

Baseline Clinical and Blood Biomarker in Patients With Preataxic and Early-Stage Disease Spinocerebellar Ataxia 1 and 3

Sophie Tezenas Du Montcel, Emilien Petit, Titilayo Olubajo, Jennifer Faber, Pauline Lallemant-Dudek, Khalaf Bushara, Susan Perlman, Sub Subramony, David Morgan, Brianna Jackman, et al.

▶ To cite this version:

Sophie Tezenas Du Montcel, Emilien Petit, Titilayo Olubajo, Jennifer Faber, Pauline Lallemant-Dudek, et al.. Baseline Clinical and Blood Biomarker in Patients With Preataxic and Early-Stage Disease Spinocerebellar Ataxia 1 and 3. Neurology, 2023, pp.10.1212/WNL.00000000000207088. 10.1212/WNL.00000000000207088 . hal-03996914

HAL Id: hal-03996914

https://hal.science/hal-03996914

Submitted on 20 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Baseline Clinical and Blood Biomarker in Patients With Preataxic and Early-Stage Disease Spinocerebellar Ataxia 1 and 3

Sophie Tezenas du Montcel¹, MD, PhD, Emilien Petit¹, MSc, Titilayo Olubajo², MD, Jennifer Faber^{3,4}, MD, Pauline Lallemant-Dudek¹, MD, Khalaf Bushara⁵, MD, Susan Perlman⁶, MD, S. H. Subramony⁷, MD, David Morgan⁸, Brianna Jackman⁸, Henry Paulson⁹, MD, PhD, Gülin Öz¹⁰, PhD, Thomas Klockgether^{3,4}, MD, Alexandra Durr^{1,†}, MD, PhD, Tetsuo Ashizawa^{2,†}, MD, and READISCA Consortium Collaborators

Author Affiliations

- 1. Sorbonne Universite, Paris Brain Institute, Inserm, INRIA, CNRS, APHP, Paris, France.
- 2. The Houston Methodist Research Institute, Houston, TX, USA.
- 3. Department of Neurology, University Hospital of Bonn, Bonn, Germany.
- 4. German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
- 5. Department of Neurology, University of Minnesota, Minneapolis, MN, USA.
- 6. University of California, Los Angeles, CA, USA.
- 7. Norman Fixel Center for Neurological Disorders, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
- 8. Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, 49503 USA.
- 9. Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.

Correspondance to: Dr Sophie TEZENAS DU MONTCEL, Paris Brain Institute, Pitié-Salpêtrière Paris, 75646 Paris, France

[†] These authors equally contributed to this work.

Email: sophie.tezenas@aphp.fr

Running title: Preataxic signs in SCA1 and SCA3

Keywords: Spinocerebellar ataxia, clinical outcome assessments, neurofilament light chain

Abbreviations: CCAS = Cerebellar cognitive-affective syndrome, CCFS = Composite cerebellar functional severity score, EQ-5D = European quality of life 5 dimensions, FARS-ADL = Friedreich's ataxia rating scale activities of daily living subscale, FSS = Fatigue Severity Scale, INAS = Inventory of non-ataxia signs, NfL = Plasma neurofilament light chain, PHQ-9 = Patient health questionnaire-9, SARA = Scale for the assessment and rating of ataxia, SCA = Spinocerebellar Ataxia.

Contributions: Sophie Tezenas du Montcel: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data Emilien Petit: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data Titilayo Olubajo: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Jennifer Faber: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Pauline Lallemant-Dudek: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Khalaf Bushara: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Susan Perlman: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data Sub H Subramony: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data

David Morgan: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data Brianna Jackman: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data Henry Lauris Paulson: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design Gülin Öz: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design Thomas Klockgether: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design Alexandra Durr: Drafting/revision of the manuscript for content, including medical writing for content; Major role

in the acquisition of data; Study concept or design; Analysis or interpretation of data Tetsuo Ashizawa: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Figure Count: 3

Table Count: 3

Search Terms: [53] Case control studies, [298] Spinocerebellar ataxia, Clinical outcome

assessment

Abstract

Background and Objective: In spinocerebellar ataxia, ataxia onset can be preceded by mild clinical manifestation, cerebellar and/or brainstem alterations or biomarkers modifications. READISCA is a prospective, longitudinal observational study of patients with spinocerebellar ataxias type 1 and 3 to provide essential markers for therapeutic interventions. We looked for clinical, imaging or biological markers that are present at an early-stage of the disease.

