
and clustered spiking activity is propagated to higher hierarchical processing stages 
(Arnal et al.,  2011  ) . Input to auditory cortex is conveyed by thalamocortical fi bers 
contacting cells in layer IV. Unlike visual cortex, auditory cortical layer IV does not 
contain spiny stellate cells, which are the primary target of thalamocortical input, 
but rather pyramidal cells (Binzegger et al.,  2007 ; da Costa & Martin,  2010  ) . 
Whereas spiny stellates are small neurons with a modest dendritic tree, forming a 
horizontal coat of interdigitated ramifi cations, pyramidal cells are essentially vertical 
elements, reaching far below and above the layer where their cell bodies are found. 
Although it is unclear why cortical canonical microcircuits might be differently 
organized in the auditory and visual cortices (see Atencio et al.,  2009  ) , it is possible 
that this more vertical architecture emphasizes sequential/hierarchical processing 
over spatial integrative processing, meeting more closely critical requirements of 
speech processing, where analysis of the temporal structure is as important as spec-
tral analysis. 

 By analogy with the proposal of Elhilali et al. (  2004  )  that fast responses are gated 
by slower ones, it is interesting to envisage this periodic modulation of spiking by 
ensemble oscillatory activity as an endogenous mechanism to ensure sustained 
excitability of the system. This endogenous periodicity, however, could also refl ect 
the alternation of dendritic integration and axonal transmission, which needs to be 
slowed down in the cortex due to the large amount of data to integrate, and the rela-
tively long time lags between inputs signaling a common single event, possibly even 
through different sensory channels. In ecological situations, speech perception relies 
on the integration of visual and auditory inputs that are naturally shifted by about 
100 ms (see van Wassenhove and Schroeder,   Chapter 11    ). Integration of audiovisual 
speech requires data accumulation over a larger time window than the one allowed 
for by gamma oscillations. Such integration could occur under the patterning of 
oscillations in the theta range. In the next section, a potential role of theta activity in 
speech processing is thus outlined.   

    9.3.2   Speech Analysis at Multiple Timescales 

 Based on linguistic, psychophysical, and physiological data as well as conceptual 
considerations, it has been proposed that speech is analyzed in parallel at multiple 
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timescales (Poeppel,  2001,   2003 ; Boemio et al.,  2005 ; Poeppel et al.,  2008  ) . 
The central idea is that both local-to-global and global-to-local types of analyses are 
carried out concurrently (multitime-resolution processing). The concept is related to 
reverse hierarchy theories of perception (Hochstein & Ahissar,  2002 ; Nahum et al., 
 2008  ) . The principal motivations for such a hypothesis are twofold. First, a single, 
short temporal integration window that forms the basis for hierarchical processing, 
that is, increasingly larger temporal analysis units as one ascends the processing 
system, fails to account for the spectral and temporal sensitivity of the speech 
processing system and is hard to reconcile with behavioral performance. Second, 
the computational strategy of analyzing information on multiple scales is widely 
used in engineering and biological systems, and the neuronal infrastructure exists to 
support multiscale computation (Canolty & Knight,  2010  ) . According to the view 
summarized here, speech is chunked into segments of roughly featural or phonemic 
length, and then integrated into larger units, as segments, diphones, syllables, words. 
In parallel, there is a fast global analysis that yields coarse inferences about speech 
(akin to Stevens’  2002  “landmarks” hypothesis), and that subsequently refi nes seg-
mental analysis. Segmental and suprasegmental analyses could be carried out 
concurrently and “packaged” for parsing and decoding due to neuronal oscillations 
at different rates. Considering a mean phoneme length of about 25–80 ms and a 
mean syllabic length of about 150–300 ms, dual-scale segmentation is assumed to 
involve two sampling mechanisms, one at about 40 Hz (or, more broadly, in the low 
gamma range) and one at about 4 Hz (or in the theta range). Electrophysiological 
evidences in favor of this hypothesis are discussed later. 

