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Abstract 

The review presents advances and main challenges of the affinity sensors based on field-
effect transistors published during the last five years. The different nanomaterial-based 
field-effect transistors are classified according to the nature of the nanomaterials, 
beginning by silicon, the “gold-standard” semiconductor, the gallium nitride 
semiconductor, the organic semiconductors, the silicon nanowires, the inorganic 
nanomaterials, the carbon nanotubes and the graphene. Due to its exceptional electrical 
properties, the main works are devoted to graphene. The obtained analytical 
performances for the detection of biomarkers, of DNA sequences and of miRNA are listed. 
The relation between the operational conditions - nature of the nanomaterials, procedure 
of preparation, choice of the receptor molecule, method of immobilization – and the 
analytical performance are discussed. The perspective of industrialization of these affinity 
sensors based on field-effect transistors is discussed. 
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Introduction 

Biosensors are defined as analytical devices used for the detection of a chemical substance, 
that combines a biological component with a transducer. Immunosensors are based on the 
immobilization of a specific antibody, a glycoprotein produced by the immune system to 
neutralyze foreign substances (antigens) to the body. The antibody is then able to identify 
and bind to antigens with an extremely high specificity. The immunosensor is able to 
detect the formation of the antigen-antibody complex through the modification of the 
transducer signal : electrochemical, optical, gravimetric, thermal…, without any labelling 
then leading to a simplified immunosensing procedure and a fast response time. 

Aptamers consist of artificial oligonucleotide sequences (peptides or nucleic acids) which 
can recognize and bind to a wide range of targets ; they have drawn much attention as 
promising alternatives to conventional antibodies. Aptamers are produced through the in 
vitro selection and amplification of populations of random sequence oligonucleotide 
libraries, known as the SELEX process (selection evolution of ligands by exponential 
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enrichment). When specific sequences are identified, aptasensors can then replace 
immunosensors. Affinity sensors include immunosensors, aptasensors for the detection of 
chemical substances such as biomarkers, toxins … and nucleic acid sensors for the 
detection of DNA or RNA sequences. 
 
Among various electrochemical transducers, those based on field-effect transistors (FETs) 
have attracted considerable attention because of their potential for miniaturization, multi 
sensing, fast response time and integration with electronic manufacturing processes, such 
as complementary metal-oxide semiconductors (CMOS). The concept of an ion-sensitive 
FET (ISFET) was introduced Bergveld [1] in the early 1970s; it was derived from a metal-
oxide-semiconductor FET (MOSFET), when the metal gate was replaced by a reference 
electrode. For the detection of different target analytes, it results in a myriad of different 
sensor system combinations. The affinity sensors based on ISFET can be presented along 
the generic structure illustrated in Fig.1. The information obtained from the sample 
corresponds to the concentration/activity of the target analyte, which is transduced to an 
electrical signal via the field effect. Then, the signal can be amplified, processed, and 
displayed depending on the application. 

 

Figure 1. Generic structure of an affinity sensor based on a semiconductor field-effect 
transistor 

A simplified potential diagram at the different interfaces of an affinity sensor based on a 
semiconductor field-effect transistor is shown in Fig. 2. The observed responses originate 
from the charge σ0 resting at the sensing surface (the insulator surface grafted with the 
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receptor molecule). This charge sees capacitances on both sides : the capacitance is 
presented as a series combination of the double-layer and sensor (i.e., FET) capacitances, 
respectively, CDL and CFET, where CFET comprises the insulator, CIN, and channel, CC, 
capacitances. The potential change at the sensing surface can be approximated by: 

ψo = ∆σo/(CDL + CFET)   (1) 

 

Depending on the transistor biasing, one or another capacitance can dominate. In weak 
inversion (low density of carriers in the channel), CC will clearly be smaller and determine 
the overall sensor capacitance, in contrast to strong inversion (high density of carriers in 
the channel), where CC can be omitted and CIN is relevant. In all cases, these capacitances 
are usually clearly smaller than the double-layer capacitance. Hence, we can conclude that 
the transistor capacitance has a negligible effect on the sensitivity at the sensing interface. 

 

 

Fig. 2. A) Potential over a simplified model of electrochemical cell with an insulator as the 
interfacial material. The charge binding in the surface creates a potential shift, denoted 
by ΔΨ0, at the interface. B) Equivalent circuit model of the sensor where CDL, CIN, CC are 
the double-layer, gate insulator, and channel capacitances, respectively. The interfacial 

charge, σ0, is surrounded by capacitors on both sides. 
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First, the charge at the sensing surface alters the insulator electric field, changing the 
potential at the outer surface of the electrode. Second, this potential shift subsequently 
alters the semiconductor drain current which is the transconductance effect of a FET.  

A widely debated issue is the label-free detection of biomolecules using FET based 
biosensors. Originally, it was believed that the fact of biomolecules carrying intrinsic 
charge allowed their detection using field-effect devices. Despite significant efforts, the 
results were not satisfactory due to the electrical double layer. For instance, in ionic 
solutions, the small ions, which carry an opposite charge to that of the detectable large 
macromolecule, screen the observed net charge by a cloud of opposite charge around the 
macromolecules. Screening is dependent on the distance between the surface and the 
point of observation. The amount of observed charge is characterized by the Debye 
screening length. At a distance of one Debye length, the electrical signal decays to 1/e of 
its original value. Typical screening lengths are in the order of 1 nm, unless very diluted 
solutions are considered. This is considered to be the main reason limiting the label-free 
biosensor development. Fig. 3 depicts the electrical double-layer length compared to the 
size of several biomolecules; the larger the molecule, the stronger the screening effect. 
Additionally, linking the capture molecule to the surface commonly requires some linker 
molecules that further increase the distance to the target molecule [2]. 

 

Fig. 3. Electrical double-layer length in the presence of different targets (dimensions are 
not scaled). 
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However, several reports claim successful label-free detection even in cases where the size 
of the complex, such as an antibody–antigen complex, is at vastly longer distances than 
the electric double layer. A common explanation for these observed results is the Donnan 
effect. According to this theory, proteins are considered as a membrane on the electrode 
surface. In addition, small ions can shuffle between the solution and this protein 
membrane. Then, when a fixed charge is present due to the target, a difference of ion 
concentration appears on the interface between the membrane and the solution. This 
redistribution of ions creates a detectable change in the interfacial potential. Moreover, 
the change in this Donnan potential also causes a shift in pH. Thus, the total response is 
the combination of the surface pH response and the Donnan potential.  
 

During years 2020 and 2021, due to the COVID-19 epidemic period, a lot of review papers 
about biosensors for the detection of virus were published [3-14]. Among the cited affinity 
biosensors, FET based biosensors were cited, the most cited one being from Seo et al [3]. 
Other recent reviews were devoted to biosensors for the diagnostics of other health 
deficiencies and among them FET based affinity biosensors: chronic obstructive pulmonary 
disease [15], immunodeficiency [16], neurodegenerative diseases [17], diabetes mellitus 
[18,19], cardiac failure [20], acute ischemic stroke [21], cancer [22-24] and different 
pathologies [25]. Two recent reviews were devoted to biosensors for the detection of 
contaminants in environmental matrices such as pesticides/herbicides [26] and 
pharmaceuticals and endocrine-disrupting compounds [27]. 

Reviews about micro and nanoscale biosensors reported some FET devices. Some are 
based on graphene [28,29] or on self-assembled monolayers [30,31], or on AlGaN/GaN 
heterostructures [32], or on nanowires [33], or on nanotechnologies [3] or on molecularly 
imprinted polymers [35].  

Since 2015, 14 reviews were devoted to field-effect transistors for biodetection. They 
were all oriented towards one type of field effect transistor: CMOS-type FETs [2,36], 
conductive polymer-based FETs [37-40], carbon nanotube-based FETs [41], graphene-
based FETs [42-44], nanowire-based FETs [45], nanomaterial-based FETs [46-48]. 

This review is an exhaustive description of the works reported since 2015, on affinity 
sensors based on field effect transistors, whatever the nature of the nanomaterial-based 
FETs (silicon, graphene, SWCNTs, Si nanowires, organic FET, nanomaterials, GaN). The 
objective of this review is to study the relation between the analytical performance and 
the characteristics of the FETs (materials, structure and working parameters). 
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Silicon-based field-effect transistors for affinity sensing (Table 1) 

Since 2015, only twelve papers were published in this field (Table 1). Seven of them are 
conventional ISFETs, they were devoted to the detection of biomarkers : lung cancer [49], 
asthma [50], mental stress [52], oxidative and nitrosative stress [53], heart failure [54], [55] 
and to the detection of virus [51]. 

They were fabricated through CMOS technology, the biofunctionalization being performed 
afterwards. The receptor molecule (antibody, amino modified aptamer or ) was directly 
covalently grafted on the insulator surface (SiO2 or Si3N4) through its silanization. In Refs 
49 and 51, several FETs were fabricated on the same chip, then allowing the multidetection. 
Variation of the gate-source voltage was the measured signal, depending on the 
concentration of the biomarker. In Ref 6, impedance of the channel was measured, leading 
to a lower detection limit of TNF-α and a larger dynamic range, compared to the results 
obtained by measuring the variation of the gate-source voltage [53]. When the frequency 
is high enough, the ions in the solution are unable to form the double layer after the AC 
perturbations. This allows probing further into the solution, and it also decreases the 
sensitivity towards small absorbates within the double layer [2]. ALP-labeled secondary 
antibody was used in Ref 50 and low-cost electrical ELISA test that presents the same 
detection limit. ), the obtained ISFET-based system becomes then a portable 

Extended gate (EG) field-effect transistors were presented in six papers. This configuration 
allows is an improvement for passivation and packaging compared to the conventional 
ISFET. As shown in Fig. 4, the EG immunoFET consists of two parts: the gate of a MOSFET 
is connected to the extended gate. This one is an electrode modified with the receptor 
molecule (antibody), in contact with the solution. The MOSFET can be commercially 
available one, well packaged, avoiding any damage from humidify and no influence of the 
light. For the five published papers, the electrode used was a gold electrode.  

 

Figure 4. General scheme of an extended gate immunoFET 
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The presented EG-FET allows the detection of different biomarkers: thyroid carcinoma [57], 
breast cancer [58], Alzheimer disease [59], bacterial infection [60]. For the detection of 
DNA [56], PNA probes were used for the efficient hybridization in low salt conditions, 
which is required to limit the ion screening effect.  

In Ref 60, an enhanced electric-double-layer (EnEDL) field-effect-transistor-based 
immunosensor was built (Fig. 5), for the successful detection of proteins in high ionic 
strength solutions. The results show that, as the EDL is enhanced at higher gate voltage or 
higher salt concentration, the sensitivity of detection increases. A detection limit of 0.5 mg 
of C-RP was obtained in whole blood and in PBS, without any dilution step. 

 

 

 

Figure 5. Scheme of enhanced electric-double-layer (EnEDL) field-effect transistor and 
impedance analysis. From [60] 

 

AlGaN/GaN High Electron Mobility Transistors for affinity sensing (Table 2) 

Compared to silicon-based field effect transistors, GaN based high electron mobility 
transistors (HEMT) present several advantages for affinity sensing:  

- an exceptional chemical and physical stability of GaN allowing its use in liquid 
media without passivation 

- a very high two-dimensional electron gas (2DEG), due to high polarization in 
AlGaN/GaN heterostructures (Fig. 6), results in high sensitivity 

- environment friendly and bio-friendly with non-toxic surface content, GaN 
performs well for interaction with biological species 
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- GaN-based sensor does not need surface passivation and the, has instantaneously 
response to polar molecules.  

 

Figure 6. (a) Scheme of a AlGaN/GaN High Electron Mobility Transistor. (b) Energy band 
diagram. From [32] 

Since 2015, nine papers were published on AlGaN/GaN HEMT for the detection of 
biomarkers of different diseases: bacterial infection [61], Zika virus [64], prostate cancer [65], 
[69], heart failure [66], mental stress [68] and DNA [62]. 

