Stéphane Demri

Raul Fervari

Model-Checking for Ability-Based Logics with Constrained Plans

We investigate the complexity of the model-checking problem for a family of modal logics capturing the notion of "knowing how". We consider the most standard abilitybased knowing how logic, for which we show that modelchecking is PSpace-complete. By contrast, a multi-agent variant based on an uncertainty relation between plans in which uncertainty is encoded by a regular language, is shown to admit a PTime model-checking problem. We extend with budgets the above-mentioned ability-logics, as done for ATLlike logics. We show that for the former logic enriched with budgets, the complexity increases to at least ExpSpacehardness, whereas for the latter, the PTime bound is preserved. Other variant logics are discussed along the paper.

Introduction

Knowing How Logics. The epistemic concept of "knowing how" has received considerable attention lately, as a new way of providing formal foundations to strategic reasoning in AI and automated planning (see e.g., (van Ditmarsch et al. 2015)). Most formalisations for this notion are based on simple combinations of standard knowledge modalities and abilities [START_REF] Herzig | Knowing how to play: uniform choices in logics of agency[END_REF][START_REF] Van Der Hoek | Ignore at your peril -towards a logic for ignorance[END_REF]. However, arguably, such an approach does not lead to a proper characterisation of "knowing how", as discussed in [START_REF] Herzig | Logics of knowledge and action: critical analysis and challenges[END_REF][START_REF] Jamroga | Constructive knowledge: what agents can achieve under imperfect information[END_REF].

In (Wang 2018b), a novel proposal to reason about "knowing how" assertions was introduced. The logic (herein written L kh) includes a goal-direct knowing how modality Khpp, qq, indicating that "the agent knows how to achieve the goal q, whenever the initial condition p holds". As stated in (Wang 2018b), there is an explicit intention to keep the logical language neat and to introduce simple semantical structures, namely labelled directed graphs. The interpretation of the new modality is ability-based: the formula Khpp, qq holds whenever there is a plan σ (understood as a finite sequence of actions) such that from all the states satisfying p, the execution of σ leads only to states satisfying q; and any partial execution of σ can be extended to a complete execution of σ (known as the strong executability condition, directly inspired from conformant planning [START_REF] Smith | Conformant graphplan[END_REF]). Thus, "knowing how" is given by the abilities described by the graph. The simplicity of the log-ical language is partly reflected by the fact that formulae of the form Khpp, qq are global, no action symbol appears in formulae, a single agent is considered, and no "knowing that" modality is present. A complete axiomatisation is provided in (Wang 2018b) but more importantly, such a work has been a source of inspiration for many others. Some variants include: multiple agents, other classes of plans, or admit "knowing that" operators (see e.g. [START_REF] Fervari | Strategically knowing how[END_REF]Li and Wang 2021b)). Other approaches, related to strategic games and coalitions, have been studied in (Naumov and Tao 2018c;Naumov and Tao 2018a;Naumov and Tao 2018b). Finally, the logic studied in [START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF]) (called herein L U) is based on a notion of indistinguishability over plans. Arguably, such a proposal provides a more epistemic view of knowing how than other approaches.

Substantial progress has been already done related to philosophical motivations, axiom systems and combinations with other epistemic operators. However, much less contributions exist about the possibility to constraint plans (for instance, by adding budgets), or to perform the modelchecking task (instead of checking theoremhood). These issues are addressed in this paper.

Our Motivations. The need to investigate knowing how logics with constrained plans is advocated in (Li 2017, Ch. 3). This is our first motivation to revisit results about numerical constraints (i.e. budgets) and/or regularity constraints about plans, over this family of logics. Moreover, it is more natural to investigate model-checking instead of the validity/satisfiability problem, not only because it is a standard problem in formal verification, but also because the power of adding constraints is best illustrated there. This is due to the fact that the available plans are part of the input, and a few clever tricks cannot be used anymore, such as guessing simply shaped plans witnessing the truth of a formula, see e.g. the completeness proofs in [START_REF] Li | Knowing what to do: a logical approach to planning ad knowing how[END_REF][START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF]. Also, most of the works are dedicated to Hilbert-style axiomatisation and to the satisfiability problem, and relatively little was done on modelchecking, apart from the works [START_REF] Li | More for free: a dynamic epistemic framework for conformant planning over transition systems[END_REF][START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF]Li and Wang 2021a). Since the semantics of such logics involve complex conditions such as strong executability, PTime upper bounds seemed more difficult to reach than what is known about the minimal modal logic K or alternating-time temporal logic ATL (known to admit a PTime model-checking problem, see e.g. [START_REF] Alur | Alternating-time temporal logic[END_REF]). An additional motivation to study the model-checking problem for ability-based logics rests on consequences for the satisfiability problem. It is known that when a logic has the (bounded) small model property, a decision procedure for checking satisfiability consists in guessing a small model and then perform a model-checking test. This is done in (Li 2017, Th. 3.4.8) to decide the satisfiability status of formulae in an extension of L kh , in which the satisfaction of Kh-formulae requires the satisfaction of constraints for intermediate states. Then, knowing the complexity of the model-checking problem becomes crucial to evaluate the complexity of the satisfiability problem. This is the case in (Areces et al. 2021, Sec. 3.3), where the satisfiability problem for an uncertainty-based knowing how logic is shown in NP by stating that model-checking is in PTime.

