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Abstract

This paper deals with the impact of line impedances uncertainties on model-based voltage controllers for distribution
networks in the context of secondary to tertiary control levels (i.e., 30 minutes control horizon). The study proposes
two methodologies: i) centralized and ii) distributed approaches, to estimate grid impedances by relying on static
historical measurement data and adjust the parameters of a model-based voltage controller. Furthermore, an online
impedance tuning scheme is proposed to successively fine-tune the impedance estimation over successive control
periods (along several days). The simulations results highlight the preciseness of the proposed methodologies, with
both centralized and distributed able to estimate the grid impedances within an acceptable accuracy (between 4 % and
7 % of error). Moreover, the proposed tuning algorithm shows to be very effective, where the estimation error can be
lowered under 1 %. Finally, robustness studies are performed to test the proposed methodologies in the presence of
measurement noises. Through this study, the robustness of the proposed tuning scheme can be validated, in which the
algorithm is able to correct massive impedance errors after three months of tuning rounds only.

Keywords:
Impedance estimation, distribution grid, grid parameter, model-based voltage controller, optimal power flow (OPF), distributed
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1. Introduction

Nowadays, the development of worldwide electricity
systems are starting to be “decentralized, decarbonized,
and democratized” [1]. With this trend in mind, many
renewable-based sources are now being deployed in
the distribution networks (i.e., medium and low voltage
level) and being closer to the customer-side. This type
of generation is called as Distributed Energy Resources
(DERs) with a geographic dispersion of small scales
units. Unlike conventional generating units, DERs can
also be deployed and owned by the consumers as “be-
hind the meter” assets. This phenomenon, and com-
plement with consumption flexibility, leads to turning
traditional consumers into prosumers [2].

Globally, distributed solar photovoltaic systems (PV)
account the highest share of DER deployments, and are
foreseen to increase vastly in the future. However, due
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to its intermittent and non-dispatchable nature, massive
integrations of PV systems can lead to unpredictable
network flows that can affect the quality of the power
supply. In particular, voltage problems have been ad-
dressed as the dominant effect in the massive integra-
tion of PV systems [3]. Unlike transmission systems,
distribution systems have a high R/X characteristic. As
a consequence, the grid voltage is more sensitive to
changes in active power flows, which is a typical case
in the grid with high penetration of PV systems. There-
fore, appropriate operational management of DERs is
essential to prevent possible voltage violations, and es-
pecially, to ensure the most economic benefit among the
distribution system actors, such as distribution system
operator (DSO) and prosumers.

The operational management of DER is typically for-
mulated as an optimal power flow problem (OPF) that
rely on grid parameters data (i.e., detailed data of branch
resistance and reactance) [4]. In the context of voltage
management, it can also be referred to as a model-based
voltage controller. In the literature, most of researches
on OPF or model-based voltage controller utilize an as-
sumption of perfect knowledge of the grid parameters.
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This assumption may not be realistic, as detailed infor-
mation of distribution grids is often inaccurate or even
not available, especially in low-voltage grids [5]. This
is mainly explained due to outdated information, which
can happen because of regular grid maintenance and re-
configuration that may not be well synchronized with all
stakeholders [6]. In addition, inaccurate grid data can
also occur due to the natural degradation (i.e., ageing)
of the lines due to exploitation.

Studies in [7, 8] have highlighted that inacurrate grid
parameters can significantly affect the operational effe-
ciency of the system, and even worse, cause a system
instability. In the context of model-based voltage con-
trollers, grid parameter uncertainties can lead to irrel-
evant control actions, such as over-curtailments of PV
systems that may incur additional economic loss to the
prosumers. Furthermore, previous works [9] showed
how the grid parameters error in model-based voltage
controller can even lead to an increase occurrence of
voltage violations. All in all, the study carried out in
this paper highlights the importance of having an accu-
rate grid model, especially to ensure that a model-based
voltage controller is able to maintain the grid voltage
within the required standards. This also points out the
need to develop algorithms that can precisely estimate
grid parameters, so that the optimality and the accuracy
of the control can be guaranteed.

Numerous methodologies are available in the litera-
ture for grid impedance estimation. For instance, stud-
ies in [5, 6] proposed a methodology to estimate grid
parameters using voltage magnitude as well as branch
active and reactive power measurements. While in [8],
the authors were able to perform the estimation by only
relying on voltage magnitude and phase information. A
recent study in [10] proposed a methodology to compute
lines resistance and reactance using only time-stamped
voltage magnitude measurements. However, the main
limitation of the proposed method is that it relies on
recursive algorithms (not optimization-based) and re-
quires more than ten thousands of measurement sam-
ples, resulting to high computational complexity. Our
motivation is to address the gap in the studied literature.
In particular, our objective is to develop a methodol-
ogy to estimate the grid impedance using the least least
amount of available information and with low computa-
tional complexity.

