

BaGe5: A New Type of Intermetallic Clathrate

Umut Aydemir, Lev Akselrud, Wilder Carrillo-Cabrera, Christophe Candolfi, Niels Oeschler, Michael Baitinger, Frank Steglich, Yuri Grin

▶ To cite this version:

Umut Aydemir, Lev Akselrud, Wilder Carrillo-Cabrera, Christophe Candolfi, Niels Oeschler, et al.. BaGe5: A New Type of Intermetallic Clathrate. Journal of the American Chemical Society, 2010, 132 (32), pp.10984-10985. 10.1021/ja104197c . hal-03997228

HAL Id: hal-03997228 https://hal.science/hal-03997228v1

Submitted on 20 Feb 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BaGe₅: An intermetallic clathrate with a new structure type

Umut Aydemir, Lev Akselrud, Wilder Carrillo-Cabrera, Christophe Candolfi, Niels Oeschler, Michael Baitinger, Frank Steglich, Yuri Grin*

> *Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany* **RECEIVED DATE (automatically inserted by publisher)**; grin@cpfs.mpg.de

Intermetallic clathrates constitute a class of cage compounds in which electropositive metal atoms are encapsulated in covalently bonded frameworks of mainly Group 14 elements (Si, Ge, Sn). The growing research interest on clathrates is mainly due to their potential as thermoelectric materials.¹ The crystal structures commonly found are related to the type I and type II gas hydrates.² By increasing the content of electropositive elements, related structures as the clathrate cP124 can be formed, which have no corresponding gas hydrate structure.³ In the binary system Ba-Ge, two clathrate types have been reported, namely the clathrate cP124 Ba₆Ge₂₅ and the clathrate-I Ba₈Ge₄₃ $\square_{3.4}$ Here we report on the synthesis, crystal structure and physical properties of BaGe₅. The crystal structure (Figure 1) constitutes a new prototype clathrate oP60 of the orthorhombic space group Pmna. BaGe5 is a diamagnetic and semiconducting Zintl phase and might represent a structure type of new prospective thermoelectric materials.

In the Ge-rich part of the Ba - Ge system, Ba₆Ge₂₅ and $Ba_8Ge_{43}\Box_3$ are the only clathrate phases found to be in thermal equilibrium with α -Ge.^{4a} Ba₆Ge₂₅ decomposes peritectically at 815 °C to BaGe₂ and melt. Ba₈Ge₄₃□₃ forms at 770 °C from the reaction of Ba₆Ge₂₅ and α-Ge and decomposes peritectically at 810 °C to α-Ge and melt. No other phase was proposed to be thermodynamically stable between Ba₆Ge₂₅ and α -Ge below 770 °C. On the other hand, a phase with composition BaGe₅ was found by electron microscopy investigations in a heterogeneous mixture of Ba₆Ge₂₅, Ba₈Ge₄₃□₃ and α-Ge. From thermal analyses, BaGe₅ was concluded to be metastable.^{4a} Our further investigations showed that this heterogeneous mixture containing BaGe₅ is only formed from a stoichiometric melt by cooling to room temperature within few minutes. Fast quenching of the melt led to the formation of Ba₆Ge₂₅ and Ba₈Ge₄₃D₃, lower cooling rates to Ba₆Ge₂₅ and α -Ge. In agreement with the reported phase diagram, mixture of Ba₆Ge₂₅ and Ba₈Ge₄₃D₃ were found to be thermodynamically stable between 770° C and 808 °C.4a By annealing slightly below 770 °C, Ba₈Ge₄₃ \square_3 decomposes rapidly to Ba₆Ge₂₅ and α -Ge. All our attempts to react Ba₆Ge₂₅ and α -Ge to BaGe5 failed. These results indicate that BaGe5 originates from the decomposition of Ba₈Ge₄₃D₃ at temperatures within its thermal stability range. The preparation of phase pure $Ba_8Ge_{43}\Box_3$ was recently achieved by rapid quenching,^{4b,5} thus allowing for detailed investigation of its decomposition along with the formation of BaGe₅. Bulk pieces of Ba₈Ge₄₃ \square_3 were annealed in glassy carbon crucibles under Ar atmosphere at various temperatures between 300 °C and 700 °C. In agreement with former results, Ba₈Ge₄₃ \square_3 is metastable up to ~300 °C.⁵ Annealing at 400 °C for 12h resulted in a complete decomposition into a microcrystalline product of BaGe5 and α-Ge (~5 wt-%)(Figure S1)

 $Ba_8Ge_{43}\square_3 \rightarrow 8 BaGe_5 + 3 Ge$

Figure 1. (a) Crystal structure of $BaGe_5$ along [100]. Bal are inside dodecahedral cages, Ba2 are drawn in gray and Ba3 in black. Half occupied Ge sites are drawn red. (b) Covalently bonded layers of Ge atoms perpendicular to [010]. Alternatively occupied Ge sites are drawn in red and white, respectively.