 Schroeder and Lakatos  (  2009a,   b  )  argue that oscillations determine phases of high 
and low excitability on pyramidal cells. This means that with a period of approxi-
mately 25 ms, gamma oscillations provide a 10- to 15-ms window for integrating 
spectrotemporal information (low spiking rate) followed by a 10- to 15-ms window 
for propagating the output (high spiking rate) (see, for illustration Fig.  9.3A. ). 
However, a 10- to15-ms window of integration might be too short to characterize an 
approximately 50 ms phoneme. This raises the question of how many gamma cycles 
are required to encode phonemes correctly. This question has so far only been 
addressed using computational modeling (Shamir et al.,  2009  ) . Using a pyramidal 
interneuron gamma (PING) model of gamma oscillations (Borgers et al.,  2005  )  that 
modulate activity in a coding neuronal population, Shamir et al.  (  2009  )  show that 
the shape of a sawtooth input signal designed to have the typical duration and ampli-
tude modulation of a diphone (~50 ms; typically a consonant–vowel or vowel–
consonant transition) can correctly be represented by three gamma cycles, which act 
as a three-bit code. This code has the required capacity to distinguish different 
shapes of the stimulus and is therefore a plausible means to distinguish between 
phonemes. That 50-ms diphones could be correctly discriminated with three gamma 
cycles suggests that phonemes could be sampled with one/two gamma cycles. This 
issue is critical, as  the frequency of neural oscillations in the auditory cortex might 
constitute a strong biophysical determinant with respect to the size of the minimal 
acoustic unit that can be manipulated for linguistic purposes . 
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 The notion of speech analysis at multiple timescales is useful because it allows 
the move from strictly hierarchical models of speech perception (e.g., Giraud & 
Price,  2001  )  to more complex models in which simultaneous extraction of different 
acoustic cues permits simultaneous high-order processing of different information 
from the same input signal. That speech  should  be analyzed in parallel at different 
timescales derives, among other reasons, from the observation that articulatory–
phonetic phenomena occur at different timescales. It was noted previously (Fig.  9.1 ) 
that the speech signal contains events of different durations: short energy bursts and 
formant transitions occur within a 20- to 80-ms timescale, whereas syllabically carried 
information occurs over 150–300 ms. The processing of both types of events could 
be accounted for either by a hierarchical model in which smaller acoustic units 
(segments) are concatenated into larger units (syllables) or by a parallel model in 
which both temporal units are extracted independently, and then combined. A degree 
of independence in the processing of long (slow modulation) and short (fast modu-
lation) units is observed at the behavioral level. For instance, speech can be understood 
well when it is fi rst segmented into units up to 60 ms and when these local units are 
temporally reversed  (Saberi & Perrott,  1999 ; Greenberg & Arai,  2001  ) . This obser-
vation rules out the idea that speech processing relies solely on hierarchical process-
ing of short and then larger units, as the correct extraction of short units is not a 
prerequisite for comprehension. Overall, there appears to be a grouping of psychophys-
ical phenomena such that some cluster at thresholds of approximately 50 ms and 
below and others cluster at approximately 200 ms and above (a similar clustering is 
observed for temporal properties in vision; Holcombe  2009  ) . Importantly, nonspeech 
signals are subject to similar thresholds. For example, 15–20 ms is the minimal 
stimulus duration required for correctly identifying upward versus downward FM 
sweeps (Luo et al.,  2007a  ) . By comparison, 200-ms stimulus duration underlies 
loudness judgments. In sum, physiological events at related scales form the basis 
for processing at that level. Gamma oscillations, for example, could act as an inte-
grator such that all events occurring within about 15 ms are grouped, whereas events 
occurring within the next 15 ms are suppressed. Although it may sound ineffi cient 
to suppress half of the acoustic structure, an oscillatory mechanism could refl ect a 
tradeoff between accurate signal extraction/representation and its on-line transmis-
sion to levels higher in the hierarchy, as well as ensuring the sustained excitability 
of the system.  

    9.3.3   Alignment of Neuronal Excitability with Meaningful 
Speech Events 

 An important requirement of the computational model mentioned previously 
(Shamir et al.,  2009  )  is that ongoing gamma oscillations are phase-reset, for example, 
by a population of onset excitatory neurons. Without this onset signal the perfor-
mance of the model drops. Ongoing intrinsic oscillations appear to be effective as a 
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segmenting tool only if they  align  with the stimulus. Schroeder and colleagues 
suggest that gamma and theta rhythms work together, and that the phase of theta 
oscillations determines the power and possibly also the phase of gamma oscillations 
(see Fig.  9.3B ; Schroeder & Lakatos, 2008). This relationship is referred to as “nesting.” 
Electrophysiology suggests that theta oscillations can be phase-reset by several 
means, in particular through multimodal corticocortical pathways (Arnal et al., 
 2009  ) , but most probably by the stimulus onset itself. The largest cortical auditory 
evoked response measured with EEG and MEG, about 100ms after stimulus onset, 
could correspond to the phase reset of theta activity (Arnal et al.,  2011  ) . This phase 
reset would align the speech signal and the cortical theta rhythm, the proposed 
instrument of speech segmentation into syllable/word units. As speech is strongly 
amplitude modulated at the theta rate, this would result in aligning neuronal excit-
ability with those parts of the speech signals that are most informative in terms of 
energy and spectrotemporal content (Fig.  9.3B ; Giraud and Poeppel, submitted). 
There remain critical computational issues, such as the means to get strong gamma 
activity at the moment of theta reset. Recent psychophysical research emphasizes 
the importance of aligning the acoustic speech signal with the brain’s oscillatory/
quasi-rhythmic activity. Ghitza and Greenberg  (  2009  )  demonstrated that compre-
hension can be restored by inserting periods of silence in a speech signal that was 
made unintelligible by time-compressing it by a factor of 3. The mere fact of adding 
silent periods to speech to restore an optimal temporal rate, which is equivalent to 
restoring “syllabicity,” improves performance even though the speech segments 
that remained available are not more intelligible. Optimal performance is obtained 
when 80-ms silent periods alternate with 40-ms time-compressed speech. These 
time constants allowed the authors to propose a phenomenological model involving 
three nested rhythms in the theta (5 Hz), beta, or low gamma (20–40 Hz) and 
gamma (80 Hz) domains (for extended discussion, see Ghitza,  2011  ) .  