Methods: We enrolled carriers of a pathological *ATXN1* or *ATXN3* expansion and controls from 18 US and two European ataxia referral centers. Clinical, cognitive, quantitative motor, neuropsychological measures and plasma neurofilament light chain (NfL) measurements were compared between mutation carriers with and without ataxia and controls.

Results: We enrolled 200 participants: 45 carriers of a pathological *ATXN1* expansion (31 patients with ataxia (median SARA: 9 [7;10]), 14 mutation carriers without ataxia (1 [0;2])) and 116 carriers of a pathological *ATXN3* expansion (80 patients with ataxia (7 [6;9]), 36 mutation carriers without ataxia (1 [0;2])). In addition, we enrolled 39 controls who did not carry a pathological expansion in *ATXN1* or *ATXN3*. Plasma NfL levels were significantly higher in mutation carriers without ataxia than controls, despite similar mean age (controls: 5.7 pg/mL, SCA1: 18.0 pg/mL (P <0.0001), SCA3: 19.8 pg/mL (P<0.0001). Mutation carriers without ataxia differed from controls by significantly more upper motor signs (SCA1 P=0.0003, SCA3 P=0.003) and by the presence of sensor impairment and diplopia in SCA3 (P=0.0448, and 0.0445 respectively). Functional scales, fatigue and depression scores, swallowing difficulties, and cognitive impairment were worse in mutation carriers with ataxia than those without ataxia. Ataxic SCA3 subjects showed extrapyramidal signs, urinary dysfunction and lower motor neuron signs significantly more often than mutation carriers without ataxia.

<u>Discussion and Conclusion:</u> READISCA showed the feasibility of harmonized data acquisition in a multi-national network. NfL alterations, early sensory ataxia and corticospinal signs were quantifiable between preataxic participants and controls. Patients with ataxia differed in many parameters from controls and mutation carriers without ataxia, with a graded increase of abnormal measures from control to preataxic to ataxic cohorts.

Introduction

The READISCA study is a multinational longitudinal observational study of SCA1 and SCA3 with preataxic and early ataxic cohorts. Several prospective cohorts that include ataxic or preataxic subjects exist, such as EUROSCA, RISCA, CRC-SCA4 and BIGPRO5 but READISCA is the first one to pool European and American participants with SCA. READISCA aims to compare their clinical profiles to control individuals and analyze early clinical, imaging and blood biomarkers features.

The clinical hallmark of SCAs is progressive cerebellar ataxia. The most common among the 48 autosomal, dominantly inherited disease loci are SCA1, SCA2, and SCA3. They are caused by translated unstable CAG repeat expansions in *ATXN1*, 2 and 3 respectively. Ataxia manifesting as gait disturbance, incoordination of upper limb movements, cerebellar eye movements and dysarthria in SCA1 and 3 is often associated with pyramidal signs. A non-exhaustive list of other symptoms can appear during the course of the disease including ophtalmoparesis in SCA1, and dystonia and parkinsonism in SCA3.⁶ In SCAs with expansions of CAG repeats encoding polyglutamines, ataxia onset usually occurs at age 30–40 years for these SCAs.^{6,7} Individuals with longer CAG repeats have an earlier onset of ataxia, and the repeat length explains 44 - 75% of the variability in age at onset.⁸

Ataxia onset can be preceded by mild clinical manifestations, such as diplopia in SCA3, nerve conduction abnormalities, and cerebellar and brainstem volume loss. ^{2,9–14} This early preataxic stage is of particular interest as it could provide an intended period for preventive intervention. The optimum time of introducing neuroprotective measures to defer onset or slow the rate of disease progression is likely the preataxic stage.