Most of impedance estimation methodologies in the
literature employ centralized approach, meaning that
the problem is solved by a dedicated centralized entity
(e.g., DSO or aggregator) who has access to prosumers’
assets and data, including their smart meters. This au-
thority may lead to risk of security and privacy concerns

to the prosumers. Moreover, a centralized computation
also presents reliability issues, since any loss of con-
troller/communication will jeopardize the overall con-
trol system. As a consequence, moving to distributed
computation is the key answer to overcome the afore-
mentioned challenges.

Therefore, this paper proposes methodologies to esti-
mate grid impedance parameters (i.e., branch resistance
and reactance) of a radial distribution grid using his-
torical measurement data for voltage management pur-
poses. We focus particularly on steady-state control
within the scope of operational management of DERs
– i.e., secondary to tertiary levels in the conventional hi-
erarchical control [11] with a control horizon of 30 min-
utes, such as in [12, 13]. The tuning of the controller fol-
lows the different approach proposed and based on RMS
measurement of the voltage magnitude. That considered
control/measurements horizon is also typically consid-
ered in the management of energy markets [14, 15]. All
in all, the proposed methodologies in this paper can pro-
vide precise values for grid parameters (up to 99% of
accuracy) for all the aforementioned control contexts.

The main contributions of this paper are summarized
as follows:

• Convex optimization-based strategies to estimate
grid impedance parameters by only utilizing volt-
age and bus power static (i.e., steady-state) histori-
cal measurements data of 30 minutes sample-time.

• Distributed impedance estimation schemes using
consensus alternating direction method of multipli-
ers (C-ADMM). As far as our knowledge, there is
no study in the literature that proposes a distributed
algorithm for impedance estimation.

• An impedance tuning algorithm to adaptively re-
fine branch resistance and reactance parameters
with successive runs of a model-based voltage con-
troller with 30 minutes time steps, simulated over
a year.

The remainder of this paper is organized as follows.
Section 2 firstly presents the model-based voltage con-
troller considered in this paper. Then, the proposed
methodologies to estimate grid impedance parameters
are introduced in the same section. The final part of the
section details the proposed strategic impedance tun-
ing algorithm. All the methodologies are simulated and
compared in Section 3, and Section 4 concludes the pa-
per.
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2. Model Formulation and Methodology

2.1. Model-Based Voltage Controllers
This paper specifically focuses on a radial distribu-

tion grid, which can be represented as a graph G(B,E),
where B = {0, 1, . . . , |B| − 1} and E = {(i, j)} ⊂ B × B
denote the sets of buses and lines/branches in the grid
respectively. Let T = {0,∆t, . . . , (|T | − 1) · ∆t} be a
generic set of time horizon, with ∆t denoting the time
step in minutes. Table. 1 presents the nomenclature of
the main fundamental symbols used throughout this pa-
per.

Table 1: Nomenclature of the fundamental symbols

Symbol Description

v j,t, ν j,t Voltage and squared voltage (i.e., v2
j ) at bus

j at time t

pnet
j,t , q

net
j,t Net active and reactive power at bus j at

time t

pi j,t, qi j,t Active and reactive power flowing from
bus i to bus j at time t

ii j,t, `i j,t Current and squared current (i.e., i2
i j) flow-

ing from bus i to bus j at time t

ri j, xi j Resistance and reactance of the line be-
tween bus i and bus j at time t

In this paper, two different voltage management ar-
chitectures (i.e., centralized and distributed) are consid-
ered, adapted from our previous works [16, 12]. In the
centralized control architecture , there exists a dedicated
centralized entity (e.g., DSO or aggregator) who is re-
sponsible for voltage management. In this case, the
centralized entity has direct access to prosumers’ as-
sets and data. The centralized voltage control is for-
mulized as a multi-objective optimal power flow (OPF)
problem with second-order conic programming (SOCP)
relaxation [17]. The objective of the OPF problem is to
minimize PV curtailments over a predefined time hori-
zon T , subjected to DistFlow (i.e., grid) model, PV and
voltage constraints that are not represented here for the
sake of clarity, but described in [16, 12]. The objective
function is illustrated in (1).

min
y

∑
j∈B

∑
t∈T

∆pnet
j,t︸︷︷︸

PV curtailments

+
∑

(i, j)∈E

∑
t∈T

`i j,t · ri j︸              ︷︷              ︸
Grid losses

(1)

where ∆pnet
j,t represents the change of bus j net power

due to active power curtailments. The vector y aggre-

gates the decision variables that consist of PV set-points
and grid state variables over the time horizon. The cen-
tralized control architecture can be fully transformed
into a distributed architecture using similar distributed
algorithm that will be presented in Section 2.2.2. The
complete formulation of the distributed OPF problem is
also available in previous work [12].