    9.3.4   Multitime-Resolution Processing: Asymmetric Sampling 
in Time 

 Poeppel  (  2003  )  attempted to integrate and reconcile several of the strands of evi-
dence: fi rst, speech signals contain information on at least two critical timescales, 
correlating with segmental and syllabic information; second, many nonspeech audi-
tory psychophysical phenomena fall in two groups, with integration constants of 
approximately 25–50 ms and 200–300 ms; third, both patient and imaging data 
reveal cortical asymmetries such that both sides participate in auditory analysis but 
are optimized for different types of processing in left versus right; and fourth, cru-
cially for the present chapter, neuronal oscillations might relate in a principled way 
to temporal integration constants of different sizes. Poeppel  (  2003  )  proposed that 
there exist hemispherically asymmetric distributions of neuronal ensembles with 
preferred shorter versus longer integration constants; these cell groups “sample” the 
input with different sampling integration constants (Fig.  9.4A ). Specifi cally, left 
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  Fig. 9.4    ( a ) Temporal relationship between the speech waveform and the two proposed integration 
timescales (in ms) and associated brain rhythms (in Hz). ( b ) Proposed mechanisms for asymmetric 
speech parsing: left auditory cortex (LH) contains a larger proportion of neurons able to oscillate at 
gamma frequency than the right one (RH). ( c ) Differences in cytoarchitectonic organization between 
the right and left auditory cortices. Left auditory cortex contains larger pyramidal cells in superfi cial 
cortical layers and exhibits bigger microcolumns and a larger patch width and interpatch distance       
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auditory cortex has a relatively higher proportion of short term (gamma) integrating 
cell groups, whereas right auditory cortex has a larger proportion of long term 
(theta) integrating neurons (Fig.  9.4B ). As a consequence, left hemisphere auditory 
cortex is better equipped for parsing speech at the segmental scale, and right audi-
tory cortex for parsing speech at the syllabic timescale. This hypothesis, referred to 
as the asymmetric sampling in time (AST) theory, is illustrated in Figure  9.4  and 
accounts for a variety of psychophysical and functional neuroimaging results that 
show that left temporal cortex responds better to many aspects of rapidly modu-
lated speech content while right temporal cortex responds better to slowly 
 modulated signals including music, voices, and other sounds (Zatorre et al.,  2002 ; 
Warrier et al.,  2009  ) . A difference in the size of the basic integration window 
between left and right auditory cortices would explain speech functional asymmetry 
by a better sensitivity of left auditory cortex to information carried in fast temporal 
modulations that convey, for example, phonetic cues. A specialization of right audi-
tory cortex to slower modulations would grant it a better sensitivity to slower and 
stationary cues such as harmonicity and periodicity (Rosen,  1992  )  that are impor-
tant to identify vowels, syllables, and thereby speaker identity. The AST theory is 
very close, in kind, to the spectrotemporal asymmetry hypothesis promoted by 
Zatorre (e.g., Zatorre et al.,  2002 ; Zatorre & Gandour,  2008  ) . 

 As mentioned above, the underlying physiological hypothesis is that left audi-
tory cortex contains a higher proportion of neurons capable of producing gamma 
oscillations than right auditory cortex. Conversely, right auditory cortex contains 
more neurons producing theta oscillations. Consistent with this proposal, Hutsler 
and Galuske  (  2003  )  showed that the microcolumnar organization is different in the 
left and right auditory cortices (Fig.  9.4C ). Left auditory cortex contains larger pyra-
midal cells in layer III and larger microcolumns. It could be the case that larger 
pyramidal cells produce oscillations at higher rates because the larger the cell the 
stronger the membrane conductance and the faster the depolarization/repolarization 
cycle. Pyramidal cell conductance may play a role in setting the rhythm at which 
excitatory/inhibitory circuits (PING) oscillate. This hypothesis, however, has to be 
verifi ed using computational models.  

 To evaluate the plausibility of this model, four types of data are required. First, 
temporal integration over the short timescale (for both speech and nonspeech auditory 
signals) must be demonstrated. Second, evidence of temporal integration over the 
longer time scale is necessary. There exists a body of such evidence, some of which 
is reviewed by Poeppel  (  2003  ) . Pitch judgments versus loudness judgments exem-
plify the two timescales, as do segmental versus syllabic processing timescales. 
Third, the information on these two timescales should interact, to yield perceptual 
objects that refl ect the integrated properties of both modulation rates. This has not 
been widely tested, but there is compelling behavioral evidence in favor, discussed 
briefl y later. Finally, there should be cerebral asymmetries in the cortical response 
properties, which are summarized. 

 Relevant psychophysical data testing interactions across timescales are sparse, 
but several studies have attempted to understand the relative contributions of differ-
ent modulation rates. Elliott and Theunissen  (  2009  )  provide data showing that there 
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are interactions across bands with restricted temporal modulation frequencies, 
although they did not explicitly test the ranges of interest here. Chait et al. (submitted) 
show a striking interaction of two selected bands of speech signals in dichotic 
speech conditions: when both low (<8 Hz) and high (25–40 Hz) signals are presented 
concurrently, listeners’ performance exceeds the predicted linear combination values, 
suggesting a clear interaction between the timescales of interest. Further, Saoud 
et al. (submitted) observed that speech comprehension is both faster and more 
accurate when the low-rate temporal envelope (0–4 Hz) of bisyllable words is pre-
sented through the left ear and the high temporal envelope (28–40 Hz) is presented 
to the right ear relative to the reverse dichotic situation. These results suggest (1) that 
the two timescales carry information that interacts synergistically to yield higher 
intelligibility representations of the input signal and (2) that comprehension is better 
when each auditory cortex receives speech information in a temporal format that 
matches its intrinsic oscillatory capacity. Recent fMRI evidence supports this con-
clusion (Saoud et al., 2012). 

