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Deep Learning for B5G Open Radio Access Network: Evolution,
Survey, Case Studies, and Challenges

Bouziane Brik, Karim Boutiba, Adlen Ksentini, Senior Member, IEEE
Open Radio Access Network (O-RAN) alliance was recently launched to devise a new RAN architecture featuring open, software-

driven, virtual, and intelligent radio access architecture. O-RAN architecture is based on (1) disaggregated RAN functions that run
as Virtual Network Function (VNF) and Physical Network Function (PNF); (2) the notion of RAN controller that runs centrally
RAN applications such as mobility management, users’ scheduling, radio resources allocation, etc. The RAN controller is in charge
of enforcing the application decisions by using open interfaces with the RAN functions. One important feature introduced by
O-RAN is the heavy usage of Machine Learning (ML) techniques, particularly Deep Learning (DL), to foster innovation and ease
the deployment of intelligent RAN applications that are able to fulfill the Quality of Service (QoS) requirements of the envisioned
5G and beyond network services.
In this work, we first give an overview of the evolution of RAN architectures toward 5G and beyond, namely C-RAN, vRAN,
and O-RAN. We also compare them based on various perspectives, such as edge support, virtualization, control and management,
energy consumption, and AI support. Then, we review existing DL-based solutions addressing the RAN part. We also show how
they can be integrated/mapped to the O-RAN architecture since these works were not initially adapted to the O-RAN architecture.
In addition, we present two case studies for DL techniques deployment in O-RAN. Furthermore, we describe how the main steps of
deployed DL models in O-RAN can be automated, to ensure stable performance of these models, introducing ML system operations
(MLOps) concept in O-RAN. Finally, we identify key technical challenges, open issues, and future research directions related to the
Artificial Intelligence (AI)-enabled O-RAN architecture.

Index Terms—B5G networks, RAN, Open RAN Architecture, RAN Intelligent Controller, Deep Learning, MLOps.

I. INTRODUCTION

THE forthcoming Beyond fifth-generation (B5G) net-
works, or so-called 6G, are revolutionary technology

expected to eliminate the bounds of bandwidth, access, latency,
and performance limitations on connectivity worldwide [1][2].
B5G is expected to transform the mobile communication
networks from the Internet of Things (IoT) to the “con-
nected intelligence”, by leveraging Artificial Intelligence (AI)
techniques and connecting billions of people and machines.
This makes B5G the key enabler of a wide range of new
services improving quality of life around the world through
unparalleled use cases [1], such as connected autonomous
systems, eXtended reality (encompassing both augmented and
virtual reality), flying vehicles, haptics, telemedicine, etc. To
successfully deploy these use-cases, B5G systems must simul-
taneously provide ultra-low latency, very high and reliable data
rates, high energy efficiency, and broad frequency bands (in
THz) for heterogeneous devices [2].

The co-existence of such a variety of services needs a
versatile network that considers all features. However, these
targets cannot be supported by the existing Radio Access
Network (RAN), and hence optimizing the RAN part is
greatly needed [3]. One way to support the variety of service
requirements is to design separate network instances, where
each one (instance) meets the needs of a given type of
service [4]. In such context, both the industries and academia
are leveraging new technologies, including Software Defined
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Network (SDN) and Network Function Virtualization (NFV),
to make the mobile radio network more virtual, software-
oriented, intelligent, and energy efficient [4].

Another potential solution to fulfill the requirements of
the above-mentioned services is to divide the RAN part into
several parts based on its main functionality, in order to make
the radio network versatile and smarter [5]. In this context,
Open RAN (O-RAN) alliance has recently launched a design
of a new RAN architecture for the next-generation mobile
networks (5G and beyond) [6][7]. O-RAN is a major paradigm
shift in the RAN architecture aiming to lead the industry
towards software-driven, virtual, open, and AI-enabled RAN.
Specifically, the basic idea of O-RAN is to disaggregate
the main functions of traditional RAN, implement them as
software components (i.e., VNF), and connect them using
standardized and open interfaces. We also note that the Linux
Foundation and the O-RAN Alliance have announced the O-
RAN Software Community (OSC) in April 2019 [8], giving
birth to the first open-source O-RAN Software, named Amber
Release, in December 2019[9].

O-RAN has designed a hierarchical RAN Intelligent
Controller (RIC), including both near real-time and non real-
time RICs that support programmable-based functions. RICs
integrate embedded Deep Learning (DL) capabilities to RAN
in order to optimize RAN performance and reduce operational
complexity. It helps to adapt the radio resource, mobility,
and spectrum management operations (admission control,
radio resources allocation and scheduling, power allocation,
radio link management, etc.) according to applications’
requirements, which is very valuable in B5G networks when
addressing different vertical industries.
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A. Review of Related Works

Several survey papers addressing 4G/5G RAN part have
been published so far. In [3], the authors provided a literature
review and an in-depth study of Cloud-RAN (C-RAN), Het-
erogeneous Cloud RAN (H-CRAN), Virtualzied Cloud RAN
(V-CRAN), and Fog RAN (F-RAN). Another survey focused
on C-RAN and detailed deep learning applications for the C-
RAN architecture, was proposed in [10]. Similarly, the authors
in [11] addressed the C-RAN architecture. More specifically,
they gave a detailed survey on the resource allocation in such
RAN architecture.

In O-RAN context, to the best of our knowledge, we find
only three short survey/review studies. In [12], the authors
gave a short study on what O-RAN can do and what it
cannot do (limitations). The authors started first by briefly
present the O-RAN architecture, followed by a community
survey on the importance of O-RAN. Indeed, this survey was
conducted among 95 wireless researchers, and the majority
stated that O-RAN will be the foundation of future cellular
networks. Then, the authors described the benefits of O-
RAN in addition to its current shortcomings and research
opportunities. On the other hand, the general architecture,
concepts, and requirement of O-RAN first introduced in [13].
Then, the authors designed an intelligent scheme of radio
resource allocation to deal with traffic congestion and show
its efficiency by leveraging a real-world dataset. The work
concludes with still opened challenges and future research
directions. Similarly, the authors provided an overview on O-
RAN architecture and its main modules in [14]. The authors
also gave realistic RAN scenarios leveraging AI/ML-based
models, on top of the O-RAN architecture, highlighting their
disrupting potential. Finally, the main benefits and limitations
of O-RAN are detailed along with the conclusions.
Besides, few works have recently proposed technical contri-
butions related to the O-RAN architecture. In [15], the O-
RAN architecture is leveraged to design a machine-learning-
based scheme to optimize the Automatic Neighbour Relation
(ANR) function of Self Organizing Network (SON), and hence
improving gNodeB (gNB) handovers. The authors in [16]
reviewed multi-agent systems and team learning schemes,
before discussing how these schemes can be deployed on
top of O-RAN architecture. In [17][18], the authors dis-
cussed the evolution of RAN towards Open-RAN, in terms
of architectures, functionality, and implementation. While, the
potential integration of O-RAN with the 5G Multi-access Edge
Computing (MEC), SON, and Network Slicing (NS) concepts
are discussed in [19]. The dynamic function splitting issue
of O-RAN is addressed in [20]. A reinforcement learning-
based scheme is designed to dynamically split functions in O-
RAN, while optimizing the energy consumption of the RAN
software and hardware. In [21], a novel framework is designed
addressing the challenge of how to slice the RAN in 5G,
namely New Radio flexibility (NRflex). NRflex enables to dy-
namically allocate the bandwidth part (BWP) as well as radio
resources the network slices, and their corresponding users, in
order to meet the slices’ requirement. In addition, the NRflex
framework has been mapped to the O-RAN architecture, to

dynamically determine the BWPs’ sizes for each RAN slice. A
new 5G non-public networks (NPN) architectural framework
is proposed in [22], to enable cost-efficient deployments of
5G private networks. This framework relies on key emergent
technologies, such as AI/ML-driven models, MEC, and disag-
gregated RAN functions, to optimize network management.
It also enables efficient RAN sharing in terms of required
resource and service orchestration, which are aligned with the
O-RAN architecture. In [23][24], the authors discussed the
implementation of ML-based closed-loop solutions on top of
the O-RAN architecture. They also provided a first demonstra-
tion of O-RAN through an experimental testbed. Thus, they
deployed O-RAN using Colosseum network emulator. Then,
they used the deployed O-RAN to manage multiple network
slices. Finally, the authors introduced a ML workflow-based
on Working Group (WG) 2 ML specifications of the O-RAN
alliance, in [25]. They then implemented this workflow using
the open-source software of O-RAN. They used both Acumos
Framework and Open Network Automation Platform (ONAP),
to generate ML models to be executed in the O-RAN RIC
module, and to monitor and manage the designed workflow,
respectively.

Even there are several survey papers that addressed the
4G/5G RAN architectures, however, most of them studied the
previous RAN architectures including, C-RAN, H-CRAN, V-
CRAN, etc. Thus, these works did not address, or include, the
O-RAN architecture in their studies. In addition, a wide range
of DL-based studies have also been proposed to deal with the
main RAN challenges in 4G/5G networks [26][27][28][29].
However, these studies did not also consider the emerged O-
RAN architecture, and hence need to be mapped/integrated
into this architecture. On the other hand, existing O-RAN-
related survey works are limited to short studies that described
the O-RAN architecture and its main modules, in addition to
its main benefits as well as shortcomings.