2.2. Impedance Estimation Algorithm
In this subsection, the proposed methodologies to es-

timate line impedances (i.e., resistance and reactance)
are presented. The general flow diagram of the method-
ologies is shown in Fig. 1. We utilize historical data
as inputs of the algorithms. Based on that, the line
impedance, i.e., resistance (ri j) and reactance (xi j), of
each branch can be estimated. In the proposed method-
ologies, we assume that we have access to voltage and
bus net powers (pnet

j,t , q
net
j,t ) measurements of all the buses.

This assumption is reasonable, due to the fact that a
prosumer (who represents a single bus here) shall be
equipped with smart meters.

It should be noted that the following additional as-
sumptions are also considered:

1. Synchronized and accurate measurements. How-
ever, further studies on algorithm robustness are
also performed in Section 3.3, where we investi-
gate the performance in the presence of measure-
ment error/noise.

2. Knowledge of the grid topology. However, the
distributed algorithms furtherly introduced in Sec-
tion 2.2.2 can relax this assumption.

Let T hist be the set of time interval of historical mea-
surements utilized as the input of the impedance estima-
tion algorithm. Moreover, let any symbol with an accent
·̂ represents measurement data, which also act as param-
eters in any optimization problem. We propose central-
ized and distributed methodologies for impedance esti-
mation, as presented below.

2.2.1. Centralized Impedance Estimation
We first consider a centralized scenario, where the

impedance estimation task is solved by a dedicated cen-
tralized entity (e.g., DSO or aggregator) who has access
to measurement data, including prosumers’ smart me-
ter. The details of this case are summarized in Fig. 2.

By utilizing only voltage and bus net powers data, we
propose a two-stage optimization problem as the algo-
rithm for estimating the line impedance, as depicted in
Fig. 3. For the centralized scenario, each stage of the
algorithm is presented below.

3



Figure 1: Impedance estimation algorithm.

Figure 2: Illustration of the centralized scenario.

Stage 1: pi j,t and qi j,t lower bound estimation. The aim
of the first stage is to find the lower bound for the ac-
tive and reactive power flows of each branch at each
time step. These bounds can be computed by solving a
model fitting problem (2), by considering the linearized
model of DistFlow (i.e., grid model) power flow equa-
tions [18] as the constraints. These linearized model ne-
glect the impedance term in the equations, as shown in
(2b) and (2c) (strikeout symbols). In this stage, the ob-
jective function aims at minimizing the sum of squared
difference between the computed and the actual mea-
surements of bus net powers -– summed over the time
horizon of the measurements.

min
y

∑
t∈T hist

∑
j∈B

(p̂net
j,t − pnet

j,t )2 + (q̂net
j,t − qnet

j,t )2 (2a)

subject to:

∀t ∈ T hist, ∀(i, j) ∈ E : p
i j,t

=
∑

k:( j,k)∈E

p
jk,t

+ pnet
j,t + r2

i j`i j,t

(2b)

q
i j,t

=
∑

k:( j,k)∈E

q
jk,t

+ qnet
j,t + x2

i j`i j,t

(2c)

where the vector y = (pnet
j,t , q

net
j,t , p

i j,t
, q

i j,t
| ∀(i, j) ∈

E, ∀t ∈ T hist) aggregates the considered decision vari-
ables. Naturally, line impedances have a characteris-
tic of ri j, xi j ≥ 0 (i.e., resistive and inductive). There-
fore, the presence of impedance term in the original
branch flow equations will increase (additive effect) the
magnitude of the power flows at the upstream branch
(pi j,t, qi j,t). This, in fact, describes the natural behavior
of the impedance that incur losses to the system. By ne-
glecting ri j, xi j (i.e., neglecting the losses), solving (2)
shall ultimately give the lower bounds of pi j,t, qi j,t.

Stage 2: Impedance estimation. In this stage, we pro-
pose a model fitting problem (3) in order to estimate
the ri j, xi j of each line. We utilize both voltage mea-
surements and the lower bounds of the branch powers
obtained from the previous stage. The proposed formu-
lation aims at minimizing the sum of squared difference
between the computed and the actual measurements of
bus voltages -– summed over the time horizon of the
measurements.

min
v,z

∑
j∈B

∑
t∈T hist

(ν̂ j,t − ν j,t)2 (3a)
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Figure 3: A two-stage impedance estimation algorithm for both centralized and distributed case.

subject to:

∀t ∈ T hist, ∀(i, j) ∈ E : ν j,t = νi,t − 2(ri j,t pi j,t
, xi j,tqi j,t

)

+ (r2
i j,t + x2

i j,t)`i j,t (3b)

∀(i, j) ∈ E : ri j, xi j ≥ 0 (3c)

where v = (ν j,t | ∀ j ∈ B, ∀t ∈ T hist) and z =

(r j, xi j| ∀(i, j) ∈ E) are the vectors that aggregate the
desicion variables. In the proposed formulation, we uti-
lize a linearized voltage equation [18] as in (3b). The
main reason of this is to preserve the convexity of the
problem. If we utilize the original voltage equation by
including the losses term (the strikeout symbols) in-
stead, the constraint becomes non-linear with respect
to r, x and the problem becomes non-convex. Lastly,
the constraint (3c) represents the typical characteristic
of lines that are resistive and inductive.