Our Contributions. We study the model-checking problem for known ability-based logics from the literature, typically from [START_REF] Wang | A logic of knowing how[END_REF] and (Li 2017, Ch. 3), but also for extensions by adding arithmetical and/or regular constraints on plans. Furthermore, we provide new relationships of this family of logics with formal languages and automata theory.

As a warm-up, we show that the model-checking problem for the logic of knowing how from [START_REF] Wang | A logic of knowing how[END_REF] (written L kh) is PSpace-complete (Thm. 1). This untractability result came a bit as a surprise, but witnesses the high expressive power of the Kh-like modalities despite its simplicity. A variant of the logic L kh designed in [START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF] and featuring a notion of indistinguishable plans, has been shown therein to admit a PTime model-checking problem. Here, we assume that each of those indistinguishability classes is specified by a regular language, thus, can be potentially infinite. We prove that the model-checking problem for this extension L U reg can be also solved in PTime, using an algorithm based on reachability checks (Thm. 2).

We extend the logics L kh and L U reg so that actions have costs, and executing a plan requires to stay within a certain budget. Adding budget-like constraints to plans is advocated in (Li and Wang 2017;[START_REF] Cao | Budget-constrained dynamics in multiagent systems[END_REF]. The extensions we propose follow a standard pattern already used in ATL-like logics (see e.g. [START_REF] Alechina | The virtues of idleness: A decidable fragment of resource agent logic[END_REF][START_REF] Alechina | On the complexity of resource-bounded logics[END_REF][START_REF] Bulling | Combining quantitative and qualitative reasoning in concurrent multi-player games[END_REF]), in energy games (see e.g. [START_REF] Bouyer | Infinite runs in weighted timed automata with energy constraints[END_REF]) and in general for other transition systems (see e.g. [START_REF] Cao | Budget-constrained dynamics in multiagent systems[END_REF]). We show that the PTime upper bound is preserved if budgets are added to L U reg (written L U reg p‹q, Thm. 3). This is done by taking advantage of algorithms for solving decision problems related to vector addition systems with states (VASS) (see e.g. [START_REF] Karp | Parallel program schemata[END_REF]), restricted to a single counter, and using Bellman-Ford algorithm for weighted directed graphs (see e.g. [START_REF] Cormen | Introduction to Algorithms[END_REF]. By constrast, we show that adding budgets to L kh increases the complexity significantly. The model-checking problem for L kh p‹q (with resources) is ExpSpace-hard (Lemma 7). The subproblem in which the cost of any action does not depend on the state it is triggered, is shown ExpSpace-complete (Thm. 4).

Preliminaries on a Simple Knowing How Logic

We present below the knowing how logic introduced in (Wang 2015; Wang 2018b) (herein written L kh). Formulae of the form Khpφ, ψq can be read as "when φ is the case, the agent knows how to make ψ true". Since L kh has a central position in this paper, we dedicate a separate section for preliminary definitions, and for its model-checking problem. Notions introduced here, such as LTS, plans and strong executability, will be helpful in forthcoming sections.

Formulae and models. Let Prop be a countably infinite set of propositional symbols. Formulae of the logic L kh are defined by the grammar:

φ ::" p | ␣φ | φ _ φ | Khpφ, φq (p P Prop).
Other Boolean connectives are defined as usual.

In [START_REF] Wang | A logic of knowing how[END_REF]Wang 2018b), formulae are interpreted over labelled transition systems (LTSs): relational models in which each (basic) relation indicates the source and target of a particular type of action the agent can perform. Let Act be a countably infinite set of action symbols. A labelled transition system (LTS) is a tuple S " pS, pR a q aPAct , Vq, where:

• S is a non-empty set of states (called the domain);

• pR a q aPAct is a collection of binary relations on S;

• V : S Ñ 2 Prop is a labelling function.
Given an LTS S and s a state, the pair pS, sq (parentheses usually dropped) is called a pointed LTS. Before defining the satisfaction relation for the logic L kh , we need to introduce the notion of linear plan, that is used all along the paper (for more complex plans, see (Li and Wang 2021b, Def. 18)).

Linear plans. Let Act ˚be the set of finite sequences over Act. Elements of Act ˚are called plans, with ε being the empty plan. Given σ P Act ˚, let |σ| be the length of σ (|ε| def " 0). For 0 ď k ď |σ|, the plan σ k is σ's initial segment up to (and including) the kth position (with σ 0 def " ε). For 0 ă k ď |σ|, the action σrks is the one in σ's kth position.

Let pR a q aPAct be a family of binary relations with each R a Ď S ˆS. Define R ε def " tps, sq | s P Su and, for all σ P Act ˚and a P Act, R σa def " tps, tq P S ˆS | D t 1 P S s.t. ps, t 1 q P R σ and pt 1 , tq P R a u. Take a plan σ P Act ˚: [START_REF] Wang | A logic of knowing how[END_REF]Wang 2018a;Wang 2018b) handle how to express that an agent knows how to achieve ψ given φ, when she has an appropriate plan that allows her to go from any state in which φ holds only to states in which ψ holds. In order to characterise what 'appropriate' means, one can impose restrictions on what qualifies as an adequate plan.

for s P S define R σ psq def " tt P S | ps, tq P R σ u. For all X Ď S and Π Ď Act ˚, define R Π pXq def " Ť sPX,σPΠ R σ psq. Intuitively,
p s p t q q r a a b Figure 1: Example of LTS.
Let pR a q aPAct as before. A plan σ P Act ˚is strongly executable (SE) at s P S iff for all k P r0, |σ| ´1s and t P R σ k psq, we have R σrk`1s ptq ‰ ∅. We define the set SEpσq def " ts P S | σ is SE at su. Interestingly, in the next section we show that for any state s, the set tσ P Act ˚| s P SEpσqu is a regular language.

