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Abstract
Matching problems have been widely studied in the research community, especially Ad-Auctions

with many applications ranging from network design to advertising. Following the various advance-
ments in machine learning, one natural question is whether classical algorithms can benefit from
machine learning and obtain better-quality solutions. Even a small percentage of performance im-
provement in matching problems could result in significant gains for the studied use cases. For
example, the network throughput or the revenue of Ad-Auctions can increase remarkably. This pa-
per presents algorithms with machine learning predictions for the Online Bounded Allocation and
the Online Ad-Auctions problems. We constructed primal-dual algorithms that achieve competi-
tive performance depending on the quality of the predictions. When the predictions are accurate,
the algorithms’ performance surpasses previous performance bounds, while when the predictions
are misleading, the algorithms maintain standard worst-case performance guarantees. We provide
supporting experiments on generated data for our theoretical findings.
Keywords: online algorithm, predictions, matching problems, primal-dual

1. Introduction

The matching problem is fundamental in combinatorial optimization and operations research with
wide applications from student admission to colleges through kidney exchange to Ad-Auctions. Mo-
tivated by different markets, for example, advertising and labor markets, online bipartite matching
has been intensively studied. Online bipartite matching revolves around matching a set of items
(impressions) to a set of agents (advertisers). Online items arrive over time, and at the arrival of
an item, one needs to make an irrevocable decision on the assignment of the item to an agent. For
unweighted bipartite graphs, Karp et al. (1990) gave an elegant algorithm - the RANKING algorithm
- which always outputs a matching of size at least (1− 1/e) times that of the optimal solution (Karp
et al., 1990; Birnbaum and Mathieu, 2008). The ratio of (1−1/e) is the best achievable competitive
ratio in the worst-case paradigm. Besides, for online matchings in edge-weighted bipartite graphs,
no online algorithm is competitive1 to maximize the total (edge-) weight of the output matching,
even though this problem is well-motivated by advertising and AdWords markets (see, for example,
Fahrbach et al. (2020)).

To circumvent the limitations of the worst-case paradigm, several models have been proposed
(Roughgarden, 2019, 2020). The motivation for one of these models is the spectacular advance

1. except in relaxed models such as disposal-free, etc.
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ALGORITHMS WITH PREDICTIONS FOR MATCHING PROBLEMS

of machine learning (ML). In particular, the capability of ML methods to predict patterns of fu-
ture requests could provide valuable information for online algorithms. Lykouris and Vassilvtiskii
(2018) formally introduces a general framework to incorporate ML predictions into algorithms to
improve the worst-case performance guarantees. Other researchers followed their work, studying
online algorithms with predictions (Mitzenmacher and Vassilvitskii, 2020) in a large spectrum of
problems, such as scheduling (Lattanzi et al., 2020; Mitzenmacher, 2020), caching (paging) (Lyk-
ouris and Vassilvtiskii, 2018; Rohatgi, 2020; Antoniadis et al., 2020) and ski rental (Gollapudi and
Panigrahi, 2019; Kumar et al., 2018; Angelopoulos et al., 2020). In this paper, we study the design
of algorithms with predictions for variants of online edge-weighted matching problems.

1.1. Model and Problems

We consider a model (formally stated in Bamas et al. (2020)) in which, whenever a request is re-
leased, an algorithm receives some predictions and can use these predictions to make decisions. The
designed algorithms aim to outperform the best-known algorithms when the predictions are correct,
but maintain close worst-case guarantees when the predictions are incorrect. Specifically, we study
the following problems in this model.

Online Bounded Allocation. In this problem, there are n buyers, each buyer 1 ≤ i ≤ n has a
budget Bi. Items arrive over time; upon the arrival of item j, the price bj of the item as well as the
set of buyers Sj ⊆ {1, 2, . . . , n} who are interested in purchasing j are revealed. In the standard
online setting, one needs to irrevocably sell item j to some buyer in Sj (or sell it to no one) while
respecting the budget constraints of all buyers. In a learning-enhanced model with predictions,
each item has a predicted buyer to whom the item should be sold. This additional information may
come from a learning procedure based on the data analysis of buyers and items. We consider the
learning procedure as a black box and treat the predictions as outputs of an oracle. Concretely, at
the arrival of item j, the oracle provides a predicted buyer pred(j) to whom the item j should be
sold (conventionally, pred(j) = 0 if the item should not be sold according to the prediction). The
objective is to maximize the revenue, which is the total price of sold items.

Online Ad-Auctions. This problem is the generalization of Online Bounded Allocation. In this
setting, items do not have a fixed price; instead, at the arrival of item j, each buyer i proposes a
price (or bid) bij for each item j. (Buyers can decline to buy an item by bidding 0 value.) We
assume that the bids are significantly smaller than the buyers’ budgets, so bij ≪ Bi ∀i, j. Similarly,
at the arrival of item j, the algorithm receives the prediction pred(j) and decides to whom to sell
the item. The objective is again to maximize the revenue, which is the total price of sold items.