In Refs 63, 64 and 66, electric-double-Layer HEMT were fabricated, in order to defeat the severe 
charge-screening effect caused by high ionic strength in solution. The antibodies or the aptamers 
were grafted on the gold electrodes as well as in Ref 65 where the authors used a disposable 
extended gate. In order to enlarge the sensing capacity beyond the Debye-screening limit, Wang 
et al [69] used magnetic beads for the immobilization of the antibody and an electronic ELISA test 
was then built for PSA detection. A detection limit was of 1fg/mL was obtained which is one 
hundred times lower than that obtained with the extended gate HEMT [65]. A sensitive detection 
of cortisol (detection limit 1 pM) was obtained by the generation of a photocurrent through laser 
illumination of the HEMT sensor [68]).  

 

Organic Field effect transistors for affinity sensing (Table 3) 

The organic field effect transistor (OFET) structure resembles the basic silicon-based field-
effect transistors, where silicon is replaced by an organic semiconductor (OSC) where the 
gate is biaised through the substrate for back-gated OFETs (Fig. 7a). Another configuration 
is the electrolyte-gated OFET (EGOFET) in which the gate is applied to the electrolyte (Fig. 
7b). The recognition molecule (mainly antibody or ss-DNA) is immobilized on top of the 
OSC layer. Some OFETs with an extended gate (EG) allows the immobilization of the 
receptor molecule on the extended gate, as presented in Fig. 8. Several works published 
since 2015 were based on EG-OFETs [71], [74], [75], [81]. Different types of organic 
semiconductors were recently used: P3HT (poly-3-hexylthiophenepentacene [70], [72], [73], PBTTT 
(poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) [71], pentancene [74], [75], 
TIPS-pentacene (6,13-bis(triisopropylsilylethinyl)pentacene) [76], [77], poly(DPP-DTT) (poly(N-
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alkyldiketopyrrole dithienylthienol[3,2-b]thiophene) [78], PDVT-8 [79], diF-TES—ADT (2,8-difluoro-
5,11-bis(triethylsilylethynyl)anthradithiophene) [80], PANI [81]. 

 

 
(a) 

 
(b) 

Figure 7. (a) Schematic representation of an organic FET (back gated). (b) Schematic 
representation of an electrolyte-gated organic FET structure. From [36]  

 

 

 

 

 

Figure 8. (a) Schematic structure of the designed extended-gate type OFET. (b) A 
photograph of the sensing portion (i.e. extended gate). From [71,82] 

Since 2015 there were twelve papers published on OFET based affinity sensors for the 
detection of biomarkers of different diseases: bacterial infection [70], [72], endocrine 
tumors [71], sepsis [73], brain injuries [74], mental stress [75], [76], immune response against drugs 
[77], liver cancer [79], rheumatoid arthritis [80], rectal colon cancer [81]. One EGOFET based on 
immobilized algea in an hydrogel allows the detection of herbicides [78]. 

Several of these OFET-based affinity sensors were able to detect the biomarkers with a 
higher sensitivity, even in high ionic strength media such as serum. To increase the Debye 
screening length beyond bioanalyte/bioreceptor complex dimensions, a phospholipid 
layer [70], a polyethylene glycol (MW 5000) layer [74] or a poly(styrene-co-methacrylic acid) 

(a) 
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(PSMA) layer [75] were used to change the properties in aqueous solution and then to 
increase the “effective Debye screening length”, by keeping a low ion density environment 
for the binding protein. A larger drain current could then be obtained. When cortisol was 
detected in buffer, the antibody being embedded in PSMA, a detection limit of 1pg/mL, 
corresponding to 2.75 pM was obtained [75], while  with an EGOFET functionalized with an 
aptamer, a detection limit of 27.3 pM was obtained [76], showing the interest of the Debye 
screening layer. 

 

 

Silicon nanowire field-effect transistors for affinity sensing (Table 4) 

The diameters on nanowires are comparable to the size scale of many biological species, 
such as proteins, nucleic acids. The nanowires (NW) configured as FETs have been used 
as sensitive real-time electricity –based detectors of biological species [33]. As “gold 
standard semiconductor”, silicon presents high mobility carriers (100-1500 cm2/V/s). 
silicon nanowires can be fabricated through a top-down approach based on CMOS 
fabrication process or through a bottom-up approach based on vapor-liquid-solid (VLS) 
growth mechanism where a metal nanocluster catalyst is used to direct the material 
growth along one direction. 
The typical structure of a silicon nanowire FET, in liquid gated configuration, is presented 
in Fig. XX. As shown in this figure, at a constant source-drain voltage, the conductance of 
the SiNW change in response to the binding of biological species, depending of the own 
charge and depending on the doping of the nanowire. The sensitivity of the nanowire is 
critically dependent of its diameter, the higher sensitivity for smaller diameters is due to 
the larger surface/volume ratio. In addition, lower NW doping densities results in higher 
sensitivity [33]. For SiNW FET, the native oxide on the NW surface serves as gate oxide 
(Fig. 9) and the thinner the oxide, the higher the sensitivity.  
 

 
Figure 9. Scheme of a silicon nanowire field-effect transistor. From [33]  
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Since 2015, twelve papers were published on SiNW FET for the detection of biomarkers for 
different diseases (Table 4): bladder cancer [83], oral cancer [84], lung cancer [85], [87],  
prostate cancer [86], neurological disorder [88], heart disease [89], [90], parasitic infections [91], 
[93], Alzheimer disease [92],  influenza [94]. Except one paper that presents a bottom-up 
approach for the VLS-CVD preparation of Si NWs [90], in the other papers, Si NWs were prepared 
through a top-down approach in a CMOS technology. All these biomarkers were detected in diluted 
ionic media, except in two papers where the detection was carried out in high-ionic strength 
environment. In Ref 90, the chemically-controlled antigen-dissociation detection approach was 
applied. A suitable “chemical environment” (addition of ethyleneglycol) which enabled the clear-
up splitting of the dissociation regime window into two sub-regimes, was created, thus allowing 
the complete washing of the nonspecifically adsorbed salts and biomolecules, while significantly 
delaying the dissociation of the specific antigen-antibody pairs on the Si NW surface. It was then 
demonstrated the direct and quantitative detection of protein biomarkers (cTnT and cTnI), down 
to concentrations in the fM range, from unprocessed whole minuscule samples of only a few 
microliters. 
A modification of a Si NW surface with a porous and biomolecule-permeable polymer  layer (PEG) 
was used to increase the effective Debye screening length and then the sensitivity of detection 
[93]. The different scheme of the modified Si NW surface is presented in Fig. 10. In a first step the 
replacement of the whole anti-IgG antibody (Wab) and by a reduced anti-IgG antibody (Fab) 
improves the sensitivity of detection after amplification by the R18 aptamer (Fig. 10A). The 
Fab/PEG-SiNWFET immunosensor exhibited the lower detection limit of 1 pg/mL, not achievable 
with the other configurations of SiNW FET interface (Fig. 10B). 
 

 
 

 

(A) 
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(B) 
Figure 10. (A) Illustration of the detection of rabbit IgG by (1) Wab/APTES-SiNWFETs, (2) 
Fab/APTES-SiNWFETs, as well as their corresponding signal enhancement by R18 aptamer 
in this study. Voltage shift in presence 0 ng/ml, 0.1 ng/mL, and 1 ng/mL of rabbit IgG, in 
150 mM BTP (Bis-Tris propane). (B) Illustration of the detection of rabbit IgG by (3) 
Wab/PEG-SiNWFETs, and (4) Fab/PEG-SiNWFETs as well as their corresponding signal 
enhancement by R18 aptamer in this study. Voltage shift in presence 0 ng/ml, 0.1 ng/mL, 
and 1 ng/mL of rabbit IgG, in 150 mM BTP (Bis-Tris propane). From [93] 
 
Other inorganic nanomaterials – based field effect transistors for the affinity sensing 
(Table 5) 
 
The layers of the 2D material molybdenum disulfide (MoS2) are held together by weak van der 
Waals forces and a pristine MoS2 monolayer presents only ~0.65 nm thick. Monolayer MoS2 
exhibits a direct energy bandgap of ~1.9 eV which lowers leakage current and makes it an emerging 
material for designing highly sensitive FET biosensors. In all the published works published since 
2015, multilayers of MoS2 were grown or deposited as exfoliated flakes on Si/SiO2. A Al2O3 nanofilm 
was deposited on the MoS2 layer, as a dielectric layer, for the protection of the device from the 
liquid erosion and enhance the electrostatic charge effect of the target molecules. Back-gated FET 
structures were prepared. Biomarkers for different diseases were detected with these MoS2-based 
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FETs: mental stress [95], cardiovascular disease [96], colonic schistosomiasis [97], prostate 
cancer [98]. Detection limits in the range of fM were obtained. 
 
Nanostructured zinc oxide (ZnO) is a semiconductor with a wide bandgap energy of 3.37 
eV. ZnO is a suitable material for biosensing applications due to its biocompatibility with 
low toxicity to humans and a high isoelectric point. The tuning of the surface defects in an 
electrolyte-gated ZnO FET biosensor, by the modification of the experimental conditions 
of electron beam evaporation, allowed to ensure a low detection limit of PSA, the 
biomarker of prostate cancer, and to assure a reliable long term performance [99]. 
A bilayer amorphous indium gallium zinc oxide (a-IGZO) was fabricated by changing the 
partial pressure of O2 in the chamber to fabricate bilayers with different amounts of O 
vacancies, the low-O vacancy layer on top of the active layer, without extra passivation 
layers [100]. The electrolyte gated FET, after the immobilization of biotin, through APTES 
grafting on the a-IGZO surface, allowed the detection of streptavidin with a detection limit 
1 pg/mL, with a good selectivity. 
A microfluidic field-effect transistor biosensor made of a rolled-up indium nitride 
microtube was conceived in order to reduce the electrostatic screening of the biosensing 
surface and then prove the device sensitivity for charge detection in electrolytic 
environments [101]. The scheme of the microfluidic device is presented in Fig. 11. 
 

 
Figure 11. Scheme of the InN microtube based FET biosensor enclosed in a microfluidic 
channel. From [101]. 
 
The detection limit for HIV-1 pg41 antibody, in 0.01xPBS solution is 0.1 ng/mL, which is 20 
times lower than that obtained with the standard ELISA kit. 
Nanostructured indium oxide (In2O3) is a semiconductor with a bandgap energy of 2.8 eV. 
The affinity of an aptamer for dopamine was determined in artificial cerebrospinal fluid, 
showing that identified aptamer adopts a conformation optimized for indium oxide based 
FET detection of dopamine when Mg2+ and Ca2+ are present. Moreover, this aptamer was 
found to show high for dopamine versus norepinephrine, as well as other metabolites. The 
detection limit for dopamine was found to be 10 fM [102]. 
 
Carbon nanotube field-effect transistors for affinity sensing (Table 6) 
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Carbon nanotubes can be obtained with metallic or semi-conducting properties. For the 
fabrication of CNT-FET, CNTs are deposited from a dispersion of CNTs [104], [105], [106], 
[108], [110], [111],  [112] or CNTs are directly grown on the Si/SiO2 substrate [103], [106], 
[109]. 
Horizontally aligned p-type CNTs are obtained by a controlled chemical vapor deposition 
(CVD) growth [103] and suspended CNTs between platinum electrodes were fabricated by 
utilizing the surface tension of liquid silver [109]. The resistance of the CNTs increased 
leading to a decrease of the drain current of the liquid gated CNT-FET, when the 
hybridization of DNA increased [109]. The same effect was obtained with the 
immunodetection of interleukin 6 [103]. 
When a dispersion of CNTs in dichlorobenzene is deposited on a Kapton surface, a network 
of CNTs is formed. The network consists predominantly of CNT bundles with some 
individual CNTs. The small number of metallic (m) tubes and semiconducting tubes of 
different bandgap (s′) than the principal s-CNT lead to the formation of m-s junctions and 
s-s′ junctions in the network in addition to m-m and s-s connections. The detection of 
potassium ion through a liquid-gated CNT-FET functionalized by a specific aptamer 
presents a sensitivity of response depending on the time of deposition of the CNT 
dispersion (Fig. 12A). The sensitivity of detection has been related to the increased 
dominance of key m-s junctions on the conductance of network's close to percolation, as 
shown on the scheme presented in Fig. 11B [113].  
 

