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State Machine Inference to Uncover Security

Flaws and Fingerprint TLS Stacks

Aina Toky Rasoamanana, Olivier Levillain, and Hervé Debar

Télécom SudParis, Samovar, Institut Polytechnique de Paris

Abstract. TLS is a well-known and thoroughly studied security proto-
col. In this paper, we focus on a specific class of vulnerabilities affect-
ing TLS implementations, state machine errors. These vulnerabilities
are caused by differences in interpreting the standard and correspond
to deviations from the specifications, e.g. accepting invalid messages,
or accepting valid messages out of sequence. We develop a systematic
methodology to infer the state machines of major TLS stacks from stim-
uli and observations, and to study their evolution across revisions. We
use the L? algorithm to compute state machines corresponding to dif-
ferent execution scenarios. We reproduce several known vulnerabilities
(denial of service, authentication bypasses), and uncover new ones. We
also show that state machine inference is efficient and practical for in-
tegration within a continuous integration pipeline, to help find new vul-
nerabilities or deviations introduced during development.
With our systematic black-box approach, we study over 400 different ver-
sions of server and client implementations in various scenarios (protocol
version, options). Using the resulting state machines, we propose a ro-
bust algorithm to fingerprint TLS stacks. To the best of our knowledge,
this is the first application of this approach on such a broad perimeter, in
terms of number of TLS stacks, revisions, or execution scenarios studied.

1 Introduction

TLS is a fundamental block of Internet security. The most recent version of
the standard is TLS 1.3 [23]. It fixes many vulnerabilities uncovered in the last
decade. Automata implementation errors represent one category of these. The
RFC does not specify a reference automaton. Hence, implementers need to derive
their state machine from the protocol messages descriptions and sequences. The
complexity of the task is such that errors are easy.

Such vulnerabilities can be triggered by an attacker sending messages in an in-
appropriate order (e.g. EarlyCCS [18]) or skipping messages (e.g. SkipVerify [4],
which bypasses server authentication by skipping the corresponding messages).
In more complex cases, interfering with the state machine enables new crypto-
graphic attacks (e.g. FREAK [4], Factoring RSA Export Keys). All major TLS
stacks have been vulnerable to at least one such flaw in the last decade1.
1 e.g.: CVE-2014-0224, CVE-2014-6321, CVE-2015-0204, CVE-2015-0205



Our work focuses on black-box testing of TLS implementations, to better
understand how they react to messages that diverge from an ideal message
sequence. We use an active learning algorithm, L?, initially described by An-
gluin [2], and later adapted to Mealy machines [25], to infer the actual state
machine through interactions with implementations. We then compare these
state machines with the expected behavior of an ideal TLS stack. Despite the
absence of a formal specification of such an ideal stack, a simple approxima-
tion of said ideal stack is to use so-called happy paths, which correspond to the
expected message sequences for successful connections. A fully compliant stack
should only contain happy paths and error transitions, leading to the end of the
connection. Every other transition is deemed suspicious. Our contributions are
the following:

– We propose an improved methodology to systematically analyze TLS stacks,
both client- and server-side, in an rigorous, automatic and efficient way.

– We propose optimizations exploiting the determinism hypothesis used in L?.
– By applying our methodology to different versions of popular open source

projects, we confirm already known security vulnerabilities.
– We also discover new implementation errors, including security-relevant ones.
– Our methodology spots differences in the implementation of error conditions,

supporting the concept of state-machine-based fingerprinting of TLS stacks.

Our tools have been published on gitlab.com in two separate repository:
one for the inference tool,2 and one for the test bed infrastructure3.

2 TLS in a Nutshell

A typical TLS 1.3 connection is shown on the left side of Fig. 1: the client sends
a ClientHello message to advertise the ciphersuites, i.e. a set of cryptographic
algorithms, it supports and to propose a key share using one of the algorithms
it supports. If the client and the server agree on capabilities, the server selects
a suitable ciphersuite, and sends its own key share in a ServerHello message.

Once the client and server have agreed on algorithms and a common session
key, messages are protected using authenticated encryption. The server carries
on with several messages, including its certificate chain (Certificate) and a sig-
nature over the exchanged messages proving its identity (CertificateVerify).
The Finished messages confirm keys in both directions. Then, session keys are
updated, and application data can be exchanged.

Of course, this transcript only represents a simple, typical situation. It rep-
resents a happy path, which does not take into account session resumption or the
so-called 0-RTT mode. It also ignores common error cases, such as the impossi-
bility for the client and the server to agree on a common ciphersuite.

From this description, we represent the expected behavior of a TLS 1.3 client
with the state machine on the right side of Fig. 1. The happy path, in green,

2 https://gitlab.com/gaspians/pylstar-tls
3 https://gitlab.com/gaspians/tls-test-bed
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starts with the client outputting a ClientHello, and leads to the Finished

messages and the exchange of Application data. Outside of this happy path, all
other messages (denoted *) lead to the sink state with a fatal alert. This figure is
identical to the state machine inferred using our methodology on OpenSSL 3.0.1.

