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Abstract

Mechanical cues such as stresses and strains are now recognized as essential regulators in

many biological processes like cell division, gene expression or morphogenesis. Studying

the interplay between these mechanical cues and biological responses requires experimen-

tal tools to measure these cues. In the context of large scale tissues, this can be achieved

by segmenting individual cells to extract their shapes and deformations which in turn inform

on their mechanical environment. Historically, this has been done by segmentation methods

which are well known to be time consuming and error prone. In this context however, one

doesn’t necessarily require a cell-level description and a coarse-grained approach can be

more efficient while using tools different from segmentation. The advent of machine learning

and deep neural networks has revolutionized the field of image analysis in recent years,

including in biomedical research. With the democratization of these techniques, more and

more researchers are trying to apply them to their own biological systems. In this paper, we

tackle a problem of cell shape measurement thanks to a large annotated dataset. We

develop simple Convolutional Neural Networks (CNNs) which we thoroughly optimize in

terms of architecture and complexity to question construction rules usually applied. We find

that increasing the complexity of the networks rapidly no longer yields improvements in per-

formance and that the number of kernels in each convolutional layer is the most important

parameter to achieve good results. In addition, we compare our step-by-step approach with

transfer learning and find that our simple, optimized CNNs give better predictions, are faster

in training and analysis and don’t require more technical knowledge to be implemented.

Overall, we offer a roadmap to develop optimized models and argue that we should limit the

complexity of such models. We conclude by illustrating this strategy on a similar problem

and dataset.
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Introduction

It is becoming abundantly clear that the mechanical environment encountered by cells, tissues

and organisms plays an important regulatory role intertwined with chemical or metabolic reg-

ulations. At the cell level, mechanical cues can influence processes as important as cell division

[1, 2], individual and collective migration [3–5], gene expression [6, 7] or even cell fate [8, 9].

The mechanical regulation of biological processes can be mediated by the rheology of the sub-

strate and tissues [10, 11], tissue scale stresses [12], nematic defects [13, 14] or cellular strains

and deformations [15].

These discoveries are at the root of the rapid expansion of the mechanobiology field. In this

context, it is crucial to develop tools to quantitatively characterize the mechanical environment

encountered by cells in vivo or in in vitro experiments. Experimental tools are being developed

to measure relevant mechanical properties in situ such as deformable force sensors [16, 17],

even allowing to measure internal pressure in tissues [18], optical mechanical reporters using

fluorescence resonant energy transfer (FRET) [19, 20] or other optical techniques to measure

cell membrane tension [21].

In the case of living tissues, it has long been recognized that mechanical information can be

inferred from cell shapes, deformations and how they change over time [22–25]. Notably,

observation of cell shapes can even be predictive as to the mechanical behavior of the tissue as

a whole [26]. The most natural way to estimate cell shapes is to automatically detect their con-

tours and therefore segment them giving access to shapes and deformations on a single cell

basis. These segmentation techniques can be manual, automated by usual image analysis tools

or automated by machine learning-based techniques. Still, these techniques are notoriously

error-prone, often requiring manual corrections. More problematic, small errors in segmenta-

tion will tend to fuse neighboring cells together thus having a large impact on the desired mea-

surements. In many cases, these techniques can still be applied with a relative efficiency to

yield cell-level data.

However, in the context of large scale tissues, cell-level information might not be required

and a coarse-grained representation can be sufficient. Relevant mechanical data can be

obtained by estimating the local inertia tensor, the equivalent of measuring an average cell

size, locally. Such approaches can be achieved even in the absence of cell segmentation, for

instance by using 2d Fourier transforms [27]. In this paper, our goal is to develop a tool to

measure these coarse grained properties rapidly and precisely and with minimal development

time and effort.

In the field of biomedical image analysis, many recent advances have been achieved by the

application of machine learning and, in particular, of convolutional neural networks (CNNs).

Historically developed to treat everyday images and perform tasks such as object detection or

classification, the use of these algorithms has now penetrated deep into biological research.

Examples of application of CNNs to microscopy images are rapidly being added in contexts as

different as crowded cell environments [28], stem cell fate determination [29], single cell classi-

fication [30, 31], neuronal imaging [32] and of course cell segmentation [33–35]. Some exam-

ples are also emerging where image analysis by machine learning algorithms have medically

relevant roles [36–38]. Finally, deep neural networks can serve as tools to help in the acquisi-

tion of biomedical images, most notably by improving resolution through denoising [39, 40].

Of note, the role of deep learning in the biomedical sciences is not limited to image analysis

tasks, as exemplified by its growing importance in treating large genomic, transcriptomic or

proteomic datasets.

These models have thus already demonstrated their strengths in aiding biological images

analysis, in large part thanks to the increasing availability of graphics processing units (GPUs)
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and computing power in general. Still, CNNs are complex mathematical models and they can

easily suffer from pitfalls and biases [41] if not trained properly or if the dataset used is not

properly designed.

As a result, in many instances, researchers will not try to develop their own neural networks

and optimize them for a specific problem. Instead, they use an approach called transfer learn-

ing. The underlying idea is to make use of already designed and trained neural networks and

re-train them to tackle a new problem. Powerful models are capable, thanks to their training,

complexity and underlying datasets, of creating very detailed representations of an image in

order to extract information. The idea of transfer learning is to freeze the first layers of such

pre-trained models, arguing that the learned representations will also be relevant for the prob-

lem at hand. The last layers of the model, the ones which actually make a prediction from an

image, are then either re-trained or replaced as the output of the problem is often very different

from the one they were originally trained on. This technique has proven quite powerful in a

variety of cases [42–44].