B. Contributions

In contrast to the existing survey papers, this paper
addresses the O-RAN architecture and aims mainly to
map/integrate existing DL-based studies to the new O-RAN
architecture, via its hierarchical RICs modules. We also pro-
pose two case studies of how to deploy ML/DL-based models
on top of the O-RAN architecture, and show how the whole
ML/DL process can be automated. Based on this, we name
the main contributions of this paper as follows:

• We first provide an overview of the RAN architecture
evolution, toward the B5G networks. We also compare
them based on various perspectives, such as edge support,
virtualization, control and management, energy consump-
tion, and AI support.

• We also provide a new review study regarding existing
DL-based works for the next generation RAN. Moreover,
we show how these works can be realized on top of the
O-RAN architecture.

• We describe two case studies for DL techniques deploy-
ment in the O-RAN architecture, in addition to how the
main steps of DL models deployment may be automated,
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in order to ensure stable and acceptable performance of
deployed models.

• The key technical challenges, open issues, and future
research directions related to the AI-enabled O-RAN
architecture are finally discussed.

C. Paper Structure

Section I:

Introduction

Section II:

Evolution of RAN Architectures

Section III:

Review of DL-based solutions 

and mapping them to O-RAN

Section IV:

Case studies on Deep Learning 

Deployment in O-RAN

Section V:

Automation of the machine 

learning process in O-RAN

Section VII:

Conclusion

Section VI:

Open O-RAN-Related

challenges and future directions

What is the general evolution
of RAN, including O-RAN ?

How to automate the whole ML 
process on top of O-RAN ?

How to map existing DL-based 
solutions to O-RAN ?

How to deploy DL-based 
solutions on top of O-RAN ?

Fig. 1. The structure of the Paper.

Fig. 1 illustrates the general structure of this paper. Sec-
tion II gives a general overview of the evolution of the RAN
architectures, including the O-RAN architecture and its func-
tional modules. The existing DL-based works addressing the
5G RAN and their integration to the O-RAN architecture are
discussed in section III. Two case studies for DL deployment
in O-RAN are detailed in Section IV. The automation of the
main steps of DL process is presented in Section V. Section VI
describes open problems and future research directions. Sec-
tion VII concludes the paper. Note that used acronyms in this
paper are described in Table I, in alphabetical order, for the
ease of reference.

II. EVOLUTION OF RAN ARCHITECTURES

In this section, we review the evolution of RAN archi-
tectures, starting from centralized RAN to Distributed RAN,
continuing with Cloud RAN (C-RAN), through virtual RAN
(vRAN), and most recently O-RAN architecture. We note that
we provide more details on the O-RAN architecture, as it
represents the main scope of this work.

A. From Centralized 2G RAN to Distributed 3/4G RAN
Architecture

In 2G networks, baseband and radio processing functions
are implemented at the base stations (BSs) level [30]. A BS
is composed of two functional equipment: Radio Equipment
Controller (REC) and Digital Unit (DU). REC is in charge
of baseband signal processing, monitoring and managing BSs,
whereas DU is responsible for radio functions including, mod-
ulation, demodulation, amplification, radio frequency filtering,
frequency conversion, and analog-to-digital as well as digital-
to-analog conversion. However, in 3G/4G networks, the signal
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Fig. 2. D-RAN Architecture.

and radio processing units of 2G BSs are separated from each
other (cf. Fig. 2). The radio unit is deployed close to the
3G/4G BS and is called Remote Radio Unit (RRU) or Remote
Radio Head (RRH). The baseband signal processing unit is
called Baseband Unit (BBU). The BBU provides required
resources to its RRHs with respect to the running applications
requirements [31].
This RAN architecture is called Distributed RAN (D-RAN).
Each BBU is interconnected to its corresponding RRH through
a transport network, where both optical microwave and fiber
can be deployed to link between BBU and RRH (called
fronthaul).

B. Centralized and Cloudified RAN Architecture

With the increase of data traffic and various QoS (Quality
of Service) requirement, cellular network actors had to go
through cloudification and centralization of BBU part, which
contains a pool of network resources. This new architecture is
known as C-RAN [32][33]. As depicted in Fig. 3, the basic
idea of C-RAN is to link RRHs to cloudified, centralized, and
shared BBU pool. Each RRH is linked to its BBU pool via a
fronthaul link, and up to ten RRHs can be connected to the
same BBU pool.

This RAN architecture is designed on the top of two
paradigms: virtualization and centralization of baseband pro-
cessing part [33]. Thus, it enables to decrease the energy
consumption, increase network throughput, improve network
scalability and spectral efficiency, facilitate network manage-
ment and load balancing.

C. Virtualized RAN Architecture

5G mobile networks come with various requirements such
as the massive number of mobile users, ultra low latency
communications, and reliable and high data throughput.
To fulfill these requirements, network actors are leveraging
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TABLE I
LIST OF ACRONYMS.

Acronym Definition Acronym Definition
3GPP 3rd Generation Partnership Project O-CU Open RAN Central Unit
AI Artificial Intelligence O-CU-CP Open RAN Central Unit – Control Plane
A3C Asynchronous Advantage Actor-Critic O-CU-UP Open RAN Central Unit – User Plane
AMC Automatic Modulation Classification O-DU Open RAN Distributed Unit
ANR Automatic Neighbour Relation O-RU Open RAN Radio Unit
BBU Baseband Unit OSC Open RAN Software Community
BS Base Station OPEX OPerational EXpenditures
BWP Bandwidth Part OFDM Orthogonal Frequency-Division Multiplexing
B5G Beyond Fifth-Generation PDCP Packet Data Control Protocol
BER Bit Error Rate PDCCH Physical Downlink Control Channel
CAPEX CAPital EXpenditures PDSCH Physical Downlink Shared Channel
CSI Channel State Information PNF Physical Network Function
C-RAN Cloud Radio Access Network PUCCH Physical Uplink Control Channel
CD Continuous Delivery PUSCH Physical Uplink Shared Channel
CT Continuous Training PW Prediction Windows
CNN Convolutional Neural Network QoS Quality of Service
DL Deep Learning RAN Radio Access Network
DNN Deep Neural Network RIC RAN Intelligent Controller
DQN Deep Q-Network REC Radio Equipment Controller
DRL Deep Reinforcement Learning RF Radio Frequency
D-RAN Distributed RAN RLC Radio Link Control
FL Federated Learning RNIS Radio Network Information Service
5G Fifth Generation RRC Radio Resource Control
F-RAN Fog RAN RRM Radio Resource Management
GM-LAMP Gaussian Mixture-Learned Approximate Message Passing RT Real Time
gNB gNodeB RNN Recurrent Neural Network
H-CRAN Heterogeneous Cloud RAN RL Reinforcement Learning
High-PHY High physical RRH Remote Radio Head
iRSS intelligent Resource-Scheduling Scheme RRU Remote Radio Unit
IoT Internet of Things RB Resource Blocks
LSTM Long Short Term Memory RM Resource Management
Low-PHY Low Physical SON Self Organizing Network
ML Machine Learning SDAP Service Data Adaptation Protocol
MLOps ML system operations SLA Service Level Agreement
MDP Markov Decision Process SMO Service Management and Orchestration level
MAC Medium Access Control SNR Signal-to-noise ratio
MM Mobility Management SCN Small Cell Networks
MEC Multi-access Edge Computing SDN Software Defined Network
MIMO Multiple Input Multiple Output SM Spectrum Management
NE Nash Equilibrium UE User Equipment
Near RT RIC Near Real-Time RAN Intelligent Controller V2V Vehicle-to-Vehicle
NFV Network Function Virtualization vBBU Virtual BBU
NS Network Slicing VNF Virtual Network Function
NG RAN New Generation RAN vRAN Virtual RAN
NPN Non-Public Networks VR Virtual Reality
Non RT RIC Non Real-Time RAN Intelligent Controller V-CRAN Virtualzied Cloud RAN
ONAP Open Network Automation Platform WG Working Group
O-RAN Open Radio Access Network

emergent technologies of NFV and SDN in order to virtualize
all resources and functions in the RAN architecture and also
decouple control and data planes. This new trend of access
network virtualization represents a new type of RAN, known
as Virtualized RAN or vRAN.

Fig. 4 shows vRAN architecture which is composed of
Digital Unit Cloud (DU Cloud) and RRU parts, interconnected
through Fiber Ethernet links [34]. In the DU Cloud, the BBUs
are virtualized (vBBUs) and deployed on multiple NFV plat-
forms, which provide baseband processing related functions.
All vBBU are interconnected with each other through a switch
(layer 2) that is used to exchange signaling and data among
the vBBUs. vRAN is based on standard server hardware
that efficiently scales down or up memory, processing, and

I/O resources with respect to the demand. Hence, it helps
to achieve the full potential of lower energy consumption,
dynamic capacity scaling, efficient use of network resources,
and improved service reliability and quality.
Besides, RRUs are left at the network edge (the cell sites). In
addition, Fiber Ethernet and IP links provide lower latency and
higher bandwidth fronthaul network for exchanging signaling
and data between RRUs and DUs. This also gives more cost-
effective options to service providers for fronthaul transport.

D. Open RAN Alliance Architecture
The O-RAN Alliance addresses the radio access network

domain and promises to make it more open, flexible, and
smarter [6][7][9]. The basic idea is disaggregate hardware
from software, and create open interfaces between them.
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Fig. 3. C-RAN Architecture.
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Fig. 4. vRAN Architecture.