 Despite a limited understanding of the psychophysics, a large number of imaging 
and neurophysiological studies have addressed the cerebral asymmetry predictions. 
For example, consistent with AST, Boemio et al.  (  2005  ) , using temporally extended 
stimuli built from short segments of different durations, showed a striking right-
wards asymmetry in superior temporal sulcus (STS) for these nonspeech stimuli 
when longer time segments were used (e.g., 300 ms), compared to the short-
time-structure signals (e.g., 25 ms). Similarly, Overath et al.  (  2008  )  showed a sig-
nifi cant rightward lateralization for auditory stimuli with increasing length of 
spectrotemporal time windows. Zaehle et al.  (  2004  )  tested speech and nonspeech 
signals and observed robust leftward lateralization for rapidly modulated auditory 
signals. Jamison et al.  (  2006  )  used nonspeech signals in an fMRI design and 
observed the predicted left/rapid–right/slow associations. The predictions have been 
tested for speech and nonspeech, and pitting spectral against temporal processing 
advantages (e.g., Obleser et al.,  2008  ) , including even in newborns (Telkemeyer 
et al.,  2009  ) . By and large, the predicted associations hold up well, and there is 
emerging consensus that temporal parameters of the sort discussed here play a 
central role in decoding auditory signals in the cortex. 

 Are the predicted asymmetric sampling properties truly architectural features of 
the system, or are the observed asymmetries driven into the system by properties 
of the stimuli employed? To verify that the sound analysis asymmetries are systemic 
properties, Giraud and colleagues  (  2007  )  measured the distribution of neuronal 
oscillations in subjects not exposed to input, that is, in a passive resting state. Using 
combined EEG/fMRI at rest, they discovered a stronger expression of gamma 
rhythm in left auditory cortex and a stronger expression in theta rhythm in right 
auditory cortex (Fig.  9.5A ). Control analyses included analyses of other frequency 
bands in the alpha and low and high beta range. For these frequency bands there 
were no signifi cant EEG/fMRI correlations in auditory cortex at rest and no detect-
able asymmetry. 

 The left hemisphere dominance of gamma activity at rest was confi rmed using a 
detailed anatomical approach in another concurrent EEG/fMRI data set (Morillon 
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et al.,  2010  ) . There, fMRI time series were extracted from various cytoarchitectonic 
territories along Heschl’s gyrus and correlated with power variations of EEG over 
its entire spectrum (1–72 Hz). These data showed that the left dominance in sponta-
neous expression of gamma activity arises from the most posteromedial part of 
Heschl’s gyrus (Te 1.1), and that it declines along its posteromedial to anterolateral 
axis (Fig.  9.5B ). Because EEG/fMRI correlations are rather weak, these data were 
compared to MEG data at rest, from sensors that were pretested to be most responsive 

  Fig. 9.5    ( a ) Experimental evidence for an asymmetry in cortical oscillations in the left and right 
auditory cortices at rest using combined EEG/fMRI (after Giraud et al.,  2007  ) . ( a ) Topographical 
distribution of EEG/fMRI coupling in the theta and low gamma bands. Note that both rhythms are 
expressed on both sides, but that a right/left dissociation can be seen at appropriate statistical 
threshold. ( b ) Correlations between EEG power and fMRI bold signal in three different cytoarchi-
tectonic territories of Heschl’s gyrus at rest and when subjects were watching a spoken movie 
(after Morillon et al.,  2010  ) . Asymmetry in the strength of EEG/fMRI correlation was maximal in 
Te 1.1 at rest (mostly within the gamma range) and increased in all three territories during audio-
visual stimulation       
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to auditory input. The latter analyses confi rmed the left-dominance of gamma 
rhythm at rest. However, unlike previous results, both the region of interest based 
on the EEG/fMRI approach and the MEG data did not give a consistent picture of 
spontaneous theta activity. The variance across experimental data underscores that 
more experiments are needed to validate, invalidate, or augment the AST proposal.  

 The EEG/fMRI experimental data show that oscillations in the delta band 
(1–3 Hz) become right-dominant during linguistic processing, while most other 
rhythms including beta activity become strongly left-dominant (Fig.  9.5B , lower 
panel). The delta/low theta rhythm has the temporal properties to underlie prosodic 
processing, as it corresponds to integration of speech signals in approximately 
500-ms windows. This rate would be ideal to mediate prosodic operations such as 
extracting intonation contours indicative of speaker’s emotional states, illocutionary 
intent, etc. It is thus possible that rather than theta, it is the delta rhythm that is pre-
dominantly right lateralized, while gamma and theta rhythms jointly underlie speech 
parsing in left auditory cortex. There is a lot of work in progress regarding this 
unresolved question.   

    9.4   Large-Scale Neurocognitive Models of Speech Processing 

    9.4.1   Emerging Consensus: Functional Neuroanatomic Models 

 Although the perceptual analysis of speech is rooted in the different anatomic sub-
divisions of auditory cortex in the temporal lobe, speech processing involves a large 
network that includes areas in parietal and frontal cortices, the relative activations 
of which strongly depend on the task performed. Several reviews have synthesized 
the state-of-the-art of functional neuroanatomy of speech perception (Scott & 
Johnsrude,  2003 ; Hickok & Poeppel,  2000,   2004,   2007 ; Rauschecker & Scott, 
 2009  ) . We briefl y summarize the main consensus fi ndings (Fig.  9.6A ) that are based 
on functional neuroimaging (fMRI, positron emission tomography [PET], MEG/
EEG) and lesion data. 