 

 
(A) 

 
 

(B) 
 

Figure 12. (A) Current response of liquid gated aptasensors normalized with respect to the 
zero-potassium concentration Io fabricated with CNT networks deposited for 10, 20, 40 
and 80 min. (B) Schematic of the formation of metal-semiconducting CNT bundle junctions 
on a (a) sparse (10 min) and (b) dense CNT network (80 min). Bundles with only 
semiconducting tubes are in blue and those with metallic tubes are in red. The metal-
semiconducting junctions are circled. From [113].  
 
The CNT-FETs for affinity sensing described in the papers published since 2015 allow the 
detection of biomarkers for different diseases: Acute Respiratory Syndrome [103], cancer 
[106], oral cancer [107], acute myocardial infarction [110]. Other CNT-FETs allow the 
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detection of microorganisms:  bacteria [111] and of COVID-19 [112]. Hazardous priority 
substances were detected by CNT-FETs: alkylphenol [104], atrazine [105]. 
 
Graphene field-effect transistors for affinity sensing (Table 7) 

Due to the extraordinary electrical properties of graphene, since 2015, more than fifty 
papers report affinity sensors based on graphene field-effect transistors (G-FET). Graphene 
is made up of carbon atoms which are bound to three others with a 120° bond angle, 
resulting in a hexagonal lattice arrangement of sp2-hybrised carbon with a high specific 
surface area (2630 m2/g). For the CVD fabrication of graphene films, the carbon atoms 
decomposed from diverse hydrocarbon sources at high temperatures diffuse on the metal 
substrate to form initial nuclei, which further expand and coalesce to form graphene layers. 
The growth procedure will end once the substrates are fully covered with a graphene film, 
which is mainly referred to as the so-called "self-limiting surface reaction mechanism" that 
has been observed in Cu and on Ni. After one decade of research efforts, PMMA 
poly(methyl methacrylate)) is still the most widely used polymer to support the graphene 
film (one or two layers, with a minimum of cracks) during the transfer process due to its 
prominent features like transparency, cheapness, easy manipulation, flexibility and 
solubility in several organic solvents 
[116,125,126,128,135,136,139,140,3,145,146,150,160]. Small domains of graphene can 
also be obtained as reduced graphene oxide, graphene oxide being obtained from graphite 
by the modified Hummers’ method [115,117, 131,133,143,144,152,153,154,156,158].  
Carrier mobilities in graphene have been reported to be about 2 orders of magnitude 
larger than in the “gold-standard” semiconductor, silicon.  Intrinsic graphene is a gapless 
semiconductor with a charge neutrality point or Dirac point (where the graphene character 
changes from being electron-like to hole-like) at the Fermi surface with no free carriers at 
T = 0 K. This system has an empty conduction band and filled valence band; infinitesimal 
doping using an external gate voltage (back-gate (Fig. 13A) or liquid-gate (Fig. 13B) in a 
field-effect transistor, generates the electron transition from the valence to conductance 
band, thereby changing the intrinsic state to the extrinsic one. By varying the external gate 
voltage, the system is tuned from being electron-like to being hole-like through its intrinsic 
nature at the charge neutrality point (CNP), then transducing graphene’s ambipolar 
behavior (Fig. 13C). 

 
 

 
(A) 

 
(B) 
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(C) 

 
Figure 13. (A) Back-gated graphene field effect transistor. (B) Liquid-gated graphene field 
effect transistor. (C) typical ambipolar transfer characteristics of GFET showing that two 
types of carriers in graphene can continuously be modulated from holes (red color) to 
electrons (grey color) using the field effect. The VCNP is located at the transition between 
the hole and electron regime. 
 
A graphene biosensor-based FET works mainly by electrostatic gating effect, which is 
defined as a consequence of an additional effective gate voltage formed by the collection 
of the adsorbed biomolecules within the Debye screening length. Such drain current 
variation can be used as a sensing metric for biomolecule's adsorption. Another type of 
sensing metric is to follow the transconductance variation through the slope of the transfer 
curve's linear part of the p or n branch. Additionally, the ambipolar behavior of the GFET 
devices offers a supplementary sensing mechanism through the measurement of the Dirac 
point shifting (ΔVD) or of the charge neutrality point (ΔVCNP) in the function of the surface 
charge-induced concentration. 
 
For the immobilization of the receptor molecules, covalent functionalization of the 
graphene surface causes considerable variation in the graphene structure including 
altering electronic properties caused by the disruption of π electrons and transformation 
of the carbon atoms hybridization from sp2- to sp3-hybridized state. The non-covalent 
functionalization using the specific aromatic linker molecules like PBASE (1-
pyrenebutanoic acid succinimidyl ester) (Fig. 14), which are possibly anchored onto the 
graphene surface via π- π interaction, does not alter the graphene’s electrical properties 
or its structural integrity.  
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Figure 14. The schematic diagram of the antibody immobilization using the specific 
aromatic linker molecule PBASE. From [9] 

 
 
A positive shift of the Dirac point is observed (Fig. 15B), explained by a p-doping effect via 
charge transfer between pyrene unit and graphene. A positive shift of 0.20 V was observed 
by Seo et al [3], a more positive shift is observed after the immobilization of the SARS-CoV-
2 spike antibody. This charge transfer is also corroborated by the conductivity of the 
graphene layer which is lower in presence of PBASE (Fig. 15A). 

 
 

 
 

 
Figure 15. Electrical characterization of pristine, PBASE-modified and SARS-CoV-2 spike 
antibody-immobilized graphene. (A) Current-voltage (I-V) characteristics of the graphene-
based device at each functionalization process for the antibody immobilization. (D) 
Measurement of transfer curve of the COVID-19 FET sensor in steps of the antibody 
conjugation (VDS = 0.01V). [from 3] 

(A) (B) 

PBASE 
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In addition to diluting the buffer salt concentration, the use of polymers such as 
polyethylene glycol (PEG) co-immobilization could locally reduce the Debye screening 
effect near the vicinity of the biorecognition molecules. Following this strategy, Andoy et 
al [135] used graphene modified with aptamer and PEG for thyroid-stimulating hormone 
(TSH) detection. The developed GFETs exhibited a very low LOD (≃0.2x 10-15 M) and a high 
sensitivity toward THS protein in high ionic strength and whole serum. 
Nonetheless, designing short receptors is still the preferable approach for several research 
groups. It is an effective and straightforward method to reduce the distance separating the 
transistor surface and biomolecule analytes. This point was demonstrated by Kanai et al 
[142] who used an antibody variable fragment for the detection of a small antigen peptide 
through an open-sandwich immunoassay based on a liquid-gated G-FET. The sensitivity 
was increased by a factor 10, compared to an ELSA test. 
Whereas the extremely low LOD of 600 zM in buffer solution was recorded by Hwang et al 
[146] who developed a deformed (crumpled) graphene monolayer channel (Fig. 16) for 
miRNA detection based on FET biosensors. The critical factor in reaching such lower LOD 
values depends on the following strategy to overcome the Debye length screening effect. 
Hwang et al. combined the benefits of the uncharged and short structure of PNA with the 
advantage of crumpled graphene surface which allows a larger shift of the Dirac point, 
compared to flat graphene surface (Fig. 17). 
 
 

 
Figure  16.  SEM image of crumpled graphene. The scale bar is 5 µm (left) and 500 nm 
(right). From [146] 
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(C) 
Figure 17. (A) Lateral image of the flat (top) and crumpled (bottom) graphene FETDNA 
sensors. DNA (red strand) is hybridized with probe DNA (black strand) on the graphene 
surface. (B) I-V relationship of the flat (top) and crumpled (bottom) graphene FET sensors 
for the DNA hybridization. DNA hybridization shifted the I-V curve according to the 
indicated concentrations. The I-V curves shift of crumpled graphene is significantly larger 
than the flat device. (C) Dirac voltage shift of the FET sensor with detection of hybridization 
using DNA probe. NC is non-complementary control sequences used in the experiments. 
From [146]. 
 
The numerous graphene FET developed since 2015 allow the detection of biomarkers of 
different diseases: tuberculosis [118,162], cancer [122,133,134,140,144,153,160], 
trophoblastic tumors [125,126,132], mental stress [129,151,164], hyperthyroidism [135], 
cardiovascular disorder [139], rheumatoid arthritis [139], HIV [139], bone disease [142], 
Alzheimer’s disease [147,161], heart failure [158]. Some of them allow the detection of 

(A) (B) 
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virus: Hepatitis B [119,131], COVID-19 [3,149,154], japanese encephalitis [148], avian 
influenza [148], human papillomavirus [156], the detection of toxins: aflatoxin B1 117], 
okadaic acid [130], geosmin [155], the detection of drugs [157] and the detection of a 
pesticide, chlorpyrifos [138]. Many G-FET were used for the detection of DNA sequences 
[114,116,120,121,123,124,137,141,146,150,152,159,163], of miRNA [115], RNA [128]. 
When comparing the analytical performance of G-FET for the detection of cortisol, it is 
observed that an electrolyte-gated G-FET, based on graphene nanoplatelets functionalized 
with a monoclonal cortisol antibody [129] gave a detection limit of 10 pg/mL and a dynamic 
range of 10 pg/mL – 10 µg/mL, another electrolyte-gated G-FET, based on graphene 
nanoplatelets functionalized with a mouse monoclonal cortisol antibody [151] gave a 
detection limit of 0.85 ng/mL and a dynamic range of 1 pg/mL – 10 ng/mL and a last 
extended gate G-FET, based on a platinum extended gate electrode coved with a single-
layer graphene decorated with a 61-basepair aptamer [164] gave a detection limit of 0.2 
nM (72.4 ng/mL) and a dynamic range of 1 nM (362 pg/mL) – 10 µM (3.62 µg/mL). In the 
third G-FET, the use of a short aptamer allows the detection in the Debye layer; 
nevertheless the same amplitude (3 decades) of dynamic range was also obtained with the 
antibody functionalized G-FET [130] which can be explained by the Donnan effect [2]. 
About the detection of hepatitis B virus, three G-FETs were functionalized with a 
monoclonal antibody, two of them were based on graphene nanogrids (graphene 
deposited on nanoporous silicon oxide through electrophoretic deposition method) and 
led to a limit of detection of 0.05 fM [119] and 0.1 fM [131] Hep-B virus , the other one is 
based on deposition of ERGO on FTO covered glass and led to a detection limit of 1 fM 
[143], due to a lower quality of graphene. 
 
Comparison of the detection limits obtained with the different types of FET based 
affinity sensors 

Cortisol, a biomarker of mental stress was detected with different types of FETs: with 
silicon based FET a detection limit of 50 µM was obtained [52]; with AlGaN/GaN FET, a 
detection limit of 1 pM was obtained [68]; with OFET detection limits of 2.76 pM [75] and 
27.3 pM [76] were obtained; with MoS2 based FET, a detection limit of 2.76 aM was 
obtained [95]; with graphene based FET, detection limits of 27.6 pM [129], 2.34 pM [151] 
and 0.2 nM [164] were obtained. From this comparison, it comes that silicon based FET 
gives a detection limit in the range of micromolar while the other FET gave a detection 
limit in the range of picomolar. A very low detection limit was obtained with a MoS2 based 
FET, in the range of attomolar. 

Prostate specific antigen (PSA) is a biomarker of prostate cancer, its molecular weight is 
30000 Daltons. It was detected with different types of FETs: with AlGaN/GaN FET detection 
limits of 100 fg/mL [65] and of 1 ng/mL [67] were obtained; with Si NW FET, a detection 
limit of 23 fg/mL [86]; with MoS2 based FET, a detection limit of 1fg/mL was obtained [98]; 
with ZnO FET, a detection limit of 0.06 fM (2.4 ag/mL) was obtained [99]; with graphene 
FET, a detection limit of 1 pg/mL was obtained [153]. From this comparison, it appears that 
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the lower detection limits are obtained with the nanomaterials based FET, in the range of 
femtogram per milliliter, the lower one being obtained with ZnO FET. 