Hence, this helps networks support open interfaces and com-
mon development standards, to deliver multi-vendor, interop-
erable networks and helps to avoid any vendor lock-in. Fig. 5
shows the reference architecture of the O-RAN alliance. This
new architecture leverages SDN and NFV technologies to
include new interfaces and redefine the RAN functional blocks
to allow the deployment of new applications and services
on top of RAN. It is worth noting that Fig. 5 reflects a
very specific functional split scenario, where O-RAN’s CU
(Central Unit), DU (Distributed Unit), and RU (Radio Unit)
are in separated locations. In sub-sections II-D-6 and D-7, we
describe the different functional split options and RAN de-
ployment scenarios, respectively. In addition, in what follows,
we describe the main elements of the O-RAN architecture.
We note that detailing the functional blocks of the O-RAN

architecture is not in the scope of this work.
1) The Non Real-Time RAN Intelligent Controller

The non Real-Time (RT) RIC is a logical function
implemented at the Service Management and Orchestration
level (SMO). It is composed of two main sub-functions: Non-
RT RIC framework and Non-RT RIC applications (rApps).
The framework is an internal functionality of SMO that
provides the needed services to rApps through R1 interface,
while the non-RT RIC applications (rApps) leverage the
SMO services, such as data monitoring over the O1 interface
(stored in a local database) and provisioning services, in
order to support intelligent optimization of RAN elements
and resources in a non real-time scale (i.e., greater than one
second). Thus, Non-RT RIC aims to provide an intelligent
RAN policy to near Real-time intelligent controller, through
the A1 interface, based mainly on AI/DL training/inference
and data analytics.

2) The Near Real-Time RAN Intelligent Controller
The Near Real-time (RT) RIC controls and optimizes the

O-RAN nodes (O-CU and O-DU) and their resources over the
E2 interface with a near real-time control loop (i.e., from 10ms
to 100ms). The Near-RT RIC implements a set of primitives to
improve the O-RAN nodes’ performances, such as monitoring,
stop/suspend, control, and/or override. The Near-RT RIC hosts
applications, namely xApps, that leverage these primitives and
use the E2 interface to monitor near real-time RAN infor-
mation from the O-RAN nodes. xApps then provide value-
added services, with respect to the policies data received from
the Non-RT RIC, through the A1 interface. xApps include
Spectrum Management (SM), Resources Management (RM),
Mobility Management (MM), etc.

3) Control and User Planes of O-RAN Central Unit (O-
CU-CP and O-CU-UP)

O-CU is a logical node hosting Radio Resource Control
(RRC), Service Data Adaptation Protocol (SDAP), and Packet
Data Control Protocol (PDCP) protocols. The control plane of
O-CU hosts the RRC and the control plane part of the PDCP
protocol, while the user plane part of the PDCP protocol and
the SDAP protocol is hosted on the user plane of O-CU (O-
CU-UP). Both planes interface over E1 and are in charge of
ensuring mainly UE, cell, and gNB procedure management,
such as UE mobility and connectivity, base station energy,
cell activation, etc.

4) O-RAN Distributed Unit (O-DU)
O-DU is a logical node comprising three main layers:

Radio Link Control (RLC), Medium Access Control (MAC),
and high physical (High-PHY) layers. O-DU interfaces with
O-CU through F1 interface to provide many functionalities
related to the three layers including, UE and Bearer context
management, RLC mode transmitter and receiver, MAC radio
resource allocation, MAC scheduler, handling of physical
uplink (downlink) shared (control) channels, etc.

5) O-RAN Radio Unit (O-RU)
O-RU is a logical node hosting the low physical (Low-PHY)

layer functions and Radio Frequency (RF) processing. We note
that in O-RAN architecture, physical layer functionality is split
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into High-PHY in O-DU and Low-PHY in O-RU. Besides, an
open front haul interface between O-DU and O-RU is defined
in O-RAN architecture and is adopted in the split architecture.

6) Functional Split Options in O-RAN
Conventionally and as shown in Fig. 6, 3GPP has defined

nine functional blocks and eight split point options in 4G
wireless networks [36]. However, with the high increase in
data throughput in 5G, it is critical to relax the bandwidth
and latency requirements, while centralizing only a few func-
tions. Hence, the new functional-splitting must consider and

find cost-effective tradeoffs between latency, data rates, and
functional centralization. In 2017, 3GPP considered Option 2
(PDCP and high RLC) as the high layer split point (called
the F1 Interface) and both Option 6 and Option 7 for the low
layer split [37].
Fig. 6 shows the mapping of these functional split options
to the CU/DU/RU O-RAN blocks. As mentioned before, to
support also the 4G deployments, the terminology for BBU
and RRH is replaced by CU/DU and RU, respectively. Thus,
five CU/DU/RU functional block splitting have been defined:
(i) One high layer split, where the CU functions are separated
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from DU/RU functions (5G(A)). (ii) Two low layer split which
separate the RU functions from CU/DU (5G(B)). (iii) Two
cascaded layer split, where each functional block is separated
from the others [36].

7) RAN Deployment Scenarios
Usually, the transport network is composed of fronthaul,

midhaul and backhaul networks. Nevertheless, different de-
ployment scenarios may be used by network operators. 3GPP
has identified four RAN deployment scenarios.

• Separated RU, CU and DU locations
This scenario comprises the three transport networks
(fronthaul, midhaul and backhaul). The distance between
CU and DU is in the range of 0-10 kilometers while that
between DU and RU is up to 20 kilometers.

• Co-located DU and CU
There is no midhaul in this scenario, since the DU and
CU are co-located.

• DU and RU integration
There is no fronthaul in this scenario, as both DU and RU
are located together, for example separated by hundreds
of meters in the same company or building. Moreover,
there is no transport equipment between both blocks
(through straight fiber for instance), which enables to
reduce mainly the cost.

• CU, DU and RU integration
It is clear that there is only backhaul network in this
scenario, which may be used for hot-spot and small cell
cases.

It is worth noting that the adequate deployment scenario will
be identified based on applications or services requirements
(ultra low latency, high data rates, etc.), available transport
technology, and requirements of operators’ deployment.

8) O-RAN Slicing Use Cases
Recently, a working group of the O-RAN alliance started to

describe O-RAN slicing architecture, and its related use cases
and requirements [38]. They mainly focus on how to slice the
O-RAN architecture into multiple virtual networks, supporting
different service requirements. Fig. 7 gives a sample scenario
of O-RAN slicing deployment, where some O-RAN functions
are shared between two slices, such as O-RU, O-DU, and O-
CU-CP, while other functions are dedicated to each RAN slice,
such as O-CU-UP.

Besides, in [39], three main O-RAN slicing use cases are
identified along with their requirements and benefits: RAN
slice SLA (Service Level Agreement) assurance, multi-vendor
slices, and resource allocation optimization. For instance, RAN
slice SLA assurance involves Non-RT RIC, Near-RT RIC, E2
interface. Based on slice requirements, the slice performance
may be measured continuously through E2 interface. Then,
Non-RT RIC and Near-RT RIC can fine-tune RAN perfor-
mance to meet RAN slice SLAs. To do so, ML/DL models
van be deployed at the Near-RT RIC module that, based on
measured slice performance from E2, can adjust the RAN
behavior to ensure the slice SLAs.

E. A Comparative Study

In this subsection, we provide a comparative study between
C-RAN, vRAN, and O-RAN from various perspectives. We
discuss major differences among them in terms of character-
istics in TABLE II.
We note that we do not consider D-RAN in our comparison
since, according to [32], the D-RAN is an efficient solution
only for 3G/4G networks. However, it is not scalable enough
to meet the high bandwidth, low latency, and high data rate
requirements of 5G and beyond networks.

• Edge Support: In the RAN part, the data is processed
either in the central cloud computing or in the Multi-
access Edge Computing (MEC), which is near to the
mobile users [40][41]. As for the C-RAN, we distinguish
two main configurations: fully centralized C-RAN and
partially centralized C-RAN [3]. Thus, the data is pro-
cessed either in cloud data centers for the fully centralized
configuration, or the MEC for the partially centralized
one. But, data are processed close to the users (MEC),
when it comes to vRAN and O-RAN.

• Virtualization and Decouple of Data/Control Planes:
Unlike C-RAN, both vRAN and O-RAN leverage new
technologies such as SDN and NFV to separate user
and control planes and virtualize radio access functions,
respectively. In fact, decoupling user and control planes
and virtualizing the main functions in the RAN part
enhances the flexibility and scalability of network ar-
chitecture, optimizes centralized control logic functions,
facilitates the initiation of network slicing for various
industry verticals.
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TABLE II
A COMPARISON BETWEEN C-RAN, VRAN, AND O-RAN ARCHITECTURES.

Characteristics C-RAN vRAN O-RAN

Edge support No (Fully centralized) Yes Yes
Yes (Partially centralized)

Decouple of Data/Control planes No Yes Yes

Virtualization No Yes Yes

Multi-vendors Support No Yes Yes

CAPEX and OPEX High Low Low

Energy consumption Medium Low Low

Latency High Low Low

AI support Medium Medium High

Open interfaces-support No No Yes

RAN controller Non-Real time Non-Real time Near-real time
and non-real time

Control and management Centralized Centralized and
distributed

Centralized and
distributed

• Multi-Vendors Support: C-RAN does not support the
multi-vendors paradigm since no virtualization of net-
work functions is considered. O-RAN is based on open
standards rather than proprietary and legacy interfaces,
which link between BBUs and RRUs parts. This enables
units from different vendors to interoperate with each
other. Similarly, the radio and baseband hardware and
software of vRAN may be supplied by different vendors,
since vRAN leverages on NFV technology to virtualize
its architectural components.