Satisfaction relation (,). Let S " pS, pR a q aPAct , Vq be an LTS, s P S and φ be a formula of L kh , , is defined as:

S, s , p def ô p P Vpsq, S, s , ␣φ def ô S, s . φ, S, s , φ _ ψ def ô S, s , φ or S, s , ψ, S, s , Khpφ, ψq def ô there exists σ P Act ˚such that (1) φ S Ď SEpσq and (2) R σ p φ S q Ď ψ S ,
with χ S def " ts P S | S, s , χu. If a plan σ P Act ˚satisfies conditions (1) and (2) above, we say that σ witnesses the satisfaction of S, s , Khpφ, ψq. In the LTS S of Fig. 1, we have that S, s , Khpp, qq (via the single-action plan a) whereas S, s . Khpp, rq, as the plan ab is not strongly executable at t P p S .

A complete Hilbert-style system for L kh can be found in [START_REF] Wang | A logic of knowing how[END_REF] (see also (Wang 2018b, Sec. 3)). Decidability of the satisfiability problem for L kh is shown in (Li 2017, Ch. 3) (the proof is done for a more general logic), but its complexity characterisation is open, as far as we know.

3 Model-checking Problem for L kh An LTS S " pS, pR a q aPAct , Vq is finite iff S, Act and Prop are finite sets. The model-checking problem for the logic L kh , written MCpL kh q, is defined as follows.

Input: a finite LTS S and a formula φ over Prop, s P S. Question: S, s , φ?

Though the model-checking problem for many modal and temporal logics can be solved in PTime, see e.g. (Blackburn, de Rijke, and Venema 2001; Demri, Goranko, and Lange 2016), below, we show that MCpL kh q is PSpacecomplete, requiring more computational resources. This high complexity was probably not expected from the works in the literature. Indeed, the model-checking problem is either not considered explicitly at all, or shown in PTime for some variant knowing how logics (see e.g. (Li and Wang 2021a;Li and Wang 2021b)) or shown PSpace-hard but for some expressive logic, see e.g. [START_REF] Li | More for free: a dynamic epistemic framework for conformant planning over transition systems[END_REF].

PSpace-completeness of MCpL kh q. To show PSpacehardness, we reduce the nonemptiness problem for intersec-tion of deterministic finite-state automata that is a PSpacecomplete problem, see e.g. [START_REF] Galil | Hierarchies of complete problems[END_REF][START_REF] Kozen | Lower bounds for natural proof systems[END_REF]. Lemma 1. MCpL kh q is PSpace-hard.

Proof. (sketch) Given N P N, for each i P r1, N s, let A i " pQ i , Act, δ i , q i , F i q be a deterministic finite-state automaton accepting the regular language LpA i q Ď Act ˚. We assume that each automaton A i is complete and the sets of locations are disjoint. We define an LTS S " pS, pR a q aPAct , Vq over the set tinit, finu Ď Prop, with S def " Ţ Q i such that S, q 1 , Khpinit, finq iff LpA 1 q X ¨¨¨X LpA N q ‰ ∅ (q 1 is arbitrary), as follows.

• For all q, q 1 P S and a P Act, pq, q 1 q P R a def ô there is i P r1, N s such that q, q 1 P Q i and q a Ý Ñ q 1 P δ i .

• For all i P r1, N s and q P Q i , init P Vpqq def ô q " q i , and fin P Vpqq

def ô q P F i .
MCpL kh q is PSpace-hard, since Khpinit, finq and S are computed in logspace in the size of the input automata.

In order to establish that MCpL kh q is in PSpace, we show a small plan property based on the regular structure of the set of plans witnessing the satisfaction of S, s , Khpφ 1 , φ 2 q. By regularity, we mean that the set of plans can be shown to be a regular language, and we can effectively compute a finite-state automaton accepting the language of witness plans. Hence, though the regularity property is instrumental to prove our PSpace upper bound, we believe it is also interesting for its own sake to understand the expressive power of the modality Kh in L kh . Below, we state a few properties before getting to the PSpace upper bound.

Given an LTS S " pS, pR a q aPAct , Vq, let us characterise the plans σ P Act ˚such that either (non1) φ 1 S Ę SEpσq or (non2) R σ p φ 1 S q Ę φ 2 S . Let A pt1,t2q " pQ, Act, δ, I, F q be the automaton defined as follows.

• Q def " S, I def " tt 1 u, F def " tt 2 u.
• For all t, t 1 P Q and a P Act, t a Ý Ñ t 1 P δ def ô pt, t 1 q P R a . It is worth observing that t 2 P R σ pt 1 q iff σ P LpA pt1,t2q q. So, the plans σ satisfying (non2) are exactly those in ď tLpA pt1,t2q q | t 1 P φ 1 S , t 2 P ␣φ 2 S u, defined from at most | S | 2 languages. We write Āpt1,t2q to denote the powerset automaton built from A pt1,t2q such that Lp Āpt1,t2q q " Act ˚zLpA pt1,t2q q (complement language). Hence, σ satisfies (2) iff it belongs to the language below.

č tLp Āpt1,t2q q | t 1 P φ 1 S , t 2 P ␣φ 2 S u.
The locations of the automaton Āpt1,t2q are subsets of S.

