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Abstract

We investigate the complexity of the model-checking prob-
lem for a family of modal logics capturing the notion of
“knowing how”. We consider the most standard ability-
based knowing how logic, for which we show that model-
checking is PSpace-complete. By contrast, a multi-agent
variant based on an uncertainty relation between plans in
which uncertainty is encoded by a regular language, is shown
to admit a PTime model-checking problem. We extend with
budgets the above-mentioned ability-logics, as done for ATL-
like logics. We show that for the former logic enriched
with budgets, the complexity increases to at least ExpSpace-
hardness, whereas for the latter, the PTime bound is pre-
served. Other variant logics are discussed along the paper.

1 Introduction
Knowing How Logics. The epistemic concept of “know-
ing how” has received considerable attention lately, as a
new way of providing formal foundations to strategic rea-
soning in AI and automated planning (see e.g., (van Dit-
marsch et al. 2015)). Most formalisations for this no-
tion are based on simple combinations of standard knowl-
edge modalities and abilities (Herzig and Troquard 2006;
van der Hoek and Lomuscio 2003). However, arguably,
such an approach does not lead to a proper characteri-
sation of “knowing how”, as discussed in (Herzig 2015;
Jamroga and Ågotnes 2007).

In (Wang 2018b), a novel proposal to reason about
“knowing how” assertions was introduced. The logic (herein
written Lkh) includes a goal-direct knowing how modality
Khpp, qq, indicating that “the agent knows how to achieve
the goal q, whenever the initial condition p holds”. As
stated in (Wang 2018b), there is an explicit intention to keep
the logical language neat and to introduce simple semanti-
cal structures, namely labelled directed graphs. The inter-
pretation of the new modality is ability-based: the formula
Khpp, qq holds whenever there is a plan σ (understood as a
finite sequence of actions) such that from all the states satis-
fying p, the execution of σ leads only to states satisfying q;
and any partial execution of σ can be extended to a com-
plete execution of σ (known as the strong executability con-
dition, directly inspired from conformant planning (Smith
and Weld 1998)). Thus, “knowing how” is given by the
abilities described by the graph. The simplicity of the log-

ical language is partly reflected by the fact that formulae
of the form Khpp, qq are global, no action symbol appears
in formulae, a single agent is considered, and no “knowing
that” modality is present. A complete axiomatisation is pro-
vided in (Wang 2018b) but more importantly, such a work
has been a source of inspiration for many others. Some vari-
ants include: multiple agents, other classes of plans, or ad-
mit “knowing that” operators (see e.g. (Fervari et al. 2017;
Li and Wang 2021b)). Other approaches, related to strate-
gic games and coalitions, have been studied in (Naumov
and Tao 2018c; Naumov and Tao 2018a; Naumov and Tao
2018b). Finally, the logic studied in (Areces et al. 2021)
(called herein LU) is based on a notion of indistinguishabil-
ity over plans. Arguably, such a proposal provides a more
epistemic view of knowing how than other approaches.

Substantial progress has been already done related to
philosophical motivations, axiom systems and combinations
with other epistemic operators. However, much less contri-
butions exist about the possibility to constraint plans (for
instance, by adding budgets), or to perform the model-
checking task (instead of checking theoremhood). These is-
sues are addressed in this paper.

Our Motivations. The need to investigate knowing how
logics with constrained plans is advocated in (Li 2017,
Ch. 3). This is our first motivation to revisit results about
numerical constraints (i.e. budgets) and/or regularity con-
straints about plans, over this family of logics. Moreover,
it is more natural to investigate model-checking instead of
the validity/satisfiability problem, not only because it is a
standard problem in formal verification, but also because the
power of adding constraints is best illustrated there. This is
due to the fact that the available plans are part of the in-
put, and a few clever tricks cannot be used anymore, such
as guessing simply shaped plans witnessing the truth of
a formula, see e.g. the completeness proofs in (Li 2017;
Areces et al. 2021). Also, most of the works are ded-
icated to Hilbert-style axiomatisation and to the satisfia-
bility problem, and relatively little was done on model-
checking, apart from the works (Li, Yu, and Wang 2017;
Areces et al. 2021; Li and Wang 2021a). Since the seman-
tics of such logics involve complex conditions such as strong
executability, PTime upper bounds seemed more difficult to
reach than what is known about the minimal modal logic K



or alternating-time temporal logic ATL (known to admit a
PTime model-checking problem, see e.g. (Alur, Henzinger,
and Kupferman 2002)). An additional motivation to study
the model-checking problem for ability-based logics rests
on consequences for the satisfiability problem. It is known
that when a logic has the (bounded) small model property,
a decision procedure for checking satisfiability consists in
guessing a small model and then perform a model-checking
test. This is done in (Li 2017, Th. 3.4.8) to decide the satis-
fiability status of formulae in an extension of Lkh, in which
the satisfaction of Kh-formulae requires the satisfaction of
constraints for intermediate states. Then, knowing the com-
plexity of the model-checking problem becomes crucial to
evaluate the complexity of the satisfiability problem. This is
the case in (Areces et al. 2021, Sec. 3.3), where the satisfi-
ability problem for an uncertainty-based knowing how logic
is shown in NP by stating that model-checking is in PTime.

Our Contributions. We study the model-checking prob-
lem for known ability-based logics from the literature, typ-
ically from (Wang 2015) and (Li 2017, Ch. 3), but also for
extensions by adding arithmetical and/or regular constraints
on plans. Furthermore, we provide new relationships of this
family of logics with formal languages and automata theory.