2.2.2. Distributed Impedance Estimation
In this section, we propose a distributed methodol-

ogy to solve the impedance estimation problem pre-
sented in Section 2.2.1. The main advantage of dis-
tributed approach is that prosumers do not necessarily
have to know the whole topology of the grid. Rather,
they only require to know which prosumers they are
connected with. Moreover, we can envision the dis-
tributed scenario as a coordination of prosumers without
any third-party involvement (e.g., aggregator or DSO).
In this case, prosumers only have access to local infor-
mation and they can exchange information to its adja-
cent/neighboring prosumers.

The distributed scenario is illustrated in Fig. 4. Each
prosumer indeed can easily access its local information
(i.e., voltage and bus power) through their smart meter.
Other grid state variables, such as branch power flows or
voltage of the adjacent buses, can be determined in the
course of coordination within the C-ADMM scheme.

As shown previously in Fig. 3, we can formulate the
first stage as a distributed problem by relying on coordi-
nation among prosumers. On the other hand, the second
stage can be solved individually by each prosumer with-

out relying on any communication. The details of each
stage of the distributed scenario are presented below.

Stage 1: distributed pi j,t and qi j,t lower bound estima-
tion. For the distributed problem, we apply a consensus
alternating direction method of multipliers (C-ADMM)
[19] to solve the original problem (1) in a distributed-
manner. The main principle of the C-ADMM is to de-
compose the augmented Lagrangian of a centralized op-
timizaton problem into several sub-problems, so that the
problems can be disseminated to control agents (i.e., the
prosumers). Each prosumer a then solves its respective
sub/local problem and exchange information in the form
of local variables (xa) with its adjacent prosumers. This
process is done iteratively until everyone reach a con-
sensus toward the global solution.

Let Ea ⊂ E be the set of lines that connect prosumer
a to its adjacent prosumers. For each prosumer a, the
ADMM variables considered for our Stage 1 problem
are described in (4).

xa = (p
i j,t( j)

, q
i j,t( j)
|(i, j) ∈ Ea, t ∈ T hist) (local variables)

(4a)

x̂a = (p
i j,t
, q

i j,t
|(i, j) ∈ Ea, t ∈ T hist) (consensus variables)

(4b)

λa = (λ
p
i j,t, λ

q
i j,t |(i, j) ∈ Ea, t ∈ T hist) (dual variables)

(4c)

Then, let k be the C-ADMM iteration number and
let the superscript ·{k} denotes the state of any vari-
ables/vectors at the iteration k. For each iteration k, a
generic C-ADMM formulation consist of the following
steps:

1) Local optimization: In the first step, each pro-
sumer a performs a local optimization to determine the
optimal local variables (x{k}a ) that will be shared to the
adjacent prosumers. The considered local optimization
of each prosumer a is described in (5), with the main
objective is similar as in (3a) but only considering the
prosumer’s individual bus powers. The decision vari-
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Figure 4: Illustration of the distributed scenario.

ables consist of the local variables x{k}a and the vector
y{k}a that aggregates the net bus powers (pnet

j,t , q
net
j,t ) over

the time horizon. Note that, we refer bus j in (5) to as
the bus where the prosumer a is located.

min
x{k}a ,y{k}a

∑
t∈T hist

(pnet
j,t − pnet

j,t )2 + (q̂net
j,t − qnet

j,t )2

︸                                     ︷︷                                     ︸
principal objective

+

λ{k−1}
a · (x{k}a − x̂{k−1}

a ) +
ρ

2

∥∥∥x{k}a − x̂{k−1}
a

∥∥∥2
2 (5)

subject to to similar constraints as in (2), ∀t ∈

T hist, ∀(i, j) ∈ Ea

where ρ ≥ 0 denotes the C-ADMM penalty parame-
ter (i.e., convergence rate) and x̂{k−1}

a , λ{k−1}
a are param-

eters obtained from the previous iteration. Additional
objetive term is integrated in (5). This part of the objec-
tive minimizes the difference between the values of the
local x{k}a and the consensus x̂{k−1}

a variables, weighted
by the dual variables λ{k−1}

a and ρ. This term is added
due to the fact that the consesus variables can be in-
terpreted as values in which all prosumers should ulti-
mately agree. Each prosumer a then shares the optimal
local variables vector x{k}a obtained in this step to its ad-
jacent prosumers. Remind that by using the proposed
coordination methodology, prosumers are not required
to share their behind the meter assets data (i.e., load and
PV), which are considered as sensitive information and
potentially harmful for their privacy [20].