Let us handle now the condition (non1). We have (non1) iff there is t 1 P φ 1 S such that t 1 R SEpσq, i.e. for some k P r0, |σ| ´1s and u P R σ k pt 1 q, R σrk`1s puq " ∅. Equivalently, (non1) iff there are X 1 , X 2 Ď S such that for some k P r0, |σ| ´1s, X 1 " R σ k pt 1 q, X 2 " R σ k`1 pt 1 q and there is u P X 1 such that for no u 1 P X 2 , we have pu, u 1 q P R σrk`1s . This characterisation serves as the basis to define the set tσ | s P SEpσqu for some state s P S. Let A ‹ s " pQ, Act, δ, I, F q be the finite-state automaton defined as follows.

• Q def " PpSq ˆtacc, reju, I def " tptsu, accqu, F def " PpSq taccu ('acc' stands for 'acceptance', 'rej' for 'rejection').

• For all X P PpSq and a P Act, pX, rejq a Ý Ñ pX, rejq P δ.

• For all X, X 1 P PpSq and a P Act, pX, accq a Ý Ñ pX 1 , accq P δ def ô (‹) R a pXq " X 1 and (‹‹) for all t P X, there is t 1 P X 1 such that pt, t 1 q P R a .

• For all X, X 1 P PpSq and a P Act, pX, accq a Ý Ñ pX 1 , rejq P δ def ô (‹) and not (‹‹). Lemma 2. tσ | s P SEpσqu " LpA ‹ s q. Thus, the plan σ satisfies (1) iff it belongs to the language

č tLpA ‹ t q | t P φ 1 S u,
defined from at most | S | languages; moreover, each automaton A ‹ t has at most 2 ¨2| S| locations. In conclusion, the set of plans witnessing S, s , Khpφ 1 , φ 2 q is equal to

Ş tLpA ‹ t q | t P φ 1 S u X Ş tLp Āpt1,t2q q | t 1 P φ 1 S , t 2 P ␣φ 2 S u,
which amounts to build an automaton with at most

2 |S| ¨| S | 2 22¨| S| ¨| S | locations.
As we have provided a way of characterising conditions (1) and (2), we can state an interesting property about the plans witnessing the satisfaction of S, s , Khpφ 1 , φ 2 q. This property has been unnoticed so far, as far as we can judge. Corollary 1. Let S be an LTS, s be a state and Khpφ 1 , φ 2 q be a formula. Let L be set of plans witnessing S, s , Khpφ 1 , φ 2 q. Then, L is a regular language and if L ‰ ∅, then it contains a plan of length at most 2 3¨|S| ¨| S | 3 .

We state the key property to get the PSpace upper bound. Lemma 3. Checking whether S, s , Khpp, qq (with p, q P Prop) can be done in polynomial space.

Proof. (sketch) To test whether S, s , Khpp, qq, we check on-the-fly the non-emptiness of the product automaton

Ś tA ‹ t | t P p S u ˆŚt Āpt 1 ,t 2 q | t1 P p S , t2 P ␣q S u.
There are at most | S | `| S | 2 automata and each location from those automata is a subset of S, possibly enriched with a flag either acc or rej. Polynomial space is enough to store two consecutive locations of the product automaton, and its transition relation can be also computed in polynomial space based on the LTS S. Nonemptiness of finite-state automata can be checked in NLogSpace (the number of states of the product automaton is bounded by 2 3¨|S| ¨| S |

3). So, we get a NPSpace decision procedure for checking nonemptiness of the product automaton. By Savitch's Theorem [START_REF] Savitch | Relationships between nondeterministic and deterministic tape complexities[END_REF], we get the PSpace upper bound.

It is time to characterise the complexity of MCpL kh q. Theorem 1. MCpL kh q is PSpace-complete.

PSpace-hardness is a direct consequence of Lemma 1. In order to establish PSpace-easiness, we can design a standard labelling algorithm taking advantage of Lemma 3 (this idea can be adapted to all the logics studied in this paper).

Variant problems. Our approach using formal languages theory provides us with modular and standard tools in order to characterise the complexity of model-checking problems for several ability-based logics. This is the case for instance, of the logic EPDL, known to be PSpace-complete (Li, Yu, and Wang 2017, Th. 4.3), for which our results can be easily adapted. On the other hand, alternative constraints on plans can be considered. For instance, a modality Kh A (parametric on the finite-state automaton A) such that a witness plan must necessarily belong to LpAq. Another option is to consider variant logics from the literature, such as the logic L khm from (Wang 2018b, Sec. 4) and (Li 2017, Ch. 3)). L khm contains a ternary modality Kh m pφ 1 , φ 2 , φ 3 q, and witness plans must satisfy φ 2 all along the traversed paths. It is not difficult to see that we can apply our techniques for all these logics (details are omitted due to lack of space).

Regular Classes in Uncertainty-Based Logics

It is argued in [START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF]) that an epistemic notion of knowing how should be not only based on the given abilities, but also on some notion of indistinguishability/uncertainty between them. Therein, it is also argued that such an approach makes the framework closer to standard epistemic logics (van Ditmarsch et al. 2015). For instance, it makes easier to move to a multi-agent setting.

In the uncertainty-based setting, agents share the same set of affordances (provided by the actual environment, typically an LTS). Still, they have different abilities depending on which of these affordances are available for each of them, and how well they can tell these affordances apart.