• Capital and Operational Expenditures (CAPEX and
OPEX): The OPEX and CAPEX costs are considered
during the design and deployment steps of the RAN archi-
tecture. The network operators are looking to reduce both
costs by leveraging already deployed infrastructure [42].
The virtualization and edge support of RAN architectures
play a vital role in reducing both CAPEX and OPEX
costs. Hence, OPEX and CAPEX are medium in C-RAN,
while both vRAN and O-RAN generate low OPEX and
CAPEX costs [43].

• Energy Consumption: More than 50% of cellular net-
works energy is consumed by base stations [44]. Thus,
decreasing the consumed energy by base stations sig-
nificantly impacts the total energy consumption of the
RAN part, which will also enable to decrease the en-
ergy consumption of all ICT sectors and in particular
the cellular networks [45]. In fact, centralizing network
functions causes the energy consumption to decrease and
virtualizing the network functions results in reducing fur-
ther the energy consumption [46]. Therefore, the energy
consumption of C-RAN is medium, while the vRAN and
O-RAN are low as compared with that of C-RAN.

• Latency: Compared to centralized cloud computing, sup-

porting Edge computing has a significant impact on
decreasing the network latency, since it brings computing
and storage capacities closer to the mobile users[47].
Hence, the network latency is high in the centralized C-
RAN architecture and low in both vRAN and O-RAN.

• AI and Open Interfaces Support and RAN Controller:
Compared to C-RAN and VRAN, O-RAN architecture
is coming with two new paradigms (1) disaggregated
RAN functions that run as VNF; (2) the notion of
intelligent RAN controller that runs RAN applications
such as mobility management, users scheduling, radio
resources allocation, etc. This may be in near real-time
for real-time applications, or in non real-time for delay
tolerant applications. The RAN controller is in charge
of enforcing the application decisions by using open
interfaces with the RAN functions. One important feature
introduced by O-RAN is the heavy usage of machine
learning techniques, particularly deep learning, to foster
innovation and ease the deployment of intelligent RAN
applications that are able to fulfill the QoS requirements
of the envisioned 5G and beyond network services.
It is worth noting that recently 3GPP RAN3 standard
started to study the integration of AI/ML models to
RAN, in its new Release-17 [48]. The corresponding
working group has just begun, and focuses on the main
functionalities and their corresponding inputs and outputs
(data monitoring, and involved interfaces and nodes). In
addition, this study focuses on New Generation RAN
(NG-RAN), and initially targets three main use cases:
load balancing, energy saving, and mobility optimization.
The main objective is to design a AI/ML-driven frame-
work on top of the NG-RAN architecture.

• Control and Management: Distributed control, manage-
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ment, and deployment of the RAN functions improve
mainly network performance such as RAN latency, com-
munication reliability, and interference, whereas central-
izing the RAN management may generate a large latency
which could impact negatively the network performance
and in particular the RAN performance.

III. DEEP LEARNING BASED WORKS FOR RAN

In this section, we review existing Deep Learning-based
works addressing the 4G/5G RAN. Then, we show how these
works can be realized on top of the O-RAN architecture.
Specifically, we discuss the responsible functional block at
each architecture level (Near RT RIC, O-CU, O-DU, and O-
RU) as well as the role of the O-RAN interfaces.
To do so, we have chosen to group existing works based on
the related Near-RT RIC module to which they belong. This
includes the three Near RT RIC modules (cf.Fig. 5).

A. Resources Management Optimization

It covers mainly radio resource allocation and schedul-
ing, power resource allocation in both uplink and down-
link [26][27][28][29]. This class of works considers the dy-
namic changes of the radio access and services requirements
in terms of latency, throughput, reliability, etc.

1) Literature Review
In [26], the authors provided a Deep Learning based frame-

work to intelligently assign radio resources in 5G networks.
The framework aims to predict traffic congestion and the occu-
pancy state of the eNBs. An adaptive uplink and downlink ratio
can then be applied to avoid traffic congestion. The proposed
framework implements a deep tree model and a long short-
term memory (LSTM) to predict future traffic based on current
and past traffic. The tree model uses convolutional layers
to deal with spatial features of generated data by the UEs.
Therefore, an appropriate resource management mechanism
can be deployed based on the predicted future traffic. Similarly,
the authors addressed the traffic congestion issue in [28]. They
used the deep LSTM learning algorithm to make traffic load
prediction at the eNB. Based on the predictions, the proposed
algorithm executes the appropriate action policy in order to
avoid/alleviate the congestion in an intelligent way.
In [49], the authors studied the resource management for a
network of wireless virtual reality (VR) users. The VR users
communicate with small cell networks (SCNs) that act as VR
control center. In the considered scenario, the SCNs collect the
users’ tracking information over the uplink channel. Then, the
SCNs will send, via the downlink channel, the generated 3-D
images with their audio to the VR users. Hence, the authors
provided a resource allocation scheme that considers both
downlink and uplink channels. They first formulated a non-
cooperative game where the players are the SCNs that look to
find an optimal spectrum allocation improving the VR users’
QoE in terms of delay and throughput. A learning algorithm
based on echo state networks was then used to predict the
VR QoSs value resulting from resource allocation and, hence,
reach a Nash equilibrium (NE) state.
The challenge of resource scheduling in 5G RAN slicing-

ready while ensuring the performance isolation, service re-
quirements, and network dynamics (user mobility and channel
states) was targeted in [27]. The authors provided an intelligent
resource-scheduling scheme (iRSS) where the basic idea is to
exploit both Deep Neural Network (DNN) and reinforcement
learning (RL) [59]. In fact, DNN is used to deal with large
time-scale resource allocation, while RL is used to provide
an online resource scheduling for tackling small time-scale
network dynamics, such as erroneous prediction and unex-
pected network events. Specifically, the time is divided into a
set of prediction windows (PW), while DNN based on LSTM
is used in each PW to predict traffic volume for the next
PW. In addition, inside each PW, RL based on asynchronous
advantage actor-critic (A3C) algorithm is used to perform
online resource scheduling.
In [29], the authors addressed the distributed scheduling chal-
lenge in order to deal with inter-cell interference and with
the lack of standardization for schedulers. They proposed a
reinforcement deep learning-based (RL) approach to dynam-
ically select the suitable scheduler to each cluster of small
cells, based on the channel quality and QoS constraints of
the users. In this scheme, resource scheduling is performed
in a distributed way by using one of the two schedulers:
a proportional fair scheduler or a rate guaranteed max-min
scheduler. Based on RL and experienced QoS and channel
quality of users, a central agent is in charge of performing a
dynamic scheduler selection. Similarly, to minimize the packet
delays and drop rates, another RL-based scheduling framework
was proposed in [50]. This framework is able not only to select
the suitable scheduling rules per cell but also to learn when
to apply each scheduler.
In [51], the authors addressed the challenge of power al-
location in cellular networks by proposing three deep RL-
based schemes: REINFORCE, Deep Q-Learning, and deep
deterministic policy gradient (DDPG), which are, respec-
tively, policy-based, value-based, and actor-critic-based. These
schemes aimed at maximizing the downlink cell sum-rate.
Performed simulations showed that the proposed schemes
outperform the state-of-art methods in terms of sum-rate
with good generalization power. Similarly, another Q-learning
based scheme was proposed in [52], in order to achieve a near-
optimal power allocation policy in a multi-cell system. This
scheme aimed at maximizing the downlink network throughput
under maximal power constraints of a cluster of users, sharing
the same frequency bands. In the same context, another deep
learning-based approach was proposed in [55]. It aimed to
perform sum-rate-max and max-min power allocation in the
uplink of a cell massive MIMO (Multiple Input Multiple
Output) system. Using a neural network, the authors generated
a learning model that can map between input data and the
power allocation scheme’s optimal solution.

A radio resource allocation scheme for vehicular networks
was proposed in [53], in order to ensure ultra-reliable low-
latency V2V communications. To model the latency require-
ment, the authors considered both transmission latency and
queuing latency. They then dealt with the queuing latency us-
ing the federated learning (FL) concept to enable each vehicle
to predict when its queue length is exceeding a predefined
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TABLE III
RESOURCES MANAGEMENT WORKS ON THE TOP OF O-RAN.