A sufficient number of study participants is critical to conduct a conclusive clinical trial. Establishing large, well-characterized cohorts is particularly important because of the interindividual variability of age at onset and severity. We report here the baseline clinical and blood biomarker data from this longitudinal study with the aim of identifying the features that distinguish healthy from preataxic and early-stage disease in SCA1 and SCA3.

Patients and Methods

Patients

We report the baseline READISCA data. Participants were enrolled between 2018 and 2020, and the clinical database was locked in December 2020 after inclusion of 200 participants.

Individuals with SCA1 or SCA3 were recruited from 18 US and two European ataxia referral centers (Appendix). Recruitment target was 200 individuals, including 60 early-stage patients, 60 preataxic expansion carriers, 60 50%-at-risk subjects, and 20 patients, who had a SARA (Scale for the Assessment and Rating of Ataxia) score <10 during the previous (2009-2012) natural history study⁴ (previously early-stage) and additional controls according to eTable 1. The sample size was guided by feasibility to enroll preataxic and very early-stage participants at these sites. Patients were eligible when they had progressive, otherwise unexplained, cerebellar ataxia and a positive molecular genetic test for a pathological CAG repeat expansion in ATXN1 or ATXN3. Exclusion criteria were a known genotype consistent with other inherited ataxias, concomitant disorder(s) that affects assessment of presence or severity of ataxia during this study, investigational drugs taken in the 2 months prior to participation in the study, changes in coordinative physical and occupational therapy for ataxia in the 2 months prior to study entry and unwillingness to provide a DNA sample at the enrollment in the study. Confirmatory genotyping for SCA1 and SCA3 were performed on blood samples obtained at the baseline visit. For 50%-at-risk subjects, genotyping results were released to the subject's designated physician or genetic counselor after a release of information form had been signed. Genetic counseling for the disclosure of DNA results was part of the procedure. Asymptomatic subjects, who received positive DNA results, were included in the preataxic carrier group while those with negative results were included in the control group. Patients were categorized into three groups: patients with ataxia (early-stage and previously

Patients were categorized into three groups: patients with ataxia (early-stage and previously early-stage patients), preataxic participants (known preataxic SCA1 or SCA3 mutation carriers and those among the 50% at-risk individuals) and controls (controls and subjects who were not mutation carriers among the 50% at-risk individuals) (Figure 1).

The study was approved by the ethics committees of the participating centers according to the Declaration of Helsinki. Written informed consent was obtained from all study participants at enrolment. The study protocol is available online.¹⁷ The authors have received consent forms from any participant in a study and have them on file in case they are requested by the editor. The study was registered on Clinicaltrial.gov (NCT03487367).

Outcomes

For the reported age at onset, we took the earliest age at onset of any of the following symptoms: walking problems, speech problems, vision, and "other" problems. The predicted age at ataxia onset was calculated based on CAG repeat length as reported for SCA1 carriers¹⁸

and the formula from Peng et al. for SCA3 carriers.¹⁹ For all expansion carriers, we calculated an estimated time from onset as the difference between the age at the visit and the predicted age at ataxia onset. Negative estimated time from onset corresponds to time to onset, while positive estimated time from onset correspond to the time from ataxia onset. A mutation carrier without ataxia can have a positive estimated time from onset if he has already exceeded his expected onset, meanwhile a patient with ataxia can have a negative estimated time from onset if ataxia started earlier than expected. This allows aligning all mutation carriers on the same disease timeline.