However, deep and transfer learning are complex tools and some of the drawbacks of their

intensive use have started to appear. These range from the use of deep learning where it is

clearly neither adapted nor required [45, 46] through its weaknesses to adversarial attacks [47],

the reproduction of biases and to examples where seemingly efficient models fail to generalize

to new, albeit very similar situations due to domain shift [48, 49]. One should thus be careful

in applying deep learning techniques, explore their own data and optimize models to fit spe-

cific needs. This might seem like a complicated task that can be overcome by the use of transfer

learning. However, it is unclear in which situations transfer learning is indeed a good alterna-

tive and if it is actually simpler than developing one’s own CNNs from scratch.

Our motivation for this work was thus to test if CNNs could be applied to our biologically

relevant image analysis problem. In addition, we wanted to see if the use of complex, pre-

trained model was required to achieve proper performances. In doing so, we decided to com-

pare simple hand-built CNNs with transfer learning from more complex problems. We also

explored what specific parameters and organizational choices were key to achieve good perfor-

mance by systematically exploring and comparing the performances of a large number of

models.

We made use of a large scale, high quality annotated data set coming from [27] and experi-

mentally obtained in [50]. It contains large, raw images of confluent fly dorsal thorax tissue

images. Thanks to a partially manual segmentation of these images, it also contains the exact

shape of all cells within the tissue, allowing for the definition of a ground truth. We started by

properly defining our coarse-grained cell shape detection problem. Then, we created and

explored a dataset designed to address this problem. To solve it, we first developed our own

CNNs from scratch and started from the simplest possible ones. We then increased complexity

step by step in order to optimize our model without using overcomplicated ones. In this step,

we also extensively explored the underlying hyperparameters to test the architecture rules of

thumbs which are usually applied in building CNNs but which are not grounded in hard data.

We also tested how the increasing complexity of the network increased its performances. We

ended up with a fully optimized, sparse, 3-layer model which achieved great performance

although it diverged from usually applied architecture rules. Finally, we compared our home-

made, step-by-step approach with a more direct transfer learning strategy and showed how the

former outperforms the latter in terms of performance, required expertise and computing

time. We also tested the influence of the size of the data set on both approaches and find that

our results hold true even for small training sets.

Overall, we 1- offer a very robust algorithm for cell shape detection in confluent tissues at a

coarse grained level, thus offering a biologically relevant image analysis tool and 2- through
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extensive exploration of both data and models, we question common practices encountered in

similar situations and offer a rational, optimized way of designing efficient CNNs to solve rela-

tively simple image analysis problems without the need to use transfer learning. We finally

illustrate these conclusions on a different data set and show how simple CNNs can achieve a

high level of performance in less than a day in cell measurement image analysis.

Results

Definition of the problem and data exploration

The aim of this work was to create a model capable of producing a coarse-grained map of inertia

tensors over a large biological tissue from images only. We started from images of a single fly

dorsal thorax tissue (Fig 1A). We cut this image in multiple smaller images giving the resolution

of our coarse grained level. Inputs to the models were black and white images 128�128 pixels in

size including a few tens of cells (Fig 1B). Targets (ground truth) were related to averaged inertia

matrices giving an average cell shape. Our ground truth was calculated thanks to semi-auto-

mated segmentation (Fig 1B). This shape was fully characterized by 3 parameters: length, width

and orientation (Fig 1B) of an average cell in the corresponding region. We therefore faced an

image analysis, multiple regression problem. Thanks to previous work, we started from a large

dataset of 17146 images separated into a training set (15989 images) and a test set (1157 images).

Before defining any model or training strategy, we started by exploring our annotated data

both in terms of their inputs and targets. The inputs were simple enough but we still looked at

the distribution of grey levels over all images in the dataset to see if we detected any outliers or

problematic values (Fig 2A). We found that the distribution seemed coherent but that grey val-

ues were spread between 0 and 255. As common practice, we decided to rescale all images by

dividing them by 255, ensuring that all inputs were bound between 0 and 1 while avoiding

artefacts potentially stemming from rescaling each image from its maximum.

Regarding the targets, we also looked at their original distributions to detect and remove

outliers, if any. Thankfully, the data set was remarkably clean and no clear outlier emerged

(Fig 2B). Interestingly, the angular distribution was not homogenous and values of 0, π/2 and

π seemed overrepresented (Fig 2C). In addition, we did find some structure in the data. Obvi-

ously, the long and short axes of the averaged cells were somewhat correlated since they had to

obey short axis < long axis (Fig 2D). Apart from that, they didn’t seem to be correlated enough

for us to remove one and infer it simply from the other. We thus kept them both as two inde-

pendent targets while keeping in mind that the data was partially structured.

Another conclusion was that orientation was a more problematic quantity. It is, by defini-

tion, bound between 0 and π, it is periodic, i.e. values of 0 and π actually represent the same

measurement and it has a non-normal distribution. As a result, usual loss functions such as

mean squared or absolute errors seemed ill-suited for this particular target as they would have

heavily penalized predictions close to π for a ground truth close to 0, and vice versa. This raised

the question of how to encode the orientation data and which loss function to use.

We tested two different possibilities: keep the orientation encoded as angles between 0 and

π but use a periodic mean squared error (MSE) as a loss function or encoding them as two tar-

gets: the cosine and sine of twice the angle (Fig 2E and 2F) using a regular MSE as a loss func-

tion. Doing so, we ensured that the target was first resampled on [0, 2 π] and then that the

(cos, sin) encoding was no longer periodic. Unlike the original encoding, large differences in

cosine and sine couldn’t come from very similar data.