The detection of DNA was performed with different types of FET: with silicon based FET, a 
detection limit of 1 µM was obtained [56]; with AlGaN/GaN FET a detection limit of 10 fM 
was obtained [62]; with OFET a detection limit of 9.77 pM was obtained [81]; with SWCNT 
FET a detection limit of 10 aM was obtained [109]; with graphene FET, ten DNA sensors 
were reported with different detection limits from 10 nM [124,159], 1 nM [152], 1 pM 
[123], 100 fM [114], 2.3 fM [141], 1 fM [116,121], 10 aM [150], 600 zM [146]. From this 
comparison, it appears that the lower detection limits are obtained with SWCNT FETs and 
with graphene FETs. Both carbonaceous nanomaterials based FETs present the higher field 
effect for the detection of DNA hybridization compared to the other nanomaterials. The 
lower detection limit was reached with crumpled graphene [146], this morphology 
modifying the Debye length which increases in the concave regions [165]. 

Summary and Perspectives. 

This review shows that nanomaterials based field effect transistors for the affinity sensing 
of biomarkers and of DNA sequences present a growing interest for the scientific 
community. Very low detection limits and very short response time, compared to classical 
ELISA tests were obtained. 

From the number of the recently published works on the affinity sensors based on field-
effect transistors, the graphene-FETs appear to be the more popular. Due to the 
production of CVD-grown graphene on CU catalyst with large scale, the window towards 
industrial-scale production of high quality graphene is opened. To accelerate 
commercialization of high-efficient G-FET, the transfer technique should be optimized in 
terms of graphene quality and of environment friendly process. 
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Table 1. Silicon-based field-effect transistors for affinity sensing  

 

 

Target Receptor 
functionalization 

FET Structure Detection Technique Detection limit (LOD) Dynamic range Ref 

Liquid gated silicon-based FET 
CYFRA 21-

1  
 
 
 

Anti- CYFRA 21-1-
antibody 

(APTES/glutaraldehyd
e: covalent binding) 

 
 
 
 
 

Si substrate, SiO2-gate FETs, size 
of each gate insulator L x W (10 

µm × 1000 µm) 

 
 

Electrical 
measurement: 

ΔVg vs [CYFRA 21-
1 ]/[NSE] 

1 ng/mL  
 
 
 

1-1000 ng/mL 

 
 
 
 
 

[49] NSE 
 

Anti- NSE-antibody 
(APTES/glutaraldehyd
e: covalent binding) 

10 ng/mL 
(PBS) 

 
100 ng/mL (HS) 

IL-5 
 
 

Anti-human IL-5 
APTMS/succinic 

anhydride/EDC-NHS: 
Covalent binding 
ALP labeled Ab 

SiO2 gate FET,  
Al (150 nm) electrodes,  

channel L/W (10/10 μm) 

Electrical 
measurement: 

IDS vs Vg 
IDS vs VDS 

ΔVR vs Time 

1 ng/mL 1 pg/mL-10 ng/mL  
 

[50] 

H1N1 
human IFV 

 

Glycan 
(AOPTES: covalent 

binding) 
 

 
 

SiO2 substrate, Each FET had two 
channels, gate size L x W L 10μm 

× 1000μm 

 
Electrical 

measurement: 
ΔVg vs [IFV] 

 
100.5 TCID50/mL 

100.5 to 108.5 TCID50/mL  
 

[51] 

H5N1 avian 
IFV 

 

Glycan 
(AOPTES: covalent 

binding) 
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Cortisol 
 

Aptamer 
(APTES/glutaraldehyd
e: covalent binding) 

SiO2 gate n-type FET 
Channel L/W (10/1 µm) 

Electrical 
measurement: 
ΔVg vs [cortisol] 

50 µmol/L 50-1000µmol/L  
 

[52] 
3-

nitrotyrosin
e (3-NT) 

Anti-3-NT-antibody 
(APTES: Covalent 

binding) 

Si3N4/SiO2 gate FET Electrical 
measurement:  

Gpc vs [3-NT] 

0.15 ng/mL  
 

10 ng/mL 
(LOQ) 

10 ng/mL-1000 ng/mL  
 

[53] 

TNF-α 
 

Anti-TNF-α antibody 
(TESUD: Covalent 

binding) 

Si3N4/SiO2 gate FET  
Ti/Pt (15/150 nm) electrodes,  
gate area dimensions 400 × 20 

µm 

Electrical 
measurement: 

IDS vs VDS 
IDS vs VDS 
Gm vs VGS 

5 pg/mL 5 pg/mL-20 pg/mL  
 

[54] 

TNF-α 
 
 

Anti-cortisol antibody 
(TESUD: Covalent 

binding) 

Si3N4/SiO2 gate FET  
Ti/Pt (15/150 nm) electrodes,  

gate area dimensions  400 × 20 
µm 

EIS 1 pg/mL 1 pg/mL-50 pg/mL  
 

[55] 

Extended gated silicon based FETs 
DNA 

 
 

PNA probe 
(Covalent binding) 

MOSFET 
Au electrodes with a Ø 2.5mm as 

extended sensing electrode 

Electrical 
measurement: 

Potentiel change vs 
[DNA] 

1µM 10 nM-1 µM [56] 

TSH 
 

anti-TSH antibody 
(EDC/NHS: covalent 

binding) 

MOSFET, Ti/Au (10/100nm) 
electrodes onto glass slides 

(dimensions 1.5 mm × 0.75 mm), 
Extended gate 

Electrical 
measurement: 

ΔV vs [TSH] 
ΔV vs Time 

100 fM 300 fM- 10 nM [57] 

tumour 
suppressor 

p53 
 
 

mouse monoclonal 
anti-p53  

(PEG/EDC/NHS: 
covalent binding) 

MOSFET, gold extended gate 
(sensing area 20 mm2) 

Electrical 
measurement: 

IDS vs Vref 
IDS vs time 

ΔVTH vs [p53] 

100 pM 
 

1.5 mV/dec 
(S) 

0.1 -10 nM [58] 
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Tau protein 
 

Anti-tau IgG mouse 
monoclonal HT7 

antibody 
(PEG/EDC/NHS: 

covalent binding) 

MOSFET, gold extended gate QCM measurement 
Differential readout 

1 pM 
(buffer/ CCM) 

 
10 pM 
(A-CSF) 

1 pM- 10 nM [59] 

C-RP 
 

Monoclonal anti-C-RP 
antibody 

(TPGA/EDC/NHS: 
covalent binding) 

enEDL-FET Electrical 
measurement: 

IDS vs VGS 
Gm VS VGS 

ΔId vs [C-RP] 
ΔVg vs [C-RP] 

 
Impedance 

0.5 mg/L 0.5-5 mg/L  
 
 
 

[60] 

 

A-CSF: Artificial-Tau protein in cerebrospinal fluid; AOPTES: 3-aminooxypropyltriethoxy-silane; APTES: 3-aminopropyl triethoxysilane; CCM: cell culture media; 
FTO: Fluorine-doped tin oxide; Gpc: gate potential change; GPTES: (3-glycidyloxypropyl) triethoxysilane; IFV: avian infuenza virus; MCH: 6-mercapto-1-hexanol; 
PANI: polyaniline; TSH: thyroid stimulating hormone; TPGA: thiol-polyethylene glycol-amine; SI : current sensitivity; ssDNA: thiolated bio-receptor single-
strand DNA  
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Table 2. AlGaN/GaN High Electron Mobility Transistors for affinity sensing 

 

Target Receptor 
functionalization 

FET Structure Detection 
Technique 

Detection 
limit (LOD) 

Dynamic range Ref 

C-RP 
 
 

monoclonal anti-C-RP 
antibody produced in 

mice 
(MUA/EDC/NHS: 
covalent binding) 

MOCVD AlGaN/GaN, Sapphire 
substrate, Ni/Au gate, Si/Ti/Al/Ni/Au 

(1/25/160/40/100 nm) electrodes, gate 
L/W (20/200 μm) 

Electrical 
measurement: 

IDS vs VGS 
IDS vs VDS 

ΔVout vs [C-RP] 

 
 
 

10 ng/mL 

10 ng/mL-1000 ng/mL  
 
 

[61] 

DNA DNA probe 
(TFAAD: covalent 

binding) 

MOCVD AlGaN/GaN, SiC substrate, 
Al/Ti/Au electrodes, electrolyte-gated 

Electrical 
measurement: 

IDS vs [DNA] 
ΔUthr vs [DNA] 
ΔIDS vs [DNA] 

10-14 M 10-16-10-6 M  
 

 
[62] 

HIV-1 RT 
 

Thiolated ssDNA 
aptamer 

(strong S-Au covalent 
binding) 

 
 
 
 
 
 
 

MBE AlGaN/GaN, silicon substrate,  
ohmic contacts (60×60μm2 ) of 

source/drain metals (gap 30µm/ 
channel W 50μm), 1200Å Au layer 

forms the metal interconnects and the 
gate electrode, gap between the 

openings/gate electrode /transistor 
channel (65/ 265/465μm 

 
 
 
 
 
 
 

Electrical 
measurement: 

IDS vs Time 
IDS vs VDS 

TC vs [HIV-1 
RT]/[CEA]/[ NT-
proBNP]/[ C-RP] 

 
 

1 fM 1 fM-10 pM  
 
 
 
 
 
 
 
 
 
 

[63] 

CEA 
 

Anti-CEA- Antibody 
(strong S-Au covalent 

binding) 

100 fM 100 fM-1 nM 

NT-proBNP Anti-NT-proBNP 
antibody 

(strong S-Au covalent 
binding) 

100 fM 100 fM-1 nM (PBS) 
 

180.9-5000 pg/mL 
(HS) 

C-RP 
 

Aptamer 
(strong S-Au covalent 

binding) 

1 fM 1 fM-100 nM (PBS) 
 

0.34-23.2 mg/mL (HS) 
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Zika virus 
 

Zika antibody AlGaN/GaN grown on sapphire 
substrate, two 100 µm wide metal lines 
of Ni/Au (20 nm/80 nm) separated by 
20 µm, contact window 100 µm x 100 

µm 

Electrical 
measurement: 

Id vs time 
Id vs [Zika] 

0.1 ng/mL 0.1-100 ng/mL [64] 

PSA 
 

Anti-PSA antibody 
(glutaraldehyde: 
covalent binding) 

MOCVD AlGaN (18 nm)/GaN (1.5µm), Si 
substrate, Ohmic contacts dimensions 

of 2.2 × 2.2 mm2 (gaps of 2 mm by 
deposition Ti/Al/Ni/Au), Ti/Ni/Au 

source/drain 

Electrical 
measurement: 

IDS vs VDS 
IDS vs time 

ΔI/I0 vs [PSA] 

100 fg/mL 100 fg/mL-100 ng/mL [65] 

NT-proBNP 
 

Aptamer 
(adsorption) 

MOCVD AlGaN/GaN, Si substrate, Ti/Al/ 
Ni/Au (200/400/800/1000 Å) electrodes 

Electrical 
measurement: 

Gain vs [NT-
proBNP] 
Id vs time 

Vg vs [NT-proBNP] 

 
- 
 
 

80.54 
mV/dec 

(S) 

 
0 -10 ng/mL 

 
 
 

[66] 

MIG Anti-MIG  
 

 
 
 

MOCVD AlGaN/GaN, Si substrate, Ni/Au 
(20/70 nm) gate (L 3µm), Ti/Al/Ni/Au 

(20/120/30/40 nm) source/drain 

 
 
 
 

Electrical 
measurement : 

IDS vs VDS 
gd vs VDS 

gd/IDS vs VDS 
 

0.48 mA/µg 
mL-1 (S) 

0.2 ng/mL-400 ng/mL  
 
 
 
 
 
 

[67] 

C-erbB-2 Anti-erbB-2  
0.054mA/µ
g mL-1 (S) 

4 µg/mL-13 µg/mL 

KIM-1 Anti-KIM-1 0.254 
mA/µg mL-1 

(S) 

1 ng/mL- 7 ng/mL 

PSA 
 

Anti-PSA 0.91 mA/µg 
mL-1 (S) 

1 ng/mL-10 ng/mL 

Cortisol 
 

Monoclonal antibody 
cortisol 

(DTSP: covalent 
binding) 

  1 pM 1 pM-1 nM  
[68] 
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PSA bio anti-PSA) 
(streptavidin/ 

biotinylated-urease: 
covalent binding) 

MOCVD AlGaN (18 nm)/GaN (1.5 µm), 
sapphire substrate  

Electrical 
measurement: 

Ids vs Vds 
I-I0 vs time 

I-I0 vs log [PSA] 

1 fg/mL 
 

3.73 
µA/dec 

(S) 

1 fg/mL-1 pg/mL  
 
 

[69] 

 

APTES: 3-aminopropyltriethoxysilane; bio anti-PSA: Biotinylated prostate specific antibody; C-RP: C-reactive protein; CEA: Carcinoembryonic Antigen; DTSP: 
3,3’-dithiodipropionic acid di (N-hydroxysuccinimide ester); GOx: glucose oxidase; HIV-1 RT: Human Immunodeficiency Virus-1 Reverse Transcriptase; KIM-1: 
Kidney injury Molecule; MOCVD: metal-organic chemical vapor deposition; MUA: 11-mercaptoundecanoic acid; MIG: Monokine Induced by Interferon 
Gamma; MBE: molecular beam epitaxy; NT-proBNP: N-terminal pro b-type natriuretic peptide; TFAAD: 10-trifluoroacetamide-1-decene. 