We used the SARA scale to assess the presence and severity of cerebellar ataxia. ²⁰ SARA axial was derived from the SARA score by the sum of the gait, stance, sitting and speech disturbance items of the SARA and SARA appendicular by the sum of the finger-chase, nosefinger test, fast alternating hand movements and heel-shin items of the SARA. Composite Cerebellar Functional Severity Score (CCFS) was applied.²¹ Extra cerebellar signs were assessed during a neurological examination with the Inventory of Non-Ataxia Signs (INAS).²² The INAS lists signs from neurological examination, and additional reported symptoms (diplopia, dysphagia, urinary dysfunction, cognitive complaint) that were grouped into 16 non-ataxia signs. Presence of each sign was given a score of 1, and absence a score of 0, giving a maximum number of non-ataxia signs of 16. In order to analyze pathways, we grouped several signs: i) Upper Motoneuron involvement was defined as at least one of these three items: hyperreflexia, extensor plantar reflex and/or spasticity; ii) Lower Motoneuron as at least one of these three items: distal paresis, muscle atrophy and/or fasciculations; iii) Extrapyramidal as of at least one of these three items: rigidity, resting tremor, dystonia; iv) Nystagmus as of at least one of these three items: Downbeat-nystagmus, gaze-evoked nystagmus on horizontal or vertical testing; v) Ophthalmoparesis as presence of vertical and/or horizontal gaze limitations and vi) Saccadic dysmetria as presence of either hypo or hypermetric saccades.

We assessed cognitive impairment with the Cerebellar Cognitive Affective Syndrome (CCAS) scale, ²³ fatigue with the Fatigue Severity Scale (FSS)²⁴ and activities of daily living with the Friedreich's Ataxia Activities of Daily Living (FARS-ADL) scale. ²⁵ Depressive symptoms were assessed with the Patient Health Questionnaire 9 (PHQ-9)^{26,27} and, as a measure of health-related quality of life, we applied the EuroQol 5D (EQ-5D) questionnaire. ²⁸ For the present analysis, we used the EQ-5D visual analogue scale. ²⁹

All investigators were experienced in the use of the applied scales. For the SARA score, a web-based certification was required.

NfL measurements

We collected plasma samples on EDTA tube anticoagulant, frozen at -80 °C, and stored in the local biobank (EU), or BioSEND (https://biosend.org/) repository (US). Plasma NfL levels were measured in duplicate using an ultra- sensitive single molecule array on the Simoa HD-1 Analyzer (Quanterix), as previously established. 30

Statistical analysis

Quantitative values are showed as median [1st quartile; 3rd quartile], qualitative variables as frequency (percent). Comparisons between controls, mutation carriers without ataxia and patients with ataxia were performed using Kruskal-Wallis test for quantitative variables and Chi-squared test for qualitative variables. For significant differences in quantitative values, Dunn adjusted pairwise comparisons were performed. "p_CP", "p_CA" and "p_PA" respectively refers to the p-value of the pairwise test of controls vs preataxics, controls vs ataxic and preataxics vs ataxic. For significant differences in qualitative values, two degrees of freedom chi-square test were performed for pairwise comparisons. For SARA comparisons, a Wilcoxon test was performed between controls and mutation carriers without ataxia only. For the INAS signs that were significantly different between controls and preataxic participants, NfL levels were compared between those with and without the sign using a Student t-test. Correlations between quantitative variables were tested using Pearson correlation tests. To evaluate the agreement between the predicted and the reported age at ataxia onset among the patients with ataxia, Bland-Altman plots were created with marked 95% limits of agreement. Statistical tests were performed at the conventional two-tailed type I error of 0.05. Data were analyzed using R version 3.4.0 (R Core Team, 2018).

Data Availability Statement

The clinical and imaging data from READISCA are available from the NIMH Data Archive.³¹

Results

Among the 200 participants (Figure 1), 45 were carriers of a pathological *ATXN1* expansion including 31 patients with ataxia with a median SARA score: 9 [7; 10] and 14 mutation carriers without ataxia with a median SARA score of 1 [0; 2]). There were 116 carriers of a pathological *ATXN3* expansion, including 80 patients with ataxia (SARA 7 [6; 9]) and 36 mutation carriers without ataxia (SARA 1 [0; 2]). In addition, among the at-risk participants, 27 did not carry a pathological expansion in *ATXN1* or *ATXN3* (0 [0; 1]) (Table 1 and 2). One hundred fifty-five participants were included in the US, 25 in France and 20 in Germany. The characteristics at baseline were comparable regarding age, gender, age at onset, expanded CAG repeat length and SARA (eTable 2).