2) Consensus update: Next, each prosumer a re-
ceives local variable vectors from its adjacent pro-
sumers, and utilizes this information to update locally
the consensus variables x̂{k}a . The local variables re-
ceived from the adjacent prosumers can be different in
values as the ones computed locally (in the previous
step). Therefore, the goal of the consensus variables is
to drive the local variables of all the agents to reach a

“consensus” state in each iteration.
The consensus variables are updated by taking the av-

erage of the locally computed variables and the values
received from the adjacent prosumers. For each pro-
sumer a, the consensus variables are updated as in (6)

∀(i, j) ∈ Ea :p{k}i j =
〈
p{k−1}

i j(a) , p{k−1}
i j(n:n∈Ma,i j)

〉
(6a)

q{k}i j =
〈
q{k−1}

i j(a) , q{k−1}
i j(n:n∈M j,i j)

〉
(6b)

where the sets Ma,i j consist of all the adjacent pro-
sumers that also consider pi j, qi j as their local/global
variables. Note that, the elements of xa are denoted sim-
ilarly to those of x̂a but with added subscript ·(a). This
subscript implies that the variable is computed/owned
by prosumer a and used to differentiate from the same
variables computed by other prosumers.

3) Dual update: In the last step, all the prosumers
update the dual variables using gradient ascent princi-
ples [19], as expressed in (7).

λ{k}a = λ{k−1}
a +

ρ

2
(x{k}a − z{k}a ) (7)

The algorithm then repeats and starts the next iteration
k + 1. It will terminate when it reaches a maximum
number of iteration kmax.

Stage 2: Impedance estimation. For the second stage,
identical problem as (3) is utilized, but with only con-
sidering the upstream branch as the constraints, as pre-
sented in (8).

min
v,ri j,xi j

∑
t∈T hist

(ν̂i,t − νi,t)2 + (ν̂ j,t − ν j,t)2 (8a)

6



subject to:

∀t ∈ T hist, ∀(i, j) ∈ Eup
a : ν j,t = νi,t − 2(ri j,t pi j,t

, xi j,tqi j,t
)

(8b)

∀(i, j) ∈ Eup
a : ri j, xi j ≥ 0 (8c)

where the considered decision variables consist of
ri j, xi j and the vector v = (ν j,t | ∀t ∈ T hist). In addition,
E

up
a ⊂ Ea is the set of upstream branches of prosumer a.

2.3. Strategic Impedance Tuning Algorithm

The proposed centralized and distributed impedance
estimation algorithms introduced in Section 2.2 may not
guarantee accurate impedance values. All the method-
ologies rely on historical data and the quantity of the
data will certainly influence the estimation accuracy.
Moreover, as we will study further in Section 3.3, the
presence of measurement errors affects the estimation
accuracy. In order to increase the preciseness of the
impedance estimation, we propose a strategic method
to successively fine-tune the impedances, as presented
in Fig. 5. Generally, the impedances are tuned after sev-
eral rounds of voltage management that we defined as
evaluation period. The proposed tuning scheme can be
conducted either in a centralized or a distributed man-
ner, as we will further describe in this subsection.

At the very first step, we utilize the initial estimated
impedances returned from the impedance estimation al-
gorithm (centralized or distribute approach depending
on the architecture) as the “starting point” values of
the parameters in our voltage controller. Then, we per-
form voltage management with these impedances over
a certain evaluation time period T eval. At the end of
the evaluation time, we compare the actual voltage and
bus powers measurements with the estimated values re-
turned by the controller, and tune the impedances based
on the proposed rules. This procedure then repeats at
every evaluation period.

In this paper, we consider a half-day time horizon for
the evaluation period T eval with 30 min time step (the
time step in which voltage management is performed
and measurements are extracted). This time horizon is
selected because we aim to target a frequent update of
the impedances and to have input measurements that
can capture the variability of night and day profiles.
Over the considered evaluation timeT eval, the following
information is utilized in the proposed tuning algorithm:

1. Actual voltage drop computed from the measure-
ments (9) and estimated voltage drop computed

(estimated) by the controller (10) at each branch.

∆v̂i j,t = v̂ j,t − v̂i,t (9)
∆vi j,t = v j,t − vi,t (10)

2. voltage drop deviation between the measurement
and the controller estimation (11).