Client Server
ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished
Application data

Application data

0

1

2

3

4

5

6

States from
the happy path

Cleartext
Ciphertext (HS)

Ciphertext

0

 - / ClientHello

6

 * / Alert

1

ServerHello / -

 * / Alert

2

EncryptedExtensions / -

 * / Alert

3

Certificate / -

 * / Alert

4

CertificateVerify / -

 * / Alert 5

Finished 
 / Finished+AppData

AppData / EOF  * / Alert

Fig. 1: A typical TLS 1.3 connection and the corresponding expected client state
machine. On the right, transitions are labeled with the messages sent to / received
from the client. The path in green is the expected flow described on the left,
ending with a request (the AppData received from the client between states 4
and 5) and the answer (the AppData sent between states 5 and 6). A transition
with * aggregates the behaviors for the remaining input messages.

3 Background on Model Learning

In 1987, Angluin proposed L?, an algorithm that infers a deterministic finite
automaton using membership and equivalence queries [2]. This technique can be
extended to extract the state machine of a protocol implementation using the
Mealy machines representation, which can be seen as automata where transitions
are labeled by both the messages sent and received, as shown on Fig. 1.

LEARNER
L*

MAPPER
(Test harness)

SUT

abstract(rsp)

concretize(m)m

rsp

Fig. 2: Model learning setup.

L? is an automated black-box technique driven by a Learner. Fig. 2 de-
scribes the experimental process. The analyzed implementation (a TLS client
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or server) is the System Under Test (SUT). The Learner generates sequences
of letters from a finite input vocabulary, where each letter represents an ab-
stract protocol message (e.g. ClientHello) associated with its specific param-
eters. Interactions between the Learner and the SUT are mediated through
a Mapper, which transforms abstract letters into concrete protocol messages,
and transforms the concrete answers back to abstract letters.

To infer the state machine, L? populates an observation table using member-
ship queries by collecting answers from the SUT to a series of message sequences.
This step ends when the observation table is closed and consistent [2]. Then, it
builds a hypothesis, i.e. a tentative state machine, and the Learner uses a so-
called equivalence query to validate it. This query either confirms the hypothesis
or exhibits a counter-example sequence where the hypothesis differs from the ac-
tual state machine. The counter-example is used to run the first step again to
build a new hypothesis. This process is repeated until a hypothesis is validated.

Since the actual state machine is not known, equivalence queries do not re-
ally exist in practice, so we must approximate them. Several methods have been
developed, such as W-method [9], Wp-method [14], Random Walk [20] and Dis-
tinguishing Bounds [21]. They use the same input vocabulary to create new
message sequences that have not been used in the creation of the state machine.
These sequences are executed both on the SUT using membership queries and
on the hypothesis. In case the executions produce different results, the corre-
sponding message sequence is a counter-example invalidating the hypothesis.

W-method or Wp-method have an exponential complexity in the size of the
inferred automata, which was not reasonable in most cases4. We use the Random
Walk to approximate equivalence queries, since it produced the best results, both
in terms of performance and accuracy. We also cross-check our results using
Distinguishing Bounds on the obtained unique state machines to benefit from
its guarantees. Indeed, given a bound value Bdist, it guarantees that the obtained
state machine will be accurate as soon as two states in the real state machine
can be distinguished in at most Bdist steps.

4 Description and Implementation of our Platform

Fig. 3 illustrates how TLS implementations and our inference tool interact for a
client inference. Server inference works in a similar way.

4.1 TLS Stacks

We create containers for more than 400 TLS stacks. Table 4 in App. A details
the TLS stacks currently included in our platform.

For each stack, we reuse the tools or the example code available within the
project to build and run a TLS client and/or a TLS server. Such pieces of code
are representative of the way the libraries are used in practice.

4 Some scenarios use many messages, which can produce state machines with many
states. The maximum number of states in our experiments is 31.
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Fig. 3: TLS client inference cinematics. See App. A for a detailed explanation.

Each container is customized to select the protocol version and the cipher-
suites, and to include the required cryptographic material (certificate, keys,
trusted certification authority), which allows us to study different scenarios.

In addition to the ”example” client, we create for each stack a second con-
tainer, using curl dynamically linked with each stack. These curl-based images
provide a unified interface across stacks, removing small differences in the exam-
ple provided by the projects, e.g. missing certificate checks. All server-side ex-
amples include a functional and sufficiently customizable example for our needs.

4.2 Inference Tools

One major challenge with the L? approach is that the Mapper used to concretize
the abstract messages has to be flexible enough to send arbitrary messages at
any state of execution of the protocol (even ones that would clearly be invalid).
We thus need a modular and robust TLS stack to implement the Mapper. We
use scapy [5], a Python-based network tool, to forge and decode packets. scapy
allows us to easily build customized packets (e.g a CertificateVerify with a
wrong signature).

To complete our setup, we choose pylstar, a Python-based implementation
of L?, which allows for a straightforward connection with scapy. pylstar has
previously been used to infer protocols used by malware with their Command
& Control servers [7], as well as to study the behavior of HTTP/2 clients [8].

4.3 Assumptions

Deterministic SUTs The most important requirement for L? is that the SUT
behavior must be deterministic, relative to the selected input vocabulary. For
a given stack and a given set of parameters, a given input abstract message
sequence should always produce the exact same abstract output sequence.