As a warm-up, we show that the model-checking prob-
lem for the logic of knowing how from (Wang 2015) (writ-
ten Lkh) is PSpace-complete (Thm. 1). This untractability
result came a bit as a surprise, but witnesses the high ex-
pressive power of the Kh-like modalities despite its simplic-
ity. A variant of the logic Lkh designed in (Areces et al.
2021) and featuring a notion of indistinguishable plans, has
been shown therein to admit a PTime model-checking prob-
lem. Here, we assume that each of those indistinguishability
classes is specified by a regular language, thus, can be po-
tentially infinite. We prove that the model-checking problem
for this extension LU

reg can be also solved in PTime, using
an algorithm based on reachability checks (Thm. 2).

We extend the logics Lkh and LU
reg so that actions have

costs, and executing a plan requires to stay within a cer-
tain budget. Adding budget-like constraints to plans is ad-
vocated in (Li and Wang 2017; Cao and Naumov 2017).
The extensions we propose follow a standard pattern al-
ready used in ATL-like logics (see e.g. (Alechina et al. 2017;
Alechina et al. 2018; Bulling and Goranko 2022)), in en-
ergy games (see e.g. (Bouyer et al. 2008)) and in general for
other transition systems (see e.g. (Cao and Naumov 2017)).
We show that the PTime upper bound is preserved if bud-
gets are added to LU

reg (written LU
regp‹q, Thm. 3). This is

done by taking advantage of algorithms for solving deci-
sion problems related to vector addition systems with states
(VASS) (see e.g. (Karp and Miller 1969)), restricted to a sin-
gle counter, and using Bellman-Ford algorithm for weighted
directed graphs (see e.g. (Cormen et al. 2022)). By constrast,
we show that adding budgets to Lkh increases the complex-
ity significantly. The model-checking problem for Lkhp‹q

(with resources) is ExpSpace-hard (Lemma 7). The sub-
problem in which the cost of any action does not depend
on the state it is triggered, is shown ExpSpace-complete

(Thm. 4).

2 Preliminaries on a Simple Knowing How
Logic

We present below the knowing how logic introduced
in (Wang 2015; Wang 2018b) (herein written Lkh). For-
mulae of the form Khpφ,ψq can be read as “when φ is the
case, the agent knows how to make ψ true”. Since Lkh has
a central position in this paper, we dedicate a separate sec-
tion for preliminary definitions, and for its model-checking
problem. Notions introduced here, such as LTS, plans and
strong executability, will be helpful in forthcoming sections.

Formulae and models. Let Prop be a countably infinite
set of propositional symbols. Formulae of the logic Lkh

are defined by the grammar:
φ ::“ p | ␣φ | φ_ φ | Khpφ,φq (p P Prop).

Other Boolean connectives are defined as usual.
In (Wang 2015; Wang 2018b), formulae are interpreted

over labelled transition systems (LTSs): relational models
in which each (basic) relation indicates the source and target
of a particular type of action the agent can perform. Let Act
be a countably infinite set of action symbols. A labelled
transition system (LTS) is a tuple S “ pS, pRaqaPAct,Vq,
where:

• S is a non-empty set of states (called the domain);

• pRaqaPAct is a collection of binary relations on S;

• V : SÑ 2Prop is a labelling function.

Given an LTS S and s a state, the pair pS, sq (parentheses
usually dropped) is called a pointed LTS. Before defining
the satisfaction relation for the logic Lkh, we need to in-
troduce the notion of linear plan, that is used all along the
paper (for more complex plans, see (Li and Wang 2021b,
Def. 18)).

Linear plans. Let Act˚ be the set of finite sequences over
Act. Elements of Act˚ are called plans, with ε being the
empty plan. Given σ P Act˚, let |σ| be the length of σ
(|ε| def

“ 0). For 0 ď k ď |σ|, the plan σk is σ’s initial segment
up to (and including) the kth position (with σ0

def
“ ε). For

0 ă k ď |σ|, the action σrks is the one in σ’s kth position.
Let pRaqaPAct be a family of binary relations with each

Ra Ď SˆS. Define Rε
def
“ tps, sq | s P Su and, for all

σ P Act˚ and a P Act, Rσa
def
“ tps, tq P SˆS | D t1 P

S s.t. ps, t1q P Rσ and pt1, tq P Rau. Take a plan σ P Act˚:
for s P S define Rσpsq

def
“ tt P S | ps, tq P Rσu. For all

X Ď S and Π Ď Act˚, define RΠpXq
def
“

Ť

sPX,σPΠ Rσpsq.
Intuitively, (Wang 2015; Wang 2018a; Wang 2018b) han-

dle how to express that an agent knows how to achieve ψ
given φ, when she has an appropriate plan that allows her to
go from any state in which φ holds only to states in which
ψ holds. In order to characterise what ‘appropriate’ means,
one can impose restrictions on what qualifies as an adequate
plan.



ps ptq qr
a ab

Figure 1: Example of LTS.

Let pRaqaPAct as before. A plan σ P Act˚ is strongly
executable (SE) at s P S iff for all k P r0, |σ| ´ 1s and
t P Rσk

psq, we have Rσrk`1sptq ‰ ∅. We define the set

SEpσq
def
“ ts P S | σ is SE at su. Interestingly, in the next

section we show that for any state s, the set tσ P Act˚
| s P

SEpσqu is a regular language.