Learning augmented algorithms. We aim to design algorithms that incorporate predictions to
achieve performance beyond the worst-case bounds. The predictions in our paper can be learned
efficiently in practice. Ad-Auctions (or Ad-words) are routinely run a hundred times per day by
different search engine companies. At the end of a period (a day, a week, a month), such companies
can infer a good matching from their data that better matches the items to the buyers to increase their
revenue. In other words, they can leverage large amounts of data to build machine learning models
to predict the best buyer for an advertisement slot based on previous transactions. Such predictions
can be used in our algorithms.

The learning augmentation depends on the algorithm’s confidence in the prediction oracle. We
represent the algorithm’s doubt in the prediction by a parameter η ∈ [0, 1] and assume that η is fixed
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during the algorithm’s execution. Large η values mean high doubt, while small η values show good
confidence.

LetA(I) be the objective value of the solution produced by algorithmA on an instance I . Sim-
ilarly, let P(I) and O(I) be the objective values of the prediction oracle and the optimal solution,
respectively. When the prediction oracle provides an infeasible solution, P(I) = 0. Given a con-
fidence parameter η ∈ [0, 1], we say that an algorithm A is c(η)-consistent and r(η)-robust if for
every instance I ,

A(I) ≥ max{c(η) · P(I), r(η) · O(I)}.

Ideally, we would like c(η) to tend to 1 when η approaches 0, meaning that with high confidence,
the algorithm performs at least as well as the prediction. Additionally, we would like r(η) to tend to
the best guarantee as in the standard online setting (without predictions) when η approaches 1.

1.2. Our Approach and Contributions

Given an algorithm A that blindly follows the predictions and another algorithm B, for example,
the best-known algorithm without predictions, a natural question is whether we can derive a new
and more efficient algorithm C by taking the linear combination of the two original algorithms.
Due to the linear combination, algorithm C can only maintain a consistency of O(1− η) for Online
Bounded Allocation (or Ad-Auctions), if the robustness is Ω(η) times the worst-case guarantee of
algorithm B. In this paper, we aim for more substantial and non-trivial guarantees.

We rely on the primal-dual approach to design learning augmented algorithms for both stud-
ied problems. The primal-dual method is an elegant and powerful algorithm design technique
(Williamson and Shmoys, 2011), especially for online algorithms (Buchbinder and Naor, 2009a).
To unify previous ad-hoc approaches, Bamas et al. (2020) presented a primal-dual framework to de-
sign online algorithms with predictions for covering problems with linear objective functions. How-
ever, their approach is not applicable for problems with packing constraints, particularly matching
problems and their variants. In this paper, we present learning augmented online algorithms with
predictions for the Online Bounded Allocation and the Online Ad-Auctions problems, answering
some open questions raised by Bamas et al. (2020).

Specifically, in Section 2, we provide an algorithm which is (1 − η)-consistent and(
e−1
e ·

1
1+(1−η)(1−eη−1)

)
-robust for the Online Bounded Allocation problem. In Section 3, we give a

(1 − η)-consistent and (1 − e−η)-robust algorithm for the Online Ad-Auctions problem. Similarly
to Bamas et al. (2020), we provide algorithms that produce fractional solutions for the studied prob-
lems. When the algorithms have high confidence in the prediction (meaning that η is closed to 0),
the algorithms achieve a similar objective value as the prediction; and when the confidence is low
(η is close to 1), the algorithms guarantee the best worst-case bound, (e − 1)/e. This robustness
guarantee holds by our algorithms even if the predictions give an infeasible solution (realized during
the execution).

1.3. Related work

The domain of algorithms with predictions (Mitzenmacher and Vassilvitskii, 2020) - or learning
augmented algorithms - has recently emerged and rapidly grown at the intersection of (discrete)
algorithm design and machine learning (ML). Its main concept is to incorporate learning predictions
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and ML techniques in the algorithm design to achieve performance guarantees beyond the worst-
case analysis and provide tailored solutions to different problems. Recent studies showed interesting
results over a large spectrum of problems, such as scheduling (Lattanzi et al., 2020; Mitzenmacher,
2020), caching (paging) (Lykouris and Vassilvtiskii, 2018; Rohatgi, 2020; Antoniadis et al., 2020),
ski rental (Gollapudi and Panigrahi, 2019; Kumar et al., 2018; Angelopoulos et al., 2020), counting
sketches (Hsu et al., 2019) and bloom filters (Kraska et al., 2018; Mitzenmacher, 2018). Bamas
et al. (2020) recently proposed a primal-dual approach to design online algorithms with predictions
for linear problems with covering constraints. They raised an open question to extend their approach
to packing constraints, which we answer in this paper.

The online matching and Ad-Auctions problems have been widely studied (see Mehta (2013)
and references therein). Mehta et al. (2007) introduced the Online Ad-Auctions problem and gave
an optimal (1 − 1/e) competitive ratio when Rmax = maxi,j{bij/Bi} is small. Buchbinder et al.
(2007) simplified their work by a primal-dual analysis. In the same paper, the authors gave an
algorithm with a refined competitive ratio for the Online Bounded Allocation problem assuming an
upper bound on the maximum degree of the vertices in the matching. Aggarwal et al. (2011) studied
another particular case of Ad-Auctions, in which for each i the bids (bij) are the same for every
j. They obtained the optimal (1 − 1/e) competitive ratio with the generalization of the RANKING

algorithm (Karp et al., 1990). In the Ad-Auctions problem (without any assumptions), the existence
of an (1−1/e)-competitive algorithm has been conjectured, but remained an open problem. Huang
et al. (2020) recently presented a 0.5016-competitive algorithm for this problem.