TLS stacks behave deterministically, with a few exceptions. When a SUT
takes too long to answer a stimulus, we can misinterpret its silence as the absence
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of messages, whereas output messages were actually expected. This requires to
get the timeout parameter right. In rare cases, an encrypted message can be
misinterpreted as a cleartext message, which produces an unexpected response
with a low probability. To avoid this, we always tag reception of encrypted
packets that cannot be properly decrypted by scapy with a dedicated letter,
UnknownPacket.

Similarly, OpenSSL 1.0.1d was a short-lived version with a known bug in the
CBC encryption function. The defective function leads to the emission of mal-
formed packets with a low probability, which could not be interpreted correctly
deterministically. We chose to remove this particular image from our corpus.

Timeouts A common issue with L? inference is the time required to produce a
result. For a typical inference (a 10-state automaton, 15 input letters), we need
to send thousands of sequences, with up to 10 letters. At each step, we must
ensure we have received all the messages the SUT has sent. The usual solution is
to wait for a long period of time before inferring ”no response”, which makes the
inference slow. To improve the performance of our tools, we introduce heuristics
to reduce the timeouts when possible.

5 Optimizations

Before discussing our optimizations in pylstar, we can already improve the
performance by running in parallel several inferences. Indeed, since we use con-
tainers, running multiple instances of SUTs and inference tools is essentially free,
so we can benefit from a multi-core architecture.

EOF is Final. When we receive a network error, which indicates that the SUT
has shut down the communication channel, we can conclude that all subsequent
messages will trigger the same signal (EOF), so it is not necessary to build and
emit the corresponding messages.

In [24], de Ruiter and Poll actually proposed a similar improvement in the
equivalence method implemented in statelearner, which resulted in measur-
able performance gains. By also applying the idea to the first phase of the algo-
rithm (the membership queries), we further improve the performance.

Exploiting the Determinism. As discussed earlier, L? relies on the fact that
the SUT is deterministic. So we propose another optimization, which is a direct
consequence of this assumption. During its execution, L? often sends sequences
that are extensions of already sent sequences. Let us assume that we have already
observed that sending A to the SUT triggers two messages, x and y. When
evaluating the input sequence A B, we can send A, read x and y without waiting
after the reception of y, then send B and observe the answer using the timeout.

A restricted version of this optimization consists in skipping the timeout only
when we know sending a message will not trigger any message back.
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Evaluation. Table 1 describes the time required for a typical inference with
different optimizations. We infer the TLS 1.2 server state machine for OpenSSL
1.1.1k (which contains 6 states) with 12 input messages and a 1-second timeout.
The machine hosting the experiment is an 16-core AMD EPYC 7302P at 3GHz,
with 128 GB of RAM and all the storage on SSDs.

EOF optimization
Off On

No anticipation 1,885 s (100 %) 1,598 s (85 %)

Skip timeouts on empty responses 1,081 s (57 %) 862 s (46 %)

Skip timeouts on all known responses 128 s (7 %) 77 s (4 %)

Table 1: Average time required to infer TLS 1.2 server state machine for
OpenSSL 1.1.1k. Percentages are the fraction of the unoptimized time.

It appears both optimizations improve the overall performance, with a dras-
tic improvement from the fully-fledged timeout anticipation. We ran similar ex-
periments with statelearner (same timeout, same vocabulary), on the same
hardware, and the time required to produce the (identical) state machine was
2,945 seconds.

Obviously, the time required for our inferences can vary, depending on the
complexity of the SUT state machine (which can count as much as 30 states in
some cases), the size of the input vocabulary (the scenario), and the speed of
the SUT. The default timeout used is 1 second, but to get a stable inference, we
must raise this value to 3 for several stacks.

For a 1400-experiment run (which took around 2 and a half hours overall,
with 30 inferences in parallel), the average inference time was around 3 minutes,
the median was 81 seconds, and the 10th and 90th percentiles were respectively
27 seconds and around 8 minutes.

6 Studied Scenarios and Vulnerabilities

A scenario is defined by the following information: (i) the role (client/server)
and the configuration (protocol version, ciphersuites, etc.) of the SUT; (ii) the
input vocabulary (the list of abstract messages) used during the inference; (iii)
a set of expected path, which helps challenge the built state machine during
the equivalence query phase; and (iv) a set of security properties to test on the
resulting graph.

To identify bugs using learned model, we first identify RFCs violations and
then we analyze whether these violations represent bugs with the following steps:

(i) color in green the happy paths representing the successful connections;
(ii) color in gray error transitions leading to sink state, which are expected;
(iii) color all remaining transitions in red since they are RFCs violations, and

may correspond to vulnerabilities.
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6.1 Client Scenarios

In these scenarios, the SUT is a client, running a given version of TLS. The client
is configured with a trusted certification authority and is expected to check the
certificate presented by the server. The inference tool acts as a server, with the
following input vocabulary: ServerHello, Certificate messages (valid, empty,
invalid — trusted but for the wrong domain —, and untrusted), other server-side
Handshake messages, ApplicationData and CloseNotify.