Satisfaction relation (,). Let S “ pS, pRaqaPAct,Vq be
an LTS, s P S and φ be a formula of Lkh, , is defined as:

S, s , p
def
ô p P Vpsq,

S, s , ␣φ def
ô S, s . φ,

S, s , φ_ ψ
def
ô S, s , φ or S, s , ψ,

S, s , Khpφ,ψq
def
ô there exists σ P Act˚ such that

(1) JφKS Ď SEpσq and
(2) RσpJφKSq Ď JψKS ,

with JχKS def
“ ts P S | S, s , χu. If a plan σ P Act˚ satisfies

conditions (1) and (2) above, we say that σ witnesses the
satisfaction of S, s , Khpφ,ψq. In the LTS S of Fig. 1,
we have that S, s , Khpp, qq (via the single-action plan
a) whereas S, s . Khpp, rq, as the plan ab is not strongly
executable at t P JpKS .

A complete Hilbert-style system for Lkh can be found
in (Wang 2015) (see also (Wang 2018b, Sec. 3)). Decid-
ability of the satisfiability problem for Lkh is shown in (Li
2017, Ch. 3) (the proof is done for a more general logic), but
its complexity characterisation is open, as far as we know.

3 Model-checking Problem for Lkh

An LTS S “ pS, pRaqaPAct,Vq is finite iff S, Act and Prop
are finite sets. The model-checking problem for the logic
Lkh, written MCpLkhq, is defined as follows.

Input: a finite LTS S and a formula φ over Prop, s P S.
Question: S, s , φ?

Though the model-checking problem for many modal and
temporal logics can be solved in PTime, see e.g. (Black-
burn, de Rijke, and Venema 2001; Demri, Goranko, and
Lange 2016), below, we show that MCpLkhq is PSpace-
complete, requiring more computational resources. This
high complexity was probably not expected from the works
in the literature. Indeed, the model-checking problem is ei-
ther not considered explicitly at all, or shown in PTime for
some variant knowing how logics (see e.g. (Li and Wang
2021a; Li and Wang 2021b)) or shown PSpace-hard but
for some expressive logic, see e.g. (Li, Yu, and Wang 2017).

PSpace-completeness of MCpLkhq. To show PSpace-
hardness, we reduce the nonemptiness problem for intersec-

tion of deterministic finite-state automata that is a PSpace-
complete problem, see e.g. (Galil 1976; Kozen 1977).
Lemma 1. MCpLkhq is PSpace-hard.

Proof. (sketch) Given N P N, for each i P r1, N s, let Ai “

pQi,Act, δi, qi, Fiq be a deterministic finite-state automaton
accepting the regular language LpAiq Ď Act˚. We assume
that each automaton Ai is complete and the sets of loca-
tions are disjoint. We define an LTS S “ pS, pRaqaPAct,Vq

over the set tinit, finu Ď Prop, with S
def
“

Ţ

Qi such that
S, q1 , Khpinit, finq iff LpA1q X ¨ ¨ ¨ X LpAN q ‰ ∅ (q1
is arbitrary), as follows.

• For all q, q1 P S and a P Act, pq, q1q P Ra
def
ô there is

i P r1, N s such that q, q1 P Qi and q a
ÝÑ q1 P δi.

• For all i P r1, N s and q P Qi, init P Vpqq
def
ô q “ qi,

and fin P Vpqq
def
ô q P Fi.

MCpLkhq is PSpace-hard, since Khpinit, finq and S are
computed in logspace in the size of the input automata.

In order to establish that MCpLkhq is in PSpace, we
show a small plan property based on the regular structure
of the set of plans witnessing the satisfaction of S, s ,
Khpφ1, φ2q. By regularity, we mean that the set of plans can
be shown to be a regular language, and we can effectively
compute a finite-state automaton accepting the language of
witness plans. Hence, though the regularity property is in-
strumental to prove our PSpace upper bound, we believe it
is also interesting for its own sake to understand the expres-
sive power of the modality Kh in Lkh. Below, we state a few
properties before getting to the PSpace upper bound.

Given an LTS S “ pS, pRaqaPAct,Vq, let us charac-
terise the plans σ P Act˚ such that either (non1) Jφ1KS Ę
SEpσq or (non2) RσpJφ1KSq Ę Jφ2KS . Let Apt1,t2q “

pQ,Act, δ, I, F q be the automaton defined as follows.

• Q def
“ S, I def

“ tt1u, F
def
“ tt2u.

• For all t, t1 P Q and a P Act, t a
ÝÑ t1 P δ

def
ô pt, t1q P Ra.

It is worth observing that t2 P Rσpt1q iff σ P LpApt1,t2qq.
So, the plans σ satisfying (non2) are exactly those in

ď

tLpApt1,t2qq | t1 P Jφ1KS , t2 P J␣φ2KSu,

defined from at most |S |2 languages. We write Āpt1,t2q to
denote the powerset automaton built from Apt1,t2q such that
LpĀpt1,t2qq “ Act˚

zLpApt1,t2qq (complement language).
Hence, σ satisfies (2) iff it belongs to the language below.

č

tLpĀpt1,t2qq | t1 P Jφ1KS , t2 P J␣φ2KSu.