Works Challenge Learning
algorithm

Link with O-RAN architecture
O-RAN
module

Functional
blocks Interfaces

Hossain et al. [26] Radio resources
management

Deep tree
+ LSTM O-DU Resource assignment (NR-MAC)

O1 (Monitoring)

A1 (Data Analytics)

E2 (Realization)

Yan et al. [27] Resources scheduling DNN+RL O-DU UL Scheduler (NR-Scheduler)

Zhou et al. [28] Radio resources
management

RNN with
LSTM O-DU Resource assignment (NR-MAC)

Hall et al. [29] Resources scheduling RL O-DU UL Scheduler (NR-Scheduler)
Comşa et al. [50] Resources scheduling RL O-DU UL Scheduler (NR-Scheduler)

Fan et al. [51] Power allocation
(Downlink) RL O-DU Resource assignment (NR-MAC)

PDSCH (High-PHY)

Kazi et al. [52] Power allocation
(Downlink) RL O-DU Resource assignment (NR-MAC)

PDSCH (High-PHY)
Chen et al. [49] Resource management DNN O-DU Resource assignment (NR-MAC)

Samarakoon et al. [53] Power allocation and
resources management FL O-DU Resource assignment (NR-MAC)

PDSCH (High-PHY)

Kasgari et al. [54] Power allocation and
resources management DRL O-DU Resource assignment (NR-MAC)

PDSCH (High-PHY)

Carmen et al. [55] Power allocation
(Uplink) DNN O-DU Resource Assignment (NR-MAC)

Zhiyong et al. [56] Radio resources
management DRL O-DU Resource Assignment (NR-MAC)

Al-Tam et al. [57] Radio resources
scheduling DRL O-DU UL Scheduler (NR-Scheduler)

AL-Tam et al. [58] Radio resources
scheduling Pointer Critic (DRL) O-DU UL Scheduler (NR-Scheduler)

threshold, i.e, exceeding the needed latency [60]. Simulation
results showed that the FL-based scheme can provide very
accurate predictions and hence helping at reducing the number
of vehicles with exceeding queue lengths.
In [54], the authors provided a deep RL-based framework for
jointly radio resource management and power allocation. It
aimed to achieve a trade-off between communication relia-
bility, latency, and data rate. They first formulated a power
minimization problem under reliability and latency constraints
before solving it using the deep RL-based framework. The
proposed framework can dynamically predict the traffic model
of each UE and then jointly allocates resource blocks (RBs)
and power to downlink UEs.

Although reinforcement learning may represent a powerful
tool for radio optimization, it consumes huge energy over time.
Thus, in [56], the authors discussed algorithm and architecture
innovations to achieve green Deep Reinforcement Learning
(DRL) when addressing Radio Resource Management (RRM).
From an architectural point of view, a distributed DRL scheme
is proposed to enable distributed decision-making by RRM
entities. Moreover, a transfer learning scheme is also designed
to scale the DRL scheme across geographic areas. Another
DRL model is proposed to deal with the radio resource
scheduling problem in mobile 5G networks [57]. The proposed
model is numerology-agnostic, which supports different 5G
numerologies. A reward analysis study is also provided to
deduce which policies the DRL model has learned. Similarly,
the authors handled the radio resource scheduling issue in 5G
networks, in order to assign efficiently frequency resources to
mobile users [58]. They used an advantage pointer critic to
implement a deep reinforcement learning agent. The agent is
based on a deep pointer network architecture and deployed at

the RAN level. The experimental results show the efficiency
of the scheme to allocate frequency resources to users as
compared to other schemes.

2) Discussion and Integration with O-RAN
TABLE III illustrates a comparison study between the works

belonging to the Resource management module of Near-RT
RIC. This study is established according to the addressed
challenge, the used learning algorithm, the link with the O-
RAN architecture in terms of the software module and its
functional blocks where the proposed schemes can be applied,
the communication Interfaces for traffic exchanging as well.

• Radio Resources Allocation: It is one of the main func-
tions of RAN, since it enables UEs sending (or receiving)
their data while meeting the applications’ requirements
(latency, throughput, reliability, etc.). Both supervised
and reinforcement deep learning have been used to deal
with such issue. In particular, LSTM algorithm is used
to deal with sequence-to-sequence data in predicting
traffic demand over time. Reinforcement learning, on the
other hand, enabled to create prediction models of radio
resources based on the quality of experiences of mobile
users [61][62].

• Resources Scheduling: The scheduler is in charge of
defining when each user may access the wireless medium
to send (or receive) its data. This function of RAN is
critical as, on one hand, it allows users to meet their
requirements such as the latency; on the other hand, it
helps to avoid inter and intra-cell interference. To deal
with, most of the existing works used reinforcement
learning in order to build prediction models based on
users’ feedback in terms of communication reliability.

• Power Allocation: It is another important function of
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TABLE IV
MOBILITY MANAGEMENT WORKS ON THE TOP OF O-RAN.

Works Challenge Learning
algorithm

Link with O-RAN architecture
O-RAN
module

Functional
blocks Interfaces

Lee et al. [63] Handover Management DNN O-CU-CP UE and gNB procedure
management O1 (Monitoring)

A1 (Data Analytics)

E2 (Realization)

Ozturk et al. [64] Handover Management RNN with
LSTM O-CU-CP UE and gNB procedure

management

Wang et al. [65] Handover Management LSTM O-CU-CP UE and gNB procedure
management

El Amine et al. [66] Base station energy RL
(Q-learning) O-CU-CP Cell procedure

management

Salem et al. [67] Base station energy RL
(Q-learning) O-CU-CP Cell procedure

management

YE et al. [68] Base station energy DRL
(Actor Critic) O-CU-CP Cell procedure

management

Kaiqiang et al. [69] Handover Management Federated Learning O-CU-CP UE and gNB procedure
management

Wu et al. [70] Handover Management DRL O-CU-CP UE and gNB procedure
management

Qiong et al. [71] Base station energy DNN O-CU-CP Cell procedure
management

Li et al. [72] UE and Base station energy DNN O-CU-CP UE and Cell procedure
management

RAN, which aims to implement a near-optimal power
allocation policy, in a multi-cell system. Reinforcement
learning is mostly applied to maximizing the downlink
network throughput, while ensuring an optimal power
allocation.

Regarding the link with O-RAN, we observe that all these
works belong to the O-DU module since they target the
resources (radio and power) management challenge. Thus,
these works will mainly concern the MAC layer in terms of
resource assignment and scheduling and the High-PHY layer
to provide the needed power to the shared physical chan-
nel when downloading data (PDSCH for Physical Downlink
Shared Channel).

B. Mobility Management Optimization

It addresses the management of users handover and base
station energy, based on users mobility [63][64][65].

1) Literature Review
In [63], the authors targeted conditional handover challenge

that is one of the promising mobility enhancements in 5G
networks. It consists of making early preparation decisions in
order to improve the Handover success rate. However, 5G mm-
Wave communications are vulnerable to blockages, and hence
sudden changes in signal power can lead to making undesired
early preparations of Handover. The authors proposed a deep
neural network (DNN) based scheme that considers the envi-
ronment context and predicts the best next base station based
on the received signal power. Therefore, the proposed deep
learning based helps in making more intelligent preparation
decisions of the handover procedure.
In the same context, in [64], the authors first gave an analytical
model of Handover cost in 5G, in terms of signaling overhead,
latency, call dropping, and radio resource wastage. They then
proposed a prediction scheme based on the RNN (Recurrent

Neural Network) with LSTM algorithm to further minimize
the Handover cost. It was shown that good prediction accuracy
of the Handover can significantly minimize the cost function
in terms of user dissatisfaction, HO latency, resource wastage,
and overhead.
Similarly, the LSTM algorithm is used, in [65], to learn the
mobility pattern of each UE from its historical trajectories, and
predict its next mobility in the future. Based on the mobility
prediction results, the corresponding base station will judge
whether a handover is required for the UE or not. If yes, a
dual connection will be established for the UE with the two
base stations in the handover operation.
In [66], the authors studied the energy consumption challenge
of base stations (BS), especially with BS densification in 5G
architecture. They proposed a reinforcement learning based
scheme that controls the states of the BSs while respecting the
requirements of users. They considered three levels of sleep
modes, and the algorithm chooses how deep a BS can sleep
while maximizing the trade-off between energy savings and
users’ QoS.
Similarly, another RL-based scheme was proposed in [67]. It
aimed to derive a controller that efficiently activates different
BSs’ sleeping modes according to the targeted utility. Each BS
uses its local information in order to learn the best energy-
saving policy. In [68], a deep reinforcement-learning based
scheme was proposed to provide small cell (BS) activation
strategy. The proposed scheme activates the optimal subset
of small BSs in order to reduce energy consumption without
compromising users’ QoS. The authors formulated the small
BSs on/off switching problem as a Markov Decision Process
before solving it using Actor-Critic (AC) reinforcement learn-
ing methods.
In [69], the authors addressed the handover challenge in 5G
millimeter-wave vehicular networks. They proposed a proac-
tive federated learning-based framework to optimize handover
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TABLE V
SPECTRUM MANAGEMENT WORKS ON THE TOP OF O-RAN.

Works Challenge Learning
algorithm

Link with O-RAN architecture
O-RAN
module

Functional
blocks Interfaces

Huang et al. [73] Channel
estimation DNN O-DU PUCCH

(High-PHY) O1 (Monitoring)

A1 (Data Analytics)

E2 (Realization)

Ye et al. [74] Channel
estimation DNN O-DU PU(D)C(S)CH

(High-PHY)

O’Shea et al. [75] Signal encoding
and decoding DNN O-DU PU(D)C(S)CH

(High-PHY)

Rajendran et al. [76] Signal classification
(modulation)

LSTM
+ CNN O-DU PU(D)C(S)CH

(High-PHY)

Jia et al. [77] Signal detection at the
receiver(Massive MIMO) DNN O-DU PUC(S)CH

(High-PHY)

Asadi et al. [78][79] Beam selection
(mmWave) RL O-RU Low-PHY

Sim et al. [80] Beam selection
(mmWave) DNN O-RU Low-PHY

Wei et al. [81] Channel
estimation DNN O-DU PU(D)C(S)CH

(High-PHY)

Sohrabi et al. [82] Feedback and channel
estimation DNN O-DU PU(D)C(S)CH

(High-PHY)

delay and thus ensuring the quality of service for users. The
proposed framework enables avoiding frequent handovers and
decide about handovers based on the mobility pattern of users.
Federated learning allows to generate the learning model in a
distributed way, which enables to minimize the communication
cost of the training step. Simulation results prove the efficiency
of the framework as compared to reactive schemes in reducing
unnecessary handovers. User handoff in 5G RAN network
slicing has been addressed in [70]. The authors devised an
intelligent handoff policy that considers two main constraints:
physical resources of base stations and logical connection
of network slices. To do so, the authors have modeled the
handover in RAN slicing as a Markov decision process and
built a learning model using deep reinforcement learning to
improve network throughput and users QoS.
To reduce the energy consumption of base stations, a traffic-
aware control framework is proposed in [71], to effectively
activate/deactivate based stations based on traffic demand
while ensuring users’ QoS requirements. to this end, a data-
driven learning scheme is designed to predict traffic demands
by considering the semantic and geographical spatial-temporal
relationship of mobile traffic. In the same context, the energy
efficiency in RAN 5G to support ultra-reliable low-latency
and high data throughput services for both UEs and base
stations has also been addressed in [72]. This work provides
an overview of deep learning-based power-saving schemes in
link with 5G standards.