 

Table 3. Organic Field effect transistors for affinity sensing  

Target Receptor 
functionalization 

FET Structure Detection 
Technique 

Detection 
limit (LOD) 

Dynamic range Ref 

CR-P anti- CR-P antibody 
SA(AV)/Ab 

 

EGOFET 
P3HT as OSC 

PL layer on OSC film 

 1 µg/mL in 
serum 

 [70] 

Human 
Glycoprotein 

(CgA) 
 

Anti CgA antibody 
(biotin: covalent 

binding) 
On gold extended gate 

Extended gate OFET 
PBTT as OSC 

Al gate electrode deposited on a glass 
substrate (30 nm), gate dielectric 

consists of a thin-film of aluminum 
oxide layer (AlOx, 5 nm) and a C14-PA, 
1.7 nm), Au 30 nm electrodes, channel 

W/L (500/20 µm 

Electrical 
measurement: 

IDS vs VGS 
VTH vs [CgA] 

PBS 
0.31 µg/mL 
(LOQ: 1.0 
µg/mL) 

AS 
0.11 µg/mL 
(LOQ : 0.38 

µg/mL) 

1 µg/mL-50 µg/mL  
 
 
 

[71] 

CR-P 
 
 

Monoclonal anti- CR-P 
antibody 

EGOFET 
P3HT as OSC 

Electrical 
measurement: 

IDS vs VDS 

2 pM (220 
ng/L) 

4 pM- 2 µM)  
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 (P3HT: physical 
adsorption) 

 

Si/SiO2 substrate, Au IDE electrodes (10-
μm channel length and 10-mm channel 

width), electrolyte-gated 

IDS vs Vg 
ΔI/I0 vs [CR-P] 

[72] 

PCT 
 

Monoclonal anti-PCT 
antibody 

(P3HT: physical 
adsorption) 

EGOFET 
P3HT as OSC 

Si/SiO2 substrate, Au IDE electrodes (10 
µm channel length and 10 mm channel 

width), electrolyte-gated 

Electrical 
measurement: 

IDS vs VDS 
IDS vs VGS 

VTH vs [PCT] 

2.2 pM 0.8 pM-4.7 nM 
(PBS) 

10 pg/mL-6000 
pg/mL(MP) 

 
 
 
 

[73] 
GFAP Anti-GFAP antibody 

PS-MA/NHS/EDC 
Covalent binding 
Embedded in PEG 

Extended solution gate OFET 
Pentacene as OSC 

Interdigitated gold electrodes deposited 
on pentacene film on Si substrate 

Electrical 
measurement: 
Drain current 

change 

1.0 ng/mL 0.5 – 100 ng/mL  
[74] 

Cortisol 
 

Anti-cortisol antibody 
(adsorption) 
Embedded in 

poly(styrene-co 
methacrylic acid 

Extended gate EGOFET 
Pentacene as OSC 

ITO/poly(ethylene terephthalate) 
substrate, flexible electrodes, sensing 

membrane PSMA deposited on the gate 
surface 

Electrical 
measurement: 

IDS vs Vg 
ΔVR/Vbase vs 

[cortisol] 
ΔVR/Vbase vs Time 

PBS 
1 pg/mL 

 
Artificial 

sweat 
1 ng/mL 

 
10fg/mL-10 
ng/mL (S) 

1 fg/mL-100 pg/mL   
 
 
 

[75] 

Cortisol Cortisol aptamer 
(UV immobilization) 

OEGFET 
TIPS pentacene as OSC 

Cr electrode, transistor cluster consists 
of the devices with channel L (15–30 
μm)/ AR (20–60), electrolyte-gated  

Electrical 
measurement: 

IDS vs VDS 
Gm vs [cortisol] 

27.3 pM 27.3 pM-27.3 µM [76] 

Anti-drug 
antibodies 

(ADAs) 

Anti-Nivolumab 
(Cys-protein G: 

covalent binding) 
On gate electrode 

EGOFET 
TIPS-pentacene as OSC 

TIPS Quartz substrate, Au gate, IDE Au 
electrodes (width-to-length ratio W/L = 

500), electrolyte-gated 

Electrical 
measurement:  

IDS vs VGS 

EIS 

100 fM 
1 x 1011 M-1 

at 1 pM 
ADA 
(S) 

1 pM-10 nM [77] 
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Herbicides 
(glyphosate, 

diuron) 

Aliginate hydrogel 
With immobilized 

algea 

EGOFET 
Poly(DPP-DTT) as p-tyep OSC 

Pt gate microelectrode 

Electrical 
measurement: 

IDS vs VDS 
IDS vs VGS 

 
10 µM- 

 
 
- 

[78] 

AFP Anti-AFP 
(BFPA: covalent 

binding) 

PDVT as organic thin film OSC 
Si/SiO2 substrate, Au (30 nm) electrodes  

Back gated 

Electrical 
measurement: 

IDS vs Vg 
IDS vs VDS 

ΔIDS vs [AFP] 

45 fM for 
IDS 

53 fM for 
VTH 

 

10-2 ng/mL-103 ng/mL  
 
 

[79] 

IgG 
 

biotinylated polyclonal 
antibody 

(Biotin/Streptavidin: 
covalent binding)  

double gate FET 
diF-TES-ADT as OSC 

Parylene substrate, Ag electrode, dual 
gate, Ag/c-PVP bottom gate, 

Au/parylene top-gate  

Electrical 
measurement: 
ΔVTH vs [IgG] 

IDS vs VBG 
ΔVTH vs VTG 

 
 
 
- 

0 µg/mL-80 µg/mL  
 

 
[80] 

DNA 
 
 

ssDNA 
(MCH: co-

immobilization) 

Extended gate FET 
PANI thin films as OSC 

Au electrodes, extended gate 

 
EIS 

9.77 pM 1 pM-1µM [81] 

 

AS: Artificial saliva; Al: aluminum; AR: aspect ratios; AFP: alpha-fetoprotein; Ag: Silver; BFPA: 2,6-bis(4- formylphenyl)anthracene; C14-PA: 
tetradecylphosphonic acid; Cr: chrome; c-PVP: poly(4-vinylphenol); diF-TES—ADT 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene; EIS: 
Electrochimical impedance spectroscopy; GFAP: glial fibrillary acidic protein; ITO: Indium−tin oxide; PBTTT: poly(2,5-bis(3-hexadecylthiophene-2-
yl)thieno[3,2-b]thiophene; poly(DPP-DTT): poly(N-alkyldiketopyrrole dithienylthienol[3,2-b]thiophene; P3HT: poly-3-hexyl thiophene; PCT: procalcitonin; 
PSMA: poly(styrene-co-methacrylic acid); TIPS-pentacene: 6,13-bis(triisopropylsilylethinyl)pentacene; VTH: threshold voltage; VTG : top-gate terminal; VBG: 
bottom-gate terminal  
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Table 4. Silicon nanowire field-effect transistors for affinity sensing  

 

Target Receptor 
functionalization 

FET Structure Detection 
Technique 

Detection 
limit (LOD) 

Dynamic range Ref 

APOA2 
protein 

Anti- APOA2 antibody 
Immobilized on 

magnetic graphene 

Top-down approach 
CMOS process 
p-type SiNW 

Electrical 
measurement: 

IDS vs Vg 
ΔI/I0 vs [APOA2] 

6.7 pg/mL 19.5 pg/mL-1.95 µg/mL  
 

[83] 

IL-8 Anti-human IL-8 
(APTES/glutaraldehyd
e : covalent binding) 

Top-down approach 
SOI substrate (700 nm silicon/145 nm 

buried oxide), SiNWs 90 µm long with 2 
µm spacing in between 2 wires. 

 
Electrical 

measurement: 
Resistance vs 
[TNF-α]/[IL-8] 

 
 

10 fg/mL 
(PBS) 

100 fg/mL 
(AS) 

 
 
 

1fg/mL-1 ng/mL 

 
 
 
 

[84] 
TNF-α 

 
Anti-human TNF-α 

(APTES/glutaraldehyd
e : covalent binding) 

CYFRA21-1 anti-CYFRA21-1- 
antibody 

(APTES/glutaraldehyd
e : covalent binding) 

Top-down approach 
CMOS process 

SiNW length 16 μm  
ion implantation for source/drain 

(phosphor/boron) and intrinsic SiNW 
channel, Cr/Au on top of silicon contact  

Electrical 
measurement: 

IDS vs VGS 
IDS vs VDS 

IDS vs Time 
ΔIDS/I0 vs 

[CYFRA21-1] 

0.5 fg/mL 
(12.5 aM) 

 
37 mV/dec 

(S) 

0.5 fg/mL-10 ng/mL  
 
 

[85] 

PSA Monoclonal anti-PSA 
antibody 

(covalent biding) 
 

Top-down approach 
SOI wafer  

NW channel L/W of 3 mm/ 100 nm 
Ti/Si contacts 

Electrical 
measurement: 

I-I0 vs [PSA] 
I-I0/I0 vs Time 

 
 

23 fg/mL 

23 fg/mL-500 ng/mL  
 

[86] 

microRNA-
126 

DNA probe 
APTES/glutaraldehyde 

: covalent binding) 

 
n-type SiNWs were ‘topdown’ 

fabricated with a CMOS, size from 20 to 
200 nm, length vary from a few to 100 

µm  

Electrical 
measurement: 

IDS vs Time 
ΔIDS/I0 vs 

[miRNA]/[CEA] 

0.1 fM 10-16 M-10-11 M  
 

[87] 
CEA Anti-CEA 1 fg/mL 

(5.5 aM) 
10-15 M-10-9 M 
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APTES/glutaraldehyde 
: covalent binding) 

GABA Monoclonal antibody-
GABA 

(TESBA: covalent 
binding) 

Top-down approach 
SOI wafer  

100  nm zig-zag shaped p-type silicon 
nanowire was fabricated on SOI wafer, 

Cr/Au (150, 30 nm) electrodes  

Electrical 
measurement: 

IDS vs VDS 
IDS vs Vg 

G vs Time 
G vs Log [GABA] 

970 fM 970 fM-9.7 µM  
 

 
[88] 

cTnI Monoclonal cTnI 
(APTES/glutaraldehyd
e : covalent binding) 

Top-down approach 
SOI wafer diameter/ thickness 

(150±0.5 mm, 675±25 µm), H-wet-oxide 
and H-nitride oxidative layers with a 

300 Å thickness were coated on top of 
SOI wafer to form an oxidation layer 

Electrical 
measurement: 

IDS vs Time 
ΔA/A0 vs [cTnI]  