In this section, we assume that the indistinguishability classes of plans are specified by regular languages and we prove that the model-checking problem for this extension L U reg is also in PTime.

Uncertainty-Based Knowing How

Let Agt be a finite set of agent symbols. Formulae of the logic L U are defined by the grammar:

φ ::" p | ␣φ | φ _ φ | Kh a pφ, φq (
p P Prop, a P Agt). A formula Kh a pφ, ψq is read as "when φ is the case, the agent a knows how to make ψ true".

Here, each agent's knowledge is not given simply by the abilities described by the LTS. Instead, the models are enriched with an uncertainty relation " a for each agent a, which is an equivalence relation over a non-empty subset Π a Ď Act ˚describing those plans that are indistinguishable from each other, from the agent's perspective. Below, each relation " a is represented by its set of equivalence classes U a (therefore, U a satisfies a few simple properties recalled below). A multi-agent uncertainty-based LTS (LTS U) is a tuple S " pS, pR a q aPAct , pU a q aPAgt , Vq where pS, pRq aPAct , Vq is an LTS and each U a assigns to the agent a a non-empty collection of pairwise disjoint non-empty sets of plans with: (1) U a ‰ ∅, (2) ∅ R U a , and

(3)

Π 1 , Π 2 P U a with Π 1 ‰ Π 2 implies Π 1 X Π 2 " ∅.
Intuitively, Π a def " Ť ΠPUa Π is the set of plans that the agent a has at her disposal. Similarly, as in classical epistemic logic, " a Ď Π a ˆΠa describes agent a's indistinguishability. This relation is not defined over possible states of affairs, but rather over her available plans.

Again, in this setting we need to define the notion of being a "proper plan". Let S " pS, pR a q aPAct , pU a q aPAgt , Vq be an LTS U . For Π Ď Act ˚and X Y tsu Ď S, we define

R Π def " Ť σPΠ R σ , R Π psq def " Ť σPΠ R σ psq, and R Π pXq def " Ť tPX R Π ptq.
A set of plans Π Ď Act ˚is strongly executable at s P S iff every plan σ P Π is strongly executable at s. Hence, SEpΠq def " Ş σPΠ SEpσq is the set of the states in S where Π is strongly executable.

The notion of satisfiability for Kh a -formulae is defined as:

S, s , Kh a pφ, ψq def ô there exists Π P U a such that (1) φ S Ď SEpΠq and (2) R Π p φ S q Ď ψ S .

Let S be the LTS from Fig. 1, enriched with U a " tta, abuu and U b " ttau, tabuu, for some a, b P Agt. With this setup, the agent a cannot distinguish between the plans a and ab (i.e., she is uncertain about whether these plans lead to the same outcome or not), whereas the agent b considers them different. Thus, S, s , ␣Kh a pp, qq ^Kh b pp, qq.

The satisfiability problem for L U is NP-complete, whereas MCpL U q is in PTime [START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF]. In an instance of MCpL U q, each U a is defined such that Π a is finite. Representing equivalence relations by their indistinguishability classes results handy for designing model-checking algorithms, as we can directly deal with the list of available plans. However, there is a limitation: we only consider a finite set of them. For instance, assuming that Lpa ˚bq Ď Π a , we may wish to express that for all σ ‰ σ 1 P Lpa ˚bq, we have σ " a σ 1 (the action a is silent for the agent a). In a more concrete example, we can consider that an agent a is a server sending connection requests to another server. The indistinguishability class for a is given by aa ‹ , where action a stands for "sending a connection request through a secure channel". Thus, the class establishes that after the first request is sent by agent a, all other requests are ignored. This type of class cannot be handled when U a is a finite set of finite sets of plans. Instead, below, the elements of U a are defined as finite-state automata A such that LpAq is understood as a (possibly infinite) equivalence class. This is a standard way to represent finitely a (potential) infinite set of words.

Generalisation with Regular Equivalence Classes

Strictly speaking, we generalise the problem MCpL U q from [START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF], by requiring elements in U a to be regular languages (instead of finite sets), but defined through finite-state automata. On the logical side, the models for the logic L U reg defined below, are a subclass of the models for L U (because we assume regularity of each equivalence class). Hence, the introduction of the logic L U reg serves at least two purposes: to generalise MCpL U q and to introduce models in which the indistinguishability classes are regular languages, which might seem confusing at first glance.

An LTS U with regular constraints (reg-LTS U) is a tuple S " pS, pR a q aPAct , pU a q aPAgt , Vq where each U a assigns to agent a a non-empty collection of finite-state automata ∅ ‰ U a " tA 1 , A 2 , . . .u, such that each A P U a defines an equivalence class over a set Π a " Ť APUa LpAq Ď 2 Act ˚;

i.e., for all A j , A k P U a , j ‰ k implies LpA j q X LpA k q"∅.

The clause for Kh a -formulae over reg-LTS U s becomes:

S, s , Kh a pφ, ψq def ô there is A P U a such that (1) φ S Ď SEpLpAqq and (2) R LpAq p φ S q Ď ψ S .

Unlike [START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF], each equivalence class over Π a is defined by a regular language. Interestingly, theoremhood in L U and L U reg coincide (see (Areces et al. 2021, Th. 2)). A reg-LTS U S " pS, pR a q aPAct , pU a q aPAgt , Vq is finite iff S, Act, Prop and the U a 's are finite sets. The modelchecking problem for the logic L U reg , written MCpL U reg q, is defined over finite reg-LTS U .