Empirically, the latter seemed to work better (S1 Fig) and we kept this approach as it yielded

better performance, was more natural and user-friendly (no need to manually define loss func-

tions). It might seem counterproductive as we created an additional target, seemingly
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increasing the complexity of the problem, and adding correlations between these targets. Also,

we had to define an inverse transformation which is non-unique. However, we found from a

simple convolutional network example that these CNNs easily learned basic geometric laws as

the correlation between predicted cosines and sines closely followed the rule cos2+sin2 = 1 (S2

Fig). This result also showed that a 2-argument arctangent was a good way to perform the

inverse transformation and obtain the orientation from the couple of values (cos,sin).

From then on, we focused on this new definition of the problem: from binary images of

128�128 pixels, we wanted to develop models predicting the average inertia matrix encoded as

length, width, cosine and sine (of twice the orientation) using a usual MSE as a loss function.

Fig 1. Illustration of the problem. A: full raw image of the Drosophila dorsal thorax. Small black circles represent the

size of the images used in our models. B: three examples of such images along with their segmented counterparts and

representations of the average cell shapes with the three key targets: long axis L, short axis l and orientation α.

https://doi.org/10.1371/journal.pone.0281931.g001
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Another question we investigated was whether a single model was capable of fitting both

lengths and angles or if it was more pertinent to separate lengths and orientations in our

approach. We compared performances of very simple 2d CNNs in each situation. By fitting all

targets at the same time, we noticed a very small loss in performance (S3 Fig) but this approach

was much more practical. The fact that a single model was capable of fitting data of different

nature was not a given and indicated that our approach which aimed at predicting complex

quantities with simple CNNs was relevant.

We now had a well-defined regression from images problem with four targets, a dataset

that corresponded to this problem and had both a large number of images and high quality

ground truth. It was therefore perfectly suited to the use of supervised learning and CNNs in

particular. Following our strategy, we started by developing the simplest possible CNNs and

increased complexity step by step until achieving acceptable performance on our problem.

Our aim was thus to compare different models with one another and select the best perform-

ing one. As is usual practice, we used a 5-fold cross validation strategy. Each of our models was

thus trained 5 times in such a way that each image in the training set was used four times as

actual training and once as validation. The performance of a given model was given as the

mean absolute error (MAE) on the validation set, averaged over the 5 folds.

In terms of architecture, our CNNs were based on the repetition of the same module con-

sisting of a convolutional layer with Relu activation, a 2 by 2 maximum pooling and a dropout

layer set at 0.2 (Fig 3). After N repetitions of this module, we simply flattened the output of the

last convolutional layer and added a 4 neuron dense layer with linear activation as the final

regressor outputting long axis, short axis, cosine and sine of the orientation.

Fig 2. Exploration of the data set. A: relative gray level distribution over the entire dataset. B: Distributions of long axis, in blue, and short axis, in red,

in the training set. C: distribution of the raw orientation in the training set. D: Relationship between short and long axes in the training set, the red

dashed line shows y = x. E-F: Distribution of the cosine (E) and sine (F) of double the orientation.

https://doi.org/10.1371/journal.pone.0281931.g002
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In this work, we extensively studied the hyperparameters of the convolutional layer: the

number and size of convolutional filters, or kernels, to be learned by the model. These hyper-

parameters can have a large impact on the final performance of the model but optimal values

are hard to predict. Some rules of thumbs exist and usually are as follows. The number of ker-

nels is a power of 2 (4,8,16 etc..) and is multiplied by 2 for each new convolutional layer. The

size of the kernels, in pixels, is kept constant. Thanks to the maximum pooling, this means that

kernels in each new convolutional layer actually treat a larger area of the original image, effec-

tively zooming out.

Optimized 1 convolutional layer model

We started by the simplest possible case, corresponding to N = 1 repetition. We independently

varied the numbers and sizes of the kernels in this convolutional layer. The sizes spanned from

3 pixels to 11 in strides of 2. The number of kernels followed the powers of 2 and were varied

from 2 to 64. In the case of N = 1, this represented 30 different CNNs with their own architec-

ture hyperparameters. Fig 4A shows the performance (MAE averaged over three original tar-

gets and averaged over 5 folds) of each of these 30 models.

From this, we noticed that the number of filters seemed to have a much larger impact on

performance than the actual size of these filters. However, we could also observe that above a

threshold, here 16, increasing the number of filters no longer improved the performance of the

model. We confirmed these results by looking separately at the effect of both parameters (S4

Fig).

In addition to these rational rules of constructions, we also extracted from this grid search

the best performing model which, here, had 64 filters of size 3. This selection was based on the

5-fold cross validation and we then retrained this model once with the entire training set

(except a small validation set meant to stop training in case of overfitting) and looked at its

ability to generalize to the test set. Comparison between the predictions of the model and the

ground truth are shown for the long and short axes (Fig 4B) and for the orientation after the

inverse transformation from cosine and sine (Fig 4C). In both cases, we found a strong correla-

tion between predictions and ground truth demonstrating that even this extremely simple

CNN was capable of extracting valuable information. Quantitatively, this model achieved a

Fig 3. Schematics of the networks’ architecture. Models are based on the repetition of convolutional and max pooling layers. The dropout layers are

not represented to help visualization. The four neurons of the final dense layer each correspond to one of the model’s targets.

https://doi.org/10.1371/journal.pone.0281931.g003
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MAE of 0.60 pixels on the long axis, 0.51 pixels on the short axis and 0.14 radians on the orien-

tation (Table 1). Still, because of its simplicity, this model was far from being optimized and

we then moved on to N = 2, adding a second convolutional layer, and asked whether this

change could improve performance.