Comparisons between control, mutation carriers with and without ataxia

For both groups, patients with ataxia were older (SCA1 median: 47 [41; 54], SCA3: 49 [41; 54]) than both the preataxic participants (SCA1: 39 [34; 46], $p_PA = 0.0619$; SCA3: 36 [32; 41], $p_PA = 0.0001$) and the controls (38 [31; 47], SCA1: $p_CA = 0.0092$, SCA3: $p_CA = 0.0009$) (Table 1 and 2). As expected, they had significantly more severe cerebellar and functional scores than mutation carriers without ataxia.

Interestingly, extra-cerebellar signs were already present in mutation carriers without ataxia with an INAS count significantly higher in mutation carriers without ataxia than in controls for both SCAs (P = 0.0004 for SCA1 and P = 0.003 for SCA3). Mutation carriers without ataxia had significantly more upper motoneuron involvement, mainly hyperreflexia, than the controls (SCA1: P = 0.0003, Figure 2A, SCA3: P = 0.034, Figure 2C). Hyperreflexia was already present in 61% of the preataxic SCA1 and in 31% of the preataxic SCA3 individuals (Table 1 and 2). Even spasticity at gait was already observed in 31% of the preataxic SCA1 subjects. In addition to the corticospinal signs, SCA3 mutation carriers without ataxia showed significantly more impaired posterior column signs indicating the presence of afferent deficit occurring before cerebellar ataxia (36% preataxic patients with decreased vibration sense at ankles, P = 0.0248)

Ataxic stages were predominated by upper motor neuron disease and decreased vibration sense as well as cognitive signs on CCAS in addition to cerebellar ataxia in SCA1. SCA3

ataxic individuals had a more diffuse disease, with upper and lower motor neuron, as well as extrapyramidal and oculomotor signs being significantly more frequent compared to controls and preataxic participants. After adjustment for the expanded CAG repeat length, the differences between mutation carriers without ataxia and with ataxia remain similar. In both groups, patients with ataxia had higher PHQ9 and FARS-ADL scores than controls, while the scores of fatigue and quality of life were significantly higher (worse) in SCA3 but not in SCA1, probably explained by more urinary dysfunction and dysphagia in SCA3 patients with ataxia.

Estimated Age at onset and Time from onset

Based on the Tezenas et al. formula (SCA1) and the Peng et al. formula (SCA3) the estimated age at onset was derived from the CAG repeats. It explained 42% of the reported age at onset variance for SCA1 and 33% for SCA3. Bland-Altman plots showed no mean bias between reported ages at onset compared to estimated ages at for both SCAs, the difference between reported and estimated ages at onset not being significantly different from 0 (SCA1: -0.26 [-16.10; 15.60], SCA3: -1.54 [-21.00; 17.91]) (Figure 3). However, in SCA1, patients with older ages at onset had onset later than what was expected (Figure 3A, r = -0.44, P = 0.021)).

For both SCAs, the estimated time from onset was correlated with all the tested clinical outcomes except for PHQ9, FSS and EQ5D for SCA1 (Table 3): the longer the estimated time from onset the more severe the clinical outcomes.