In [START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF]) it has been shown that the model checking problem for L U can be solved in PTime. However, herein the main difficulty is dealing with automata generating potentially infinite languages, and thus, equivalence classes with infinitely many plans. One can show that the method used in the previous section applies also here, but giving us (roughly) an ExpSpace upper bound. However, as we will show here, this bound is not optimal. We shall use a more fine-tuned approach to handle the conditions related to the modality Kh a . With this at hand, we will show that MCpL U reg q belongs actually to PTime. The semantics of Kh a pφ, ψq requires to find some A P U a , such that LpAq satisfies two conditions. As U a is finite, inspecting its members one by one, poses no difficulties. Again our method relies on characterising all the potential candidates for the satisfiability of a Kh a -formula that fail to be a proper witness. For A P U a , we proceed as follows.

1. Checking condition (2) R LpAq p φ S q Ď ψ S can be handled by checking that LpAq X Ť tLpA pt1,t2q q | t 1 P φ S , t 2 P ␣ψ S u " ∅, with A pt1,t2q defined as in the previous section. By the analysis provided there, and since nonemptiness of the intersection of two finite-state automata can be checked in PTime, we have a PTime procedure for checking (2).

2. Then, we will design a PTime algorithm for checking the strong executability of LpAq at φ S . The algorithm relies on constructing a directed graph as a product between A and S. Then, we proceed by looking for a state t that fails to execute a "productive" action, i.e., an action that leads to a final state of A, and checking whether pq, tq is reachable, for some location q that is accepting in A. For the sake of correctness, we assume that all the locations in A are productive, i.e. for any location, there is a path in A leading to a final location.

Let S " pS, pR a q aPAct , pU a q aPAgt , Vq be a reg-LTS U and A " pQ, Act, δ, I, F q be an automaton. We define a digraph G " pV, Eq such that V def " Q ˆS and for all pq, tq, pq 1 , t 1 q P V , we have pq, tq Ý Ñ pq 1 , t 1 q P E def ô there is some a P Act such that q a Ý Ñ q 1 P δ and pt, t 1 q P R a . G is therefore a (standard) product between A and S. Given s P S, we define the procedure CheckSEpS, s, Aq as follows.

1. For each a P Act, for each t P S such that R a ptq " ∅ and for each q P Q such that δpq, aq ‰ ∅ do: (a) if there is q 0 P I such that there is a path from pq 0 , sq to pq, tq in G, then: return True; 2. return False.

Lemma 4. sR SEpLpAqq iff CheckSEpS, s, Aq returns True. Now it is time to establish the complexity bound.

Theorem 2. MCpL U reg q is in PTime.

Proof. (sketch) PTime is guaranteed if S, s , Kh a pφ, ψq can be checked in PTime. U a contains a linear amount of finite-state automata and we showed that (2) can be checked in PTime. It remains to verify that so is the case for (1). By Lemma 4, (1) holds iff for all s 1 P φ S , CheckSEpS, s 1 , Aq returns False. As | φ S | ď | S | and the for loop ranges over all S, Act and Q, checking (a) is performed Op| S | 2 ¨| Act | ¨| Q |q times, which is polynomial in the size of the instance S, s , Kh a pφ, ψq. Moreover, (a) is an instance of the graph accessibility problem (GAP), known to be NLogSpace-complete, applied on the graph G of quadratic size in the size of S. Thus, (1) can be checked in PTime.

Ability-Based Logics with Budgets

The need to express budget-like constraints about plans has been advocated in (Li 2017, Sec. 3.1) and (Li and Wang 2017). Assuming that actions have costs, the execution of plans requires that the agent stays always within the budget. Adding resource reasoning is a well-known paradigm used in ATL-like logics, see e.g. [START_REF] Alechina | The virtues of idleness: A decidable fragment of resource agent logic[END_REF], in energy games, see e.g. [START_REF] Chatterjee | The cost of exactness in quantitative reachability[END_REF], and in multi-agent systems, see e.g. [START_REF] Cao | Budget-constrained dynamics in multiagent systems[END_REF]. Herein, we study the complexity of adding resource reasoning in the logics L kh and L U reg , respectively. It is particularly interesting to observe is that the worst-case complexity stays within PTime for the extension of L U reg whereas it jumps to at least ExpSpace-hardness for L kh . We provide clues to understand this computational gap.

Given a set of states S and a finite set of actions Act, a weight function is a map wf : S ˆAct Ñ Z r for some rě0; wf ps, aq is understood as the cost of executing the action a at state s. Adding wf to an LTS shall be our standard way to enrich models with action costs. Given a computation λ "

s 0 a1 Ý Ñ s 1 a2 Ý Ñ s 2 ¨¨¨a K Ý Ñ s K , its weight is defined as wf pλq def " Σ K
k"1 wf ps k´1 , a k q (empty computations have zero cost).

p s q q q t q u a : ´1 a : ´1 b : ´5 b : 0 U a " tÝ Ñ a Ý Ñ e b Ý Ñeu U b " tÝ Ñ a Ý Ñe, Ý Ñ a Ý Ñ b Ý Ñeu
Figure 2: A reg-LTS U with budgets (r " 1).

5.1 PTime Upper Bound for Model-checking L U reg p‹q

We write L U reg prq to denote the ability-based logic L U reg augmented with r ě 0 resource types, and L U reg p‹q to denote the version with an arbitrary number of resource types. This is the version used in our model-checking problem.