4 parameter grid search on 2 convolutional layer models

We repeated the exact same approach except that, by adding a second convolutional layer, we

now had four parameters that were varied independently over the same ranges as before. This

led to a total of 900 different models that we trained using a 5-fold cross validation scheme.

Note that the vast majority of these models didn’t obey the usual construction rules. The num-

ber of filters could even decrease from the first to the second layer and the same applied to fil-

ter sizes.

First, we studied the impact of filter sizes by pooling all models sharing the same filter sizes

in both layers (Fig 5A). In the range of values explored, we found a limited impact of filter

sizes. Still, it appeared that larger filters slightly increased performance as long as sizes were

large enough in both layers (Fig 5A). A rule of thumb that emerged to tackle our problem was

thus that one should use kernels of size 7 or more in both layers but that the exact sizes had

limited impact (Fig 5A).

Fig 4. Grid search on 1-conv models. A: the MAE averaged over 5 folds is shown both in color and numbers as a

function of the number of filters in the convolutional layer (N_filters_1) and size of these filters (filter_size_1). B:

comparison between ground truth and model predictions for the optimal 1-conv model after retraining. Long axis, in

blue, and short axis, in red. C: similar comparison for orientation after inverse transformation from cosine and sine. In

B and C, black dashed lines are a guide for the eye representing identity.

https://doi.org/10.1371/journal.pone.0281931.g004

Table 1. Comparison of all four final models.

Models 1-conv 2-conv 3-conv transfer

Long axis MAE (pixels) 0,6 0,31 0,36 0,44

Short axis MAE (pixels) 0,51 0,2 0,19 0,32

Orientation MAE (rad) 0,14 0,07 0,06 0,16

Trainable parameters 1049220 1100132 246676 1049220

Total parameters 1049220 1100132 246676 21073604

Time per epoch (a. u.) 132 306 255 1560

Time to analyse 1000 images (a.u.) 2.57 5.55 5.62 86.1

Comparison in terms of performance on test set (MAEs), complexity, number of trainable parameters and training and analysis time. a.u. stands for arbitrary units since

all times are dependent on hardware configurations.

https://doi.org/10.1371/journal.pone.0281931.t001
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Fig 5. Grid search on 2-conv models. A: Effect of filter size in each layer. The averaged MAE shown in colors and numbers. B: same study for the effect

of number of filters in both layers. Numbers in A and B represent the same quantity as in Fig 4A. C: comparison between true performance of 2-conv

models and the performance predicted by a decision tree regressor. The red line is a guide for the eye representing identity. D: feature importance of all

four parameters in the decision tree regressor. E: Pearson correlation coefficient of all parameters with the performance of the models. Negative values

indicate that increasing any of these parameters will tend to reduce the MAE and hence increase performance. F: comparison of predicted and true long

and short axes for the re-trained optimal 2-conv model. G: comparison of predicted and true orientation for the same model. In F and G, the dashed

black line represents identity.

https://doi.org/10.1371/journal.pone.0281931.g005
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Second, we used the same approach to explore the effect of the number of kernels (Fig 5B).

Here, we found that a low number of kernels in the second convolutional layer had a clear neg-

ative effect on performance (Fig 5B). On the opposite, a small number of kernels in the first

layer could be rescued by increasing the number in the second layer (Fig 5B). For instance,

models with two and sixty-four kernels in the first and second layers, respectively, achieved

performances similar to the best solutions. We also found, similar to kernel sizes, that if each

layer had enough kernels (16 or more), the resulting performance was not significantly

impacted by the choice of architecture.

However, these results are based on pooling together models which can have very different

performances and focusing on the average might be misleading. Therefore, we also took

another approach. We focused on models that follow the construction rules usually applied,

e.g. keeping the same kernel sizes in both layers. This allowed us to look at the effect of the

number of kernels in an unbiased way. The qualitative results found on pooled models remain

true with this approach (S5 Fig). Similarly, we looked at models following the rule that one

should double the number of kernels between the first and second layers and focused on the

effect of kernel sizes on these models. Here too, we found that the qualitative observations

from pooled models also held true for single ones (S6 Fig).

Finally, we tried to rationalize these emerging rules by asking whether we could predict the

performance of a given model from its architecture details. We therefore defined a new

machine learning problem. The inputs were the four numbers representing the model archi-

tecture and the target variable was the average (over 5 folds) MAE of the resulting model. We

created a dataset for this problem from our 900 pre-trained models and split it into training

and test sets in order to train a regressor decision tree. We found that this simple model was

quite accurate at predicting model performances (Fig 5C). Thanks to its simplicity, a decision

tree is an interpretable model and the importance of each input feature can be measured. This

tree confirmed what our qualitative exploration hinted at: the most important variable of all

was the number of kernels in the second convolutional layer (Fig 5D). This was also confirmed

by calculating the Pearson correlation coefficient of all four variables with the target (Fig 5E).

In terms of comparing these models with the single convolution layer ones, we first noticed

an improvement in performance in most cases as can be seen by comparing average MAE

between Figs 4A, 5A and 5B. This was in line with the usual approach of adding layers to

increase the complexity of the model and thus its ability to learn complex representations. From

this extensive search, we could extract the best performing model of the 900 that were trained.

Interestingly, this model didn’t follow the usual construction rules as it had 16 filters of size 9 in

the first layer and 64 filters of size 7 in the second one. Once properly retrained, we could test its

ability to generalize to the test set and found even better correlations between predictions and

ground truth than for the best single layer model (Fig 5F and 5G). Quantitatively, this two-layer

model achieved a MAE of 0.31 pixels on the long axis, 0.20 pixels on the short axis and 0.07

radian on the orientation (Table 1), a clear improvement in performance. This led us to take our

CNN’s architecture one step forward and turn our attention to the case where N = 3 repetitions.