The locations of the automaton Āpt1,t2q are subsets of S.
Let us handle now the condition (non1). We have (non1)

iff there is t1 P Jφ1KS such that t1 R SEpσq, i.e. for
some k P r0, |σ| ´ 1s and u P Rσk

pt1q, Rσrk`1spuq “ ∅.
Equivalently, (non1) iff there are X1, X2 Ď S such that for
some k P r0, |σ| ´ 1s, X1 “ Rσk

pt1q, X2 “ Rσk`1
pt1q

and there is u P X1 such that for no u1 P X2, we have



pu, u1q P Rσrk`1s. This characterisation serves as the basis
to define the set tσ | s P SEpσqu for some state s P S. Let
A‹

s “ pQ,Act, δ, I, F q be the finite-state automaton defined
as follows.
• Q def

“ PpSq ˆ tacc, reju, I def
“ tptsu, accqu, F def

“ PpSq ˆ
taccu (‘acc’ stands for ‘acceptance’, ‘rej’ for ‘rejection’).

• For all X P PpSq and a P Act, pX, rejq a
ÝÑ pX, rejq P δ.

• For all X,X 1 P PpSq and a P Act, pX, accq a
ÝÑ

pX 1, accq P δ
def
ô (‹) RapXq “ X 1 and (‹‹) for all t P X ,

there is t1 P X 1 such that pt, t1q P Ra.

• For all X,X 1 P PpSq and a P Act, pX, accq a
ÝÑ

pX 1, rejq P δ
def
ô (‹) and not (‹‹).

Lemma 2. tσ | s P SEpσqu “ LpA‹
sq.

Thus, the plan σ satisfies (1) iff it belongs to the language
č

tLpA‹
t q | t P Jφ1KSu,

defined from at most |S | languages; moreover, each automa-
ton A‹

t has at most 2 ¨ 2|S| locations. In conclusion, the set of
plans witnessing S, s , Khpφ1, φ2q is equal to

Ş

tLpA‹
t q | t P Jφ1KSu X

Ş

tLpĀpt1,t2qq | t1 P Jφ1KS , t2 P J␣φ2KSu,
which amounts to build an automaton with at most 2|S| ¨ |S |

2
¨

22¨|S| ¨ |S | locations.
As we have provided a way of characterising conditions

(1) and (2), we can state an interesting property about the
plans witnessing the satisfaction of S, s , Khpφ1, φ2q. This
property has been unnoticed so far, as far as we can judge.
Corollary 1. Let S be an LTS, s be a state and Khpφ1, φ2q

be a formula. Let L be set of plans witnessing S, s ,
Khpφ1, φ2q. Then, L is a regular language and if L ‰ ∅,
then it contains a plan of length at most 23¨|S| ¨ |S |

3.

We state the key property to get the PSpace upper bound.
Lemma 3. Checking whether S, s , Khpp, qq (with p, q P
Prop) can be done in polynomial space.

Proof. (sketch) To test whether S, s , Khpp, qq, we check
on-the-fly the non-emptiness of the product automaton

Ś

tA‹
t | t P JpKSu ˆ

Ś

tĀpt1,t2q | t1 P JpKS , t2 P J␣qKSu.

There are at most |S | ` |S |2 automata and each location
from those automata is a subset of S, possibly enriched with
a flag either acc or rej. Polynomial space is enough to store
two consecutive locations of the product automaton, and its
transition relation can be also computed in polynomial space
based on the LTS S. Nonemptiness of finite-state automata
can be checked in NLogSpace (the number of states of the
product automaton is bounded by 23¨|S| ¨ |S |

3). So, we get
a NPSpace decision procedure for checking nonemptiness
of the product automaton. By Savitch’s Theorem (Savitch
1970), we get the PSpace upper bound.

It is time to characterise the complexity of MCpLkhq.
Theorem 1. MCpLkhq is PSpace-complete.

PSpace-hardness is a direct consequence of Lemma 1.
In order to establish PSpace-easiness, we can design a stan-
dard labelling algorithm taking advantage of Lemma 3 (this
idea can be adapted to all the logics studied in this paper).

Variant problems. Our approach using formal languages
theory provides us with modular and standard tools in order
to characterise the complexity of model-checking problems
for several ability-based logics. This is the case for instance,
of the logic EPDL, known to be PSpace-complete (Li, Yu,
and Wang 2017, Th. 4.3), for which our results can be
easily adapted. On the other hand, alternative constraints
on plans can be considered. For instance, a modality KhA
(parametric on the finite-state automaton A) such that a wit-
ness plan must necessarily belong to LpAq. Another option
is to consider variant logics from the literature, such as the
logic Lkhm from (Wang 2018b, Sec. 4) and (Li 2017, Ch.
3)). Lkhm contains a ternary modality Khmpφ1, φ2, φ3q,
and witness plans must satisfy φ2 all along the traversed
paths. It is not difficult to see that we can apply our tech-
niques for all these logics (details are omitted due to lack of
space).

4 Regular Classes in Uncertainty-Based
Logics

It is argued in (Areces et al. 2021) that an epistemic notion of
knowing how should be not only based on the given abilities,
but also on some notion of indistinguishability/uncertainty
between them. Therein, it is also argued that such an ap-
proach makes the framework closer to standard epistemic
logics (van Ditmarsch et al. 2015). For instance, it makes
easier to move to a multi-agent setting.

In the uncertainty-based setting, agents share the same
set of affordances (provided by the actual environment, typ-
ically an LTS). Still, they have different abilities depending
on which of these affordances are available for each of them,
and how well they can tell these affordances apart.

In this section, we assume that the indistinguishability
classes of plans are specified by regular languages and we
prove that the model-checking problem for this extension
LU
reg is also in PTime.