ϑi j,t = ∆v̂i j,t − ∆vi j,t (11)

3. Active and reactive branch power flow direction.
This information can be retrieved from the output
of the controller (pi j,t, qi j,t). In our observation, al-
though the magnitude of the branch power flow re-
turned by the controller may not be precise (due
to inacurracy of impedance parameters), the power
flow directions, however, are accurate.

The proposed tuning strategy increases/decreases the
impedances values based on the observed voltage drop
deviations (ϑi j,t) at each time t. This is done in two
steps, as presented in Algorithm 1 and 2.

In the first step (Algorithm 1), our goal is to compute
the action variables for both the resistance (τr

i j) and the
reactance (τr

i j) of each branch. These variables will de-
termine if we shall either tune the resistance or the re-
actance for each impedance at the end of evaluation pe-
riod. Principally, we would like to tune the impedance
if the controller prediction on voltage drop (∆vi j,t) is far-
away from the actual measurement value (∆v̂i j,t). This
criterion can be described when |∆vi j,t − ∆v̂i j,t | > εϑ,
with εϑ is configured to 10−5 in this paper. On the oppo-
site, we consider an accepted estimation accuracy when
|∆vi j,t − ∆v̂i j,t | ≤ εϑ.

The tuning rules are formulated based on the volt-
age equation (3b). At each time step t, the algo-
rithm observes if ∆vi j,t is either under-estimated or over-
estimated for each branch. In fact, this can be defined
by looking at ϑi j,t of each branch, as presented in Algo-
rithm 1, line 4 and 7. When ∆vi j,t is under-estimated,
our goal is to decrease the term ri j pi j,t + xi jqi j,t since
it has substracting effect to the voltage drop (3b). On
the opposite, the term ri j pi j,t + xi jqi j,t shall be increased
when ∆vi j,t is over-estimated.

The active and reactive power flow directions further
determine the action that has to be taken for the resis-
tance and the reactance (either increase or decrease it).
The direction of the power flows can be determined by
simply looking at their sign (i.e., sgn(pi j,t), sgn(qi j,t)).
To recall, the power flows are returned by the controller,
not from the measurements. Then, at each time step,
(τr

i j) records if the branch resistance (ri j) should in-
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Figure 5: The proposed strategic impedance tuning scheme method.

Algorithm 1: Strategic impedance tuning step 1: action
variables computation

1 for (i, j) ∈ E do
2 τr

i j ← 0 and τx
i j ← 0

3 for t ∈ T eval do /* Evaluate at each time

step */

4 if ϑi j,t ≥ εϑ then /* Voltage drop

under-estimated */

5 τr
i j ← τr

i j − sgn(pi j,t) ;
6 τx

i j ← τx
i j − sgn(qi j,t) ;

7 else if ϑi j,t ≤ −εϑ then /* Voltage drop

over-estimated */

8 τr
i j ← τr

i j + sgn(pi j,t) ;
9 τx

i j ← τx
i j + sgn(qi j,t) ;

10 else
11 Continue ;
12 end
13 end
14 end

creases (+1) or decreases (−1), while (τx
i j) records it for

the reactance (xi j). The action variables for each line
(τr

i j, τ
x
i j) are updated over the whole evaluation period,

and their final values will decide the action to be given
to both ri j and xi j for each line.

Algorithm 2: Strategic impedance tuning step 2: Action
decision

1 for (i, j) ∈ E do
2 if |τr

i j| > |τ
x
i j| then /* Decision to act on

resistance */

3 if actionr
i j = −sgn(τr

i j) then
4 ψr

i j ← ψr
i j ∗ φ ; /* Decrease to

prevent oscillation */

5 end
6 ri j ← ri j ∗

(
1 +

(
ψr

i j · sgn(τr
i j)

))
;

7 actionr
i j ← sgn(τr

i j);
8 else if |τr

i j| < |τ
x
i j| then /* Decision to act on

reactance */

9 if actionx
i j = −sgn(τx

i j) then
10 ψx

i j ← ψx
i j ∗ φ ; /* Decrease to

prevent oscillation */

11 end
12 xi j ← xi j ∗

(
1 +

(
ψx

i j · sgn(τx
i j)

))
;

13 actionx
i j ← sgn(τx

i j);
14 else
15 Continue ;
16 end
17 end
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The objective of the second step (Algorithm 2) is to
decide either to act on ri j or xi j based on the obtained
action variables of each line. Simply, we act based on
the absolute largest action variable (line 2 and 20). This
variable can represent the most frequent tuning action
(i.e., increase/decrease either ri j or xi j) identified during
the evaluation time, as described in Algorithm 1. Then,
the final tuning action can be decided by observing the
sign of this largest action variables. If it is positive, the
final action will be to increase the corresponding largest
impedance component, i.e., either the resistance or the
reactance, as described in line 11 and 29 of Algorithm 2,
respectively. On the opposite, we will decrease the cor-
responding largest impedance component when the ob-
tained action variable is negative (line 4 and 21 of Al-
gorithm 2).