Hyperband optimization of 3 convolutional layer models

Adding a third convolutional layer put the number of models to be trained on the order of

tens of thousands. At that point, a thorough grid search with full training of all these models

became out of reach or, at the very least, a waste of resources. Instead, we used a hyperband

tuner to explore this large parameter space.

The hyperband is an hyperparameter optimization method [51], designed to efficiently

explore a parameter space with a fixed computational budget (for instance a number of
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training epochs). Hyperband relies on the Successive Halving algorithms, which for a given

budget B allocates B/n to n randomly selected configurations, trains each one of them and only

keeps the best half. This step is then repeated with the n/2 remaining configuration, allocating

2B/n to each parameter choice. Recursively doing this allocates exponentially more budget to

the best models. The issue with this algorithm is that the user has to choose between testing a

lot of configurations (large n, small B/n), or having more budget for each one (small n, large B/

n). This choice depends on information specific to each problem and generally unknown to

the user (such as the distribution of terminal losses in the parameter space). Hyperband tackles

this problem by performing a grid search on the possible values of n, which enables it to have a

single parameter: the maximum amount of resources to be allocated to a single hyperpara-

meter configuration. Therefore, hyperband is way more flexible as it is not impacted by

whether one should favor n over B/n.

Based on our results from one and two-layer models, we also decided to change the parame-

ter space to remove the smallest numbers of filters which clearly impacted performance and

allow larger numbers for all layers. We thus varied the number of filters from 8 to 128, still fol-

lowing powers of 2, and kept the filter sizes similar, spanning from 3 to 11. This limited the

total number of models to 15,625 while keeping the most relevant values of the parameters.

We ran HyperBand on our data and tested how our models could generalize with a 5-Fold

Cross Validation. The budget allocated to HyperBand was fixed by the max number of epochs

it can run on a single configuration, which we set to 40 epochs as we noticed it was enough to

completely train most of our models. The best model structure was the following: 8, 64, and

128 filters with sizes of 5,9 and 3, respectively.

Because of the very nature of the Hyperband optimization, we couldn’t conduct a thorough

study of the effect of all parameters as we did previously. Still, we found that the best perform-

ing model didn’t follow the usual construction rules. Instead, we found it to follow rules simi-

lar to the ones we had already inferred: the size of the filters had to be large in the first layers

and the number of filters had to be large in the final layers. Once retrained on the entire train-

ing set, we could quantify the ability of this model to generalize (Fig 6A and 6B).

We found the performance of this model to be very close to that of the best two-layer model

with MAEs of 0.36 pixels on the long axis, 0.19 pixels on the short axis and 0.06 radian on the

orientation (Table 1). Regarding orientation, we also explored another interesting property. As

this orientation is that of an averaged cell over the field of view, it is strongly linked to the

anisotropy of this cell, defined as the ratio of the long axis to the short axis. When anisotropy is

high, there is a clear orientation of the cell and this measurement is well-defined. As anisotropy

approaches one, the average cell becomes more symmetrical and orientation becomes an ill-

defined quantity. We therefore explored if the performance of the model on orientation was

Fig 6. Performance of the best 3-conv model. A: comparison of predicted and true long and short axes for the re-

trained optimal 3-conv model. B: comparison of predicted and true orientation for the same model. In A and B,

dashed black lines represent identity. C: effect of anisotropy on the performance of the model in predicting orientation.

https://doi.org/10.1371/journal.pone.0281931.g006
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linked to anisotropy and indeed found that its performance degraded as cells became more

round (Fig 6C). This is not to be interpreted as a failure of the model but as a default in the

very definition of the problem, illustrating once again the importance of problem definition

and data preparation in machine learning applications.

Overall, this 3-layer convolutional network showed only marginal, if any, improvement

when compared to the best 2-layer one. This was unexpected but it was already performing

well enough to be a relevant tool to measure cell shapes on a coarse grained level. In terms of

long and short axis, the MAEs we obtained on the test set corresponded to an average relative

error of 2.4% and 1.7%, respectively, which is an improvement from previous methods [27]

and clearly acceptable as a measuring tool.

For all these reasons, we decided to stop at this step and consider we had successfully solved

the image analysis problem we defined by designing simple, optimized CNNs. Our approach

revealed the important parameters to optimize and showed that adding convolutional layers

improved performance up to a point. Researchers faced with images very similar to the ones

we used here could directly re-use these models to extract cell shape information at a coarse-

grained level from confluent tissues. However, the results obtained here and the ability of our

models to generalize to other situations highly depends on the dataset used for training. It is a

common feature in deep learning that models will fail when facing different distributions of

the inputs, targets or both. We argue here that researchers in such a situation should build and

train their own simple CNNs rather than transferring from other models, even the ones pre-

sented here. To do so, a large annotated dataset is necessary and is often the limiting factor to

conduct a successful machine learning approach. This is the reason why transfer learning is

widely used as it promises good performance with a smaller dataset and less technical knowl-

edge since the models themselves don’t have to be rebuilt from scratch. We thus tested this

transfer approach and compared it to our own.

Transfer learning from pre-trained models

Many pre-trained models are easily available in dedicated libraries. Most of the time, people use

complex models that have been designed and trained for the ImageNet dataset and competition:

the ImageNet Large Scale Visual Recognition Challenge. This is probably the gold standard in

computer vision and has naturally attracted most of the novelties in the field. For example, this

is where both the Visual Geometry Group (VGG) [52] and Residual Networks (ResNet) [53]

models were first introduced and these remain the models of choice for transfer learning. Here,

we didn’t perform a thorough investigation of all available models and focused on one of them:

VGG-19. This model has 16 convolutional layers, 5 maximum pooling, 3 dense layers and over

140 million trainable weights. As a basis for comparison, the most complex of our optimized

model has a little over one million trainable weights (Table 1). VGG19 has frequently been used

in transfer learning approaches including in biomedical research [54–56].