4.1 Uncertainty-Based Knowing How
Let Agt be a finite set of agent symbols. Formulae of the
logic LU are defined by the grammar:
φ ::“ p | ␣φ | φ_ φ | Khapφ,φq (p P Prop, a P Agt).

A formula Khapφ,ψq is read as “when φ is the case, the
agent a knows how to make ψ true”.

Here, each agent’s knowledge is not given simply by the
abilities described by the LTS. Instead, the models are en-
riched with an uncertainty relation „a for each agent a,
which is an equivalence relation over a non-empty subset
Πa Ď Act˚ describing those plans that are indistinguish-
able from each other, from the agent’s perspective. Below,
each relation „a is represented by its set of equivalence
classes Ua (therefore, Ua satisfies a few simple properties
recalled below). A multi-agent uncertainty-based LTS
(LTSU) is a tuple S “ pS, pRaqaPAct, pUaqaPAgt,Vq where



pS, pRqaPAct,Vq is an LTS and each Ua assigns to the agent a
a non-empty collection of pairwise disjoint non-empty sets
of plans with: (1) Ua ‰ ∅, (2) ∅ R Ua, and

(3) Π1,Π2 P Ua with Π1 ‰ Π2 implies Π1 XΠ2 “ ∅.

Intuitively, Πa
def
“

Ť

ΠPUa
Π is the set of plans that the

agent a has at her disposal. Similarly, as in classical epis-
temic logic, „a Ď Πa ˆ Πa describes agent a’s indistin-
guishability. This relation is not defined over possible states
of affairs, but rather over her available plans.

Again, in this setting we need to define the notion of be-
ing a “proper plan”. Let S “ pS, pRaqaPAct, pUaqaPAgt,Vq
be an LTSU. For Π Ď Act˚ and X Y tsu Ď S, we define
RΠ

def
“

Ť

σPΠ Rσ , RΠpsq
def
“

Ť

σPΠ Rσpsq, and RΠpXq
def
“

Ť

tPX RΠptq. A set of plans Π Ď Act˚ is strongly exe-
cutable at s P S iff every plan σ P Π is strongly executable
at s. Hence, SEpΠq def

“
Ş

σPΠ SEpσq is the set of the states
in S where Π is strongly executable.

The notion of satisfiability for Kha-formulae is defined as:

S, s , Khapφ,ψq
def
ô there exists Π P Ua such that

(1) JφKS Ď SEpΠq and (2) RΠpJφKSq Ď JψKS .

Let S be the LTS from Fig. 1, enriched with Ua “

tta, abuu and Ub “ ttau, tabuu, for some a, b P Agt. With
this setup, the agent a cannot distinguish between the plans a
and ab (i.e., she is uncertain about whether these plans lead
to the same outcome or not), whereas the agent b considers
them different. Thus, S, s , ␣Khapp, qq ^ Khbpp, qq.

The satisfiability problem for LU is NP-complete,
whereas MCpLUq is in PTime (Areces et al. 2021). In an in-
stance of MCpLUq, each Ua is defined such that Πa is finite.
Representing equivalence relations by their indistinguisha-
bility classes results handy for designing model-checking
algorithms, as we can directly deal with the list of available
plans. However, there is a limitation: we only consider a fi-
nite set of them. For instance, assuming that Lpa˚bq Ď Πa,
we may wish to express that for all σ ‰ σ1 P Lpa˚bq, we
have σ „a σ

1 (the action a is silent for the agent a). In a
more concrete example, we can consider that an agent a is
a server sending connection requests to another server. The
indistinguishability class for a is given by aa‹, where action
a stands for “sending a connection request through a secure
channel”. Thus, the class establishes that after the first re-
quest is sent by agent a, all other requests are ignored. This
type of class cannot be handled when Ua is a finite set of
finite sets of plans. Instead, below, the elements of Ua are
defined as finite-state automata A such that LpAq is under-
stood as a (possibly infinite) equivalence class. This is a
standard way to represent finitely a (potential) infinite set of
words.

4.2 Generalisation with Regular Equivalence
Classes

Strictly speaking, we generalise the problem MCpLUq

from (Areces et al. 2021), by requiring elements in Ua to be
regular languages (instead of finite sets), but defined through
finite-state automata. On the logical side, the models for
the logic LU

reg defined below, are a subclass of the models

for LU (because we assume regularity of each equivalence
class). Hence, the introduction of the logic LU

reg serves at
least two purposes: to generalise MCpLUq and to introduce
models in which the indistinguishability classes are regular
languages, which might seem confusing at first glance.

An LTSU with regular constraints (reg-LTSU) is a tuple
S “ pS, pRaqaPAct, pUaqaPAgt,Vq where each Ua assigns
to agent a a non-empty collection of finite-state automata
∅ ‰ Ua “ tA1,A2, . . .u, such that each A P Ua defines an
equivalence class over a set Πa “

Ť

APUa
LpAq Ď 2Act

˚

;
i.e., for all Aj ,Ak P Ua, j ‰ k implies LpAjqXLpAkq“∅.

The clause for Kha-formulae over reg-LTSUs becomes:

S, s , Khapφ,ψq
def
ô there is A P Ua such that

(1) JφKS Ď SEpLpAqq and (2) RLpAqpJφKSq Ď JψKS .

