Picaud Vincent
email: vincent.picaud@cea.fr

DNA Sequencing by MALDI-TOF MS using alkali cleavage of RNA / DNA Chimera

Keywords:

8, 2010 6/39 DNA Sequencing by MALDI-TOF MS November 8, 2010 7/39 good redundance (x4) no redundance DNA Sequencing by MALDI-TOF MS November 8, 2010 8/39 Modify the analyzed sequence to explain those new fragments: this generates a lot of potential candidates Use the redundancy to select the best sequences Restart and iterate DNA Sequencing by MALDI-TOF MS November 8, 2010 9/39 DNA Sequencing by MALDI-TOF MS November 8, 2010 10/39 DNA Sequencing by MALDI-TOF MS November 8, 2010 10/39 DNA Sequencing by MALDI-TOF MS November 8, 2010 10/39 DNA Sequencing by MALDI-TOF MS November 8, 2010 10/39 Algorithm, some details Conclusion Bibliography Algorithm overview For each configuration the resulting sequences are generated

ReaDNA project

REvolutionnary Approaches and Devices for Nucleic Acid analysis (ReaDNA) Coordinator: Dr. Ivo Glynne GUT (igut@pcb.ub.es)

European project FP7-HEALTH-2007-1, 48 months, 19 organizations DNA (re)sequencing (approx 400 bp)

Mutations we want to discover:

Peak death

Example of parasite peak mass spectra contain some parasite peaks with the current experimental protocol T cleavage is not possible; peaks not containing T are hardly detectable mass window for the mass spectra restrict fragment size from 3b ∼ 900m/z to ≈ 12b ∼ 4500m/z relation between peak height and number of occurrences of the fragment is not linear

Experimental constraints

Sequence and fragments view

Algorithm overview

The main steps of the algorithm are:

Search for peak pattern changes in spectra

For fragments associated with peak births (or increases), search those which are "close" to the analyzed sequence

Spectra processing (outline)

A reliable detection of changes in the peak patterns is critical for the approach, hence spectra must be processed with care

Computation of all potential masses

We solve

Mn,q = (n1, ..., nq) ∈ N q , q i=1 n i = n

All A-cleaved fragments of length n are generated by (n C , n G , n T) ∈ Mn-1,3.

We have |Mn,q| = n+q-1 q-1 and Fn =

Distance fragment-sequence

We have observed a new mass corresponding to the fragment CCTTTGA. We must find positions for which the fragment ACCTTTGA is "close" to the reference sequence. Here "close" means "allow a maximum of d modifications of the sequence to insert the fragment".

Distance fragment-sequence

We have observed a new mass corresponding to the fragment CCTTTGA. We must find positions for which the fragment ACCTTTGA is "close" to the reference sequence. Here "close" means "allow a maximum of d modifications of the sequence to insert the fragment".

Distance fragment-sequence

We have observed a new mass corresponding to the fragment CCTTTGA. We must find positions for which the fragment ACCTTTGA is "close" to the reference sequence. Here "close" means "allow a maximum of d modifications of the sequence to insert the fragment".

Distance fragment-sequence

We have observed a new mass corresponding to the fragment CCTTTGA. We must find positions for which the fragment ACCTTTGA is "close" to the reference sequence. Here "close" means "allow a maximum of d modifications of the sequence to insert the fragment". One idea is to proceed recursively: at each step i we do not decrease the maximum number of possible perfect matches for steps j ≥ i

M i = α∈A min α # (y i y i+1 ...yn), α # (y σ(i) y σ(i+1) ...y σ(n))
The admissible permutations σ will be implicitly generated, y σ(i) y σ(i+1) ...y σ(n) at step i is represented by the multiset S i , its initial value is

S i=1 = {α ∈ A, (α, α # (y 1 ...y n))} with insertions (-, |y | -|y |) in S i=1 , if |y | > |y |.