Motivated by internet advertising applications, several works considered the Ad-Auctions prob-
lem in various settings where forecasts or predictions are available or learnable. Esfandiari et al.
(2018) proposed a model in which the input is stochastic, and the model gets a forecast for future
items. Intuitively, we can measure the forecast accuracy by the optimal solution’s fraction one can
obtain from the stochastic input. They provide algorithms with provable bounds in this setting.
Schild et al. (2019) introduced a semi-online model in which the unknown future has a predicted
and an adversarial part. They gave algorithms with competitive ratios depending on the fraction of
the adversarial part in the input. Closely related to our work is the model by Mahdian et al. (2012)
in which, given two algorithms, one needs to design a (new) algorithm that is robust to both given
algorithms. They derived an algorithm for the Ad-Auctions problem that achieves a fraction of the
maximum revenue of the given algorithms. The main difference compared to our model is that their
algorithm is not robust if one of the given algorithms provides infeasible solutions (which could
happen with predictions), whereas our algorithm is.

2. An Algorithm with Predictions for Online Bounded Allocation

Recall that in this problem there are n buyers and each buyer 1 ≤ i ≤ n has a budget Bi. Upon
the arrival of item j, the algorithm discovers the item’s fixed price bj and the subset of buyers
Sj interested in purchasing the item. Additionally, the algorithm gets a predicted buyer pred(j)
to whom item j should be sold (pred(j) = 0 if the item should not be sold according to the
prediction). We are interested in fractional solutions as in Bamas et al. (2020), so we consider
the items to be splittable. Before the arrival of the next item, the algorithm needs to make an
irrevocable decision and sell the current item in some fractions to some buyers. The objective is to
gain maximum revenue from selling items to buyers.
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Formulation. Let xij be the fraction of item j sold to buyer i. The problem can be cast to the
following primal linear program in Figure 1 (in which we also show its dual program).

Primal:

max
m∑
j=1

∑
i∈Sj

bj xij∑
j:i∈Sj

bj xij ≤ Bi ∀ i (yi)∑
i∈Sj

xij ≤ 1 ∀ j (zj)

xij ≥ 0 ∀ i, j

Dual:

min
n∑

i=1

Bi yi +
m∑
j=1

zj

bj yi + zj ≥ bj ∀ j, i ∈ Sj (xij)

yi ≥ 0 ∀ i
zj ≥ 0 ∀ j

Figure 1: Formulation of the Online Bounded Allocation problem

Algorithm. Buchbinder et al. (2007) proposes an algorithm for the Online Bounded Allocation
problem without predictions. They define buyer levels based on the fraction of the buyers’ spent
budget. Their algorithm splits each arriving item j equally among its interested buyers i ∈ Sj who
are on the lowest level. Intuitively, this algorithm corresponds to water-filling the buyer levels.

We propose an algorithm that allocates items using the water-filling strategy of Buchbinder
et al. (2007) and also subtly incorporates predictions. Recall that the parameter η represents the
confidence in the predictions. When η is close to 1, our algorithm resembles the water-filling
algorithm, while with η close to 0, the prediction has a stronger impact on the algorithm’s decision.
To do water-filling, our algorithm uses buyer levels as well. At any moment during the execution, a
buyer i’s level is ℓ, if the fraction of buyer i’s spent budget is within the range of

[
ℓ
dBi,

ℓ+1
d Bi

)
.

We formally describe the algorithm as follows. Upon the arrival of a new item j, let i∗ be the
predicted buyer (pred(j)) suggested by the oracle. Do the following.

Algorithm 1 Learning Augmented Algorithm for the Online Bounded Allocation Problem.

Stage 1: As long as some interested buyers in Sj spend less than η fraction of their budget, the
algorithm allocates item j equally to buyers in Sj who are on the lowest level.

Stage 2: Once all interested buyers spend at least η fraction of their budgets, the algorithm assigns
the remaining fraction of item j to the predicted buyer i∗. The prediction assignment ends
when one of the two following conditions occurs.

(a) the algorithm assigned to the predicted buyer either (1− η) fraction or the remaining
fraction of j, whichever is smaller

(b) buyer i∗ exhausted its budget

Stage 3: If the algorithm does not assign item j completely during Stage 1 and 2 and there exists at
least one buyer in Sj that does not exhaust its budget, then, similarly to the first step, the
algorithm allocates the remaining fraction of item j equally to buyers in Sj who are on the
lowest level.
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Analysis. We first prove the consistency and then the robustness of the algorithm.

Lemma 1 Algorithm 1 is (1− η)-consistent with the prediction.