In these scenarios, we ensure that the client only sends application data to a
correctly authenticated server. We look for paths leading to ApplicationData

messages and check for proper authentication.
Another area of interest is the presence of loops that could be used by an

attacker to stall a client, enabling complex cryptographic attacks, such as the
LogJam attack [1]. Since the goal of such attacks is to delay the completion of
the TLS Handshake, we only focus on loops happening early in the connection.

6.2 Server Scenarios

In these scenarios, the SUT is a server, running a given version of TLS. The server
can be configured to require mutual authentication (with regards to a given cer-
tification authority). The inference tool acts as a client, and uses the follow-
ing vocabulary: different ClientHellos, various Certificate messages (empty,
trusted, untrusted), other client-side Handshake messages, ApplicationData

and CloseNotify. We also include alerts and unexpected messages such as
server-side messages.

When client authentication is required, we want to ensure that the server
properly authenticates the client. Only paths with a valid certificate and the
corresponding signature should be accepted.

We are also interested in the presence of loops in server state machines,
which could force the server to maintain an open connection indefinitely. For
such denial of service attacks, we only focus on occurrences happening before
encryption is activated; this way, the attacker only needs to spend very few
resources to keep the channel open. Moreover, keeping the server in an early
stage of the connection reduces the chances of something being logged. Note
that these loops are different from the ones created through TCP segmentation
or TLS ClientHello fragmentation, which would be limited by the length of
the data to send.

6.3 Vulnerability Confirmation

These scenarios identify potential implementation issues, which need to be inde-
pendently confirmed as security flaws. L? is an algorithm that produces a state
machine, which represents the behavior of the SUT. However, the produced state
machine is only an approximation due to the (limited) set of abstract messages
selected in the scenario and the equivalence query method used. We thus use
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tools to independently check whether a potential security issue, uncovered by
the inference, actually translates into a real security flaw.

For authentication bypass issues, we extract the potentially dangerous paths
and replay them to the SUT, in a context where we do not have access to the
authentication secret. If we can trigger the tested stack to emit Application Data,
the flaw is confirmed.

For loops, we send precomputed packets to the SUT at a given pace (typically
one message per minute), and for a given duration (e.g. several hours). If we can
maintain the connection open, we have proof the loop can be weaponized.

7 Analysis of the Resulting State Machines

We analyze over 400 different versions of different TLS stacks using different
client and server scenarios and get over 2,000 automata. App. B summarizes the
vulnerabilities reproduced and discovered during our study.

7.1 Authentication Bypasses

Server authentication bypasses in wolfSSL. Around 2015, authentication
bypasses in state machines seemed to be pervasive in TLS stacks [4,24]. In 2020,
CVE-2020-24613, an authentication bypass affecting wolfSSL TLS 1.3 client,
caught our eye, and we decided to try and reproduce it using L?.

To this aim, we infer the state machines for wolfSSL TLS 1.3 clients, for
different versions, with standard Handshake messages. Fig. 4a represents the
state machine corresponding to wolfSSL 4.4, which is vulnerable to CVE-2020-
24613. By skipping the CertificateVerify message, an attacker can bypass
server authentication, and thus impersonate any server to a vulnerable client.
The vulnerability was fixed in version 4.5, as can be seen on Fig. 4b, which
corresponds to the inferred state machine for the patched version, using the
same vocabulary.

However, in other scenarios, we also use a broader input vocabulary includ-
ing an empty Certificate message, that should never be sent by the server.
We could thus discover another vulnerability in wolfSSL, present in all versions
at the time. As shown in Fig. 4c, instead of skipping the CertificateVerify

message, the attacker can send an empty Certificate message, followed by a
CertificateVerify message signed by an arbitrary RSA key5. This new bug
was confirmed, reported as CVE-2021-3336, and fixed.

By adding new messages to the input vocabulary, we also discover another
alternate path to reintroduce the initial bug. Fig. 4d shows that an attacker can
send an empty Certificate message, followed by an invalid CertificateVerify

message, containing an unknown signature algorithm and an arbitrary payload

5 In our inference tool, sending a Certificate message selects the corresponding RSA
key to be used in the subsequent CertificateVerify. For EmptyCertificate, the
selected RSA key is a fresh key generated for the experiment.
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(a) CVE-2020-24613, a server authentica-
tion bypass in wolfSSL TLS 1.3 clients, up
to version 4.4. An attacker can imperson-
ate any server to a vulnerable client by
skipping the CertificateVerify message.
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(b) CVE-2020-24613 fixed in version 4.5.
With the same vocabulary used in Fig. 4a,
the dangerous transitions have disap-
peared.
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(c) CVE-2021-3336. Sending an empty
Certificate message followed by an ar-
bitrary CertificateVerify, allows server
impersonation to a vulnerable client.
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(d) CVE-2022-25638. Adding a completely
invalid CertificateVerify message rein-
troduces a dangerous transition.

SH : ServerHello EE : Encrypted Extensions

Cert : Certificate CV : CertificateVerify

Fin : Finished AppData : ApplicationData

EOF : End of the connection

Fig. 4: Attacks against wolfSSL TLS 1.3 clients.
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to bypass server authentication. This bug, identified as CVE-2022-25638, has
been fixed in version 5.2.0.