Fragment generator

The number of possible perfect matches for steps j ≥ i is:

M i = α∈A min α # (y i y i+1 ...yn), α # (S i)
We introduce R i the number of perfect matches realized during steps j, j < i:

M1 + 0 = M i + R i = M i+1 + R i+1 ⇒ (M i+1 -M i) + (R i+1 -R i) = 0
The algorithm takes the form:

FragmentGenerator(i, y , y i , S i) // End of recursion ? if (|S i | = 0) then Record y and exit
// Try all moves that do not increase d(y , y)

for α ∈ S i do if (Mi+1 -Mi) + (Ri+1 -Ri) = 0 then Call FragmentGenerator(i + 1, y , y α, S -{α})
The first call is FragmentGenerator(i = 1, y , {}, S 1)

DNA Sequencing by MALDI-TOF MS November 8, 2010 24/39

Fragment generator

1 Substitution y i ⇔ α: R i+1 -R i = 1 if y i = α 0 otherwise 1 Case y i = α: M i+1 -M i = min (α # (S i) -1, α # (y i..n) -1) -min (α # (S i), α # (y i..n)) M i+1 -M i + R i+1 -R i = -1 + 1 = 0
No extra condition

2 Case y i = α: (α # (S i) > α # (y i..n)) ∧ (y i# (y i..n) > y i# (S i)) 2 Insertion of α before y i (if |y | < |S i |):R i+1 -R i = 0 Fragment generator 1 Substitution y i ⇔ α: R i+1 -R i = 1 if y i = α 0 otherwise 1 Case y i = α: No extra condition 2 Case y i = α: M i+1 -M i + R i+1 -R i = + min (α # (S i) -1, α # (y i..n)) + min (y i# (S i), y i# (y i..n) -1) -min (α # (S i), α # (y i..n)) -min (y i# (S i), y i# (y i..n)) + 0
The condition to fulfill

M i+1 -M i + R i+1 -R i = 0 is (α # (S i) > α # (y i..n)) ∧ (y i# (y i..n) > y i# (S i))
Means:

(we have enough α for future needs) AND (we won't be able to realize all perfect matches for y

i) (α # (S i) > α # (y i..n)) ∧ (y i# (y i..n) > y i# (S i))
Fragment generator

1 Substitution y i ⇔ α: R i+1 -R i = 1 if y i = α 0 otherwise 1 Case y i = α: No extra condition 2 Case y i = α: (α # (S i) > α # (y i..n)) ∧ (y i# (y i..n) > y i# (S i)) 2 Insertion of α before y i (if |y | < |S i |):R i+1 -R i = 0 M i+1 -M i + R i+1 -R i = min (α # (S i) -1, α # (y i..n)) -min (α # (S i), α # (y i..n))
The condition to fulfill

M i+1 -M i + R i+1 -R i = 0 is α # (S i) > α # (y i..n)
We can now write down the complete algorithm DNA Sequencing by MALDI-TOF MS November 8, 2010 25/39

Fragment generator

1 Substitution y i ⇔ α: R i+1 -R i = 1 if y i = α 0 otherwise 1 Case y i = α: No extra condition 2 Case y i = α: (α # (S i) > α # (y i..n)) ∧ (y i# (y i..n) > y i# (S i)) 2 Insertion of α before y i (if |y | < |S i |):R i+1 -R i = 0
Fragment generator

FragmentGenerator(i, y , y i , S i) // End of recursion ? if (|S i | = 0) then
Record y and exit // For each α ∈ S i try all moves...

for α ∈ S i do // Insertion of α ? if (|y | < |S i |) ∧ (α # (S i) > α # (y i..n)) then Call FragmentGenerator(i, y , y + α, S -{α}) // Substitution y i ⇔ α ? if (y i = α) ∨ ((α # (S i) > α # (y i..n)) ∧ (y i# (y i..n) > y i# (S i))) then Call FragmentGenerator(i + 1, y , y α, S -{α})
Sequence modification Example: algorithm inputs

All the generated sequences are sorted and pruned according to a merit factor, only the best candidates are reused for the next iteration.

The merit factor can be computed by :

1 checking peaks in spectra raw data (likelihood computation) 2 simple count of the unexplained fragments (only the peak list is used)

In both cases this is the most time consuming operation

Example: algorithm inputs

All the generated sequences are sorted and pruned according to a merit factor, only the best candidates are reused for the next iteration.

The merit factor can be computed by :

1 checking peaks in spectra raw data (likelihood computation) 2 simple count of the unexplained fragments (only the peak list is used)

In both cases this is the most time consuming operation Example: algorithm inputs

All the generated sequences are sorted and pruned according to a merit factor, only the best candidates are reused for the next iteration.