To adapt this model to our problem, several steps had to be carefully followed. First, we

loaded and froze all convolutional layers of this model and removed its dense layers at the top.

We replaced them with our own dense layers, one with 128 neurons and Relu activation and

our final regressor with 4 neurons with linear activation. This architecture was chosen to give

this model the same order of trainable parameters, around one million, to have a direct com-

parison with our own CNNs and reduced the total number of parameters to a little over 20

million (Table 1). Second, since the first layers of the model were frozen, we needed to adapt

our inputs to resemble those on which VGG19 was trained. This meant changing the size of

the input layer to fit our 128�128 images and artificially turning them into color images with

three different channels whereas our raw images were black and white. Finally, we used the
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same learning strategy as before, again to have a direct comparison. We argue that all these

steps, in addition to problem definition and creation of a proper data set, makes transfer learn-

ing as, if not more, technically difficult as designing one’s own models.

With these changes implemented, we then trained this new model (more precisely its top

dense layers) on the same training set as before and tested its performance on the test set. We

found that this complex model didn’t improve performance (Fig 7A) and achieved MAEs of

0.44 pixels on the long axis, 0.32 pixels on the short axis and 0.16 radians on the orientation.

Comparing with our three other CNNs (Fig 7B–7D), we find VGG19 to perform better than

our best 1-conv model but slightly worse than the 2-conv and 3-conv optimized models. Over-

all, it seemed clear that this approach did not yield better performances.

At some point, marginal improvements on performance are no longer a priority and the

question of computing time and resources becomes more relevant. We thus decided to com-

pare the efficiency of our different strategies in terms of training time. In that respect, small

homemade CNNs also outperformed VGG19. Not only did VGG19 require more epochs to

converge (Fig 7E) but each epoch also took longer to compute. Although they all had compara-

ble numbers of trainable parameters, thus requiring similar number of gradient descent and

weight updating calculations, our modified VGG19 had over 20 million non-trainable parame-

ters. This implies that the treatment of each individual image required more calculation which

made each epoch take longer. Similarly, after training, the time required to analyze one image

was significantly longer for VGG19 than for any of our CNNs. All combined, we found that

VGG19 took ten times longer to fully train than any of our simple models (Fig 7F, Table 1)

while achieving lower performances.

There is one more argument usually put forward in favor of transfer learning: it requires

fewer annotated data to train properly. This is a very important argument since large, high

quality datasets are difficult to build and are the main added value in most machine learning

applications. Again, we were able to conduct a thorough investigation of CNN architecture

rules thanks to our large, well annotated dataset but we acknowledge that this is more the

exception than the rule.

To test this argument in our context, we decided to artificially limit the training set and

monitor the performance of our optimized 3-conv model and VGG19 as a function of the

number of images accessible in this training set. We found that even with very low number of

images, down to a few tens, the performance of VGG19 was not significantly better than our

homemade 3-conv CNN (Fig 8) for all of our different targets. Finally, we found, as expected,

that after training, the time required to analyze new images was longer for this more complex

model (Table 1).

This shows that a transfer learning approach from a complex model offers little benefit for

the problem we have defined here.

Discussion

We defined an image analysis problem relevant for the community studying the mechanobiol-

ogy of living tissues at a coarse-grained scale. Thanks to a pre-existing large dataset of segmen-

tation, we defined a learning strategy, for example showing how the to deal with a difficult

target such as orientation by replacing it by a couple of better defined targets, the sine and

cosine of double this orientation. We then explored the performance of simple CNNs compris-

ing one, two or three convolutional layers. We conducted a thorough investigation of the

impact of the network’s architecture, in the form of the sizes and numbers of convolutional fil-

ters and found that the optimal construction rules are as follows. The number of filters in the

last layers is the most impactful parameter but performance stopped increasing after this
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number passed a threshold. The sizes of the filters seemed to have a limited influence on per-

formance as long as they were large enough; they could even be varied from one layer to the

next. In the end, we settled on an optimized 3 convolutional layer model which demonstrated

a high capacity to generalize to new data with an average relative error of a few percent. This

constitutes our first important result in the form of an efficient way to measure cellular shapes

in a confluent tissue without the use of segmentation and all the drawbacks it entails.

Fig 7. Transfer learning. A: Comparison of true and predicted long and short axes for the best 2-conv model (blue)

and transfer from VGG19 (red). The black dashed line represents identity. B-C-D: distribution of absolute errors on

the test set for all four models and for long axes (B), short axes (C) and orientation (D). E: Loss on validation set during

the final training of each model as a function of the number of epochs. F: Loss on validation set as a function of time

spent training.

https://doi.org/10.1371/journal.pone.0281931.g007
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Still, our approach was made possible by the large amount of high quality data and we

acknowledge that this is not a common situation in practice. We thus explored the possibility

to use transfer learning from VGG19 to address the same problem. Interestingly, we found

that this approach required as much, if not more, skills in coding and machine learning, that it

yielded performances barely on par with our simpler CNNs, that it required ten times longer

to train and analyze new data and that even with a small number of training data, it wasn’t

more efficient than our simple approach.