At 520 °C, the conversion is already complete within 1 h. No decomposition of BaGe₅ could be detected after further annealing for 6 weeks at 520 °C. However, after 1 week at 575 °C, only Ba₆Ge₂₅ and α -Ge were obtained. Therefore, BaGe₅ is thermodynamically stable up to 520 °C. For kinetic reasons, BaGe₅ cannot be obtained by annealing Ba₆Ge₂₅ and α -Ge below 520° C. Mixtures of BaGe₂ and α -Ge, which yield phase pure Ba₆Ge₂₅ after 4d annealing at 700°C, do not react at 500 °C as well. Therefore, the formation of α -Ge cannot be avoided by adding Ba to the starting material Ba₈Ge₄₃ \square_3 . In this case, a mixture of Ba₆Ge₂₅ and α -Ge is reversible. Phase pure Ba₈Ge₄₃ \square_3 to BaGe₅ and α -Ge is reversible. Phase pure Ba₈Ge₄₃ \square_3 was retrieved after annealing BaGe₅ and α -Ge at 790 °C for 2 weeks.

Figure 2. Synchrotron powder X-ray diffraction pattern of BaGe₅ ($\lambda = 0.35415$ Å). The two most intense α -Ge peaks are marked. The baseline corresponds to the residuals of a Rietveld refinement based on the structure model.X

High-resolution synchrotron powder X-ray diffraction data were collected on a sample obtained at 400 °C (Figure 2, page S3).

Besides the reflections of α -Ge, all reflections could be indexed in a primitive, orthorhombic unit cell in agreement with former results obtained by transmission electron microscopy.⁶ The crystal structure was solved in the space group Pmna (Tables S1 - S2).^{7,8} The Rietveld refinement resulted in the chemical composition $BaGe_5$ (Z = 10) which is in good agreement with the wavelength dispersive X-ray spectroscopy result of Ba_{0.98(1)}Ge_{5.02(1)}(Page S3). The crystal structure is characterized by clathrate like Ge layers perpendicular to [010], consisting of Ge₂₀ dodecahedra connected by pentagons and hexagons. The layers are interconnected via (3b)Ge- anions by covalent bonds. The (3b)Ge- anions partially occupy two crystallographic sites (SOF = 0.5) leading to substantial disorder in the crystal structure (Figure 1b). An ordered arrangement of the (3b)Ge- anions in an isomorphic subgroup such as Pmn21 or Pma2 could not be verified from Rietveld refinements. Similar 2-D infinite layers, but fully separated by the cations, have been observed in the crystal structure of A_3 Na₁₀Sn₂₃ (A = Cs, Rb, K).⁹ The Ba atoms in BaGe₅ occupy three crystallographic sites with distinctly different local environments. Ba1 atoms are enclosed within dodecahedral cages arranged on a B-centred orthorhombic lattice. Ba2 atoms are located in infinite channels running along [100]. The local environment of Ba3 depends on which of the alternative positions is occupied by the (3b)Ge- anions. Ba3 atoms are situated along the infinite channels in open cages formed by Ge₆-hexagon and Ge₅-pentagons. BaGe₅ constitutes a new structure type which can be considered as an intermediate between clathrate cP124 and clathrate I. The infinite channels are reminiscent to those of Ba₆Ge₂₅, while the arrangement of 5- and 6-rings resembles the polyhedral cages in clathrate I Ba8Ge43D3. 20 Ge atoms per unit cell are three bonded, leading to the electronic balance [Ba²⁺]₁₀[(3b)Ge⁻]₂₀[(4b)Ge⁰]₃₀. Hence, BaGe₅ can be considered as a Zintl-phase as further corroborated by the physical property measurements (Page S4). BaGe₅ is diamagnetic in the whole investigated temperature range with $\chi \approx -210 \text{ x } 10^{-6} \text{ emu mol}^{-1}$ at 300 K (Figure 3a). A rough estimation of the diamagnetic contribution using tabulated values for closed-shell cations and anions gives $\chi_{calc} \approx -110.5 \text{ x } 10^{-6} \text{ emu mol}^{-1.10}$ The temperature dependence of the electrical resistivity indicates a semiconducting

behaviour (Figure 3b). The small hump observed around 170 K might point to a structural phase transition related to the ordering

Figure 3. (a) Magnetic susceptibility χ (*T*) and (b) electrical resistivity $\rho(T)$ of BaGe₅ at low temperatures

of the (3b)Ge- anions. To understand this anomalous conduction behaviour, further investigations are required.