Unlike (Areces et al. 2021), each equivalence class over Πa

is defined by a regular language. Interestingly, theoremhood
in LU and LU

reg coincide (see (Areces et al. 2021, Th. 2)).
A reg-LTSU S “ pS, pRaqaPAct, pUaqaPAgt,Vq is finite

iff S, Act, Prop and the Ua’s are finite sets. The model-
checking problem for the logic LU

reg , written MCpLU
regq,

is defined over finite reg-LTSU.
In (Areces et al. 2021) it has been shown that the model

checking problem for LU can be solved in PTime. How-
ever, herein the main difficulty is dealing with automata gen-
erating potentially infinite languages, and thus, equivalence
classes with infinitely many plans. One can show that the
method used in the previous section applies also here, but
giving us (roughly) an ExpSpace upper bound. However,
as we will show here, this bound is not optimal. We shall use
a more fine-tuned approach to handle the conditions related
to the modality Kha. With this at hand, we will show that
MCpLU

regq belongs actually to PTime.
The semantics of Khapφ,ψq requires to find some A P

Ua, such that LpAq satisfies two conditions. As Ua is finite,
inspecting its members one by one, poses no difficulties.
Again our method relies on characterising all the potential
candidates for the satisfiability of a Kha-formula that fail to
be a proper witness. For A P Ua, we proceed as follows.

1. Checking condition (2) RLpAqpJφKSq Ď JψKS can be han-
dled by checking that
LpAq X

Ť

tLpApt1,t2qq | t1 P JφKS , t2 P J␣ψKSu “ ∅,
with Apt1,t2q defined as in the previous section. By the
analysis provided there, and since nonemptiness of the in-
tersection of two finite-state automata can be checked in
PTime, we have a PTime procedure for checking (2).

2. Then, we will design a PTime algorithm for checking the
strong executability of LpAq at JφKS . The algorithm relies
on constructing a directed graph as a product between A
and S. Then, we proceed by looking for a state t that
fails to execute a “productive” action, i.e., an action that
leads to a final state of A, and checking whether pq, tq is
reachable, for some location q that is accepting in A. For
the sake of correctness, we assume that all the locations
in A are productive, i.e. for any location, there is a path
in A leading to a final location.



Let S “ pS, pRaqaPAct, pUaqaPAgt,Vq be a reg-LTSU and
A “ pQ,Act, δ, I, F q be an automaton. We define a digraph
G “ pV,Eq such that V def

“ Qˆ S and for all pq, tq, pq1, t1q P

V , we have pq, tq ÝÑ pq1, t1q P E
def
ô there is some a P Act

such that q a
ÝÑ q1 P δ and pt, t1q P Ra. G is therefore a

(standard) product between A and S. Given s P S, we define
the procedure CheckSEpS, s,Aq as follows.

1. For each a P Act, for each t P S such that Raptq “ ∅ and
for each q P Q such that δpq, aq ‰ ∅ do:

(a) if there is q0 P I such that there is a path from pq0, sq
to pq, tq in G, then: return True;

2. return False.

Lemma 4. sRSEpLpAqq iff CheckSEpS, s,Aq returns True.

Now it is time to establish the complexity bound.

Theorem 2. MCpLU
regq is in PTime.

Proof. (sketch) PTime is guaranteed if S, s , Khapφ,ψq
can be checked in PTime. Ua contains a linear amount
of finite-state automata and we showed that (2) can be
checked in PTime. It remains to verify that so is the case
for (1). By Lemma 4, (1) holds iff for all s1 P JφKS ,
CheckSEpS, s1,Aq returns False. As |JφKS | ď |S | and the
for loop ranges over all S, Act and Q, checking (a) is per-
formed Op|S |2 ¨ |Act | ¨ |Q |q times, which is polynomial
in the size of the instance S, s , Khapφ,ψq. Moreover,
(a) is an instance of the graph accessibility problem (GAP),
known to be NLogSpace-complete, applied on the graph G
of quadratic size in the size of S. Thus, (1) can be checked
in PTime.

5 Ability-Based Logics with Budgets

The need to express budget-like constraints about plans has
been advocated in (Li 2017, Sec. 3.1) and (Li and Wang
2017). Assuming that actions have costs, the execution of
plans requires that the agent stays always within the bud-
get. Adding resource reasoning is a well-known paradigm
used in ATL-like logics, see e.g. (Alechina et al. 2017), in
energy games, see e.g. (Chatterjee, Doyen, and Henzinger
2017), and in multi-agent systems, see e.g. (Cao and Nau-
mov 2017). Herein, we study the complexity of adding re-
source reasoning in the logics Lkh and LU

reg , respectively.
It is particularly interesting to observe is that the worst-case
complexity stays within PTime for the extension of LU

reg

whereas it jumps to at least ExpSpace-hardness for Lkh.
We provide clues to understand this computational gap.

Given a set of states S and a finite set of actions Act, a
weight function is a map wf : SˆActÑ Zr for some rě0;
wf ps, aq is understood as the cost of executing the action a
at state s. Adding wf to an LTS shall be our standard way to
enrich models with action costs. Given a computation λ “
s0

a1
ÝÑ s1

a2
ÝÑ s2 ¨ ¨ ¨

aK
ÝÑ sK , its weight is defined as wf pλq def

“

ΣK
k“1wf psk´1, akq (empty computations have zero cost).

ps
q

q

q t

q u

a : ´1

a : ´1

b : ´5

b : 0

Ua “ tÝÑ# a
ÝÑ e

b
ÝÑeu

Ub “ tÝÑ# a
ÝÑe, ÝÑ# a

ÝÑ# b
ÝÑeu

Figure 2: A reg-LTSU with budgets (r “ 1).