All these attacks were reproduced by sending the identified transcript to the
vulnerable SUTs. The program replaying the attack was not given access to the
server private key, and we checked both wolfSSL and curl+wolfSSL stacks to
make sure the authentication bypasses were real.

Other bypasses. In OpenSSL, different paths are incorrectly identified as in-
valid bypasses: the client seems to be accepting any certificate from the server.
However, when we analyze a real TLS client using OpenSSL (the curl+OpenSSL
stack), these dangerous paths disappear. Indeed, in our OpenSSL containers,
TLS clients use the s client application, which does not enforce any checks
regarding the certificate6.

We use the same approach to assess the quality of TLS servers authenti-
cating clients. We get an issue in wolfSSL TLS 1.3 servers, as shown in Fig. 5,
which is the transposition of CVE-2020-24613 to the server. By skipping the
CertificateVerify message (and optionally the Certificate message), an at-
tacker can bypass the authentication and impersonate any legitimate client. It
is worth noting that the server correctly reject untrusted certificates and empty
Certificate messages (since client authentication is required in this scenario).
This bug, CVE-2022-25640, has been fixed in version 5.2.0.

0

1

CH / SH+EE+CR+Cert+CV+Fin

6

* / EOF

2

Cert / -

3

Fin / -

Untrusted Cert / EOF
EmptyCert / EOF* / EOF Fin / -4

CV / -

* / EOF

AppData / AppData+EOF * / EOF

Fin / -

* / EOF

* / EOF

Fig. 5: CVE-2022-25640. In versions, up to 5.1.0, client authentication can be
bypassed in wolfSSL TLS 1.3 servers, using the same idea as in CVE-2020-24613.

6 It is possible to add options such as -verifyCAfile to the command line, but they
do not end an unauthenticated handshake and merely produces a warning message
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7.2 Loops in the Automata

As discussed in Sec. 6, exploiting loops in TLS state machines can be used to
mount sophisticated cryptographic attacks [1]. Loops have also been considered
as a potential vector for denial of service attacks (e.g. CVE-2020-12457). We
thus identify such loops in our state machines, and to focus on those happening
before messages are protected.

Analysis of a False Positive. The inferred state machine for wolfSSL TLS 1.2
server (all versions) seems to exhibit a loop on the initial state, tagged with the
NoRenegotiation warning. However, when we repeatedly send such warnings
to the SUT, the server actually closes the connection after 4 warnings. This
situation exhibits the fact that L? is only an approximation, which can not always
capture behaviors happening very deep in the state machine. This justifies our
approach, to always confirm potential vulnerabilities identified on the generated
state machine.

Real bugs. After careful verification, we confirm several loops in different
stacks, which are summarized in Table 2.

Stack Scenario Messages
Max. Time

Between Msgs

erlang 24 1.0/1.2 Server
NoRenegotiation Alert

> 1 hour?
or ApplicationData

fizz 22.01.24 1.3 Client ChangeCipherSpec > 1 hour

matrixssl 4.0 - 4.3 1.0/1.2 Server NoRenegotiation Alert ≈ 40 seconds

NSS 3.15 - 3.78 1.0/1.2 Server NoRenegotiation Alert > 1 hour

OpenSSL < 1.1.0 1.0/1.2 Server Empty ApplicationData > 1 hour

? Erlang has a Timeout parameter that can thwart the attack. It was added to the official tutorial.

Table 2: Description of confirmed loops in TLS stacks.

For servers, loops can lead to Denial of Service attacks against TLS services,
with very few resources. Indeed, the attacker can easily establish TCP connec-
tions and regularly send the right payload. Beyond the payload and the SUT
identification (IP address and port), the attacker only needs to store, for each
connection, the source port and the associated sequence numbers. With stacks
keeping a connection alive for several minutes between packets (most probably
because they do not enforce any kind of timeout), this represents a tiny amount
of CPU, memory and network resources for the attacker. Moreover, distribut-
ing this attack is trivial. Finally, with vulnerable stacks, the attack can be run
indefinitely and does not usually generate logs.

Beyond adding reasonable timeouts (both per-message and per-handshake)
within the affected stacks, firewalls or other network devices should be used to
detect and deter such extreme behavior. For the affected stacks, the issues have
been reported and fixed when deemed relevant.
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7.3 Unsolicited Client Authentication

TLS client authentication is an optional feature. The client can only present its
certificate when the server sent a CertificateRequest. Servers may however
be accommodating, and accept Certificate and CertificateVerify messages
from the client, even when they were not solicited.

Such behavior may expose parts of the code that are not normally used. In
2014, a critical security flaw was found in Microsoft SChannel: a buffer overflow
in the ECDSA signature check, triggered by client authentication, led to remote
code execution. Accepting unsolicited client authentication messages made this
obscure bug actually reachable in most deployments.

In our corpus, several versions of wolfSSL exhibit a similar behavior. Even if
these paths do not necessarily lead to security issues, they should be removed,
and considered bad practice, as they are a deviation from the specification.