0.016 
ng/mL 

0.025 ng/mL-0.5 ng/mL [89] 

CTnT 
 

Anti-Troponin T Bottom-up approach 
VLS-CVD SiNW on Si(100) substrate 

Ti/Pd/Ti electrodes 
 
 
- 

analysis of the 
‘dissociation 

regime’ for any 
antibody- antigen 

pair 

 
 
 

100 fM 

 
 

100fM-100 pM 

 
 
 

[90] 
cTnI  

 
Anti-Troponin I 

IL-4 Anti-IL-4 antibody 
(GPTES: Covalent 

binding) 

Nano ISFET  
top-down lithography process,  

SOI substrate,  
Si NWs L/W/H (14 μm/250 nm/60 nm) 

Electrical 
measurement: 

IDS vs Vg 
VTH vs  

IDS vs Time 

 
 
 

3-5 fM 

25 fg/mL(1.92 fM)-
2.5µg/mL(192 nM) 

 
 

[91] 
IL-2 Anti-IL-2 antibody 

(GPTES: Covalent 
binding) 

Amyloid beta 
(Aβ)1-42 

Mouse anti-Aβ 
Antibody 

(APTES/glutaraldehyd
e : covalent binding) 

Top-down approach 
 

two nanowire channels with dimensions 
L/W (2 μm/200 nm) 

Electrical 
measurement: 
Voltage shift vs 

[Aβ1-42] 

 
 
 

100 fg/mL 
(HS) 

1 pg/mL 

10-1-pg/mL-102 pg/mL 
(HS) 

 
1-pg/mL-103 pg/mL 

(BTP) 

 
 

 
 

[92] 
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(BTP) 
IgG 

 
 

Fab anti-IgG 
(APTES/glutaraldehyd
e : covalent binding) 

Mixed with PEG 
Enhancement by R18 

aptamer 

Top-down approach 
 

two nanowire channels with dimensions 
L/W (2 μm/200 nm) 

 
- 

Electrical 
measurement: 

IDS vs Vg 
Voltage shift vs 

[IgG] 

 
 
 

1 pg/mL 

1 pg/mL-1 ng/mL  
 
 

[93] 

Influenza A 
 

Antibodies against the 
influenza A virus 

(subtype A (H1N1) 
pdm09) 

(APTES/DTSSP: 
covalent binding) 

Top-down approach on SOI  
Si Nanoribbon, poly Si electrodes, back 

gated 

Electrical 
measurement, NR 

detector 

6 10 -16 M 
(104 VP/mL) 

107- 103 VP/mL  [94] 

 

AS: Artificial saliva; APOA2 protein: apolipoprotein A II protein; HS: human serum; BTP: Bis-Tris Propane; cTnT: cardiac troponin T; cTnI: cardiac Troponin I; 
CMOS: complementary metal oxide semiconductor; GABA: γ-Aminobutyric acid; G: conductance; PSA: prostate specific antigen; IgG: Immunoglobulin G; 
miRNA: microRNA; SOI: silicon-on-insulator; TESBA: Tri-ethoxy-silylbutyl-aldehyde. 

 
 
Table 5. Other inorganic nanomaterials – based field effect transistors for the affinity sensing 
 

Target Receptor 
functionalization 

FET Structure Detection 
Technique 

Detection 
limit (LOD) 

Dynamic range Ref 

MoS2 
Cortisol 

 
Aptamer cortisol 

(APTES/glutaraldehyd
e: covalent binding) 

Exfoliated MoS2, Si/SiO2 substrate, Ti 20 
nm/Au 100 nm electrodes 

Electrical 
measurement: 

IDS vs VGS 
IDS vs VDS 

10-18 g/mL 10-18 g/mL- 10-13 g/mL  
 
 

[95] 
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Sensitivity vs 
[Cortisol] 

C-RP 
 

C-RP antibody 
(APTES/EDC/NHS/16-

MDA: covalent 
binding) 

MoS2 grown on Si/SiO2 substrate, Au/Ni 
Source/Drain, back-gated 

Electrical 
measurement:  

IDS vs VDS 
 

8.38 fg/mL  
 

176 
nA/g.mL-1 

(Sensitivity) 

100 fg/mL-10 ng/mL  
 
 

[96] 

ConA D-manose 
(MEA: covalent 

binding) 

MoS2 grown on Si/SiO2 substrate, Ni (30 
nm) electrodes  

Electrical 
measurement: 

IDS vs Vg 
IDS vs VDS 

ΔG/G0 vs [ConA] 

105 nM 1 × 10−7 M – 1 × 10−3 M [97] 

PSA 
 

Anti-PSA (biotin-
streptavidin: Covalent 

binding) 

Exfoliated MoS2 (3-20nm), Si/SiO2 
substrate, Cr/Au (15/75 nm) 

source/drain, back-gated 

Electrical 
measurement: 

IDS vs VDS 
IDS vs Vg 

IDS vs Time 
ΔI/I0 vs [PSA] 

1 fg/mL 1 fg/mL-100 ng/Ml [98] 

ZnO 
PSA 

 
Anti-PSA antibody 

(MTS/GMBS: covalent 
binding) 

Electron gun technique ZnO, glass 
substrate, Cr/Au (20/100 nm) 

electrodes L/W/spacing between the 
electrodes (154/8/15 µm), liquid gate 

Electrical 
measurement: 

IDS vs VGS 
IDS vs Time  
IDS vs [PSA] 

0.06 fM 0.06 fM-1000 fM [99] 

Streptavidin 
 

Biotin 
(APTES: covalent 

binding) 

RF IGZO (40-nm), Si/SiO2 substrate, Mo 
(100 nm) electrodes, electrolyte gated 

Electrical 
measurement: 

IDS vs VDS 
IDS vs Vg 

ΔVg vs time 

1 pg/mL 1 pg/mL-100 ng/mL [100] 

InN 
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HIV 
 
 

HIV gp41 antibodies 
(APTMS/glutaraldehyd

e: covalent binding) 

SiOx/SiNx on Si substrate/Al coating, 
deposition of sputtered InN, Ti/Au 

electrode 

Electrical 
measurement: 

IDS vs Vg 
IDS vs [HIV] 

EIS 

2.5 pM 
(0.1 ng/mL) 

0.1 ng/mL-400 ng/mL [101] 

In2O3 
Dopamine 

 
 

Aptamer 
(APTMS/PTMS/MBS: 

covalent binding) 

In2O3 (4 nm) grown on Si/SiO2 substrate, 
IDE  Ti/Au (10/30 nm) electrodes  W/L 

(80/1500 μm), liquid gate 

Electrical 
measurement: 

IDS vs VGS 
 

10 fM 10 fM-100 µM [102] 

 
CR-P: C-reactive protein; ConA: Concanavalin A; GMBS: N-γ-Maleimidobutyryloxysuccinimide; MEA: β-mercaptoethylamine; MTS: 3- 
mercaptopropyltrimethoxysilane; MoS2: molybdenum disulde; 16-MDA: 16- mercaptohexadecanoic acid; Ni: Nickel; PSA: prostate-specific antigen.  

 
Table 6. Carbon nanotube field-effect transistors for affinity sensing. 

Target Receptor 
functionalization 

FET Structure Detection 
Technique 

Detection 
limit (LOD) 

Dynamic range Ref 

Interleukin-6 Antibody-IL-6R 
(PBASE: Covalent 

binding) 

CVD SWCNT, Quartz substrate, 2 mm 
wide, 100 nm thick Au source and drain 

electrodes (spacing = 200 μm). Liquid 
gated 

Electrical 
measurement: 

IDS vs Vg 
IDS vs VD 

IDS vs [IL-6] 

1.37 pg/mL 1 pg/mL-100 pg/mL  
 

[103] 

alkylphenol Anti- alkylphenol 
(adsorption) 

Drop casted SWCNT, Si/SiO2 substrate, 
Au electrodes (100 nm thick), IDE 

electrodes W/L (1.5/1000 µm), back-
gated  

Electrical 
measurement: 

IDS vs [NP] 
Log ΔINP vs log NP 

5 µg/L 5 µg/L-500 µg/L [104] 

Atrazine anti-atrazine 
(adsorption) 

Drop casted SWCNT, Si/SiO2 substrate, 
Au IDE electrodes W/L (1.5/1000 mm), 

back-gated 

Electrical 
measurement: 
ΔI vs log [ATZ] 

0.001 
ng/mL 

0.001 ng/mL-10 ng/mL  
 

[105] 
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Cathepsin E 
 

Peptide aptamer 
(PBASE: Covalent 

binding) 

CVD SWCNT, SiO2/Si substrate, Ti/Au (2/ 
40nm) electrodes, channel length 3 µm, 

liquid-gated  

Electrical 
measurement:  

IDS vs Vg 
ΔI/ ΔImax vs [CatE] 

2.3 pM 
(PBS) 

 
0.23 nM 

(HS) 

0.1 ng/mL-1 ng/mL 
(PBS) 

10 ng/mL-100 ng/mL 
(HS) 

 
 
 
 

[106] 
TNF-α Anti-TNF-α 

(EDS/NHS: Covalent 
binding) 

SPM SWCNT, SiO2 substrate, channel 3 
μm in width and 300 μm in length, 

Pd/Au (10 nm/30 nm) metal electrodes, 
floating electrodes dimensions (15 μm × 

300 μm), liquid-gated 

Electrical 
measurement: 

IDS vs Vg 

ΔG/ΔGmax/[TNF-α] 
IDS vs Time 

1 pg/L 100 fg/L-100 pg/L  
 
 

[107] 

GFP VHH  nanobody 
(EDS/NHS: Covalent 

binding) 
 

Plasma torch SWCNTs diameter/length 
(0.9 –1.9 nm/0.3–4 µm), glass substrate, 

Cr/Au IDE bottom electrodes, channel 
W/L (2 mm, 20 µm), liquid-gated 

Electrical 
measurement: 
IDS vs V Ag/AgCl 
ΔV vs [GFP] 

1 pM 1 pM-10 nM  
 

[108] 

DNA 
hybridization 

DNA probe 
(PBASE: Covalent 

binding)  

Suspended CNT, Si/SiO2 substrate, 
Pd/Cr (100/3nm) electrodes, liquid-

gated 

Electrical 
measurement: 

IDS vs VDS 
IDS vs Vg 

Resistance vs 
[DNA] 

 

10 aM 10 aM-1 pM  
 
 

[109] 

cTnT Biotinylated DNA 
aptamer 

(biotin-streptavidin 
chemistry) 

Drop casted SWCNT + Au decorated-
Co3O4, Si/SiO2 substrate , IDE Ti/Au 

electrodes, distance between 
electrodes 100 µm, W of the device 

24100 µm 

Electrical 
measurement: 

ID vs Time 
ID vs [cTnT] 

0.1 µg/mL 
 

0.5 
µA/µg.mL(S

) 

1µg/mL-10µg/mL  
 

110] 

Staphylococc
us aureus 

Polyclonal anti- 
Staphylococcus aureus 

(EDS/NHS: Covalent 
binding) 

 

Alternating current dielectrophoresis 
SWCNT, Si/SiO2 substrate, Cr/Au 10/100 

nm Coplanar rectangular electrodes 
(gap/W: 20/50µm)  

Conductance 
measurements 

150 
CFU/mL 

 
2.95[%(log 
CFU/mL)] 

(S) 

200-106 CFU/mL  
 
 
 [111] 
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COVID-19 
(SARS-CoV-2) 

RNA-dependent RNA 
polymerase gene of 

SARS-CoV-2  

Simple process technique CNT, f 
lexible Kapton substrates, Cr/Au (5/50 

nm) electrodes, liquid-gated 

Electrical 
measurement: 

IDS vs Vg 
ΔI/I vs [sequence] 

10fM 10-6nM-1 nM  
 

[112] 

 
ATZ: Atrazine: 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine; Au: gold; cTnT : cardiac troponin T; Cr: Chromium; DNA: Deoxyribonucleic acid; GFP : 
green fluorescent protein; HS: human serum; NP : 4-nonylphenol; IgG: Immunoglobulin G; Pd: palladium; PPy NT: polypyrrole nanotube; SWCNT: single 
walled carbon nanotubes; SPM: Standard photolithography method; Vg: gate voltage 