Proof Let V be the set of buyers who exhaust their budget at some point during the algorithm’s
execution. Let U be the set of items whose buyers did not exhaust their budgets, formally, U = {j :
pred(j) /∈ V }. We can formulate the total gain of a feasible prediction as∑

j
pred(j)̸=∅

bj =
∑

j
pred(j)∈V

bj +
∑

j
pred(j)/∈V

bj ≤
∑
i∈V

Bi +
∑
j∈U

bj (1)

where the inequality holds since any feasible allocation - including the prediction - can allocate
items of value at most Bi (the total budget) to buyer i.

Let j ∈ U be an arbitrary item. By the construction of the algorithm and the fact that the pre-
dicted buyer for item j did not exhaust its budget, the following can occur. The algorithm assigned
item j entirely during the limit assignment of Stage 1 (to satisfy the condition of η fraction spent by
each interested buyer), or otherwise allocated the remaining fraction of item j to its predicted buyer
i up to (1− η) fraction. We note that the algorithm can always assign the remaining fraction, since
buyer i did not exhaust its budget by the end of the execution. In any case, we sell item j in at least
(1− η) fraction, therefore the gain of the algorithm on j is at least (1− η) bj .

Before the prediction assignment of Stage 2, the total value of items in U sold to buyers in V
is at most

∑
i∈V ηBi due to the limit assignment rule of Stage 1. As a consequence, each predicted

buyer i∗ where i∗ /∈ V gets at least (1 − η) −
((
η
∑

i∈V Bi

)
/bj
)

fraction of item j. Therefore,
the total gain of the algorithm is at least∑

i∈V
Bi +

∑
j∈U

(1− η) bj − η
∑
i∈V

Bi (2)

where the first term is the gain of the algorithm restricted to buyers in V , the second one is the gain
of the algorithm restricted to items in U , and the last term is the upper bound of the total value of
items in U sold to buyers in V before the prediction assignment of Stage 2. By (1) and (2), the gain
of the algorithm is at least (1− η) that of the prediction.

Let us now establish the robustness of the algorithm. Let d = max{|Sj |} be the bound on
the number of interested buyers. We characterize the robustness as a function of d. Let us define a
piece-wise linear function fd : [0, 1]→ R≥0 such that fd(1) = 1 and for 0 ≤ u < 1, if ℓ−1

d ≤ u < ℓ
d

for some 1 ≤ ℓ ≤ d then

fd (u) = daℓ

(
u− ℓ− 1

d

)
+ daℓ−1

1

d
+ daℓ−2

1

d
+ . . .+ da1

1

d

= daℓ

(
u− ℓ− 1

d

)
+ aℓ−1 + aℓ−2 + . . .+ a1

where

a1 =
1

d(1 + 1
d−1)

d−1 − (d− 1)
and aℓ = a1

(
1 +

1

d− 1

)ℓ−1

∀ 2 ≤ ℓ ≤ d.
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Informally, fd is linear with coefficient daℓ on every interval
[
ℓ−1
d , ℓ

d

)
for 1 ≤ ℓ ≤ d. Note that the

maximum derivative of fd is 1/C(d), where

C(d) =
d (1 + 1

d−1)
d−1 − (d− 1)

d (1 + 1
d−1)

d−1
= 1− d− 1

d (1 + 1
d−1)

d−1

d→∞−→ e− 1

e

and C(d) is always larger than (e− 1)/e.

Lemma 2 The robustness of Algorithm 1 is 1/
(

1
C(d)+(1−η)(1−fd(η))

)
. When d is large enough,

fd(η) ≈ 1 + e(eη−1−1)
e−1 and so the robustness is approximatively e−1

e ·
1

1+(1−η)(1−eη−1)
.

Proof We fix an arbitrary item j and bound the ratio of increase of the primal and the dual objective
values caused by the arrival of item j. We set the dual variables as

yi = fd

(∑
j bjxij

Bi

)
∀i, zj = (1− fd(min

i∈Sj

{ℓi})) bj

where ℓi is the level of buyer i at the end of the algorithm’s execution.
By the definition of the dual variables, yi ≥ fd

(
mini′∈Sj

{ℓi′}
)

for every i ∈ Sj . Therefore,
bjyi + zj ≥ bj holds for every i ∈ Sj , which indicates that the dual variables are feasible.

Let us assume that item j is not entirely sold during the algorithm’s execution. This means that
all interested buyers in Sj exhausted their budget. Hence, by the definition of the dual variables,
∀ i ∈ Sj : yi = 1 and zj = 0. The rate of change of the dual objective value related only to the
y-variables is at most:

Bi
∂fd
∂xij

≤ Bi ·
bj
Bi
· f ′

d

(∑
j bjxij

Bi

)
≤ bj

C(d)

where 1/C(d) is the maximum derivative of fd. Meanwhile, the increasing rate of the primal
objective value is bj . We obtain that the primal change is at least 1/C(d) that of the dual.