2) Discussion and Integration With O-RAN
TABLE IV shows a comparison study between the works

belonging to the mobility management module of Near-RT
RIC.

• Handover Management: It is a critical function of RAN
which consists of moving (hand over) users’ connection
from a cell to another, based on their mobility (users),
so users will get better radio conditions and hence a
better experience. In the literature, supervised learning

techniques such as Deep Neural Network (DNN) is the
most used to deal with such issue. DNN considers the
environmental context, such as the received signal power
from users, and then predicts the suitable next base
station to which users will migrate. Thus, DNN enables
early preparation decisions of the handover procedure,
which causes to reduce the handover cost. In the O-RAN
architecture, the handover procedure will act at O-CU-
CP module, in particular the functional block of UE and
gNB procedure management.

• Base Station Energy: The base stations (BS) represent
the main source of energy consumption in cellular net-
works. Therefore, one of the main functions of RAN is
to manage the energy consumption of BSs, especially
with BSs densification in 5G networks. In such context,
reinforcement learning is the most applied to decide
when BSs can switch between sleeping and active modes,
while respecting users’ QoS. The base station energy
function will be implemented at the O-CU-CP module
of the O-RAN architecture, which ensures cell procedure
management.

We deduce that the works of this class concern mainly the
O-CU-CP module that implements the functional blocks of
UE, gNB, and Cell procedure management. Thus, the O-CU-
CP is in charge of dealing with handover management and
base station energy challenges, which are mainly addressed
by the works of this class.

C. Spectrum Management Optimization

It aims at providing spectrum efficiency based on the
new enabled 5G technologies, including Massive MIMO and
mmWave [73][74][75][76]. This spectrum efficiency can be
in terms of channel estimation, signal encoding and decod-
ing, signal detection for massive MIMO, beam selection for
mmWave, etc.
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1) Literature Review
In [73], the authors discussed the performance of deep

learning for the following issues:

• Channel estimation: deep learning was used for or-
thogonal frequency-division multiplexing (OFDM) sys-
tems [74], where the output of the deep learning model
recovers the input symbols without requiring channel de-
tection. More specifically, the deep model takes as input
both the transmitted symbols and received OFDM signals.
The deep model will then be trained to minimize the
difference between the input and output of the network.

• Signal encoding and decoding: a DNN with multiple
dense layers was constructed to deal with signal en-
coding and decoding in [75]. The DNN encodes the
transmitted signals as a one-hot vector. The transmitted
signals through the wireless channel are added as a noise
layer and are conveyed to the NN-based receiver. Finally,
the decoded messages are the output signals with the
highest probability, i.e., k bits comprise 2k messages. The
simulation results showed that this DNN-based encoding
and decoding scheme can generate the same performance
as the Hamming code without requiring encoder and
decoder functions.

• Signal classification: to provide an Automatic modulation
classification (AMC) scheme for the environment and
transmitter identification, a deep learning-based frame-
work of signal classification was developed in [76]. The
framework is based on input signals in polar coordinates
and is trained to classify 11 typical modulation types. The
framework comprises two main modules. The first one is
based on LSTM for signal classification at a high signal-
to-noise ratio (SNR), while the second one is based on
Convolutional Neural Network (CNN) to deal with low
SNR.

Finally, as the massive MIMO performance depends mainly
on the quality of monitored CSI (Channel State Information)
messages, the authors proposed a DNN-based framework for
channel estimation issues when collecting CSI packets [73].
Simulation results showed that DNN is a suitable algorithm
for an accurate CSI reconstruction and hence for high-
performance channel estimation of the massive MIMO. The
massive MIMO challenge of optimal detection at the receiver
was also addressed in [77]. In this context, the maximum
likelihood detection algorithm can obtain the lowest bit error
rate (BER), however, the computational complexity increases
as the number of antennas increases. The authors provided a
neural network-based detection scheme. Experimental results
showed that the proposed scheme can achieve low BER with
low computational complexity.
The authors proposed an online learning algorithm to deal with
the beam selection problem in mmWave vehicular communica-
tions [78] [79]. The problem is modeled as a contextual multi-
armed bandit problem, in which an agent has to select a subset
of actions of unknown rewards with the goal to maximize the
reward over time. Thus, this algorithm enables the mmWave
base stations to autonomously learn about the appearance of
blockages and changes in traffic patterns in order to select the

best beam. Similarly, a deep learning-based beam Selection
scheme was also proposed in [80]. It exploits CSI of a sub-6
GHz channel, in terms of power-delay profiles, to choose the
more suitable mmWave beam.
To improve the accuracy of learned approximate message
passing (LAMP) which is based on deep learning, a Gaussian
mixture LAMP (GM-LAMP) scheme is proposed to estimate
the channel in [81]. The authors first derive a shrinkage
function to optimize the AMP scheme, which then replaces the
original shrinkage function in the LAMP scheme. Therefore,
a GM-LAMP scheme is designed to estimate the channel
accurately. The performance of the proposed scheme is val-
idated through simulation, as compared to the theoretical
channel model. Similarly, in [82], deep learning is used to
enable distributed quantization, feedback, channel estimation,
and downlink multi-user precoding for massive MIMO. The
authors proposed a joint design of pilots and a deep neural
network, to transform the received pilots into feedback bits
at UE level, while mapping the UEs’ feedback bits into the
precoding matrix at the base stations side. Experimental results
show that the proposed scheme can give the same performance
when compared to the traditional precoding approaches.

2) Discussion and Integration With O-RAN
TABLE V compares the aforementioned works of this class,

which target three main challenges.

• Channel Estimation: This function enables to recover
the transmitted signal at the receiver side, in OFDM
systems, which is very important for interference sup-
pression. In fact, channel estimation is a challenging
problem in wireless communications due to the frequency
selectivity and time variance of channels. To deal with
this issue, DNN is usually used in order to minimize
the difference between the sent and received signals.
The channel estimation function will be ensured by the
PUCCH (Physical Uplink Control Channel) functional
block of the O-RAN O-DU module.

• Beam Selection: With the emergence of mmWave and
directional communications, the beam selection function
consists of selecting the best beam, ensuring accurate
beam alignments between the base stations and users.
Either supervised learning or reinforcement learning are
applied for beam selection. Reinforcement learning en-
ables to update the beam based on users feedback, while
DNN can help to predict the best beam based on the
environmental context, such as presence of obstacles.
In the O-RAN context, the Low-PHY layer of the O-
RU module will be responsible of the beam selection
function.

• Signal Encoding, Decoding, and Classification: This
function enables to encode the signal before transmis-
sion, decode the signal at the receiver side, and classify
automatically the signal in the corresponding modulation
type. In this context, DNN is used to deal with the signal
encoding, decoding, and classification. DNN encodes the
transmitted signal which is then conveyed to the neural
network of the receiver (decoding). DNN classifier may
also be built to classify the signals into the suitable
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modulation type. The PU(D)C(S)CH (Physical Uplink
(Downlink) Control (Shared) Channel) functional block
of the High-PHY layer is in charge of ensuring the signal
encoding, decoding, and classification functions, the O-
RAN O-DU module.

We clearly see that these works addressed the physical layer
in terms of the O-DU (High-PHY) and O-RU (Low-PHY)
modules, since they deal with spectrum-related challenges
such as channel estimation at the reception side, signal en-
coding and decoding, beam selection, etc. These challenges
are linked directly to the transmission channels (control and
shared) in both uplink and downlink directions. In general,
for the three classes of works, we remark that both supervised
and reinforcement learning schemes such as DNN, LSTM,
and RLs are widely used to deal with emerging challenges at
the radio resources management level and the physical layer.
These algorithms are usually used offline, i.e., the learning
models are generated during an offline step, then only the
final models are exploited in real-time. This may affect the
performances of these models to deal with events that they
did not see before, especially with the dynamic changes of
cellular networks at the radio access level.
Moreover, to ensure the proper functioning of these works
(the three classes), the O-RAN’s O1 interface is in charge
to monitor targeted data types from the O-DU module, for
training learning models at the Non-RT RIC level. We note
that the learning models can be trained offline or online at
Non-RT RIC. Then, the generated model inference will be
communicated to Near-RT RIC through the A1 interface in
order to be executed in real-time at Near-RT RIC. Besides,
at the Near-RT RIC, the inference results can be compared
to the real data (collected through O1) to help detecting
resource management violations in real-time, for instance,

latency or throughput violations. Hence, This will help to
make more adequate decisions, e.g., to set new policies for
ensuring the needed RAN requirements. Finally, the Near-RT
RIC module can enforce these decisions on O-DUs through
the E2 interface.