 
Table 7. Graphene field-effect transistors for affinity sensing 

 
Target Receptor 

functionalization 
FET Structure Detection 

Technique 
Detection 
limit (LOD) 

Dynamic range Ref 

DNA 
 

DNA probe 
(biotinylated 

BSA/streptavidin: 
adsorption) 

CVD graphene transferred on 285-nm 
SiO2 substrate, 15/200/7-nm-thick 

Cr/Au/Cr: source/ drain, liquid gated 

Electrical 
measurement: 

IDS vs VREF 

 

100 fM  
- 

 
[114] 

22-mer 
miRNA 

 

PNA probe 
(glutaraldehyde: 
covalent binding) 

Au decorated RGO, SiO2/Si substrate, 
liquid-gated  

Electrical 
measurement: 

Id vs Vg 
ΔVcnp vs [miRNA] 

1 fM 1 fM-100 pM  
 

[115] 

22-mer 
DNA 

PNA probe 
(PBASE: Covalent 

binding) 

PMMA transferred CVD graphene, Si 
O/Si substrate, Ti/Au electrodes, liquid-

gated 

Electrical 
measurement: 

Id vs Vg 
ΔVdirac vs [DNA] 

 

1 fM 1 fM-100 pM  
 

[116] 

AFB1 anti-AFB1 antibody 
(PLL : adsorption) 

RGO on the TCO coated glass substrate, 
Ag electrodes with a spacing of 0.8 cm,  

Electrical 
measurement: 

IDS vs Vgs 

10-4 ppt in 
PBS 

0.0001ppt-1ppt 
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5 mm by 5 mm, Gate platinum 
electrode 5 mm by 5 mm 

Capacitance 
measurements 

10-4 ppt in 
CS 

 
[117] 

IFN-γ aptamer  
(adsorption) 

PDMS transferred LPCVD Graphene, 
PDMS substrate,  Ag electrodes, liquid 

gated 

Electrical 
measurement: 

IDS vs Vg 
Current at dirac 
point vs [IFN-γ]   

83 pM 
 

2 nM-100µM  
 

[118] 

Hep-B 
 
 

anti Hep-B monoclonal 
antibody 

(glutaraldehyde: 
covalent binding) 

EPD deposition of graphene bilayer on 
nanoporous SiO2 substrate, 

IDE metal Ag/Au electrodes, liquid 
gated 

Electrical 
measurement: 

IDS vs VGS 
IDS vs time 

0.05 fM 
 

0.05 fM-1000 fM  
[119] 

SNP double-stranded (DS) 
probes 

(PBASE: Covalent 
binding) 

PMMA transferred CVD graphene, 
SiO2/Si substrate, Ag electrodes, liquid 

gated 

Electrical 
measurement: 

Id vs Vg 
ΔVdirac vs [SNP] 

100 nM 
 

100 nM-100 µM  
[120] 

DNA 
 

DNA probe 
(PBASE: Covalent 

binding) 

PMMA transferred CVD graphene, 
SiO2/Si substrate, Cr/Au electrodes, 

back-gated  

Electrical 
measurement: 

Id vs Vg 
ΔVdirac vs [DNA] 

1 fM 
 

10-18 M-10-4 M  
 

[121] 

CEA 
 

Anti-CEA antibody 
(PBASE: Covalent 

binding) 

PMMA transferred CVD graphene, 
SiO2/Si substrate, Ti/Au electrodes, 

liquid-gated 

Electrical 
measurement: 

Ids vs time 
ΔIds vs [CEA] 

100 pg/mL 
 

100 pg/mL-100 ng/mL  
[122] 

20-mer 
DNA 

 

PNA probe 
(PBASE: Covalent 

binding) 

Wet method transferred CVD graphene, 
SiO2/Si substrate, Cr/Au electrodes, 

liquid-gated 

Electrical 
measurement: 

Ids vs Vg 
ΔVcnp vs Time 
ΔVcnp vs [DNA] 

10 pM 
 

0.25 nM-10 nM [123] 

DNA  DNA probe 
(adsorption) 

Transferred exfoliated graphene by 
adhesive tape on SiO2/Si substrate, 

Ti/Au (10/200 nm) electrodes, liquid 
and back-gated 

Electrical 
measurement: 

Id vs Vbias 
Id vs Vg 

10 nM 
 

10 nM-1000 nM  
[124] 
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hCG anti-hCG antibody  

(Pyr-NHS: covalent 
binding) 

PMMA transferred CVD graphene, 
SiO2/Si substrate, 

Au/Cr source/drain, SiO2 300 nm and W, 
L of each FET 90 µm and 80 µm, back-

gated 

Electrical 
measurement: 
Resistance vs 

back gate voltage 

1 pg/mL 
 

0.30 
Ω/ng ·mL 

(S) 

1 pg/mL – 100 ng/mL  
 

[125] 

 hCG anti- hCG antibody 
(PBASE: covalent 

binding) 

PMMA transferred CVD graphene on 
SiO2 Substrate,  

Cr/Au electrodes, back-gated 

Electrical 
measurement: 

IDS vs Vg 

6 pg/mL 
 

1 pg/mL-100 ng/mL  
[126] 

HER2 Aptamer 
(PBASE: Covalent 

binding) 
 

CVD graphene nanomesh transferred 
on meso-SiO2 Substrate, flexible FETs, 
liquid gated 

Electrical 
measurement: 

Id vs Vd 
Id vs Vg 

ΔId vs [HER2] 
ΔId vs time 

0.6 10-15 M 
 

0.0001 ng/mL-200 
ng/mL 

 
 

[127] 

RNA DNA probes  
(PBASE: covalent 

binding) 

PMMA transferred CVD graphene on 
SiO2/Si substrate, ITO electrodes 

Liquid-gated 

Electrical 
measurement: 

IDS vs Gate 
electrode 
IDS vs Vg 

0.1 fM 0.1 fM-1 pM  
 

[128] 

Cortisol monoclonal cortisol 
antibody (Anti-Cab) 

(PBASE: covalent 
binding) 

 

Graphene nanoplatelets 7 nm drop-
coated on SiO2/Si substrate, the L and 
W of the channel 500 µm x 1000 µm, 

electrolyte gated 

Electrical 
measurement: 

IDS vs VGS 

10 pg/mL 10 pg/mL – 10 µg/mL  
 

[129] 

OA anti OA 
(adsorption) 

Graphene nanoplatelets drop-coated on 
SiO2/Si substrate, interdigitated 

electrodes of 1.5 μm of W and 1000 μm 
of L, back-gated 

Electrical 
measurement: IDS 

vs VDS 
 

0.05 ng/mL 0.05- 300 ng/mL  
 

[130] 

Hep-B anti-Hep-B antibody 
(glutaraldehyde: 
covalent binding) 

Graphene solution deposited on NPSO 
substrate, IDE metal electrodes width  

60 μm and spaced with 60 μm 

Electrical 
measurement: 

ID vs VGS 

0.1 fM 
 

0.1 fM -1 pM  
 

[131] 
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CT vs Frequency 
hCG anti- hCG antibody 

(Pyr-NHS: covalent 
binding) 

CVD graphene on SiO2/Si substrate, 
Cr/Au electrodes, channel length 720 
µm, width of GFET channels 80 µm, 

back-gated 

Electrical 
measurement: 

IDS vs VDS 
Resistance vs 

[hCG] 

1 pg/mL 1 pg/mL 
- 1 ng/mL 

 
 

[132] 

 CA 125 anti-CA125 ssDNA 
(CMWCNT/EDC/NHS : 

covalent binding)  

CNT + RGO, PMMA substrate,  
Flexible FET 

Au electrodes (W= 5 mm and L = 1 mm 
channel) 

gate electrode Pt, liquid gated 

Electrical 
measurement: 

Id vs Vg 
 

5 10-10 
U/mL 

 

10-9-1 U/mL  
[133] 

 AFP anti- AFP antibody 
(PBASE: covalent 

binding) 
 

CVD graphene transferred on PET 
substrate Au 10 nm electrodes, gate 

channel size W= 5 mm and L= 500 µm, 
electrolyte gate 

Electrical 
measurement: 

Ids vs Vgs 
Ids vs Vds 

ΔVdirac vs [AFP] 

0.1 ng/mL 
(PBS) 16.91 

mV (S) 
 

12.9 ng/mL  
(HCCPP) 
 5.68 mV 

(S) 

0.1 ng-250 ng/mL (PBS) 
 
 

12.6 ng/mL-784.9 
ng/mL (HS) 

 
 

 
 
 

[134] 

TSH 
 
 

anti-TSH F(ab’)2 

(PBA/EDC/NHS: covalent 
binding) 

PMMA transferred CVD graphene on 
glass substrate, Au electrodes 

 channel W ≈ 3 mm, L ≈ 0.75 mm, 
electrolyte gated 

Electrical 
measurement:  

Gs vs Vg 
ΔVg vs [TSH] 

0.2 10-15 M 
10x10-15 M 

(S) 

10-14M-10-8 M 
 

 
 

[135] 

SNP DNA probe 
(PBASE: covalent 

binding) 
 

PMMA transferred CVD graphene on 
SiO2/Si substrate, Cr/Au (3/30 nm) 

electrodes, electrolyte gated 

Electrical 
measurement:  
ΔVdirac vs [SNP] 

25 aM 
 

24 mV/dec 
(S) 

1 aM-100 pM 
 

 
 

[136] 

Single-
Strand 
DNA 

aptamer  
(PBASE: covalent 

binding) 
 

Transferred CVD graphene, 
  glass substrate, ITO electrodes, back-

gated 

Impedance: 
Impedance 

Change of MGFET 
vs 

MFI/Time/[DNA] 

1 pM 1 pM-10 nM  
 

[137] 
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chlorpyrifo
s 
 

Anti-chlorpyrifos 
antibodies  

(EDC/NHS: covalent 
binding) 

Exfoliated graphene transferred by 
scotch tape on 285 nm SiO2/Si 

substrate, Cr/Au (5/50nm) electrodes, 
back- gated 

Electrical 
transport: 

Resistance vs 
Vg/time 

1.8 fM 1 fM-1µM  
[138] 

 CTn1  anti-CTn1 antibody 
(EDC/NHS: covalent 

binding) 
 

 
 
 
 

PMMA transferred exfoliated graphene 
on 285 nm SiO2/Si substrate, Cr/Au 

(5/50 nm), back-gated 

 
 

Electrical 
measurement: 
Resistance vs 

Vg/Time 
Current vs time 

 

10 fg/mL 
 
 
 
 

1 fg/mL- 1 µg/mL 
 

 
 
 
 
 

[139]  CCP  anti- Cyclic citrullinated 
peptide antibody 

(EDC/NHS: covalent 
binding)  

10 fg/mL 
 

P24  anti-P24 antibody 
(EDC/NHS: covalent 

binding) 

100 fg/mL 
 

Exosomes anti-CD63 antibody 
(PBASE: covalent 

binding) 
 

PMMA transferred CVD graphene on 
SiO2/Si Substrate  

Ti/Au electrodes, back-gated 

Electrical 
measurement: 

Ids vs Vg 
Ids vs Vds 

0.1 µg/mL 
 

0.1µg/mL-10 µg/mL  
[140] 

DNA (bfp) 
 
 

Cas9-sgRNA (dRNP)  
(complexation) 

Graphene tranferred on SiO2/Si 
Substrate Ti/Pt electrodes 

Electrical 
measurement: 

I vs time 
I vs [DNA sample] 

I vs [HEK DNA] 

2.3 fM  
1.7 FM (S) 

 
 
 

 
 
 
- 

 
 

[141] 

COVID-19 
(SARS-
COV-2) 

SARS-CoV-2 spike 
protein antibody 
(PBASE: covalent 

binding) 

PMMA transferred Graphene on a 
SiO2/Si substrate, Au/Cr electrode L x W 

(100 x 100 µm2), electrolyte gated 

Electrical 
measurement: 