 Departing from the classical model in which both a posterior (Wernicke’s) and 
an anterior (Broca’s) area form the anatomic network, it is now argued that speech 
is processed in parallel in at least two streams, a ventral stream for speech-to- 
meaning mapping (a “what” stream), and a dorsal stream for speech-to-articulation 
mapping (a “how” stream). Both streams converge on prefrontal cortex, with a ten-
dency for the ventral pathway to contact ventral prefrontal cortex (BA 44/45, also 
referred to as Broca’s area), and the dorsal pathway to contact dorsal premotor 
regions (Hickok & Poeppel,  2007 ; Rauschecker & Scott,  2009  ) . The dual path net-
work operates both in a feedforward (bottom-up) and feedback (top-down) manner— 
highlighting, in turn, the need for algorithmic theories that have appropriate 
primitives to permit such bidirectional processing in real time. An additional feature 
of the inclusion in current models of both ventral (temporal–frontal) and dorsal 
(temporal–parietal–frontal) streams has been a renewed appreciation for the subtlety 
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of hemispheric specialization (Ueno et al.,  2011  ) . In particular, dorsal pathway 
structures (see Fig.  9.6A ) appear much more strongly (left) lateralized, whereas the 
areas comprising the ventral processing stream(s), at least early on (e.g., superior 
temporal gyrus [STG], STS, medial temporal gyrus [MTG]), reveal robust bilateral 
contributions, whether assessed by hemodynamic or electrophysiological tech-
niques. There is certainly no one-size-fi ts-all answer to hemispheric specialization 
for speech and language processing. 

 Historically, neuropsychological defi cit-lesion research has been the main source 
of data regarding such anatomic models (Bates et al.,  2003  ) . In the context of dual 
stream proposals, the dorsal structures play a more central role in mediating output 

  Fig. 9.6    Two functional neuroanatomical models of speech perception. ( a ) Model based on neu-
ropsychology and functional neuroimaging data (PET and fMRI; after Hickok and Poeppel,  2007  ) . 
( b ) Model based on the propagation of resting oscillatory asymmetry during an audiovisual 
 linguistic stimulation (a spoken movie). Modifi ed from Giraud and Poeppel, 2012       
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related computations. Because output tasks (e.g., word repetition) are the most 
frequently used instruments in clinical work to assess poststroke performance, there 
is thus a natural tendency to overemphasize the degree of left hemisphere domi-
nance for speech and language. While output operations are apparently strongly 
lateralized to the dominant left hemisphere, the operations underlying comprehension 
are much more bilateral (Giraud et al.,  2004  ) . Various aspects of comprehension, 
including the recognition of voice, of prosody, and of components of lexical semantics 
have been strongly implicated as right-hemisphere functions. In sum, statements 
about speech and language lateralization must be taken with caution, requiring 
reference to the specifi c subroutines under consideration. For a related electro-
physiological perspective on language comprehension, see the “PARLO” model 
(Federmeier,  2007  ) , in which top-down predictive processing and production are 
argued to be left lateralized and more bottom-up processes right lateralized.  

 The functional anatomy corresponds to stages of perceptual analysis that are 
required for recognition: analysis of the acoustic signal; transformation to a phonetic 
or phonological code in order to link to stored linguistic information; contact with 
the stored representations, e.g., words; contact with the conceptual information 
linked to lexical entries; and in addition, depending on the tasks, retrieval of the 
articulatory code underlying spoken output; and combination of items to yield 
phrases, that is, compositional operations. 

 In human auditory cortex, the acoustic analysis of speech is initiated bilaterally 
in Heschl’s gyrus. Although there are presumably qualitative differences in the type 
of processing that is carried out on each side (as outlined previously), metabolic and 
hemodynamic responses reveal no compelling asymmetries in the acoustic process-
ing of speech sounds at the level visible to these techniques. A new meta-analysis 
on sublexical speech perception confi rms that bilateral regions are fully involved in 
initial analyses, with subsequent mapping to phonology more left lateralized 
(Turkeltaub & Coslett,  2010  ) . Depending on the task, phonological processing 
involves regions that are either anteroventral or posterodorsal to Heschl’s gyrus 
along the superior temporal gyrus (BA22; Davis et al.,  2005 ; Davis & Johnsrude, 
 2007  ) . Passive listening and intelligibility tasks tend to involve anteroventral regions 
where there might be relatively stable phonological representations, possibly orga-
nized in a topographic manner (e.g., syllable or vowel maps; Obleser et al.,  2006 ; 
Chang et al.,  2010  ) . Activation may extend to more anterior and ventral regions of 
the left temporal lobe. Which subroutines are executed in the more anterior ventral 
territories is a subject of intense current investigation, and proposals range from the 
anterior temporal lobe (ATL) mediating conceptual storage (Patterson et al.,  2007  )  
to linguistic combinatorics (Brennan et al.,  2010  ) . Phonetic-to-lexical mapping 
typically activates the STS and the MTG. The posterior third of middle temporal 
gyrus appears to play a key intermediate role in both recognizing and activating 
words in their formal, linguistic guise (STS to MTG mapping), as has been reviewed 
in Hickok and Poeppel  (  2007  )  and Lau et al.  (  2008  ) . Further, speech production 
tasks implicate MTG in lexical representations before articulation (Indefrey & 
Levelt,  2004  ) . Finally, there are reasons to believe that the meaning of words is 
activated, preactivated, or selected in MTG (for recent review, see Lau et al.,  2008  )  
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The extent to which STS and MTG activation is bilateral in the context of processing 
word form and word meaning is unresolved. A growing body of data suggests that 
here, too, the bilateral contribution has been underestimated. For example, in an 
fMRI study, blood oxygenation level–dependent (BOLD) responses to vocoded 
speech before and after subjects had learned to understand its linguistic content 
were recorded and clearly bilateral activation of the MTG (BA21) was observed. 
Giraud et al.  (  2004  )  concluded that it was essentially the early, phonological, steps 
of analysis that were more lateralized, but not the semantic analysis. 