For each line, the impedance is updated using a tun-
ing parameter ψr

i j (for resistance) and ψx
i j (for reactance),

which are initially set to 0.1. From our observation, this
value is not excessively high (to prevent tuning oscilla-
tion) or extremely low (to prevent slow convergence).
Additionally, we also implement an adaptive parame-
ter update (i.e., line 3 and 9 of Algorithm 2) to pre-
vent oscillation during impedance tuning. In this con-
trol function, we decrease ψr

i j and ψx
i j by φ (50 % in this

paper) if the obtained tuning action differs from the past.
actionr

i j = 1 means that the we increased ri j in the last
action, while we decreased ri j if actionr

i j = −1. Similar
rules are also applied for actionx

i j.
As depicted in Fig. 5, the performance of the tuning

algorithm depends on the initial values of the impedance
estimation. The preciseness of the initial estimation un-
doubtedly influences the number of tuning rounds re-
quired until the impedances reach the convergence val-
ues (εϑ). Despite of that, the main advantage of the pro-
posed tuning algorithm is that it only requires voltage
measurements. Therefore, the algorithm can be car-
ried out either centrally or locally by each prosumer
in the context of distributed architecture. The only re-
quirement in distributed approach is that each prosumer
shall have the information of its neighbors’ voltage mea-
surements, which can be easily retrieved using a single
a round of communication (unlike the C-ADMM ap-
proach that requires a few rounds of iteration).

3. Simulations and Results

3.1. Case Study

In this paper, the IEEE 33-bus distribution system
[21] with additional integration of ten 1 MWp of PV

units is considered as the primary test system to eval-
uate the proposed methodologies. The PV profiles uti-
lized in the test system are obtained from real irradi-
ance data in Grenoble, France, and the load profiles are
adopted from the database that are available in [22] us-
ing a 30 min time step profiles. All the tests conducted
in this paper were performed using a computer with an
Intel® i3-430U processor and 8 GB of RAM.

In order to assess the performance of the proposed
methodologies, a voltage error criterion (δv) is defined.
This index measures how accurate the voltage controller
is (using the estimated impedances) to compute the volt-
age compared to the actual measurements. The formula-
tion of this computation criteria is obtained by the study
from [23], in which the voltage errors are normalized
with regard to the mean deviation of the voltage com-
puted over the total number of busses (12).

δv(%) =
100
|B|

∑
t∈T

∑
i∈B

|vi,t − v̂i,t |

1
|B|

∑
t∈T

∑
i∈B

|1 − v̂i,t |

(12)

3.2. Validation of the Methodology
The first objective of the test is to assess the perfor-

mance of the centralized and distributed impedance es-
timation algorithms. We test four different amount of
input scenarios (i.e., one to four days of measurements
data) for each proposed methodology. After the esti-
mated impedances are obtained, we conduct a validation
test by running the voltage controller over one day sim-
ulation horizon of 30 minutes time step and using deter-
minstic PV and load profiles, as shown in Fig. 6. More-
over, we utilize an open-source software Pandapower
[24] to emulate a real distribution grid and to generate
emulated RMS voltage measurements at each 30 min-
utes over the considered simulation horizon. By do-
ing this, it will allow us to compute the δv that will be
used to evalute the accuracy of the impedance estima-
tion. Note that, we do not display the resulting voltage
profiles with voltage control since it is not the main fo-
cus on this paper.

Fig. 7 shows the resulting δv as a function of the num-
ber of input data for both centralized and distributed
methodologies. The proposed algorithms can predict
the voltage values with only around 7 % of voltage es-
timation error with only utilizing one-day of measure-
ment data. It should be noted that we assume that we
have no knowledge of the impedance values prior run-
ning the algortihms. Both distributed and centralized
methods return comparable performances, where the
obtained δv are still close from one method to another.
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Figure 6: Simulation flow chart for validation test.

Figure 7: Comparison of δv between centralized and distributed methods.

Furthermore, the accuracy of the impedance estima-
tion can also be further improved by increasing the
number of input data. We only consider four different
input scenarios due to the computational time reason.
As shown in Table 2, there is a significant difference
in computational time between the centralized and dis-
tributed methods. This is obviously due to the iterative
nature of the distributed algorithm (i.e., C-ADMM) that
requires several rounds of iterations before reaching the
convergence state.

Our next objective is to observe the effectiveness of
the proposed strategic tuning algorithm in order to fur-
ther improve the accuracy of impedance estimation. In
this test, we tune the impedances successively over a
10 days of simulation horizon, with the evaluation time
horizon (T eval) of 12 hours (i.e., two evaluations per
day).