5.1 PTime Upper Bound for Model-checking
LU
regp‹q

We write LU
regprq to denote the ability-based logic LU

reg aug-
mented with r ě 0 resource types, and LU

regp‹q to denote the
version with an arbitrary number of resource types. This is
the version used in our model-checking problem.

For r ě 0, the set of LU
regprq formulae is defined below.

φ ::“ p | ␣φ | φ_ φ | Khb⃗apφ,φq (p P Prop, a P Agt, b⃗ P Nr)

All the integers appearing in formulae and models
are encoded with a binary representation. Formulae of
the form Khb⃗apφ,ψq are read as “when φ is the case,
the agent a knows how to make ψ true with budget
b⃗”. Models of the logic LU

regprq are of the form S “

pS, pRaqaPAct, pUaqaPAgt,wf ,Vq, where wf : SˆActÑ Zr

is a weight function. A plan σ “ a1 ¨ ¨ ¨ aK is b⃗-compatible
at s (⃗b P Nr)

def
ô for every computation λ “ s0

a1
ÝÑ

s1 ¨ ¨ ¨
aK
ÝÑ sK with s0 “ s, we have for all L P r1,Ks,

b⃗ ` wf pλďLq ě 0⃗ (with λďL
def
“ s0

a1
ÝÑ s1 ¨ ¨ ¨

aL
ÝÑ sL). The

plan σ is b⃗-compatible at a setX Ď S
def
ô it is b⃗-compatible

at all s P X . b⃗ is understood as the initial budget.
Given a model S “ pS, pRaqaPAct, pUaqaPAgt,wf ,Vq and

s P S, we update the satisfiability clause for Khb⃗a-formulae:

S, s , Khb⃗apφ,ψq
def
ô there is A P Ua such that

(1) JφKM Ď SEpLpAqq, (2) RLpAqpJφKMq Ď JψKM,
and (3) for all σ P LpAq, σ is b⃗-compatible at JφKM.

Consider the model S of Fig. 2 (we use standard notations
for finite-state automata). Both plans a and ab lead to q
states, but the cost of executing ab from s to u is´1, where-
as from s to t is ´6. Thus, S, s , Kh5bpp, qq ^ ␣Kh

5
app, qq.

In the budget-free logic LU
reg , the clause related to the sat-

isfaction of Khapφ,ψq uses exactly (1) and (2) above. We
have shown that such conditions can be checked in PTime.
To prove that MCpLU

regp‹qq is in PTime too, we establish
that (3) can be checked in PTime for a given A. Since |S |
is less than the size of S and MCpLU

regp‹qq can be solved
by a standard type of labelling algorithm, it is sufficient to
show that given S, t P S and a finite-state automaton A, one
can check in PTime that for all σ P LpAq, σ is b⃗-compatible
at t. This is the purpose of the rest of this subsection.

Interestingly, the models for LU
regprq can be viewed as

an extension of the vector addition systems with states
(VASS) (Karp and Miller 1969), since in both models the
transitions are labelled by tuples in Zr encoding an update
function. Below, we recall a few standard definitions about



VASS that are helpful in the sequel to characterise the com-
plexity of MCpLU

regp‹qq.
A vector addition system with states (VASS) is a struc-

ture V“pQ, r,Rq, where Q is a finite set of locations,
rPN is its dimension, and R is a finite set of transi-
tions in Q ˆ Zr ˆ Q. A configuration (resp. pseudo-
configuration) in a VASS V is a pair pq, x⃗q P QˆNr (resp.
in Q ˆ Zr). Given pseudo-configurations pq, x⃗q, pq1, x⃗1q

and a transition T “ q
u⃗
ÝÑ q1, we write pq, x⃗q T

ÝÑ pq1, x⃗1q

whenever x⃗1 “ u⃗ ` x⃗. A pseudo-run is defined as a
sequence ρ “ pq0, x⃗0q

T1
ÝÑ pq1, x⃗1q

T2
ÝÑ pq2, x⃗2q ¨ ¨ ¨ of

pseudo-configurations, where pq0, x⃗0q is the initial pseudo-
configuration. A run is a pseudo-run in which only config-
urations in Qˆ Nr occur.

An r-VASS is a VASS with r ě 0 counters. We begin
by presenting a simple problem called NONSAFE(VASS),
strongly related to the non-satisfaction of the condition (3).

Input: a VASS V and a configuration pq0, x⃗0q P Qˆ Nr.
Question: is there a finite pseudo-run ρ “ pq0, x⃗0q ÝÑ
pq1, x⃗1q ÝÑ ¨ ¨ ¨ ÝÑ pqn, x⃗nq such that x⃗n R Nr ? (is it
possible to reach a negative value from pq0, x⃗0q?).

Lemma 5. NONSAFE(VASS) is in PTime.

Lemma 5 follows from the fact that one instance
of NONSAFE(VASS) can be reduced to r instances of
NONSAFE(1-VASS) (restriction to 1-VASS). The second
step consists in showing that checking whether a negative
value can be reached in a 1-VASS from a given initial config-
uration can be solved using Bellman-Ford algorithm work-
ing on weighted directed graphs.

Assume that A “ pQ,Act, δ, I, F q and all the locations in
Q are productive, so any run reaching a given location from
some initial location can be completed as an accepting run.