IV. CASE STUDIES ON DEEP LEARNING DEPLOYMENT
IN O-RAN

In this section, we give two case studies for Deep Learning
(DL) deployment in O-RAN. Based on the literature review,
two main DL categories have been used: supervised deep
learning and reinforcement deep learning.

A. Supervised Deep Learning Deployment

Supervised learning has been used either in a centralized
way or federated (distributed) way, which is a recent technique
developed by Google. Federated Learning (FL) aims to build
models in a distributed way, while preserving the privacy of
learners and reducing the network overhead. FL is suitable for
O-RAN, since the latter is also based on a disaggregated and
distributed split architecture (O-DU and O-RU).
Rather than sharing the data in a central node (e.g., cloud
data centers [83]), FL enables each learner to build locally
a learning model using its (learner) proper data. Then, only
local models (i.e., models’ weights) are sent to a central node
for aggregation. Once local models are aggregated, a global
model is generated and is sent back to the learners.
In fact, FL suits well the O-RAN architecture as it enables not
only to preserve the learners’ privacy, especially in a multi-
operator system, but also to reduce the network overhead by
avoiding to share and transmit the required data. In the O-RAN
context, local models can be built at the O-RU level, where
generated data by users of a cell (or a subset of cells) are
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exploited locally to build local learning models, for instance,
models to predict radio resources requirements to deal with
resources allocation issue, or users mobility to address the
handover challenge (Step 1 in Fig. 8). Then, the local models
will be transmitted to the Non RT-RIC module for aggregation,
through the O1 interface (Step 2 in Fig. 8). Aggregating local
models enables to generate a global model which is sent to
the near RT-RIC to be deployed in the related xApp (Step 3
in Fig. 8), according to the targeted challenge (radio resources
management, spectrum management, mobility management,
etc.). Thus, predictions will be performed in near real-time
based on monitored data from the O-RU level via the O1
interfaces. However, when decisions must be taken to adjust
xApp’s parameters, for instance, updating the policy of radio
resource allocation or that of the scheduler, the Near RT-RIC
sends the DL-based decisions to the corresponding O-RAN
module (O-DU or O-CU), through the E2 interface (Step 4 in
Fig. 8).

Besides, data are monitored continuously from the O-RU
part and stored in the database through the O1 interface.
Hence, to build supervised models in a centralized way, the
Non RT-RIC generates directly the needed model by lever-
aging the monitored and stored data in the database, before
deploying them (learning models) in the related Near RT-RIC’s
xApps.

B. Reinforcement Deep Learning Deployment
Reinforcement deep learning enables to deploy an intelli-

gent agent (or a set of agents) that learns in an interactive

environment by trial and error, using feedback from its own
actions and experiences. In other words, each agent interacts
with its environment and gets either rewards or penalties for
the actions it performs. Thus, reinforcement learning aims
at finding a suitable action model for agents, that would
maximize their (agents) total cumulative reward. In such
context, the studied systems are usually modeled using Markov
Decision Process (MDP) [84], before applying reinforcement
learning to devise the optimal policy in terms of actions. MDP
models a system as: (i) a set of states s ∈ S, (ii) a set of actions
a ∈ A, (iii) a transition function P (s; a; s′), to move from a
state s to a new state s′ when taking an action a, and (iv)
a reward function R(s; a) when performing an action a at a
state s.
In the literature, both Q-learning and Deep Q-Network (DQN)
algorithms have been used to deal with the RAN challenges.
Q-learning is used to determine an optimal policy, maximizing
the expected total reward for any finite MDP where both state
and action spaces are small. However, when the state and
action space become high, DQN is applied, which is based
on a neural network.

The intelligent agents are deployed at the near RT-RIC
module of O-RAN, in order to improve the performance of
running xApps (Step 1 in Fig.. 9). These agents will interact
with the external environment, which is composed of O-
RU, O-DU, and O-CU. As a MDP system, these agents will
periodically take actions to optimize the RAN performance,
via the E2 interface (Step 2 in Fig. 9). Then, through the
O1 interface, the agents will receive the obtained reward and
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new state of the system (Step 3 in Fig. 9). For example, to
deal with radio resource allocation and scheduling challenges,
an intelligent agent may take an action to update the policy
of resources allocation and scheduling in the O-DU’s MAC
layer, in order to meet users requirements (Step 2 in Fig. 9).
In this case, the reward can be determined based on the users
quality of experiences, while the new state of the system can
be reflected by the total number of allocated resource blocks
and users’ density. In this way, reinforcement learning helps
at devising an optimal policy for resources assignment and
scheduling while optimizing the users’ quality of experiences.
We note that for DQN, the neural network takes the current
state as the input and gives the Q-value (reward) of all possible
actions as the output. Specifically, DQN uses two neural
networks for learning: a prediction network Q(s; a; θ) and
target network Q′(s′; a; θ′). The prediction network is updated
at each iteration and used to evaluate the current state action.
The target network Q′(s′; a; θ′) is used to generate target
value. The target network is directly copied from the prediction
network every several iterations (Step 4 in Fig. 9). Thus,
DQN aims to minimize the means squared error (loss function)
between the outputs of both neural networks, as follows:

L =

(
r + λmax

a′∈A
Q′(s′, a′, θ′)−Q(s, a, θ)

)2

(1)

Where θ represents the learning weights of the Q-network,
which is updated through gradient back propagation [85]. r is
the received reward. λ is the discount factor that notifies the
importance of future rewards.

V. AUTOMATION OF ALL STEPS OF MACHINE LEARNING
SYSTEM CONSTRUCTION IN O-RAN

One of the main features of O-RAN is the abundant us-
age of ML techniques, particularly Deep Learning (DL), to
foster innovation and ease the deployment of intelligent RAN
applications. However, the real challenge, in such context, is
how to build ML models that ensure stable performances over
their life cycle. Indeed, the performance of ML models may be
degraded due mainly to constantly evolving data profiles [86],
hence such degradation must be considered to ensure the
proper functioning of RAN applications. Therefore, there is a
great need to not only monitor continuously both data profiles
and online performance of deployed models, but also automate
all steps of deep learning system building, including data
preparation, model training, evaluation, and validation [87].
This section discusses how to apply DevOps1 principles to

ML systems (MLOps) in order to unify ML system devel-
opment (Dev) and ML system operation (Ops) [87]. In fact,
the level of automation of ML steps reflects the speed of
training new models or updating existing models, given new
data profiles.
It is worth noting that this automation deployment concerns
only the supervised learning models which are usually built
at the O-RAN Non RT-RIC module and deployed at the Near
RT-RIC module. In what follows, we describe two levels of

1It is a popular practice in designing, developing and operating software
systems. It is based mainly on two concepts Continuous Integration (CI)
and Continuous Delivery (CD), to provide benefits such as reducing the
development cycles, increasing deployment speed, etc.
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MLOps, the most basic level (no automation) and automating
all ML process level.

A. Manual MLOps Process in O-RAN (Level 1):

It is the basic level of maturity, where the entire ML
process in terms of creating and deploying learning models is
manual. Fig. 10 shows the main steps of this process that are
performed at the Non RT-RIC module of O-RAN. Each step is
executed manually, including data preparation, model training
and validation. This level is based on a manual transition from
one step to another, and driven by source code that is realised
interactively, till an executable model is built and deployed at
the Near RT-RIC module, via the A1 interface.
In practice, the manual process corresponds to the ML models
that are rarely updated, which is not the case with the dynamic
changes of wireless RAN. In particular, the performance of
RAN’s ML models may degrade due either to changes in the
dynamics of the radio access environment, or changes in the
data profiles describing the environment. Thus, introducing
automation in the ML system process for the RAN part is
more than required.

B. Automation MLOps Process in O-RAN (Level 2):

This level aims to automate the ML system process, by
performing continuous performance monitoring of models and
models training; this then will ensure a continuous provision
of model prediction service. We note that the Non RT-RIC
module may monitor the performance of deployed ML models

from the Near RT-RIC through the A1 interface, in order to
enable such automation of the ML process.

To automate the process of considering new data to update
deployed models, automated new data and model validation
phases, as well as process triggers and metadata management
are introduced to the ML process. Fig. 11 illustrates the
automated ML process. The main features and elements of
this level are described, as follows:

• Continuous Training (CT) of models: The models are
automatically trained leveraging new data and based on
ML pipeline triggers.

• Continuous delivery (CD) of models: The ML pipeline
continuously outputs prediction services of new trained
models that are based on new data. The model deploy-
ment step is automated.

• Pipeline deployment: In the manual level, only a trained
model is deployed to provide a prediction service. For
automated level, an entire training pipeline is deployed,
which automatically runs to deliver a prediction service
through a trained model.

• Data and model validation: When the ML pipeline is
deployed, it starts to be executed automatically, based on
one or more ML pipeline triggers. The pipeline expects
fresh and new data to build new models. Hence, an
automated data and model validation phase is needed.
On one hand, data validation is required to decide whether
the execution of the pipeline should be interrupted, or the
models should be retrained. In this context, the models
have to be retrained for two main reasons: (i) skews of the
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data schema, when the pipeline receives data that does
not correspond to the expected ones, such as receiving
new features, not all expected features are received, or
receiving unexpected values of features. Therefore, the
ML pipeline should be stopped and the developers’ team
should update it to deal with these issues. (ii) skews in
data values, when statistical properties of data and their
patterns are changed. In this case, the models should be
retrained in order to consider these changes. On the other
hand, once the new models are trained, the validation step
occurs to evaluate and validate them before deploying
them.