8 TLS Stack Fingerprinting

We expect the state machines to be rather simple, as shown in Fig. 1, with less
than 10 states, a restricted number of happy paths and the rest of the transitions
consisting of fatal errors pointing towards the sink state. Yet, as surprising as
it may seem, we observe that the produced state machines are actually richer,
with up to 31 states, and that they are each specific to a given TLS stack7.

The differences usually lie in variations among implementations about the
error handling: different alert messages can be emitted. Several state machines
sometimes accept unexpected messages and silently ignores them.

Using a method described by Shu and Lee [26], we can compute, for a given
scenario, a set of input message sequences separating the different stacks we
inferred. Then, we can compute the stack fingerprints as the answer on each
stack to the distinguishing sequences.

Beyond revealing interesting differences in TLS stack internals, fingerprinting
TLS stacks can help an attacker pinpoint, with a few message sequences, a given
version (or a set of versions) of a TLS implementation to select an effective
exploit against this particular target. This may also help identify the underlying
TLS stack in network appliances.

Fingerprinting also allows to detect the presence of interception middleboxes
that can be used for censorship. Indeed, such middleboxes may produce unique
fingerprints, either at the message-level or at the state machine-level. It is also
possible to look for discrepancies between the TLS stack and the application-
layer stack to detect middleboxes, as described by Durumeric et al. [10].

8.1 Application to TLS 1.3 Servers

To illustrate our state-machine-based fingerprinting, Table 3 presents the classes
we identify for the simple TLS 1.3 scenario with no client authentication.

7 Of course, within a given project, successive versions may share the same automaton.
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Stack Versions N High-severity CVEs affecting the servers

erlang 24.0.3 - 24.2.1 9 No high-severity CVE referenced

GnuTLS 3.6.16 - 3.7.2 4 2021-20231, 2021-20232

matrixssl
4.0.0 - 4.1.0 4 2019-10914, 2019-13470

4.2.1 - 4.3.0 6 No high-severity CVE referenced

NSS
3.39 - 3.40 4 2019-17006, 2019-17007, 2020-12403, 2020-25648, 2021-43527

3.41 - 3.78 4 2019-17006, 2019-17007, 2020-12403, 2020-25648, 2021-43527

OpenSSL
1.1.1a - 1.1.1n 4 2020-1967, 2020-1971, 2021-3449, 2021-3711, 2022-0778, 2022-1292

3.0.0 - 3.0.2 4 2022-0778, 2022-1473, 2022-1292

wolfSSL

3.15.5 - 4.0.0 7 2019-11873 and all the ones in the next row

4.1.0 - 4.6.0 7 2019-15651, 2019-16748, 2019-18840, 2021-38597, 2022-25640

4.7.0 - 4.8.1 7 2021-38597, 2022-25640

5.0.0 - 5.1.1 7 2022-23408, 2022-25640

5.2.0 6 No high-severity CVE referenced

Table 3: TLS 1.3 server stacks grouped by state machine. N is the number of
states. CVEs in italic only affect part of the equivalence class.

Separating these 13 classes only requires sending 8 distinguishing sequences:

CloseNotify ClientHello, Certificate
ClientHello, Certificate ClientHello, Finished, CloseNotify
ClientHello, ClientHello ClientHello, EmptyCertificate, CertificateVerify
ClientHello, CloseNotify ClientHello, EmptyCertificate, InvalidCertificateVerify

8.2 Advantages and Limitations of the Approach

We believe such fingerprints are rather robust, since they rely on the way TLS
stacks handle messages at their core, and not on easily customizable parameters
such as the list of supported ciphersuites.

However, there exists configuration parameters that can impact the structure
of the state machine. We already handle several of them, such as server-requested
client certificate authentication or TLS 1.3 middlebox compatibility (which con-
sists in sending useless ChangeCipherSpec messages), but other features might
affect the accuracy of our tool, such as the renegotiation mechanisms, which we
leave to future work.

9 Related Work

State Machine Learning. Several methods have been used to analyze TLS
implementations. In 2014, Kikuchi discovered the EarlyCCS vulnerability try-
ing to prove state-machine-level properties using a proof assistant [18]. This
approach does however not scale well, considering the huge work required to
properly model the protocol.

Juraj Somorovsky presented TLS-Attacker [27], a framework for evaluating
the security of TLS implementations. TLS-Attacker allows to forge customized
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TLS message sequence. It was successfully used to uncover several vulnerabilities
in TLS libraries such as OpenSSL, Botan and matrixssl.

On its own, TLS-Attacker does not do state machine learning. It was never-
theless used as the mapper by van Thoor et al. [28] with statelearner to infer
TLS 1.3 state machines in 2018. With regards to our work, the study has several
limitations: it only covers an internet draft of TLS 1.3, was only run on a few
OpenSSL and wolfSSL servers, and included a less rich vocabulary.

Beurdouche et al. [4], developed a tool, FlexTLS, and proposed a method to
test the behavior of mainstream TLS stacks against deviant traces consisting in
removing or adding messages from valid traces. They uncovered many bugs in
different TLS stacks, including the EarlyCCS vulnerability discussed above and
the infamous FREAK attack (Factoring RSA EXPORT Keys). Tarun et al. [29] also
used FlexTLS on Microsft SChannel, and they found bugs and vulnerabilities,
including loops as those described in Sec. 7.2. By comparison, our approach
is more exhaustive, with regards to the used input vocabulary and under the
assumption equivalence queries are properly approximate. Moreover, FlexTLS
was not updated to be compatible with TLS 1.3.