In the remaining part of the proof, we assume that the algorithm sold all items completely. Note
that zj can be written as zj =

∫ 1
0 (1− fd(mini∈Sj{ℓi})) bj dy. In other words, one can imagine that

during the allocation of item j, zj is increasing at a rate of (1− fd(mini∈Sj {ℓi})) bj .
There are three stages in the algorithm. In Stage 1 and 3, the algorithm always allocates the

fractions of item j equally to buyers in Sj on the lowest level. Buchbinder et al. (2007) showed
that during these allocations, the increasing rate of the dual is at most 1/C(d) times the primal. We
present our proof in Lemma 3 for completeness, which is similar to the proof of Buchbinder et al.
(2007).

We are now interested in the allocation during Stage 2 of the algorithm. We denote the predicted
buyer i∗ = pred(j). In this stage, the algorithm allocates a part of item j only to the predicted
buyer i∗. The increasing rate of the dual objective value related only to yi∗ is

Bi∗
∂fd
∂xi∗j

≤ Bi∗ ·
bj
Bi∗
· f ′

d

(∑
j bjxi∗j

B∗
i

)
≤ bj

C(d)

since f ′
d(u) ≤ 1/C(d) for all 0 ≤ u ≤ 1. We note that every buyer i ∈ Sj has spent at least η

fraction of its budget before this stage, so zj ≤ (1 − fd(η)) bj . Therefore, the total increasing rate
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of the dual in this step is at most

Bi∗
∂fd
∂xi∗j

+
∂zj
∂xi∗j

≤ bj
C(d)

+ (1− fd(η)) bj .

Combining all the cases, the increasing rate of the dual is at most{
bj

C(d) + (1− fd(η)) bj during Stage 2,
bj

C(d) during Stage 1 and 3.

We highlight that the algorithm allocates at most (1−η) fraction of item j during Stage 2. Therefore,
the total increase of the dual due to the arrival of j is at most:∫ (1−η)

0

(
bj

C(d)
+ (1− fd(η)) bj

)
dy +

∫ η

0

(
bj

C(d)

)
dy =

(
1

C(d)
+ (1− η)(1− fd(η))

)
bj .

The increase of the primal is bj , so we can deduce that the robustness of the algorithm is 1/
(

1
C(d) +

(1−η)(1−fd(η))
)
. To finish the proof, we compute and estimate the value of fd(η) for large values

of d. We have

fd(η) = fd

(
⌊η · d⌋

d

)
= a1

(
d

(
1 +

1

d− 1

)⌊η·d⌋−1

− (d− 1)

)
=

d(1 + 1
d−1)

⌊η·d⌋−1 − (d− 1)

d(1 + 1
d−1)

d−1 − (d− 1)

= 1 +
d(1 + 1

d−1)
⌊η·d⌋−1 − d(1 + 1

d−1)
d−1

d(1 + 1
d−1)

d−1 − (d− 1)

= 1 +

(
d(1 + 1

d−1)
⌊η·d⌋−1

d(1 + 1
d−1)

d−1
− 1

)
· 1

1− (d−1)

d(1+ 1
d−1

)d−1

= 1 +
1

C(d)

((
1 +

1

d− 1

)⌊η·d⌋−d

− 1

)
d→∞−→ 1 +

e(eη−1 − 1)

e− 1

Lemma 3 Assuming that item j is completely sold by Algorithm 1, during the allocations of Stage
1 and 3, the increasing rate of the dual objective value is at most 1/C(d) times the primal.

Proof The proof follows the proof of Buchbinder and Naor (2009b, Theorem 13.1). We present the
details in Appendix A.

Theorem 1 Algorithm 1 is (1−η)-consistent and 1/
(

1
C(d)+(1−η)(1−fd(η))

)
-robust. When d is

large enough, fd(η) ≈ 1+ e(eη−1−1)
e−1 and so the robustness is approximately e−1

e ·
1

1+(1−η)(1−eη−1)
.

Proof Follows from Lemma 1 and Lemma 2.
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3. An Algorithm with Predictions for Ad-Auctions

Recall that in this problem there are n buyers and each buyer 1 ≤ i ≤ n has a budget Bi. Upon
the arrival of item j, the algorithm discovers the bid2 bij ≥ 0 of each buyer i, which is the price
that buyer i is willing to pay to purchase item j. Additionally, the algorithm gets a predicted buyer
pred(j) to whom item j should be sold (pred(j) = 0 if the item should not be sold according to
the prediction). We are interested in fractional solutions as in Bamas et al. (2020), so we consider
the items to be splittable. Before the arrival of the next item, the algorithm needs to make an
irrevocable decision and sell the current item in some fractions to some buyers. The objective is to
gain maximum revenue from selling items to buyers. In this setting, we assume that bij ≪ Bi ∀i, j.

Formulation. The formulation of the Online Ad-Auctions problem follows that of the Online
Bounded Allocation problem. Both the primal and the dual linear programs on Figure 2 now use
the buyer-dependent prices, the bids.