The large size and quality of our dataset implied another consequence: we did not use and

did not need any form of data augmentation in this work. We attribute this to the fact that the

original dataset was large and rich enough for both our CNNs and VGG19 to efficiently learn

relevant representations of the images to measure the desired outputs. Still, such large datasets

are difficult and time consuming to obtain. In order to make our work as general as possible,

we underline that thousands of training images are not necessarily required and data augmen-

tation is a very powerful technique to achieve high performances from small datasets. The idea

is simply to artificially create new training images from existing ones by applying simple trans-

formation methods such as translations, flipping or rotations. This is now very easily imple-

mented and has demonstrated its strength on microscopic images for cell segmentation [57] as

well as medically relevant ones [58].

In addition to the resulting optimized 3-layer model, our work also suggests a roadmap for

researchers facing an image analysis problem well suited for CNNs but which remains simpler

than the image classification of ImageNet on which most pre-trained models were optimized.

Instead of using transfer learning from these models, we argue that it is simpler, faster and

more efficient to build simple CNNs with only a few convolutional layers, respecting simple

rules of construction. If the dataset allows, an optimization of hyperparameters such as the

architecture of the models can yield great performance and even provide information on the

complexity of the problem itself.

As a conclusion, we illustrate this strategy on a different, albeit very similar problem. We

used images of cell flow during primitive streak formation in a chicken embryo (Fig 9A) and

wanted to create maps of cellular anisotropy over these very large tissues. Thanks to semi-man-

ual segmentation over the all image [27, 59], we created a dataset of over 3,000 images each

containing around ten cells (Fig 9B) and for which we had a measurement of the average cellu-

lar anisotropy. Each of these images will correspond to a single measurement of cellular anisot-

ropy and thus represent one pixel of our final anisotropy map (Fig 9C). As an illustration, we

used the top part of the original image to create a training set and treated the bottom of the

image as new, unseen data.

Fig 8. Effect of training set size. Performance of either the best 3-conv model (blue) or transfer from VGG19 (red) as

a function of the number of images used in their training. MAE is shown for long axis (A), short axis (B) and

orientation (C).

https://doi.org/10.1371/journal.pone.0281931.g008
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Following our conclusions, we neither performed a complete grid search on hyperpara-

meters nor did we try to use transfer learning from complex models. Instead, we manually

built a simple, 3 layer CNN following the construction rules we obtained: all layers have 64 fil-

ters of size 5. This network was then fully trained on the top part of the image and used to pre-

dict the anisotropy map on the bottom of that image (Fig 9D and 9E).

Applying this strategy, we managed to prepare the dataset, train the model and compute

the predicted anisotropy map in less than a day on a laptop computer. The resulting anisotropy

map (Fig 9E) shows the area of large anisotropy on the right part of the original image which is

also observed on the top part of the image. This is the signature that the model correctly

learned how to measure anisotropy in an efficient way.

Regarding future work, the first and foremost goal of this paper was to provide a roadmap

to other researchers facing a similar image analysis problem. We show that similar tasks can be

tackled with simple, hand made and optimized CNNs with as little as two or three convolu-

tional layers and a stereotypical architecture. We also showed that optimizing the number of

filters is the most efficient way of improving the model’s performance. In addition, we show

how care should be given to the definition of the problem and the encoding of the desired tar-

gets. Finally, we encourage applying a similar approach to ours for different contexts and prob-

lems with the objective of finding the simplest, most economical models solving a specific

problem in order to move away from the too often false sense that bigger, more complex mod-

els necessarily perform better than smaller, simpler, optimized ones. A natural next step would

be to focus on automated cell segmentation, a problem which is both greatly related to but still

more complex than the one studied here.

Fig 9. Illustration of strategy. A: Original image used to create a training set. It is the top part of a larger image which

was separated in two. B: two examples of 128�128 images extracted from A. C: anisotropy map of the full image, each

image in B represents one pixel of this map. D: Original image used to create a test set which was separated in similar

128�128 windows and these images were passed to the trained CNN. E: Predicted anisotropy map of the image in D.

Comparing the ground truth in C and predicted anisotropy maps in E.

https://doi.org/10.1371/journal.pone.0281931.g009
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Material and methods

Dataset and training strategy

The dataset is the same as the one presented in [27] and obtained in [50] and we used the same

definition of the average long axis, short axis and orientation in each picture. We tranformed

the orientation defined between 0 and pi as the sine and cosine of double this orientation,

assuring they were both bound between -1 and 1. Major and minor axis were both normalized

using a standard scaler fitted on the training set. For clarity’s sake, the output of all models

were rescaled back to the original scale in pixels.

The images were normalized by 255, the maximum value in 8-bit images, both in the train-

ing and test sets. All models were coded and trained in Python using the Keras library and

Tensorflow.

For the 1-conv and 2-conv grid search on hyperparameters, each individual model was

trained using a 5-fold cross validation scheme. Each training was performed using an Adam

optimizer with 0.001 learning rate and with the mean squared error as loss function. This loss

was monitored at each epoch on the validation set and training was automatically stopped

after 20 epochs without improvement on the validation loss. We used the mean absolute error,

averaged over the 5 folds and over the 4 targets, as a way to compare the performances of each

model.

Once a model was selected thanks to this scheme, it was re-trained once from scratch and on

the entire training set. A small part (10%) was kept as a validation set to be used for early stop-

ping with the same criteria as above. The model then predicted the test set, which had remained

unseen up until now, and the measure of performance on this test set were used throughout

this paper as a measure of their ability to generalize to new data. For Fig 8, a subset of the train-

ing set was randomly selected to perform the training of both the optimized 3-conv model and

transfer from VGG19 and the resulting performances were measured on the entire test set.

For clarity and visualization purposes, we also did the inverse transformation from cosine

and sine back to the actual orientation by taking the 2-argument arctangent and dividing it by 2.