De Ruiter and Poll used L? in 2015 to infer TLS state machines for different
TLS servers [24]. They discovered various anomalies and security issues. Our
work builds on their results, since their study only covered server state machines
and predates TLS 1.3.

Active learning methods have also been applied to other protocols and prob-
lems. In his thesis, Bossert developed pylstar and used it to reverse-engineer
communication protocols between a malware and its server [7]. He also studied
the behavior of HTTP/2 clients to allow for robust fingerprinting [8]. Fiterau-
Brostean et al. applied model learning to SSH implementations [12] in 2017 and
DTLS implementations [11] in 2020. In 2019, de Rasool et al. used learnlib

(the library used by statelearner) to study Google’s QUIC protocol [22].

Finally, Henrix et al. [15] explored parallelization and checkpointing to im-
prove inference performance in learnlib. We did not investigate parallelism at
the inference level since we could more easily parallelize our experiments with
no complexity added. However, we believe checkpointing is promissing, and we
plan to explore instrumented active learning in our future work, not only for
performance improvements, but also to characterize more precisely the SUT’s
internals in dangerous states.

TLS Fingerprinting. To identify a TLS client, Husák et al. [16] used the
list of ciphersuites proposed by the client to fingerprint TLS stacks. The idea
has been generalized by Kotzias et al. and by Frolov and Wustrow [13, 19] to
include other fields of the ClientHello to fingerprint the client. The method was
applied successfully to detect malware, censorship circumvention tools and web
browsers. Salesforce proposed two formats to capture the idea: JA3 for passive
fingerprinting and JARM for active fingerprinting8.

8 https://github.com/salesforce/ja3 and https://github.com/salesforce/jarm
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Durumeric et al. [10] presented the impact of HTTPS interception on security.
They identified the nature of the client by identifying a mismatch between the
HTTPS User-Agent header and TLS client behavior (supported ciphersuites,
declared extensions).

Janssen et al. [17] proposed an approach similar to ours to fingerprint TLS
servers, with a tool called tlsprint,9 based on state machines inferred with
statelearner. However, the studied stacks are limited to OpenSSL and mbedTLS

servers without TLS 1.3 support. Furthermore, we observed that tlsprint had
a non-deterministic behavior against several OpensSSL stacks from our testbed.

We believe our work on state-machine fingerprinting can be more robust
than ciphersuite-based fingerprinting, since the latter behavior can usually be
configured, whereas the former is based on behaviors that are fundamentally
representative of the studied stack.

10 Conclusion

Using our platform containing more than 400 stacks representing various versions
of open source projects and our methodology, we could reproduce known bugs
on TLS stacks, as well as uncover new implementation errors, including secu-
rity vulnerabilities such as authentication bypasses or possible denial-of-service
vectors. Moreover, since the state machine we infer are sufficiently precise to
spot differences between implementation families, this supports the concept of
state-machine-based fingerprinting, an alternative to the more classical approach
based on ciphersuite-based fingerprinting, which offer a more robust characteri-
zation.

To the best of our knowledge, our work is the most extensive and systematic
application of model learning to an important corpus of TLS implementations.

Overall, we believe that these deviations from the standard, even when they
do not lead to exploitable security vulnerabilities, are detrimental to the overall
quality of the implementation. They represent an unnecessary complexity that
has been known to facilitate the introduction of security issues in the future
when features are added. To reduce these deviations (and to limit fingerprinting
opportunities), standards should produce more formal definitions of the expected
state machines in future specifications.

Beyond TLS, other protocols could benefit from our methodology. In par-
ticular, lowering the time required to infer a state machine allow us to explore
more complex protocols with a rich input vocabulary, such as the recently stan-
dardized QUIC protocol.

Since our tools have been published as open-source software, we hope our
work can help build a common test-bed for the community where we can compare
and improve different approaches and tools.

9 https://github.com/tlsprint/tlsprint
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A Platform Architecture

In our platform, a TLS stack is defined as a container running at least one of
the following scripts: run server, which launches a TLS server, ready to be
sollicited; run client, which starts a so-called trigger server, a service listening
to signals from the inference tool, so a TLS client can be spawned each time we
want to test a message sequence. Table 4 lists the TLS stacks currently included.

Fig. 3 in Sec. 4 describes a typical run of our platform to infer a client state
machine10. First, we start a client container running the trigger script (step 1).
Then, we start our inference tool containing the L? engine (the Learner) and the
TLS Mapper (step 2).

Each time the algorithm needs to learn from the System Under Test (the
TLS client) using a sequence of messages, it first resets the client (step 3), which

10 Inferring a server works in a similar, but simpler, way. Indeed, we can simply start
the server and have the inference tool open a connection for each sequence to test.
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spawns a fresh TLS client in the client container (step 4). This client establishes
a TCP connection to the TLS server within the harness (step 5) and sends its
ClientHello. From now on, the L? engine drives the Mapper by transmitting
abstract messages to send to the client (step 6). The harness concretizes those
messages and sends them to the client (step 7). In return, the concrete answer
from the client (step 8) are abstracted by the harness (step 9).