Plasma Neurofilament Light chain (NfL)

The mean NfL values differed significantly between all groups, preataxic participants being intermediate between controls and patients with ataxia (Table 1, Figure 2B and 2D). Mean NfL levels were significantly higher at preataxic stage than in healthy individuals in SCA1 (18.0 pg/mL [12.3;21.9] versus 5.7 [4.3;7.2] P < 0.0001) and in SCA3 (19.8 pg/mL [13.9;27.3] P < 0.0001). These differences remain significant after adjustment for the expanded CAG repeat length. This is not explained by age difference; the controls and mutation carriers without ataxia had similar ages. Among carriers (preataxic and patients with ataxia), NfL values were positively correlated with the estimated diseased duration (r = 0.633, P < 0.0001), SARA (r = 0.756, P < 0.0001), CCFS (r = 0.362, P = 0.0084) and INAS count (r = 0.740, P < 0.0001). In addition, the mean NfL levels were higher for SCA1 patients with

decreased vibration sense at ankles (35.5 \pm 17.9 versus 21.9 \pm 10.7, P = 0.023) and SCA3 patients with diplopia (31.6 \pm 8.6 versus 18.2 \pm 13.3, P = 0.0009) (eTable 3).

Discussion

In the READISCA study, 200 individuals, 161 carriers of pathological repeats in ATXN1 or ATXN3 and 39 controls, were included to be followed over time in a multicenter, international study. The baseline data are reported here. Our findings indicate a separation of the disease course of mutation carriers without ataxia from healthy controls, continuing into very earlystage SCA1 and SCA3. This builds on what we have learned from the RISCA study, that included 50 SCA1 and 26 SCA3 carriers among other CAG repeat SCAs.² Cramps were present in 23% of the preataxic READISCA SCA1 patients and in 40% of the RISCA carriers.² The most prevalent sign was early upper motor neuron impairment in 61% of preataxic SCA1 individuals in the READISCA study. In RISCA, corticospinal signs were also significantly more frequent in SCA1 carriers.³ It had been shown that central motor conduction time is increased at preataxic stage in SCA1.³² This underpins the early corticospinal involvement in SCA1.³² In preataxic SCA3, corticospinal involvement was associated with sensory deficit reflecting a combined alteration of long axons. In addition, diplopia distinguished the preataxic SCA3 group from controls, which could be due to early cerebellar signs that create dis-conjugated eye movements. Similar eye movement alterations have been evidenced by a video-oculography recording in 28 Brazilian pre-ataxic SCA3 carriers from the BIGPRO cohort.⁵ These patients were 4.2 years before median predicted onset, and the slow-phase velocity of gaze-evoked nystagmus correlated time to onset.⁵ Baseline analysis in the RISCA cohort showed a higher rate of horizontal gaze-evoked nystagmus in SCA3 carriers, but no difference of the abnormalities such as decreased vibration sense and increased reflexes as found in READISCA. This could be due to the younger age in the RISCA cohort compared to READISCA (28 years versus 36 years) and that RISCA participants were further away from the predicted age at ataxia onset (9 years versus 2 years but with different models used for these predictions). Thus, READISCA preataxic carriers were more advanced in the pathological disease stage.

In ataxic stages, CCAS showed cognitive alterations in 50% of SCA1 and 43% of SCA3 in line with a previous study using a less specific cognitive evaluation.³³ Comorbid depression was also reported common in SCA, up to 26%.³⁴ There were differences according to the geographical origin of the cohorts with suicidal ideation that was present in 65% in SCA3 in

the US CRC-SCA cohort,⁴ and major depressive syndrome in 12% in the EUROSCA cohort.³⁵ In READISCA, depression as assessed by PHQ-9 was already present in SCA3 at preataxic stage, but not significantly different from controls. Both SCA1 and SCA3 patients were more depressed than controls in the ataxic stage. This could be alleviated by early psychological support and treatment with selective serotonin reuptake inhibitors.⁷