IDS vs VDS 
IDS vs VGS 

ΔI/I0 vs time 
 

1.6x101 
pfu/mL 

(CM) 
2.42x102co

pies/mL 
(CS) 

 

1.6x101 -1.6x 104 
pfu/mL 

 

 
 
 
 

[3] 
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7 amino 

acids 
(BGP-C7) 

antibody variable 
fragment VL  

(PBASE: covalent 
binding) 

 

 

Graphene transferred on SiO2/Si 
substrate, 

Au electrodes, electrolyte-gated 

Electrical 
measurement: 
ΔId/gm vs Time 
ΔId/gm vs [BGP-

C7] 

10 fg/mL 
 
 

10 fg/mL-1000 ng/mL  
 

[142] 

Hep-B anti-Hepatitis-B 
monoclonal antibody 
(EDC/NHS: covalent 

binding) 

ERGO on FTO coated glass substrate, 
electrolyte-gated  

Electrical 
measurement: 

Imix vs frequency  
Imix vs Vg 

Imix vs time 

1 fM 1 fM - 100 fM  
 

[143] 

 AFP anti- AFP antibody 
(adsorption) 

GO nanosheets deposited on SiO2/Si 
substrate, Au/HRE-RGO electrodes 

Electrical 
measurement: 

IDS vs Vg 

 
 

- 

 
 

- 

 
[144] 

Biotin 
 

Avidin 
(PBASE: covalent 

binding) 
 

PMMA transferred CVD graphene on 
SiO2/Si substrate, Cr/Au (100 nm) IDE 
electrodes, Electrode W= 200 μm, gap 

between the electrodes=200 μm, 
electrolyte gated   

Electrical 
measurement: 

IDS vs time 
IDS vs [Biotin] 

IDS vs Vgs 

90 fg/mL 90 fg/mL -9.33 ng/mL 
(0.37pM)  

 

 
 
 

[145] 

Nucleic 
acids 

DNA probe 
(PBASE: covalent 

binding) 

PMMA transferred CVD graphene on a 
polystyrene substrate, Ag electrodes, 

back-gated 

Electrical 
measurement: 

IDS vs Vgs 

600 zM 
(PBS) 
20 aM 
(HS) 

 

600 zM-60nM (PBS) 
 

20 aM-200 fM 
(HS) 

 
 
 
 

[146] 
Clusterin 

 
anti-clusterin antibody 

 
Graphene transferred on SiO2/Si 

substrate, Cr/Au electrodes Electrical 
measurement 

1 pg/mL 
 

1 pg/mL - 
1 ng/mL 

 
[147] 

JEV 
 
 

Monoclonal antibodies 
JEV 

(EDC/NHS: covalent 
binding) 

 
 

 
 

Electrical 
measurement: 

 
1 fM 

 
 

1 fM -1µM 
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AIV Monoclonal antibodies 
AIV 

(EDC/NHS: covalent 
binding) 

Exfoliated graphene with scotch tape, 
SiO2/Si substrate, Cr/Au (5/50 nm) 

electrodes, back-gated 
 
 

Resistance vs Vg 10 fM  
 

[148] 

COVID-19 
(SARS-
COV-2) 

SARS-CoV-2 spike 
protein antibody 
(PBASE: covalent 

binding) 

 
- 

 
- 

1 fg/mL   
[149] 

DNA 
hybridizati

on 
 

probe DNA 
(PBASE: covalent 

binding) 

PMMA transferred CVD graphene on 
SiO2/Si substrate, ITO electrodes with 
the area of sensing channel of 1 cm × 

0.4 mm, liquid gated 

Electrical 
measurement: 

IDS vs Vg 

IDS vs Vds 
 
 

10 aM 10 aM-100 fM  
 

[150] 

Cortisol 
 
 

Mouse monoclonal 
cortisol antibody 
(PBASE: covalent 

binding) 

Graphene nanoplatelets dispersion 
drop-casted on SiO2/Si substrate, Ni/Au 
(300 nm) electrodes, dimension of the 

device L x W (2.0 cm x 0.5 cm), 
electrolyte gated 

Electrical 
measurement: 

IDS vs VGS 
ΔVGS vs [Cortisol] 

0.85 pg/mL 
 

72.30 
µA/g.mL 

(S) 

1 pg/mL-10 ng/mL [151] 

DNA PNA probes  
(PBASE: covalent 

binding) 

Drop casted graphene ink on PCB, Ag 
electrodes W/L (0.13/5 mm), 

electrolyte-gated 
 

Electrical 
measurement: 

IDS vs Vg 

1 nM 
 

30.1 
mV/dec (S) 

0.1 nM-1000 nM  
 

[152] 

PSA anti-PSA antibodies 
(glutaraldehyde: 
covalent binding) 

DEP deposition of RGO, SiO2/Si 
substrate, 

(Cr/Au) Electrodes, 
W/L  (50/500 µm), gap between 

electrodes (100 μm) and height is 4 
mm, electrolyte-gated 

Electrical 
measurement: 

Imix vs VGS 
Imix vs Time 
G vs [PSA] 

1 pg/mL 1 pg/mL-4 ng/mL  
 

[153] 
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COVID-19 
(SARS-
COV-2) 

complementary 
phosphorodiamidate 

morpholino oligos (PMO) 
probe 

(EDC/NHS: covalent 
binding) 

RGO drop-casted on 285 nm SiO2/Si 
substrate, Au electrodes (50 nm thick), 

liquid gated  

Electrical 
measurement: 
IDS vs Vg/ Time 

ΔV vs [SARS-COV-
2] 

PBS 0.37 
fM 
TS 

 2.29 fM 
serum 3.99 

fM 

1 fM-1pM  
 
 
 

[154] 

Geosmin 
 

Geosmin aptamer 
(bioprobe) 

(PDI-diacid/DMTMM: 
covalent binding) 

Wet-transferred CVD graphene on 
SiO2/Si substrate, Cr/Au (1:10 thickness 
ratio; Cr 10 nm/Au 100 nm) electrodes, 

liquid-gated  

Electrical 
measurement: 

IDS vs Vg 

0.01 nM 0.01 nM-1 µM  
 

[155] 

HPV-16 E7 
protein 

aptamer  
(EDC/NHS: covalent 

binding) 
 
 

RGO transferred on IDE Au electrodes, 
glass substrate, 

Liquid-gated 

Electrical 
measurement: 
ΔIDS vs Vg/ Time 

100 pg/mL 
(1.75 nM) 

30 nM- 1000  nM  
 

[156] 

 LMW 
imatinib 

Abl1 protein 
(PBASE: covalent 

binding) 

Wet-transferred CVD graphene on 
SiO2/Si substrate, nm Cr/ Au (20/100 

nm) electrodes, graphene channels L/W 
(45/45 μm), PMMA microfluidic channel 

L/W (10/0.5 mm) 

Electrical 
measurement: 

IDS vs Vgs 
IDS vs 

concentration 
IDS vs Time 

15.5 fM 0.1 pM- 10 µM 
 

0.0194 μA/fM 
(S) 

 
 
 

[157] 

BNP BNP antibody (50E1 
antibody) 

(adsorption)  

B/N co-doped GO spin-coated on 
SiO2/Si substrate, Au/Ti  electrodes, 

back-gated  

Electrical 
measurement: 

IDS vs Vg 
 

10 aM 10 aM- 1µM  
[158] 

Single-
stranded 

DNA 

DNA probe  
(PBASE: covalent 

binding) 

Optic-fiber GFET, wet-transferred CVD 
graphene on quartz fiber, Au 

electrodes, liquid gated 

Electrical 
measurement: 

Current of OGFET 
vs Vg/time 

10 nM 10 nM-500 nM  
 

[159] 

Exosomes 
 

anti-CD63 Antibody 
(PBASE: covalent 

binding) 

CD modified PMMA transferred CVD 
graphene on SiO2/Si substrate, Ti/Au 

Electrical 
measurement: 

IDS vs VGS 

100 
particles/µL 

10-107 particles/µL  
 

[160] 
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(10/50 nm) electrodes,  PDMS channel 
L/W(6/0.5 mm), liquid-gated 

ΔVDV vs 
[Exosome] 

Clusterin 
 
 

anti-clusterin antibody 
(Pyr-NHS: covalent 

binding) 

Transferred CVD graphene on SiO2/Si 
substrate, Cr/Au electrodes, back-gated 

 
Electrical 

measurement: 
Current vs 

voltage/ back 
voltage 

 300 fg/mL 
(4 fM) 

 

1pg/mL-100 pg/mL  
 

[161] 

IFN-γ  
 
 

IFN-γ-specific aptamer 
(adsoption) 

Wet-transferred CVD graphene, 285 nm 
SiO2/Si substrate, Cr/Au (2/43 nm) 

electrodes, electrolyte-gated  
Electrical 

measurement: 
IDS vs Vg 

ΔV dirac/ ΔV dirac,max 

vs [IFN-γ] 

740 fM 
 

0.015nM-250nM  
 

[162] 

DNA 
 

Cas9 Bubble transferred CVD Graphene on 
SiO2/Si Substrate Ti/Pt electrodes 

 

Electrical 
measurement: 

Cresponse vs 
Time/[DNA] 

 10-60 ng/µL 
 

 
[163] 

Cortisol 
 
 

Aptamer (61 basepair) 
(PBASE: covalent 

binding) 

graphene FET, Pt extended gate 
functionalized with a single graphene 
layer 

Electrical 
measurement: 

IDS vs VREF 
VREF vs [cortisol] 

SI vs [Cortisol] 

0.2 nM 1 nM-10 µM  
 

[164] 

 
AFB1: Aflatoxin B1; AFP: α-fetoprotein; AIV: Avian Influenza Virus; Au: gold; Ag: Silver; BGP-C7: C-terminal 7-mer peptide of human osteocalcin bone gla 
protein; CA 125: Ovarian cancer antigen; CCP: Cyclic citrullinated peptide; CTn1: Cardiac troponin 1; CEA: carcinoembryonic antigen; Cr: Chromium; CM: 
culture medium; CS: clinical sample; cnp: charge neutrality point voltages; CT: total capacitance; CS: corn samples; CMWCNT: carboxylated multiwalled carbon 
nanotubes; CVD: chemical vapor deposition; Cu: Copper; DNA: Deoxyribonucleic acid; ERGO: electrochemically reduced graphene oxide; FET: Field Effect 
transistor; FTO: fluorine doped tin oxide, DMTMM: 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride; gm: Transconductance; G : 
Conductivity; hCG: Human Chorionic Gonadotrophin; HER2: Human epidermal growth factor receptor 2; Hep-B: Hepatitis-B; HRE- HPV: human papillomavirus; 
HS: human serum; HCCPP: Hepatocellular carcinoma patient plasma; HCG: human chorionic gonatrophin; Imix : mixing current; IDE : Intergitated electrodes; 
IDS: Drain current; IFN-γ: Interferon gamma; ITO: indium tin oxide; JEV: Japanese Encephalitis virus; L: length; LPCVD: low pressure chemical vapor deposition; 
LMW: Low molecular weights; MFI: Magnetic Field Intensity; MGFET: Magnetic graphene Field Effect transistor; NPs: nanoparticles; NPSO: nanoporous silicon 
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oxide; OA: Okdaic acid; OGFET: optic-fiber graphene field effect transistor; PMMA: polymethyl methacrylate; PSA : prostate specific antigen; PNA : peptide 
nucleic acid; PDMS: polydimethylsiloxane; PBASE: 1-pyrenebutanoic acid succinimidyl ester; PBA: pyrenebutytic acid; PDI-diacid: bis(2-aminoethylene) 
perylene-3,4,9,10-tetracarboxyldiimide; PDMS: Polydimethylsiloxane; Pt: platinum; PLL: poly-L-lysine; RGO: higher reduction extent- reduced graphene oxide; 
TCO: transparent conductive oxide; TSH: thyroid stimulating hormone; Ti: titanium; TS: throat swab; SNP: Single-nucleotide polymorphisms; S: sensitivity; Si: 
Silicon; SiO2: Silicon oxide; Vg: gate voltage; Vds: Drain to source voltage; W: width. 

 