Comparison of training strategies

To define and test our training strategy, we trained 2 convolutional layers CNN respecting the

architecture shown in Fig 3 with 32 kernels of size 5 in each layer. The output layer was

changed to match different strategies. For S1 Fig, the “mixed” model we had three output neu-

rons to predict three targets as we left the orientation as originally defined. We then had to

modify the loss function to reflect the periodic nature of that target. The final loss function for

training was thus the sum of standard MSEs on long and short axes and the square of the ori-

entation error modulo pi. The sincos model used four output neurons to predict axes and both

sine and cosine of the orientation. In S3 Fig, we trained two “dedicated models”, each with two

output neurons to predict either both axes or sine and cosine of orientation.

Decision tree

We used a decision tree regressor from the scikit-learn library to predict the performance of

2-conv models from the 4 architecture parameters we varied. We kept all hyperparameters of

the tree as default except for the maximum depth which was set to 16. The target was defined

as the MAE on validation set averaged over the 5 folds during training of the model. This tree

was trained on 630 points out of 900 and tested on the remaining 270.

We used the feature importance in this tree and a Pearson correlation coefficient as two dif-

ferent measures of the impact of each of the 4 parameters.
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Hyperband

We used a modified version of the Hyperband algorithm from KerasTuner module. It was

modified to include cross-validation in the hyperparameters tuning, testing our models on a

5-fold split of the training set, with the mean of the Mean Squared Error across all splits as loss

function. This was achieved by replacing the training line in the tuner’s code by a loop on the 5

splits, training 5 different models instead of one at each step of Hyperband. Training parame-

ters are identical to the one used in grid search.

We then ran our modified Hyperband on 3-conv models, allowing the number of filters on

each convolution layer to be any power of 2 between 8 and 128, with kernel size ranging from

3 to 11 by steps of 2 and a maximum pooling of size 2. We set the maximum number of epochs

to 40, as we noticed it was enough for any model we encountered to be fully trained.

The last parameter to be fixed is the number of Hyperband iteration the user wants to run.

We recommend setting this as high as one can afford computation-wise. KerasTuner provides

ways to save the best model, therefore HyperBand can be stopped before completion if the per-

formance are satisfactory.

Transfer

We loaded the VGG19 pre-trained model from Keras and used the corresponding ImageNet

weights. We modified the input layer to fit the size of our images of 128�128 pixels. We

didn’t load the top part of the model and froze all remaining layers. We then manually

added two consecutive dense layers with, respectively 128 neurons with Relu activation and

4 neurons with linear activation. The targets were treated the same way as for our own

CNNs.

In terms of inputs, we pre-treated the images in both the training and test sets using the pre-

processing function provided especially for VGG19. The model was then trained once with the

same optimizer, learning rate, early stopping and batch size as our own CNNs. For example,

here too, 10% of the training set was kept as validation to monitor early stopping.

Chicken

The data set was obtained in [59] and later used in [27]. It consisted in a single large image of a

chicken embryo during primitive streak formation. The entire image was accompanied by a

semi-manual segmentation used to define the ground truth. This original image was split in

the middle, the upper part being kept as a training set and the bottom one as a test set. Each set

was cut in 128x128 pixels images with 25% overlap and the average long and short axes were

computed from the segmentation for each resulting image. This yielded over 3,000 images in

the data set.

We designed a three layer CNN with the architecture shown in Fig 3 with the addition of a

dropout layer after each convolutional one with a dropout of 0.2, and with only two output

neurons to predict long and short axes. The model was trained once on the training set, keep-

ing 20% of it as a validation set to apply early stopping and avoid overfitting. Once trained, the

model was then used to predict these two quantities on the test set to predict local anisotropy.

Anisotropy was defined as L
l � 1 with L and l the long and short axes, respectively.

Sine-cosine learning

The relationship between cosine and sine learned by the model and presented in S2 Fig was

obtained by the optimized 2-conv model after full retraining. It shows the relationship between

predicted cosines and sines on the test set.
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Supporting information

S1 Fig. Definition of strategy. Comparison of performance of a simple 2 convolutional layer

CNN trained either with the raw orientation and a circular MSE (mixed) or by encoding orien-

tation as sine and cosine (sincos). In each case, the corresponding MAEs are shown in inserts.

(TIF)

S2 Fig. Learning of trigonometric relations. Correlation between predicted sines and cosines

from a 2-conv layer CNN on the test set.

(TIF)

S3 Fig. Definition of strategy. Comparison of performance of the performance of simple

2-conv CNNs. The dedicated models are two different CNNs, one trained to predict lengths

only and the other orientation only. The single model predicts all three quantities at once. In

each case, the corresponding MAEs are shown in inserts.

(TIF)

S4 Fig. Effect of filter size (A) and number of filters (B) on MAE over 5 folds for 1-conv

models. In A, each dashed black line corresponds to one value of the number of filters and the

red line is the average of all black lines. In B, each dashed black line correspond to one value of

filter size and the red line is the average of all black lines.

(TIF)

S5 Fig. Performance analysis of 2-conv models as a function of filter numbers. Each graph

shows models where both layers have the same filter sizes (from 3 to 11). Each value of the

MAE averaged over 5-fold is shown both in colors and numbers and corresponds here to a sin-

gle network architecture, or a single model.

(TIF)

S6 Fig. Performance analysis of 2-conv models as a function of filter sizes. Same analysis as

Fig SI5 but for the sizes of the filters. Each model in a graph respects the rule that the number

of filters is multiplied by 2 between the two layers and these values span from 2–4 to 32–64.

(TIF)
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