Primal:

max
n∑

i=1

m∑
j=1

bij xij

m∑
j=1

bij xij ≤ Bi ∀ i (yi)

n∑
i=1

xij ≤ 1 ∀ j (zj)

xij ≥ 0 ∀ i, j

Dual:

min
n∑

i=1

Bi yi +
m∑
j=1

zj

bij yi + zj ≥ bij ∀ i, j (xij)

yi ≥ 0 ∀ i
zj ≥ 0 ∀ j

Figure 2: Formulation of the Online Ad-Auctions problem

Algorithm. We introduce a fictitious buyer with identity 0, such that b0j = 0 for all item j. When
the algorithm does not sell an item, it assigns it to the fictitious buyer 0. The purpose of buyer 0 is
to simplify the description of the algorithm. We use a constant C in our algorithm that we define as

C = (1 +Rmax)
η

Rmax where Rmax = max
i,j

{
bij
Bi

}
We present the pseudo-code of our algorithm in Algorithm 2. For each arriving item j, the algorithm
considers two buyers: the predicted buyer i∗ = pred(j) and buyer i who maximizes the product
bij (1− yj), where yj is an indicator to know how exhausted the buyer’s budget is. We make use of
the confidence parameter in the predictions. Our algorithm reserves (1−η) fraction of each buyer’s
budget for the prediction assignment. Whenever the bid of buyer i∗ is greater than the bid of buyer
i, the algorithm assigns (1− η) fraction of item j to i∗ and η fraction to i.

Intuitively, our proposed algorithm attempts to reserve some fraction of each buyer’s budget
for future purchases. However, if the predicted buyer’s bid is high enough, the algorithm allows
assignments to this buyer, even if the budget is close to saturation.

2. we call the prices bids because of the motivations in the auctions setting

9
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Algorithm 2 Learning Augmented Algorithm for the Online Ad-Auctions Problem.
All primal and dual variables are initially set to 0.
We maintain two sets N(i) and M(i) for each buyer i for the purpose of analysis only.
for each new item j do

let i∗ be the predicted buyer of item j, formally, pred(j) = i∗

if the prediction is not feasible then i∗ = 0 // the fictitious buyer

i← argmaxi′ {bi′j (1− yi′)} // weight bids with remaining budget

if bij (1− yi) ≤ 0 then i = 0
zj ← max

{
0, bij(1− yi)

}
if bij < bi∗j then

xij ← η and xi∗j ← (1− η)
N(i∗)← N(i∗) ∪ {j}

end
else

xij ← 1 // includes the case when pred(j) is infeasible

end
M(i) = M(i) ∪ {j}
yi = yi

(
1 +

bij
Bi

)
+

bij
Bi
· 1
C−1

end

Lemma 4 During the execution of Algorithm 2 the following always holds for every i

yi ≥
1

C − 1

(
C

∑
j∈M(i) bij

ηBi − 1

)
Proof We adapt the proof of Buchbinder and Naor (2009b) with a slight modification: we prove
the dual inequality by induction on the number of processed items. Initially, when no items arrived
yet, the inequality is trivially true. Let us assume that the inequality holds right before the arrival
of an item j. The inequality remains unchanged for all buyers, except for buyer i, who maximizes
bij (1 − yi). Let yi denote the value before the update triggered by the arrival of item j and y′i its
value after the update. We have

y′i = yi

(
1 +

bij
Bi

)
+

bij
Bi
· 1

C − 1
≥ 1

C − 1

(
C

∑
j′∈M(i)\{j} bij′

ηBi − 1

)
·
(
1 +

bij
Bi

)
+

bij
Bi
· 1

C − 1

=
1

C − 1

(
C

∑
j′∈M(i)\{j} bij′

ηBi ·
(
1 +

bij
Bi

)
− 1

)
≥ 1

C − 1

(
C

∑
j′∈M(i)\{j} bij′

ηBi · C
bij
ηBi − 1

)
=

1

C − 1

(
C

∑
j∈M(i) bij

ηBi − 1

)
The first inequality holds due to the induction hypothesis. The second inequality holds by the
following sequence of transformations. For any y and z where 0 < y ≤ z ≤ 1 we have

ln(1 + y)

y
≥ ln(1 + z)

z
⇔ ln(1 + y) ≥ ln(1 + z) · y

z
⇔ 1 + y ≥ (1 + z)y/z

10
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We apply the above transformation with y = bij/Bi and z = Rmax at the second inequality. By the
definition of C we obtain (

1 +Rmax

) 1
Rmax

·
bij
Bi

= C
bij
ηBi

Since Rmax = maxi,j

{
bij
Bi

}
by definition, the induction step is complete and the lemma holds.

Lemma 5 The primal solution is feasible up to a factor of (1 +Rmax).

Proof The first primal constraint requires
∑m

j=1 bij xij ≤ Bi to hold for every i. By Lemma 4, we
know that for every i the following holds.

yi ≥
1

C − 1

(
C

∑
j∈M(i) bij

ηBi − 1

)
Therefore, whenever

∑
j∈M(i) bij ≥ ηBi, we have yi ≥ 1 and the algorithm stops allocating items

to buyer i. The set M(i) and the value of yi are updated after the assignments. Therefore, buyer
i can receive at most one additional item fraction once its budget is already saturated. We obtain∑

j∈M(i) bij < ηBi +maxj{bij} and the following formula.

m∑
j=1

bij xij =
∑

j∈M(i)

bij xij +
∑

j∈N(i)

bij xij < Bi +max
j
{bij}

The inequality holds due to the feasibility of N(i), the set of items assigned by the prediction to
buyer i. We can bound the prediction assignments as follows.∑

j∈N(i)

bij xij ≤ (1− η)
∑

j | pred(j)=i

bij xij ≤ (1− η) Bi

Therefore,
∑m

j=1 bij xij ≤ Bi (1 + Rmax), which means that the first primal constraint is feasible
up to a factor of (1 +Rmax). The second primal constraint requires

∑
i xij ≤ 1 to hold. During the

allocations of Algorithm 2 the values of xij and xi∗j do not exceed 1 by the design of the algorithm.
The lemma follows.