BaGe₅ is a Zintl phase crystallizing with the new clathrate type oP60. The compound results from the decomposition of Ba₈Ge₄₃ \square_3 at temperatures between 350°C and 520°C. Its semiconducting behaviour together with a complex crystal structure may lead to interesting thermoelectric properties.

Acknowledgments. I. Margiolaki and Y. Prots are acknowledged for the synchrotron X-ray measurements at ESRF in Grenoble. The competence groups Struktur and Metallographie at MPI CPfS are acknowledged for discussions and technical assistance. C. C. and M.B. acknowledge financial support from the CNRS-MPG program and the Deutsche

Forschungsgemeinschaft (SPP1415), respectively.

Supporting Information Available: The supplementary materials concerning to crystallographic data, xx, of BaGe5 is available free of charge at http://pubs.acs.org.

References

- Kleinke, H., Chem. Mater. 2010, 22, 604 Cros, C.; Pouchard, M., C. R. Chimie 2009, 12 1014 Carrillo-Cabrera, W.; Curda, J.; von Schnering, H.G.; Paschen, S.; Grin,
- Yu., Z. Kristallogr. 2000, 215, 207; 2001, 216, 172
- (a) Carrillo-Cabrera, W.; Budnyk, S; Prots, Y; Grin, Yu., Z. Anorg. Allg. Chem. 2004, 630, 2267. (b) Aydemir, U.; Candolfi, C.; Borrmann, H.; Baitinger, M.; Ormeci, A.; Carrillo-Cabrera, W.; Chubileau, C.; Lenoir, B.; Dauscher, A.; Oeschler, N.; Steglich, F.; Grin, Yu. Dalton Trans., 2010. 39. 1078
- Candolfi, C.; Aydemir, U.; Baitinger, M.; Oeschler, N.; Steglich, F.; Grin, (5) Yu., J. Electronic Mat. 2009, DOI: 10.1007/s11664-009-1011-0
- Carrillo-Cabrera, W. Books of Abstracts, Nicroscopy Conference 2009,
- Graz, Austria, 30 Aug. 4 Sept., **2009** Crystallographic data of BaGe₅: space group *Pmna*, a = 10.727(1) Å, b = 9.284(1) Å, c = 14.794(1) Å; 2 Ba in 2*a* 000; 4 Ba in 4*g* ¹/₄ *x* ¹/₄, *x* = (7)9.284(1) A, c = 14.794(1) A; 2 Ba in 2*a* 000; 4 Ba in 4*g* '4 *x* '4, *x* = 0.4225(3); 4 Ba in 4*h* 0*yz*, *y* = 0.2054(3), *z* = 0.6327(2); 4 Ge in 4*h* 0*yz*, *y* = 0.3645(5), *z* = 0.1087(4); 4 Ge in 4*h* 0*yz*, *y* = 0.7856(5), *z* = 0.6177(4); 4 Ge in 4*h* 0*yz*, *y* = 0.4689(11), *z* = 0.4073(6); 3.99(1) Ge in 8*i xyz*, *x* = 0.1621(5), *y* = 0.4023(2) 0.4089(11), z = 0.4073(6); 3.99(1) Ge in 8*i xyz*, x = 0.1021(3), y = 0.4922(10), z = 0.5303(4); 8 Ge in 8*i xyz*, x = 0.3050(3), y = 0.0931(3), z = 0.0608(3); 8 Ge in 8*i xyz*, x = 0.1206(4), y = 0.2780(4), z = 0.8453(3); 8 Ge in 8*i xyz*, x = 0.3193(3), y = 0.6909(4), z = 0.5058(3); 8 Ge in 8*i xyz*, x = 0.3193(3), y = 0.6209(4), z = 0.6849(2)
- Akselrud, L.G.; Zavalii, P.Yu.; Grin, Yu.; Pecharsky, V.K.; Baumgartner,
- Aksende, D.S., Zavani, F.Hu., Ohn, Fu., Fednarsky, V.K., Daungarner, B.; Wölfel, E. *Mater. Sci. Forum*, 1993, 335, 133.
 Bobev, S; Sevov, S. C., *Inorg. Chem.* 2000, 39, 5930
 (a) Weiss, A.; Witte, H., *Magnetochemie*, Verlag Chemie, Weinheim / Bergstr. 1973, p.72. (b) Madelung, O.; Rössler, U.; Schulz, M. Book series: Landolt-Börnstein Group III Condensed Matter, 2002, Value and Value (10) (a) V41A1b, pp XX. Springer-Verlag.