For r ě 0, the set of L U reg prq formulae is defined below. a pφ, ψq are read as "when φ is the case, the agent a knows how to make ψ true with budget ⃗ b". Models of the logic L U reg prq are of the form S " pS, pR a q aPAct , pU a q aPAgt , wf , Vq, where wf : S ˆAct Ñ Z r is a weight function. A plan σ " a

1 ¨¨¨a K is ⃗ b-compatible at s (⃗ b P N r) def ô for every computation λ " s 0 a1 Ý Ñ s 1 ¨¨¨a K
Ý Ñ s K with s 0 " s, we have for all L P r1, Ks, ⃗ b `wf pλ ďL q ě ⃗ 0 (with

λ ďL def " s 0 a1 Ý Ñ s 1 ¨¨¨a L Ý Ñ s L). The plan σ is ⃗ b-compatible at a set X Ď S def ô it is ⃗ b-compatible at all s P X. ⃗ b is understood as the initial budget.
Given a model S " pS, pR a q aPAct , pU a q aPAgt , wf , Vq and s P S, we update the satisfiability clause for Kh Consider the model S of Fig. 2 (we use standard notations for finite-state automata). Both plans a and ab lead to q states, but the cost of executing ab from s to u is ´1, whereas from s to t is ´6. Thus, S, s , Kh 5 b pp, qq ^␣Kh 5 a pp, qq. In the budget-free logic L U reg , the clause related to the satisfaction of Kh a pφ, ψq uses exactly (1) and (2) above. We have shown that such conditions can be checked in PTime.

To prove that MCpL U reg p‹qq is in PTime too, we establish that (3) can be checked in PTime for a given A. Since | S | is less than the size of S and MCpL U reg p‹qq can be solved by a standard type of labelling algorithm, it is sufficient to show that given S, t P S and a finite-state automaton A, one can check in PTime that for all σ P LpAq, σ is ⃗ b-compatible at t. This is the purpose of the rest of this subsection.

Interestingly, the models for L U reg prq can be viewed as an extension of the vector addition systems with states (VASS) [START_REF] Karp | Parallel program schemata[END_REF], since in both models the transitions are labelled by tuples in Z r encoding an update function. Below, we recall a few standard definitions about VASS that are helpful in the sequel to characterise the complexity of MCpL U reg p‹qq. A vector addition system with states (VASS) is a structure V"pQ, r, Rq, where Q is a finite set of locations, rPN is its dimension, and R is a finite set of transitions in Q ˆZr ˆQ. A configuration (resp. pseudoconfiguration) in a VASS V is a pair pq, ⃗ xq P Q ˆNr (resp. in Q ˆZr). Given pseudo-configurations pq, ⃗ xq, pq 1 , ⃗ x 1 q and a transition T " q ⃗ u Ý Ñ q 1 , we write pq, ⃗ xq T Ý Ñ pq 1 , ⃗ x 1 q whenever ⃗ x 1 " ⃗ u `⃗ x. A pseudo-run is defined as a sequence ρ " pq 0 , ⃗ x 0 q T1 Ý Ñ pq 1 , ⃗ x 1 q T2 Ý Ñ pq 2 , ⃗ x 2 q ¨¨¨of pseudo-configurations, where pq 0 , ⃗ x 0 q is the initial pseudoconfiguration. A run is a pseudo-run in which only configurations in Q ˆNr occur.

An r-VASS is a VASS with r ě 0 counters. We begin by presenting a simple problem called NONSAFE(VASS), strongly related to the non-satisfaction of the condition (3).

Input: a VASS V and a configuration pq 0 , ⃗ x 0 q P Q ˆNr . Question: is there a finite pseudo-run ρ " pq 0 , ⃗ x 0 q Ý Ñ pq 1 , ⃗ x 1 q Ý Ñ ¨¨¨Ý Ñ pq n , ⃗ x n q such that ⃗ x n R N r ? (is it possible to reach a negative value from pq 0 , ⃗ x 0 q?).

Lemma 5. NONSAFE(VASS) is in PTime.

Lemma 5 follows from the fact that one instance of NONSAFE(VASS) can be reduced to r instances of NONSAFE(1-VASS) (restriction to 1-VASS). The second step consists in showing that checking whether a negative value can be reached in a 1-VASS from a given initial configuration can be solved using Bellman-Ford algorithm working on weighted directed graphs.

Assume that A " pQ, Act, δ, I, F q and all the locations in Q are productive, so any run reaching a given location from some initial location can be completed as an accepting run.

One more step is needed to establish that (3) can be solved in PTime. Namely, we build a VASS V " pQ 1 , r, R 1 q with Q 1 def " S ˆQ such that not (3) iff there is q 0 P I and t P φ S such that V, ppt, q 0 q, ⃗ bq is a positive instance of NONSAFE(VASS). It remains to define R 1 . We have ps, qq ⃗ u Ý Ñ ps 1 , q 1 q P R 1 def ô for some a P Act, ps, s 1 q P R a and q a Ý Ñ q 1 P δ (synchronisation on actions) with ⃗ u " wf ps, aq. Lemma 6. There are t P φ 1 S and σ P LpAq such that for some j P r1, | σ |s, σ j is not ⃗ b-compatible at t iff there are t P φ 1 S and q 0 P I such that V, ppt, q 0 q, ⃗ bq is a positive instance of NONSAFE(VASS). Now, we are in position to state our best result as far as a PTime model-checking problem is concerned. 2) and (3) hold. There is a linear amount of automata in U a and Thm. 2 guarantees that (1) and (2) can be checked in PTime. The remaining bit is to check that (3) can be done in PTime. Notice that when (1) and (2) hold true, the first statement of Lemma 6 is equivalent to (3) being false. Thus, checking (3) follows from the combination of Lemmas 5 and 6.