One more step is needed to establish that (3) can be solved
in PTime. Namely, we build a VASS V “ pQ1, r, R1q

with Q1 def
“ SˆQ such that not (3) iff there is q0 P I and

t P JφKS such that V , ppt, q0q, b⃗q is a positive instance
of NONSAFE(VASS). It remains to define R1. We have
ps, qq

u⃗
ÝÑ ps1, q1q P R1 def

ô for some a P Act, ps, s1q P Ra

and q
a
ÝÑ q1 P δ (synchronisation on actions) with u⃗ “

wf ps, aq.

Lemma 6. There are t P Jφ1KS and σ P LpAq such that for
some j P r1, |σ |s, σj is not b⃗-compatible at t iff there are
t P Jφ1KS and q0 P I such that V , ppt, q0q, b⃗q is a positive
instance of NONSAFE(VASS).

Now, we are in position to state our best result as far as a
PTime model-checking problem is concerned.
Theorem 3. MCpLU

regp‹qq is in PTime.

Let us briefly provide the argument to get PTime. The
proof of Thm. 3 uses a labelling algorithm as for Thm. 1
and PTime is guaranteed as soon as M, s , Khb⃗app, qq can
be checked in PTime. Now, M, s , Khb⃗app, qq iff there is
A P Ua such that (1), (2) and (3) hold. There is a linear
amount of automata in Ua and Thm. 2 guarantees that (1)

and (2) can be checked in PTime. The remaining bit is to
check that (3) can be done in PTime. Notice that when (1)
and (2) hold true, the first statement of Lemma 6 is equiva-
lent to (3) being false. Thus, checking (3) follows from the
combination of Lemmas 5 and 6.

5.2 Extending the Logic Lkh with Budgets
Let Lkhprq be the ability-based logic Lkh augmented with
r ě 0 resource types. The logic Lkhp‹q denotes the version
in which the number of resource types is arbitrary.

Models of Lkhprq are of the form S “

pS, pRaqaPAct,wf ,Vq where wf : SˆAct Ñ Zr is a
weight function. The relation , is updated as follows.

S, s , Khb⃗pφ,ψq
def
ô there is a plan σ P Act˚ such that

(1) and (2) as for Lkh, and (3) σ is b⃗-compatible at JφKM.

We already showed that the conditions (1) and (2) from
Lkh can be encoded by a finite-state automaton of exponen-
tial size, and that MCpLkhq is PSpace-complete. However,
MCpLkhp‹qq witnesses at least an exponential blow-up, as
stated below, partly due to condition (3) combined with (2).

Lemma 7. MCpLkhp‹qq is ExpSpace-hard.

The proof is by reduction from the control-state reacha-
bility problem for VASS, written CREACH(VASS), known
to be ExpSpace-complete, see e.g. (Lipton 1976; Rackoff
1978). CREACH(VASS) takes as inputs a VASS V , a con-
figuration pq0, x⃗0q, and a location qf and asks whether there
is a run from pq0, x⃗0q to a configuration with location qf .

Cor. 1 states that small witness plans in Lkh have length
at most exponential in the joint size of the LTS and the
formula. By contrast, since the proof of Lemma 7 uses
a reduction from CREACH(VASS) for which witness runs
can be of length doubly-exponential in the size of the input
VASS (Lipton 1976), the witness plans in Lkhp‹q may have
length doubly-exponential too (if not more). Up to now, no
known upper bound exists for the length of witness plans in
Lkhp‹q and the decidability status of MCpLkhp‹qq is open.

However, it is possible to characterise the complexity of
a natural fragment of MCpLkhp‹qq by requiring a simple
restriction on the weight function in LTS: we consider below
the subproblem of MCpLkhp‹qq in which the action costs do
not depend on the states the actions are triggered. Hence, to
conclude, we assume that wf is of the form ActÑ Zr.

Theorem 4. MCpLkhp‹qq restricted to LTS with action
costs independent of states is ExpSpace-complete. For
r P N, its restriction to r resources is PSpace-complete.

ExpSpace-hardness is inherited from the proof of
Lemma 7. For ExpSpace-easiness, we show that test-
ing S, s , Khb⃗pp, qq can be reduced to an instance of
CREACH(VASS) that can be checked in nondeterministic
exponential space (refined analysis required here). When r
is fixed, we regain PSpace.

6 Concluding Remarks
We investigated the complexity of the model-checking prob-
lem for ability-based logics, possibly with plans constrained



by budget-like requirements and/or by regularity constraints.
First, we established that for the well-known knowing how
logic introduced in (Wang 2015), the problem is PSpace-
complete (Thm. 1). Interestingly, we have shown that the
set of witness plans for a given Kh-formula is regular, a
property used all along the paper. Then, we propose a gen-
eralisation of the uncertainty-based logic of (Areces et al.
2021), in which each equivalence class over sets of plans
is defined by a regular language. We show that model-
checking for this extension LU

reg is in PTime, using an algo-
rithm based on graph accessibility (Thm. 2). The final part
of the paper is devoted to add budget-like constraints to Lkh

and LU
reg, following a paradigm used in many formalisms.

While model-checking for the extension LU
regp‹q is shown

in PTime (Thm. 3), we prove that for Lkhp‹q is ExpSpace-
hard (Lemma 7). Moreover, the restriction in which the ac-
tion costs do not depend on states, a reasonable assumption
in many contexts, is ExpSpace-complete (Thm. 4). In all
cases, we rely on results from vector addition systems.

A puzzling question remains the decidability status of
MCpLkhp‹qq. Our investigations can be also broadened
by going beyond sequential plans (see e.g. (Li and Wang
2021b)) or by investigating alternative knowing how modal-
ities (see e.g. (Fervari et al. 2017)).
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