NfL is a very early biomarker that increases either with the speed of neurodegeneration or with its spread in the nervous system.³⁶ In mutation carriers without ataxia corticospinal and posterior column axons are affected in SCA1 and SCA3, and this could drive the NfL levels at that stage. In a recent study on SCA1 NfL levels, there were 23 SCA1 preataxic carriers and they had lower NfL levels than in our study (aged 25 years and 15.5 pg/ml (10.5-21.1) versus 39 years and 18.0 pg/mL [12.3;21.9]).³⁷ The increase can be explained by older age but not by the clinical stage. Therefore, NfL allows stratification for homogenous groups of mutation carriers without ataxia and the combination with other biomarkers such as enotaxin can be promising.³⁸

The strong correlations of estimated time from onset with SARA, CCFS, CCAS scale and NfL measurements suggest that assessments reflected the underlying disease process and might therefore be suitable for therapeutic surveillance. They are correlated with the estimated time from onset that can be negative in carriers and positive in early-stage patients. This result showed that there is a continuous pathological dysfunction and that the concept of a threshold for disease onset as an event should be abandoned.³⁹ The continuing spread of neurodegeneration in hereditary diseases has been evoked through evident neurodevelopmental deficits observed decades before the "onset" of signs in the closely related Huntington Disease.⁴⁰

As the study included carriers before the onset of ataxia, we did not use the participant-reported disease duration to correlate with the current measures of functional status, which would decrease the sample size and thus the power, and bias the analysis, omitting the pre-ataxia subjects. Instead, we used the estimated time from onset derived from the estimated age at ataxia onset based on the CAG repeat length even if is well known that prediction of age at onset based on the size of expanded CAG repeats can be substantially variable especially in adult-onset patients. For SCA1 carriers, we used our formula, which is the only one available. For SCA3 carriers, Peng et al. Peng to published a new formula that was used instead of our formula. The Peng formula used a linear transformation from the CAG repeat length while our formulae used an exponential transformation of a quadratic function of the

CAG repeat length. With our formula, patients with late estimated and reported onset showed an underestimated age at onset, which was not the case with the Peng formula, indicating a better use of CAG repeat size and its influence on age at onset (Data not shown).

A limitation of the study despite the multicenter setting is the small sample size for the preataxic groups with SCA1 and SCA3. Nevertheless, we were able to show differences between preataxic participants and healthy controls, which was the focus of READISCA. Longitudinal data are needed to analyze the predictive value of the presence of these symptoms prior to ataxia onset.

Predictability of SCAs by the presence of the pathological CAG repeat makes these diseases accessible for early intervention before pathological dysfunction. The findings from this study have key relevance for informing strategies to counteract early changes at the right time. They showed that preataxic features could be detected, even in the absence of ataxia. We observed that corticospinal signs for SCA1 and SCA3 and posterior column signs with sensory ataxia for SCA3 are present in the preataxic stage. These results combined with those of the MRI analysis performed on a subset of this cohort⁴¹ support the finding that neuronal dysfunction occurs many years before the development of cerebellar ataxia.⁷ Until today, the presence of cerebellar signs had diagnostic value in SCAs. The alterations that we describe in preataxic SCA1 and SCA3 carriers who are ~6 years before estimated ataxia onset, should be considered when selecting participants for future therapeutic trials and not restrict the selection to patients with cerebellar signs.

Acknowledgements

The READISCA investigators would like to thank all participants for their enduring willingness and interest in this research. We extend gratitude to all study coordinators at READISCA sites (https://readisca.org/readisca-team/#Coordinators) and Chantel Potvin for outstanding project management. We further thank the National Ataxia Foundation for assistance with traveling logistics of participants.

Funding

This work was supported by the National Institute of Neurological Disorders and Stroke (NINDS) grant U01 NS104326 to TA, HLP, GO, AD and TK. Dr Morgan received a Michigan ADRC grant (P30 AG072931). The content is solely the responsibility of the

authors and does not necessarily represent the official views of the National Institutes of Health.