Theorem 2 Algorithm 2 is (1− η)-consistent and 1−1/C
1+Rmax

-robust. The robustness tends to 1− e−η

when Rmax tends to 0.

Proof First, we establish robustness. Upon the arrival of item j, the increase in the primal is{
(1− η) bi∗j + η bij if bij < bi∗j ,

bij if bij ≥ bi∗j

which is always larger than or equal to bij . Meanwhile, the increase in the dual is

Bi∆yi + zj = bijyi +
bij

C − 1
+ bij(1− yi) =

(
1 +

1

C − 1

)
bij =

C

C − 1
bij

Hence, by Lemma 5, the robustness is C−1
C · 1

1+Rmax
.

Finally, we straightforwardly establish consistency. Every time the prediction solution gets a
profit of bi∗j , the algorithm achieves a profit of at least (1− η) bi∗j . The theorem follows.
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4. Experiments

In the following experiments, we evaluate the algorithms’ performance with the competitive ra-
tio metric. We calculate the competitive ratio by dividing the objective value of the algorithm,
ALGO(I), with the objective value of the optimal fractional offline solution, OPT(I). The competi-
tive ratio is visible on the y-axis of the figures. The x-axis corresponds to the ratio with which the
algorithms consider the prediction. We indicate with η = 0 no doubt and η = 1 complete doubt in
the prediction. Therefore, the left-hand side of the figures corresponds to a prediction dominated
algorithm, while the right-hand side is closer to a classical online algorithm. The different colors
on the figures correspond to different prediction error rates. The lines represent the average over
several executions, while the colored areas show the 95% confidence intervals.

4.1. Online Bounded Allocation

We present here four experiments. Table 1 below summarizes the configurations of the instances.
Figure 3 displays the competitive ratio of the algorithm on different instances.

Predictions. We create predictions for the experimental instances by introducing perturbations
to the optimal offline integral solution. The perturbation is skipped when |Sj | = 1. When |Sj \
{i∗}| > 1 we choose uniformly at random a remaining buyer to replace the optimal buyer.

Name Type Buyers Items d = max{|Sj |} Budget range Item price range
Instance 1 manual 5 5 5 100− 100 100− 100
Instance 2 random 100 1.000 5 10− 100 0.1− 8
Instance 3 random 100 10.000 3 10− 1.000 1− 10
Instance 4 random 80 80 40 10− 100 10− 100

Table 1: Properties of the experiment instances

Manual Instance. Instance 1 corresponds to one of the pathological inputs for the water-filling
strategy of Buchbinder and Naor (2009b). We created this instance manually to observe the behav-
ior of Algorithm 1 when this strategy performs poorly. In Instance 1’s scenario, each buyer i is
interested in each item j when i ≥ j. The optimal solution is to sell each item j to buyer i, where
i = j, while the water-filling strategy attempts to allocate each item equally.

Randomized Instances. Instances 2-4 are randomly generated based on their corresponding con-
figuration visible on Table 1. We executed each instance 20 times. The lines on Figure 3 correspond
to the average of these executions, and the colored areas correspond to the 95% confidence inter-
vals. Instance 2 and Instance 3 mimic real-life instances, where the general expectation is to have a
small bound d on the interested buyers. The average item price over the average budget value across
the executions was 6.36% for Instance 2 and 0.98% for Instance 3. Finally, Instance 4 shows an
example where the integral solution (and therefore the prediction) is not optimal. While Instance
2 and 3 have no integrality gap, Instance 4 has an average of 17.99% observed integrality gap over
the 20 executions. Instance 4 has a large bound on the number of interested buyers, and the items’
prices vary greatly.
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Figure 3: Observed competitive ratios

Evaluation. The experiments confirm the water-filling algorithm’s benefit from the prediction in-
formation. We showed that Algorithm 1 has improved performance on the pathological input of
the water-filling strategy even with high prediction error rates. Besides, the algorithm demonstrated
firm robustness against elevated prediction error rates in the second instance, where the algorithm
performed close to optimality without predictions. Furthermore, we observed improved perfor-
mance on the third instance, which represents a close to real-life use case. In the fourth instance,
we can remark the drawback of the predictions. When the integral solution of the linear program
is not optimal - or even far from optimal - the prediction can significantly misguide our algorithm,
decreasing the performance towards the standard performance bounds.

4.2. Online Ad-Auctions

We present one experiment for the Online Ad-Auctions problem here. Figure 4 displays the com-
petitive ratio of the algorithm.