Extending the Logic L kh with Budgets

Let L kh prq be the ability-based logic L kh augmented with r ě 0 resource types. The logic L kh p‹q denotes the version in which the number of resource types is arbitrary.

Models of L kh prq are of the form S " pS, pR a q aPAct , wf , Vq where wf : S ˆAct Ñ Z r is a weight function. The relation , is updated as follows.

S, s , Kh

⃗ b pφ, ψq def ô there is a plan σ P Act ˚such that (1) and (2) as for L kh , and (3) σ is ⃗ b-compatible at φ M .

We already showed that the conditions (1) and (2) from L kh can be encoded by a finite-state automaton of exponential size, and that MCpL kh q is PSpace-complete. However, MCpL kh p‹qq witnesses at least an exponential blow-up, as stated below, partly due to condition (3) combined with (2).

Lemma 7. MCpL kh p‹qq is ExpSpace-hard.

The proof is by reduction from the control-state reachability problem for VASS, written CREACH(VASS), known to be ExpSpace-complete, see e.g. [START_REF] Lipton | The reachability problem requires exponential space[END_REF][START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF]. CREACH(VASS) takes as inputs a VASS V, a configuration pq 0 , ⃗ x 0 q, and a location q f and asks whether there is a run from pq 0 , ⃗ x 0 q to a configuration with location q f . Cor. 1 states that small witness plans in L kh have length at most exponential in the joint size of the LTS and the formula. By contrast, since the proof of Lemma 7 uses a reduction from CREACH(VASS) for which witness runs can be of length doubly-exponential in the size of the input VASS [START_REF] Lipton | The reachability problem requires exponential space[END_REF]), the witness plans in L kh p‹q may have length doubly-exponential too (if not more). Up to now, no known upper bound exists for the length of witness plans in L kh p‹q and the decidability status of MCpL kh p‹qq is open.

However, it is possible to characterise the complexity of a natural fragment of MCpL kh p‹qq by requiring a simple restriction on the weight function in LTS: we consider below the subproblem of MCpL kh p‹qq in which the action costs do not depend on the states the actions are triggered. Hence, to conclude, we assume that wf is of the form Act Ñ Z r . Theorem 4. MCpL kh p‹qq restricted to LTS with action costs independent of states is ExpSpace-complete. For r P N, its restriction to r resources is PSpace-complete.

ExpSpace-hardness is inherited from the proof of Lemma 7. For ExpSpace-easiness, we show that testing S, s , Kh ⃗ b pp, qq can be reduced to an instance of CREACH(VASS) that can be checked in nondeterministic exponential space (refined analysis required here). When r is fixed, we regain PSpace.

Concluding Remarks

We investigated the complexity of the model-checking problem for ability-based logics, possibly with plans constrained by budget-like requirements and/or by regularity constraints. First, we established that for the well-known knowing how logic introduced in (Wang 2015), the problem is PSpacecomplete (Thm. 1). Interestingly, we have shown that the set of witness plans for a given Kh-formula is regular, a property used all along the paper. Then, we propose a generalisation of the uncertainty-based logic of [START_REF] Areces | Uncertainty-based semantics for multiagent knowing how logics[END_REF], in which each equivalence class over sets of plans is defined by a regular language. We show that modelchecking for this extension L U reg is in PTime, using an algorithm based on graph accessibility (Thm. 2). The final part of the paper is devoted to add budget-like constraints to L kh and L U reg , following a paradigm used in many formalisms. While model-checking for the extension L U reg p‹q is shown in PTime (Thm. 3), we prove that for L kh p‹q is ExpSpacehard (Lemma 7). Moreover, the restriction in which the action costs do not depend on states, a reasonable assumption in many contexts, is ExpSpace-complete (Thm. 4). In all cases, we rely on results from vector addition systems.

A puzzling question remains the decidability status of MCpL kh p‹qq. Our investigations can be also broadened by going beyond sequential plans (see e.g. (Li and Wang 2021b)) or by investigating alternative knowing how modalities (see e.g. [START_REF] Fervari | Strategically knowing how[END_REF]).

φ

 ::" p | ␣φ | φ _ φ | Kh ⃗ b a pφ, φq (p P Prop, a P Agt, ⃗ b P N r) All the integers appearing in formulae and models are encoded with a binary representation. Formulae of the form Kh ⃗ b

ô

 there is A P U a such that (1) φ M Ď SEpLpAqq, (2) R LpAq p φ M q Ď ψ M , and (3) for all σ P LpAq, σ is ⃗ b-compatible at φ M .

Theorem 3 .

 3 MCpL U reg p‹qq is in PTime. Let us briefly provide the argument to get PTime. The proof of Thm. 3 uses a labelling algorithm as for Thm. 1 and PTime is guaranteed as soon as M, s , Kh ⃗ b a pp, qq can be checked in PTime. Now, M, s , Kh ⃗ b a pp, qq there is A P U a such that (1), (

Acknowledgments

We thank the reviewers for their constructive comments and suggestions. Stéphane Demri is supported by Centre National de la Recherche Scientifique. Raul Fervari is supported by ANPCyT-PICT-2020-3780, CONICET PIP 11220200100812CO, and by the Laboratoire International Associé SINFIN.