 In contrast to identifi cation or “what”-type tasks mediated by ventral stream 
temporal lobe regions, the dorsal stream structures of auditory cortex (as well as 
parietal and frontal lobes) play a more critical role in sensorimotor aspects of speech 
processing. However, there are confl icting hypotheses about the dorsal stream’s 
contributions, ranging from (1) processing spectral changes over time (“how” path-
way) to (2) extracting relevant sound features and matching them with stored tem-
plates of motor responses (“do” pathway) to (3) transforming auditory representations 
of speech into motor programs for speech gestures. The data motivating the differ-
ing research questions derive mostly from imaging studies and neuropsychological 
patient data. Electrophysiological experiments have, to date, contributed less to the 
discussions of concurrent processing streams and the differential role of dorsal 
structures. Two brain regions have lately received special attention, Spt (Sylvian 
parietotemporal) and intraparietal sulcus (IPS). Imaging experiments in which sub-
jects are required to generate overt or covert articulated outputs typically activate 
regions that are posterior to Heschl’s gyrus, the posterior planum temporale, and the 
supramarginal gyrus located just above Heschl’s gyrus in the parietal operculum 
(Kell et al.,  2010  ) . The two latter regions merge in area Spt, which is argued to carry 
out the sensorimotor transformations underlying speech and other vocal tract activi-
ties (Hickok & Poeppel,  2007  ) . A different line of research, explicitly testing feed-
forward and feedback auditory processing in audiovocal integration in musicians, 
has implicated the IPS (and its connectivity to STS) in the computations linking 
perception and production (Zarate & Zatorre,  2008 ; Zarate et al.,  2010  ) . This aspect 
of dorsal pathway function is briefl y revisited in Section  9.4.3 .  

    9.4.2   Broadening the Empirical Scope: an Oscillation-Based 
Functional Model 

 The chapter has emphasized a neurophysiological perspective, and especially the 
potential role of neuronal oscillations as “administrative mechanisms” to parse and 
decode speech signals. Does such a focus converge with the functional anatomic 
models mentioned above? Recent experimental research has begun addressing this 
issue directly and developed a functional anatomic model solely derived from 
recordings of neuronal oscillations. Based on analyses of the sources of oscillatory 
activity, that is, brain regions showing asymmetric theta/gamma activity at rest and 
under linguistic stimulation, Morillon et al.  (  2010  )  propose a new functional model 
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of speech and language processing (Fig.  9.6B ) that links elegantly to the textbook 
anatomy (illustrated in Fig.  9.6A ). This model is grounded in a “core network” 
showing left oscillatory dominance at rest (no linguistic stimulation, no task), 
encompassing auditory, somatosensory, and motor cortices, and BA40 in inferior 
parietal cortex. The strongest asymmetries are observed in motor cortex and in 
BA40, which hence presumably play an important causal role in left hemispheric 
dominance during language processing. Critically, the proposed core network does 
not include Wernicke’s (BA22) and Broca’s (BA44/45) areas, despite the fact that 
both are classically related to speech and language processing. Interestingly, whereas 
these areas show no sign of asymmetry at rest, they “inherit” left dominant oscilla-
tory activity during linguistic processing from the putative core regions. The model 
argues that posterior superior temporal cortex (Wernicke’s area) inherits its profi le 
from auditory and somatosensory cortices, while Broca’s area inherits its profi le 
from all posterior regions including auditory, somatosensory, Wernicke, and BA40. 
This model specifi es that posterior regions share their oscillatory activity over the 
whole range of frequencies examined (1–72 Hz), while Broca’s area inherits only 
the gamma range of the posterior oscillatory activity. This might refl ect that oscilla-
tory activity in Broca’s area does not exclusively pertain to language. Finally, an 
important feature of the model is the infl uence of the motor lip and hand areas on 
auditory cortex oscillatory activity on the delta/theta scale, which underlines the 
importance of syllable and co-speech gesture production rates, on the receptive 
auditory sampling, and its asymmetric implementation. This model is compatible 
with a hardwired alignment of speech perception and production capacities at a 
syllable but not at a phonemic scale, suggesting that sensory/motor alignment at the 
phonemic scale is presumably acquired. Using an approach entirely driven by oscil-
lations, this model is largely consistent with the previous one, but places a new 
emphasis on hardwired auditory–motor interactions, and on a determinant role of 
BA40 in language lateralization, which remains to be clarifi ed.  