• Metadata management: To help in debugging errors and
anomalies. The metadata records information about each
ML pipeline execution, including parameter arguments
of the pipeline and its executor, timestamp of pipeline
execution in terms of start and end date time of each
executed step, pointers to the outputs of each step of the
pipeline as well as to previously built models, if rolling
back to previous models will be needed, etc.

• ML pipeline triggers: The ML pipeline execution may be
automated to update (retrain) the models based on several
use cases: (i) On demand, when the pipeline is executed
in a manual and ad-hoc way. (ii) On a schedule, when
the pipeline is fed by new data, which is systematically
available. (iii) Availability of new data, when new data is
available in an ad-hoc way. (iv) On performance degra-
dation of models. And (v) data distributions changes.

VI. OPEN PROBLEMS AND FUTURE RESEARCH
DIRECTIONS

The development of O-RAN architecture is still in its early
stages. Despite the various new functionalities it offers, many
critical challenges are to be addressed and considered before
deploying such architecture. In what follows, we discuss some
of these challenges in addition to future research directions.

A. O-RAN Deployment Security Concerns

Disaggregating the main functions of RAN and implement-
ing them in software increases the risk of the attack surface
and threat of the network. Ericsson has just provided an in-
depth study on the main security concerns of the O-RAN
architecture, including increased threat surface through the
new interfaces; for example, A1, open front-haul, E2, etc.,
newly introduced threats at the Near-RT RIC, a threat to Trust
Chain when decoupling of hardware [88]. These threats may
directly affect the performance of the deep learning-based
functional blocks. For instance, this split architecture opens
the risk of Man-in-the-Middle attacks over the open front-haul
interface. Thus, an adversary can manipulate the management
and control traffic exchanged between the O-RU and O-DU
modules. This can affect the accuracy of the learning models
since they are built based on this traffic. Therefore, security
measures should be implemented to address the threat risks of
O-RAN deployment.
In such context, an O-RAN Security Task Group has started
to address these security issues in order to ensure that the

O-RAN deployment will meet an expected security level by
the industry [89]. Furthermore, recent solutions started to
leverage Blockchain technology, in order to secure and manage
authentication and network access between trust-less network
entities [90]. This represents a promising solution for the O-
RAN architecture, especially with its disaggregated functions
and decentralized management.

B. Network Slicing Integration Concerns

The O-RAN architecture is expected to support network
slicing (NS), which will enable the creation of multiple
network slices tailored to fulfill diverse requirements. Thus,
integrating NS may impact O-RAN in different manners. The
O-RAN orchestrator (SMO) must be configured to consider
the network slice template. Then, the performed predictions
by AI/DL models, at near-RT RIC, must be compared to the
slices’ requirements in order to anticipate the slices’ SLA
violations. Moreover, to ensure network slice isolation, a se-
cure partition of the Non-RT RIC and Near-RT RIC databases
must be dedicated to each network slice. This enables to build
either AI/DL models proper to each network slice or a global
model aggregating network slices models, using, for instance,
distributed federated learning [91].
In this context, a slicing task working group has started to
consider these concerns, and hence to support NSs in the O-
RAN architecture [6].

C. SON and MEC Integration Concerns

Self-Organizing Network (SON) functions consist of a set
of functions that aim at providing RAN management self-
optimization [92]. These functions concern mainly the control
of network capacity and coverage, QoS, interference, and
energy consumption. SON was deployed in 4G networks [92].
Thus, it is also critical to consider the SON functions in the
O-RAN architecture and deploy them in the 5G networks.
In fact, the SON functions are based on periodic feedback
loops. Therefore, these functions can be deployed at both O-
RAN’s Non-RT RIC to build AI/DL models and near-RT RIC,
to monitor RAN and enabling its management automation.
In addition, the Non-RT RIC can also orchestrate the SON
services.
Even the 3GPP standard does not design any detailed archi-
tecture of SON; however, there is ongoing work on the 5G
SON to deal with end-to-end 5G network management [93].

On the other hand, ETSI Multi-access Edge Computing
(MEC) consists of deploying computation and storage capabil-
ity close to UEs, and thus reducing the network latency [94].
To do so, it (MEC) exploits mainly the RAN contextual
information to enable time-sensitive and traffic redirection
applications, provide service-oriented APIs such as radio con-
ditions and users location contexts, etc. Hence, there is a great
need for efficient MEC and O-RAN integration in order to
enable MEC-related management. It is worth noting that MEC
was defined for 4G networks; however, its integration with
the 5G network is still in progress. In fact, since MEC aims
to provide a low latency network, MEC hosts can act at the
near-RT RIC of O-RAN. In addition, the O-RAN databases
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can integrate the MEC databases storing, Radio Network
Information Service (RNIS), cell performance, users locations,
etc [95]. Moreover, the Non-RT RIC (O-RAN orchestrator)
can also orchestrate the mobile edge applications.

D. Online and Privacy-preserving Distributed Learning
Concerns

Actually, the O-RAN architecture is adopted to build of-
fline DL models in Non-RT RIC before deploying them at
the Near-RT RIC. However, several RAN-related challenges,
such as radio resource allocation and scheduling, require to
generate online and real-time DL models, using, for instance,
reinforcement deep learning. This enables to adapt them
(learning models) according to the dynamic radio changes and
contextual information, including users mobility and energy,
needed throughput and latency, etc. In such a context, the
online DL models must be integrated into the Near-RT RIC
as xApp, to be in charge of building and updating learning
models in real-time. This integration is already visible to the
O-RAN alliance actors, but it must be enforced.

Besides, disaggregating the RAN functions, implementing
them in software, and the distributed split architecture (O-DU,
O-RU) have motivated the use of distributed deep learning
models, such as Federated Learning (FL) [91][16]. As men-
tioned before, FL preserves the privacy of learners by sharing
only their local models rather than their privacy-sensitive data.
This learning technique corresponds greatly to the O-RAN
architecture, for instance, to ensure isolation of running slices
on top of O-RAN.

E. Convergence and Scalability Concerns of Learning Tech-
niques

As mentioned before, the distributed split architecture (O-
DU and O-RU) of O-RAN calls for the use of distributed and
multi-agent learning techniques. However, the convergence of
such techniques is a challenging problem, where these tech-
niques should converge efficiently and quickly to avoid any
instability situation [96]. In such context, fast boot strapping
techniques may be used, which helps to speed the learning
schemes convergence [97]. Furthermore, as the number of
O-RAN entities (O-DU and O-RU) tends to increase and
almost all of RAN functions are becoming intelligent based
on ML/DL models, the scalability of learning schemes and
O-RAN architecture must be addressed on a specific basis.

F. Energy Concerns with Function Splitting of O-RAN

With the growing impetus of O-RAN architecture, ensuring
an efficient function splitting in O-RAN, while reducing the
energy consumption of the RAN hardware and software is
becoming highly important. In fact, energy efficiency plays
a vital role in decision-making process of cellular networks,
due to the considerable increase in their cost and carbon
footprint caused by the high demand for data and network
densification. In such a context, leveraging renewable energy
sources at the RAN level is a promising approach to optimize
the energy consumption of RAN hardware and software.

However, network managers need to optimize energy usage
since they must store this energy in limited batteries in terms
of capacities. In addition, renewable energy is intermittent, and
the supply is not always guaranteed [98]. Hence, under the
instability of renewable energies and the dynamic nature of
the wireless networks, efficient functional splitting in green
O-RAN is becoming a critical need which can be addressed
by machine/deep learning schemes, in particular reinforcement
learning techniques [20]. Besides, network sharing techniques
also represent ideal candidates to ensure O-RAN energy effi-
ciency. In [99], the author discussed about adopting such tech-
niques to 5G networks, to reduce the network cost. The author
also mentioned several RAN sharing use cases including, MEC
sharing, energy sharing, spectrum and fronthaul sharing, etc.
Therefore, these network sharing techniques can be leveraged
in the O-RAN context, in order to not only ensure an efficient
function splitting, but also to enable an energy efficiency of
the RAN part.

VII. CONCLUSION

This paper reviews deep learning-based works proposed to
enhance the 5G RAN part and how it can be integrated with
the AI-enabled O-RAN architecture. O-RAN Alliance aims
to transform the RAN to an intelligent, open, and interopera-
ble system, by disaggregating the traditional RAN functions,
providing their software implementation, and connecting them
using standardized and open interfaces.
We first provided a general introduction about the evolution of
the RAN architectures towards 5G, including the open RAN
architecture and its components. We also compared them based
on various perspectives, such as edge support, virtualization,
control and management, energy consumption, and AI support.
Then, we reviewed existing deep learning-based RAN works,
in addition to how they can be integrated into the emerged O-
RAN architecture. Moreover, we showed two case studies on
deep learning deployment in O-RAN, as well as how the main
steps of deep learning process may be automated, to ensure
delivering acceptable performance by the deployed learning
models. Finally, we discussed key open challenges and future
research directions about the O-RAN architecture and the use
of deep learning techniques under such architecture.
As future work, we are working to deploy deep learning
algorithms in O-RAN as a proof of concept, using both Open
Air Interface platform and the open-source O-RAN Software,
Amber.
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