The merit factor can be computed by :

1 checking peaks in spectra raw data (likelihood computation) 2 simple count of the unexplained fragments (only the peak list is used)

In both cases this is the most time consuming operation Currently working on a GUI to make the tools more usable by our partners (CEA/CNG Evry) All presented algorithms have been extended to support "mask" i.d. letter groups for which no modification are allowed.

Conclusion

The interpretation of experimental spectra can be problematic But artificial tests of the reconstruction algorithm have shown a good behavior (for instance 21 SNP correctly found for a 160 bp long sequence) Currently working on a GUI to make the tools more usable by our partners (CEA/CNG Evry)

All presented algorithms have been extended to support

Conclusion

The interpretation of experimental spectra can be problematic

But artificial tests of the reconstruction algorithm have shown a good behavior (for instance 21 SNP correctly found for a 160 bp long sequence)

Currently working on a GUI to make the tools more usable by our partners (CEA/CNG Evry)

All presented algorithms have been extended to support "mask" i.d. letter groups for which no modification are allowed.

Parallelization is easy.

 Search of the differences in the analyzed sequence explaining the differences in mass spectra peak patterns AlgorithmFor each sample we can get 4 spectra or 8 spectra if we also consider the complementary strand the information is redundant Algorithm

 the mass window, T-cleavage...)

 k<n|M k,3 | = 1 6 (n + 1)(n + 2)(n + 3) ⇒ F10 = 286, F20 = 1771 ⇒ the "masses universe" is not too "big" This mass catalog links mass and fragment composition:

 s) = d(y , y) + penalty for left and right boundaries d(y , y) = min σ d L (y , σ(y)) = min σ d L (σ(y), y) where σ is any letter permutation, d L (., .) the Levenshtein distance The penalty for boundaries (id cleavage letter) is trivial, here A = A, A = T ⇒ penalty=0+1 Distance fragment-sequence Distance d(y , y) = min σ d L (y , σ(y)) (all permutations are allowed) #comparisons = #equal + #not equal at least for one permutation σ * bounds are reached: #comparisons max (|y |,|y |) = max #equal α∈A min (α#(y),α#(y)) + min #not equal d L (y ,σ * (y))= d(y ,y) d L (y , σ * (y)) = d(y , y) = max |y |, |y | -α∈A min α # (y), α # (y The good news is that d L (y , σ * (y)) can be easily computed (no explicit knowledge of σ *) Most of the work can be done once for all for a given sequence, with a minimal work for each new fragmentThe procedure can be extended to take into account mask (letter can not be changed) y and y how to generate all letter permutations σ of y such that d L (y , σ(y)) = d(y , y) stay constant

For

 not allow to use redundancy and will likely to be discarded when only the best sequences are preserved This phenomenon can not happen if we are able to process all the potential modifications in parallel DNA Sequencing by MALDI-TOF MS November 8

 of examinated sequences #10561 ** All the observed peak pattern changes in the spectra, with their associated "fragments"

 of examinated sequences #10561 ** Number of examined sequences by the algorithm (output) of the reconstruction algorithm have shown a good behavior (for instance 21 SNP correctly found for a 160 bp long sequence) Currently working on a GUI to make the tools more usable by our partners (CEA/CNG Evry)ConclusionThe interpretation of experimental spectra can be problematic But artificial tests of the reconstruction algorithm have shown a good behavior (for instance 21 SNP correctly found for a 160 bp long sequence)

The objectives of ReaDNA are to provide solutions for several currently unmet needs of the very diverse aspects of nucleic acid analysis.

DNA re-sequencing by MALDI-TOF MS is only a small part of the whole project (WP2)

In this project, Florence Mauger, CEA/CNG Evry, (mauger@cng.fr) is my contact for chemical aspect of the work and for experimental data.

Insertion of α before y i (if |y | < |S i |):R i+1 -R i = 0 α # (S i) > α # (y i..n)DNA Sequencing by MALDI-TOF MS November 8, 2010

November 8, 2010

Fragment generator: main // not coded to be efficient but to follow as close as possible // the 'slide' presentation #include <map> #include <string> #include <iostream> #include <cassert> #include <algorithm> using namespace std; <<code multset>> <<code generator>> int main() { const std::string y("AT"),yp("ACTT"); // const std::string y("ACGGT"),yp("AAG"); // const std::string y(""),yp("AAC"); // const std::string y("AAC"),yp("");