Predictions. The predictions rely on the optimal offline integral solution, which is a partial map-
ping from items to buyers. We perturbed the solution as suggested by Bamas et al. (2020) and used
the error rate parameter as a probability to randomly choose a buyer among the buyers who placed a
non-zero bid on the item. However, the perturbation is only possible if the solution remains feasible.

Instance. Our test instance is a randomized
instance with 100 buyers and 10, 000 items,
adapting the model described in Lavastida et al.
(2020). For every item j, there are exactly 6 ran-
dom buyers proposing a bid. The values of the
bids follow a lognormal distribution with mean
and deviation set to 0.5. By choosing the bud-
get of the bidders, we can tune the hardness of
the instance under the constraint that Rmax re-
mains reasonably small. We set the budget to
0.1 fraction of the total bids, leading to a value
of Rmax ≈ 0.1. The integrality gap of the in-
stance is close to 0.
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Figure 4: Observed competitive ratio
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Evaluation. We can observe the algorithm’s benefit of the prediction. We note that in the algo-
rithm η can not be 0 since, in this case, the update of yi would require division by 0. The closer
η gets to 0, the closer the performance of the algorithm gets to 1. As expected, the performance
degrades with increased prediction perturbation. The observed robustness is not monotone in η,
unlike the bound shown in this paper. We think that this performance degradation for η around 0.5
is due to the rather simplistic mixture between the primal-dual and the predicted solution.

5. Conclusion

The presented algorithms in this paper incorporate prediction information and achieve competitive
consistency and robustness. However, it remains an open question to determine lower bounds and
verify how tight our obtained bounds are.

An important research direction for the future is to study matching problems with dynamic con-
fidence parameters, which change over time depending on the quality of the previous predictions.
In general, it might be possible to design more complete systems that evolve through the inter-
actions between the algorithms and the learning oracles. The oracles provide useful information
(predictions) for the algorithms to improve their performance (as studied in this paper), while the
algorithms could give feedback to the oracles to enhance their predictions.
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Appendix A. for the Online Bounded Allocation problem

Lemma 3 Assuming that item j is completely sold by Algorithm 1, during the allocations of Stage
1 and 3, the increasing rate of the dual objective value is at most 1/C(d) times the primal.

Proof The proof follows the proof of Buchbinder and Naor (2009b, Theorem 13.1). We highlight
that this proof considers items that were sold completely. There are two cases.

Case 1: The highest level item j was sold at is ℓ, and at the end of the algorithm, all buyers in
Sj spent at least ℓ+1

d fraction of their budget.
By the definition of the dual variables zj ≤ (1 − fd

(
ℓ+1
d

)
) bj . Since item j is sold entirely

(
∑

i xij = 1), the increasing rate of zj at any time during the allocation of item j is at most (1 −
fd
(
ℓ+1
d

)
) bj . Besides, as the highest level on which item j was sold at is ℓ, the rate of change of the

dual value due to the change in yi is:

Bi
∂fd
∂xij

≤ Bi
bj
Bi

d aℓ+1 ≤ bj d aℓ+1

Therefore, the total change of the dual is at most

bj d aℓ+1 + bj

(
1− fd

(
ℓ+ 1

d

))
= bj d a1

(
1 +

1

d− 1

)ℓ

+ bj

(
1− a1

(
d

(
1 +

1

d− 1

)ℓ

− (d− 1)

))

= bj(1 + a1(d− 1)) =
bj

C(d)
(3)

Case 2: The highest level on which item j was sold at is ℓ and at the end of the execution at least
one buyer in Sj spent less than ℓ+1

d fraction of its budget.
In this case we have to set zj = (1 − fd(ℓ/d)) bj to satisfy the dual constraint. During any

(short) period of time ∆t, the increase of
∑

iBi yi over i in the highest level is at most:

bj aℓ+1 d
d− 1

d
∆t = bj (d− 1) aℓ+1 ∆t

where the fraction (d− 1)/d comes from the fact that there are at most (d− 1) buyers in the highest
level. We recall that d is the bound on the size of all Sj and at least one buyer did not reach the
highest level as of the statement of this case. The increase of

∑
iBi yi over i in the lower levels is

at most bj d aℓ (1−∆t) by the definitions of aℓ+1 = aℓ(1+ 1/(d− 1)) and aℓ = ((d− 1)/d)aℓ+1.
Therefore, by adding the terms together we get that the increasing rate of

∑
iBi yi is at most

bj (d− 1) aℓ+1. Hence, the increasing rate of the dual is at most:

bj (d− 1) aℓ+1 + bj

(
1− fd

(
ℓ

d

))
= bj (d− 1) aℓ+1 + bj

(
1− fd

(
ℓ+ 1

d

)
+ aℓ+1

)
= bj d aℓ+1 + bj

(
1− fd

(
ℓ+ 1

d

))
=

bj
C(d)
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where the first equality holds since fd
(
ℓ+1
d

)
= fd

(
ℓ
d

)
+ aℓ+1 and the last equality follows Equa-

tion (3).
The increasing rate of the dual is at most bj/C(d), while for the primal it is bj . The lemma

follows from this conclusion.
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