Fig. 8 shows the evolution of δv over 10 days, where
δv is computed at the end of each evaluation period (ev-
ery 12 hours) and day 0 refers to the initial estimated
impedance (before the tuning). The results show that
the proposed tuning algorithm is effective, and able to
lower δv below 1 % for all the methods at the end of the
simulation period.

To better visualize the obtained results, Fig. 9 shows
the absolute difference between the estimated (i.e., volt-
age state returned by the controller) and the actual
voltage drop (based on the measurements), which is
the |ϑi j,t |, over all branches at a particular time step.
Fig. 9(a) shows the obtained |ϑi j,t | by using the esti-
mated impedance with 1 day of training data (Fig. 7).
Yet, there are still some branches that could not achieve
the tolerance accuracy (i.e., |ϑi j,t | ≥ εϑ). Fig. 9(b) shows
|ϑi j,t | with the final impedances after 10 days of tuning.
The result shows that the tuning algorithm is very effec-
tive to fine-tune the impedance. Ultimately, |ϑi j,t | ≤ εϑ
can be achieved for all branches.

3.3. Robustness Test

The final study aims at validating the robustness of
the methodology to measurement errors and/or non-
synchronized measurements. To simulate this, we apply
a ramdom noise [25] with a standard deviation of 2 % (a
typical allowable range of measurement error [26]) to
the measurements data.

The impact of measurement errors is very significant,
as shown in Fig. 10. Compared to the reference val-
ues, i.e., a maximum of 7 % with one-day ideal input
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Table 2: Comparison of computational time (in seconds) between different methodologies.

Input data

1 day 2 days 3 days 4 days

Centralized 8 17 33 48

Distributed 950 1773 2025 3500

Figure 8: Evolution of δv with the tuning algorithm.

measurements (Fig. 7), both centralized and distributed
methods with measurement noise end up with a signifi-
cant voltage error (δv).

By applying the tuning algorithm, the accuracy of the
impedance estimation can be massively improved. In
the simulations, we try to tune the impedance over a
year time horizon using similar evaluation period of 12
hours. We can see from Fig. 11 that δv converges toward
small values after around 80 days of tuning. At the final
evaluation period, δv can reach a value of around 1 %,
which is a vast improvement compared to the initial es-
timated impedance without the tuning (above 100 % er-
ror).

Lastly, we intent to observe the effectiveness of the
tuning algorithm under three additional noise levels –
5 %, 8 % and 10 %. Due to the computational time
reason, the final tests only conducted with centralized
method and with one-year of tuning horizon (T eval) us-
ing the same evaluation period of 12 hours.

As highlighted in Fig. 12, the algorithm is able to
significantly improve δv after several days of tuning
rounds. We can see the impact of higher noise levels
at the final evaluation period, where the obtained δv is
higher as we impose more measurement noise. This
also implies that the algorithm needs more evaluation
days in order to reach the same level of δv as the pre-
vious case with 2 % of measurement error. The perfor-
mance of the tuning algorithm can also be improved by
a proper selection of the tuning parameters (i.e., ψr

i j and
ψx

i j) or by improving the criteria in the adaptive param-

eter update (Algorithm 2). However, all of the afore-
mentioned strategies have not been studied yet in this
paper.

4. Conclusion

In this paper, methodologies to estimate grid
impedances (i.e., line resistance and reactance) using
historical measurements data are presented. We pro-
posed two types of approaches: i) centralized and ii)
distributed that can recover line impedances using only
voltage and bus power data.

The first simulations showed that both centralized and
distributed methodologies were able to estimate the grid
impedance within an acceptable accuracy (minimum
2 % and maximum 7 % of error). In order to improve
the preciseness of the estimation, a strategic impedance
tuning scheme was also proposed to successively fine-
tune the impedances. The second part of the simula-
tions highlighted the effectiveness of the tuning strat-
egy, which it turns was able to significantly improve the
accuracy of the impedance estimation to under 1 %.

The final part of this chapter focused on robustness
tests of the algorithm, by imposing measurement noises
into account. The impact on measurement noise to the
proposed estimation algorithms is significant, where the
estimation error can reach values up to 100 times higher
than the ones from the case with ideal measurements.
Despite of that, the proposed tuning algorithm is yet
very effective to improve this massive error, lowering
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Figure 9: Resulting ϑi j,t at a particular time step: (a) without tuning and (b) with tuning.

Figure 10: Comparison of δv with measurement noise between centralized and distributed methods.

it to 4 % even further to 1 % after several tuning rounds.
Finally, it is worth reminding that the controller tuning
occurs over successive days which motivated the simu-
lation setup to operate in steady state (at a 30 min resolu-
tion here). The proposed approach shall then be further
validated with closer to real time simulations and while
embedding more realistic measurements errors (e.g. lag
and synchronization issues).
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