Steps 3 to 9 are repeated until the L? engine is able to produce a valid
hypothesis regarding the client state machine, that is to generate an automaton
accurately describing the client behavior (step 10).

Stack Name Versions Client Server Comments

OpenSSL 0.9.8m - 1.0.0t (41) X X Only TLS 1.0
1.0.1a - 1.1.0l (53) X X Only TLS 1.0 and 1.2
1.1.1a - 1.1.1n (14) X X
3.0.0 - 3.0.2 (3) X X

curl+OpenSSL 1.0.0a - 1.0.0t (20) X Only TLS 1.0
1.0.1a - 1.1.0l (53) X Only TLS 1.0 and 1.2
1.1.1a - 1.1.1n (14) X
3.0.0 - 3.0.2 (3) X

GnuTLS 3.6.16 - 3.7.2 (4) X X

curl+GnuTLS 3.6.16 - 3.7.2 (4) X

mbedtls 1.3.10 - 1.4 (17) X X Only TLS 1.0
2.0.0 - 3.0.0p1 (96) X X Only TLS 1.0 and 1.2

wolfssl 3.12.0 - 3.14.4 (10) X X Only TLS 1.0 and 1.2
3.15.5 - 5.2.0 (20) X X

curl+wolfssl 3.12.0 - 3.14.4 (10) X Only TLS 1.0 and 1.2
3.15.5 - 5.1.1 (20) X

matrixssl 3.7.2 (1) X Only TLS 1.0
4.0.0 - 4.3.0 (7) X

NSS 3.15 - 3.38 X X Only TLS 1.0 and 1.2
3.39 - 3.78 X X

erlang 20.0 (1) X Only TLS 1.0
24.0.3 - 24.2.1 (2) X

fizz 2021.02 - 2021.06 X Only TLS 1.3
Weekly snapshots

Table 4: List of TLS Stacks included in our Platform.

B List of the Studied Vulnerabilities

This appendix lists the vulnerabilities we studied during our work. New vul-
nerabilities uncovered during our study are tagged “New”. Previously known
vulnerabilities are tagged with one of the following status. “Not Reproduced”
means we could not reproduce the issue, either because we did not include the
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vulnerable stack or because of a limitation in our approach (e.g. the absence
of a given abstract mesage); “Detected” means the infered state machine shows
an unexpected transition related to the vulnerability; “Reproduced” means that
the infered state machines provides evidence that the vulnerability is present
and can be exploited, should the state machine be accurate.

Since we only focus on TLS 1.0 to 1.3 versions, we do not investigate several
vulnerabilities such as DROWN [3], a cryptographic attack using flaws (including
state machine bugs) in SSLv2 servers to recover TLS-encrypted plaintext.

B.1 Unexpected Loops

CVE # Stack Versions Description Status

2020-12457 wolfSSL ≤ 4.4.0 Reproduced TLS 1.2 server DoS

- erlang 24.0 New Default configuration allow
for TLS server DoS

2022-25639 matrixSSL 4.0 - 4.3 New TLS server DoS

- fizz 2021 snapshots New Unexpected client loops

pending NSS 3.15 - 3.78 New TLS 1.0 to 1.2 server DoS

B.2 Authentication Bypasses

CVE # Stack Versions Status Comments

2014-0224 OpenSSL ≤ 0.9.8za
≤ 1.0.0l
≤ 1.0.1h

Detected EarlyCCS (unexpected CCS
transitions)

2015-0204 OpenSSL ≤ 0.9.8zc
≤ 1.0.0o
≤ 1.0.1j

Detected FREAK (client- and server-
side EXPORT RSA down-
grade)

2015-0205 OpenSSL ≤ 1.0.0p
≤ 1.0.1j

Not Reproduced Client auth. bypass. Requires
DH certificate support

2020-24613 wolfSSL ≤ 4.4.0 Reproduced TLS 1.3 server auth. bypass

2021-3336 wolfSSL ≤ 4.6.0 New TLS 1.3 server auth. bypass

2022-25638 wolfSSL ≤ 5.1.0 New TLS 1.3 server auth. bypass

2022-25640 wolfSSL ≤ 5.1.0 New TLS 1.3 client auth. bypass

B.3 Bleichenbacher Padding Oracles

The vulnerabilities described here affect TLS servers offering RSA key exchange
(removed in TLS 1.3). At the state-machine level, a vulnerable stack exhibits a
state where outgoing edges labeled with well-formed and wrongly-formed mes-
sages can be distinguished. Using a dedicated scenario including such malformed
messages, we reproduced existing vulnerability, but we did not find any new bugs.

CVE # Stack Versions Status Comments

2016-0800 OpenSSL ≤ 1.0.1t
≤ 1.0.2f

Not Reproduced Requires SSLv2 messages

2016-6883 matrixSSL ≤ 3.8.2 Reproduced

2017-13099 wolfSSL ≤ 3.12.2 Reproduced ROBOT attack [6]

2017-1000385 Erlang 20.0 Reproduced ROBOT attack [6]
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