    9.4.3   The Role of the Auditory Cortex in Speech Production 

 Arguing that auditory cortex lies at the basis of speech perception is hardly surprising 
or insightful, yet it is worth remembering that the literature on speech recognition 
has been most deeply infl uenced by the  motor theory of speech perception  (Liberman 
et al.,  1967 ; Corballis,  2009  ) . This theory holds that listeners recover the intended 
articulatory gestures of the speaker, that is, properties of a motoric representation, 
and a substantial literature argues that motor cortical areas show activation in the 
relevant situations (Wilson et al.,  2004 ; Pulvermueller et al., 2006). A different per-
spective can be characterized as the  sensory theory of speech production . The idea 
is developed in some detail in Hickok et al.  (  2011  ) . In the latter view, somatosen-
sory (vocal tract confi guration) and auditory (spectrotemporal) goals lie at the basis 
of speech production, from which claim it follows that  auditory cortex is centrally 
involved in production as well as perception . In contrast, the causal role of motor 
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cortical structures for perception is thereby challenged. Both models depicted in 
Figure  9.6  underscore that brain systems for speech perception and speech produc-
tion are intimately linked at both functional and anatomical levels. 

 What is the hypothesized role of auditory cortical regions in production tasks? 
Both imaging (fMRI) and electrophysiological (MEG) studies suggest that speech 
decoding structures in human auditory cortex are preactivated during speech plan-
ning (e.g. Kell et al.,  2010 ; Tian & Poeppel,  2010  ) , presumably through input from 
premotor cortex as well as parietal areas. These areas provide feedback to the motor 
system for the control of speech production. The discussion surrounding the contri-
bution of sensory areas such as auditory cortex to production is largely embedded 
in the framework of internal forward models. Such models have been elaborated in 
detail by Guenther and colleagues for production (Guenther,  2006 ; Guenther et al., 
 2006  )  and receive support in electrophysiological studies demonstrating the predic-
tive aspect of production via efference copies (Eliades & Wang,  2008 ; Tian & 
Poeppel,  2010  ) , and align well with large-scale psycholinguistic models of percep-
tion and production (Hickok et al.,  2011  ) .  

    9.4.4   A Predictive (Bayesian) View on Speech Processing 

 When processing continuous speech, as outlined in Section  9.3 , the brain needs to 
simultaneously carry out acoustic and linguistic operations: at every instant there is 
both acoustic input to be processed and meaning to be calculated from the preceding 
input. Discretization using phases during which cortical neurons are either highly or 
weakly receptive to input is one computational principle that could ensure constant 
alternation between sampling the input and matching this input onto higher-level, 
more abstract representations. The Bayesian perspective on this issue assumes that 
the brain decodes sounds by constantly generating inferences about what is and will 
be said, on the basis of the quickest and crudest neural representation it can make 
with an acoustic input (Poeppel et al.,  2008  ) . Discretization at multiple timescales 
and Bayesian speech decoding principles are gathered in the conceptual model 
proposed in Figure  9.7  (adapted from Poeppel et al.,  2008  ) . In this model, neural 
representations of speech sounds are activated via both (1) a bottom-up process and 
(2) a higher-order prior based on previous input, knowledge of language, etc. These 
assumptions may correspond to coarse “preactivation” of representations, which 
subsequently accelerate the match between representation and input. Such priors 
can theoretically be formed at every representational level, acoustic, phonological, 
lexical, etc. Figure  9.7  illustrates, in three horizontal levels, the mapping from an 
acoustic input on the left to an output lexical item (or string of words) on the right. 
The boxes at the bottom exemplify putative types of analyses that are required for 
successful recognition. Something like these proposed analyses must be correct on 
logical grounds—and this chapter argues that the multitime-resolution analysis 
plays one helpful role in the overall process. The three boxes in the middle level 
make reference to which cortical areas are implicated for some of the operations. 
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Note that in this visualization, it is ventral stream areas that are principally 
implicated. The box on top identifi es two of the putative types of “heuristics” or 
algorithms that are under consideration: the internal forward models mentioned 
previously, and analysis-by-synthesis (cf. Poeppel et al.,  2008  ) , an algorithm for 
perception suggested in the 1950s that takes small bits of input and generates, 
sequentially, the hypothesized output compatible with an input string, iteratively 
yielding better matches. On both of these concepts of processing, much of percep-
tion is actually achieved by a form of internal prediction and/or production, yet 
these models are rather different from motor theories. A proposal in very similar 
spirit to the one exemplifi ed in Figure  9.7  is the “reverse hierarchy theory,” a con-
ceptualization developed to meet certain challenges in visual object recognition 
(Hochstein & Ahissar,  2002  )  and recently extended to speech processing (Nahum 
et al.,  2008  ) .  

 In their experiment, which effectively illustrates the tension between bottom-up 
and top-down components of speech decoding, Giraud et al.  (  2004  )  contrasted func-
tional brain images in which identical vocoded stimuli could be either understood 
or not depending on previous experience. Before exposure to the corresponding 
natural speech stimuli, participants perceived vocoded speech as noise, whereas 
after exposure they perceived it as speech and could reconstruct the meaning from 
degraded sounds. At a behavioral level this exemplifi es that perceiving linguistic 
content in speech is not merely the result of acoustic processing. At the functional 
neuroimaging level, very little neural activation corresponds to speech comprehen-
sion per se; the essential part of the process corresponds to auditory search, which 
refl ects iterative matching between hypothesis and incoming input. 

 It is diffi cult to characterize the neurophysiological processes underlying top-
down control on speech processing using the auditory modality alone, precisely 
because top-down and bottom-up infl uences concurrently operate on the same 
neuronal target. Van Wassenhove et al.  (  2005  )  designed a study using natural audio-
visual speech where it is the visual modality that primes the auditory modality (see 
van Wassenhove and Schroeder,   Chapter 11    ). Because when we speak the onset of 
visual movements leads the auditory onset by about 150 ms, the brain can infer/
predict auditory input from visual movements. Using this ecological audiovisual 
setting, it is possible to record with EEG or MEG in humans both the response to 
the visual input (the predictor) and the impact of visual prediction on auditory 
response to speech. Van Wassenhove et al.  (  2005  )  showed that the early auditory 
response is accelerated by visual input, with the degree of temporal facilitation 
related to how informative the facial confi guration was. For example, seeing a 
speaker with the mouth in a bilabial confi guration (i.e., poised to say /ba/ or /pa/ or 
/ma/) leads to up to 25 ms of facilitation because such a small set of auditory targets 
is possible. Using an identical setting, that is, videos of a speaker pronouncing syl-
lables, Arnal et al.  (  2009,   2011  )  have refi ned this approach, showing that facilitation 
also involves a reduction in the amplitude of the response. Critically, both latency 
and amplitude reductions are proportional to the informational value contained in 
the visual input. Syllables starting with a bilabial consonant, for example, /pa/ /ma/, 
are more informative, hence more predictive, than when the consonant is formed at 
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the back, for example, /ga/, /ka/. This shows that predictions made by the brain on 
the basis of rather crude sensory information strongly infl uence speech processing. 
Bayesian models of cortical responses stipulate that at each level of the hierarchy 
the neural response that is propagated forward refl ects the difference between a 
prediction and the actual input (Friston,  2010  ) . If correctly predicted, a stimulus 
therefore gives rise to a smaller cortical response than if unexpected. This phenom-
enon could be accounted for by the size to neuronal population that responds to a 
stimulus. When a speech stimulus is not predicted, the brain could respond with a 
large response refl ecting the involvement of a broader neuronal population. This 
neural strategy, although ensuring that the brain does not miss a stimulus, is both 
cognitively costly and imprecise. As soon as a stimulus is either recognized or cor-
rectly anticipated the size of the recruited neuronal population drops, refl ecting a 
more precise, focal activation in auditory cortex. Other accounts have recently been 
advanced for such phenomena (Wacongne et al.,  2011  ) .   

    9.5   Summary 

 This chapter engages, at the outset, some potential terminological confusion. 
“Speech perception” is many things to many people, and the failure to distinguish 
carefully between terms that have overlapping, obtuse, or no defi nitions has led to 
some unfortunate misunderstandings in the literature. Section  9.2  summarizes some 
of the salient properties of the speech signal that lie at the basis of what human audi-
tory cortex must process. Particular emphasis is placed on some temporal attributes, 
including the low modulation frequencies in speech that play a special role for intel-
ligibility. The section covers the sensitivity to frequency and the sensitivity to time 
of cortical neurons. In addition, the high degree of tuning to spectrotemporal modu-
lation is discussed. In Section  9.3 , the chapter turns to the processing of speech as a 
continuous signal. One of the central challenges is here called the discretization 
problem: how does auditory cortex create chunks of the appropriate temporal 
granularity for further computation? The solution that is pursued in this chapter 
builds on the concept of neuronal oscillations. In particular, oscillations in multiple 
frequencies (theta, gamma) are argued to provide the right mechanisms to align 
with the speech signal and sample the speech signal at different rates. Multitime-
resolution processing and the asymmetric sampling in time (AST) hypothesis are 
summarized. Section  9.4  outlines large-scale models. First, the consensus functional 
anatomic models are discussed. The dual stream model is highlighted, and new 
neuro-oscillatory data are reviewed that extend and strengthen such a multiple path-
way approach to speech perception. Further, it is highlighted that auditory cortex 
plays a critical role in speech production, reversing the standard roles in the literature 
that emphasize the role of motor cortex and speech perception. In terms of func-
tional analysis, the notion of an internal forward model is presented, building on the 
observation that much of perceptual analysis has a strong predictive component. 
Finally, audiovisual speech experiments are shown to test some of the predictions of 
these models. 
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 A comprehensive and explanatory neurocognitive model of speech perception 
remains an ambitious goal. It is worth remembering that speech perception is a task 
that is executed with automaticity and great ease by even early learners, but that is 
handled surprisingly poorly by even the most sophisticated automatic devices. 
The brain appears to solve this very challenging problem by breaking it down into 
parts: it is broken down in space, by implementing the functional anatomy as mul-
tiple concurrent streams, and it is broken down in time, by implementing multitime-
resolution mechanisms that analyze information on multiple scales concurrently. 
Like all models, surely the ones presented here are dramatically underspecifi ed and 
will turn out to be naïve. That being said, one hopes that they are wrong in an 
interesting way, leading to new research questions and incremental progress on this 
foundational question about human perception.      
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