Competing interests

Dr. Tezenas du Montcel receives research support from Biogen. Dr Subramony receives research support from National Ataxia Foundation, Biohaven, NIH, FDA, MDA, Wyck Foundation, FARA, Reata, PTC therapeutics, Retrotope, Avidity Biosciences, Fulcrum therapeutics, Reneo Pharma and AAVANTIBio, and serves on the Scientific Advisory Board for Reata, Avidity and Dyne therapeutics. Dr. Öz consults for IXICO Technologies Limited and uniQure biopharma B.V., serves on the Scientific Advisory Board of BrainSpec Inc. and receives research support from Biogen. Dr Ashizawa received grants from NAF and Biogen and participates in Biohaven clinical trials NCT03952806 and NCT03701399. The other authors report no relevant disclosures.

Appendix 2: Coinvestigators

Name	Location	Role	Contribution
Claire	Sorbonne Université, Paris Brain		
Ewenczyk MD,	Institute (ICM), Assistance Publique	Site	
PhD	des Hôpitaux de Paris (APHP), France	Investigator	Data collection
	Sorbonne Université, Paris Brain		
Anna	Institute (ICM), Assistance Publique	Site	
Heinzmann MD,	des Hôpitaux de Paris (APHP), France	Investigator	Data collection
	Sorbonne Université, Paris Brain		
Solveig Heide	Institute (ICM), Assistance Publique	Site	
MD,	des Hôpitaux de Paris (APHP), France	Investigator	Data collection
	Sorbonne Université, Paris Brain		
Perrine Charles	Institute (ICM), Assistance Publique	Site	
MD, PhD,	des Hôpitaux de Paris (APHP), France	Investigator	Data collection
	Sorbonne Université, Paris Brain		
Giulia Coarelli	Institute (ICM), Assistance Publique	Site	
MD,	des Hôpitaux de Paris (APHP), France	Investigator	Data collection

	Sorbonne Université, Paris Brain		
Paulina Cunha	Institute (ICM), Assistance Publique	Site	
MD,	des Hôpitaux de Paris (APHP), France	Investigator	Data collection
	Sorbonne Université, Paris Brain		
Sabrina Sayah	Institute (ICM), Assistance Publique	Site	
PhD,	des Hôpitaux de Paris (APHP), France	Investigator	Data collection
	Sorbonne Université, Paris Brain		
Hortense	Institute (ICM), Assistance Publique	Site	
Hurmic MsC	des Hôpitaux de Paris (APHP), France	Investigator	Data collection
Marcus Grobe-	German Center for Neurodegenerative	Site	
Einsler MD,	Diseases (DZNE), Bonn, Germany	Investigator	Data collection
Demet Oender	German Center for Neurodegenerative	Site	
MD	Diseases (DZNE), Bonn, Germany	Investigator	Data collection
Okka Kimmich	German Center for Neurodegenerative	Site	
MD	Diseases (DZNE), Bonn, Germany	Investigator	Data collection
	German Center for Neurodegenerative	Site	
Nina Roy PhD	Diseases (DZNE), Bonn, Germany	Investigator	Data collection
	German Center for Neurodegenerative	Site	
Ilaria Giordano	Diseases (DZNE), Bonn, Germany	Investigator	Data collection
	German Center for Neurodegenerative	Site	
Veronika Purrer	Diseases (DZNE), Bonn, Germany	Investigator	Data collection
	German Center for Neurodegenerative	Site	
Carolin Miklitz	Diseases (DZNE), Bonn, Germany	Investigator	Data collection
Cornelia	German Center for Neurodegenerative	Site	
McCormick	Diseases (DZNE), Bonn, Germany	Investigator	Data collection
Matthew Burns	University of Florida, Gainesville, FL,	Site	
MD, PhD	USA	Investigator	Data collection
Trevor	University of Colorado, Boulder, CO,	Site	
Hawkins, MD	USA	Investigator	Data collection
Lauren	University of Colorado, Boulder, CO,	Site	
Seeberger, MD	USA	Investigator	Data collection
Drew Scott	University of Colorado, Boulder, CO,	Site	
Kern, MD	USA	Investigator	Data collection

George Wilmot,		Site	
MD, PhD	Emory University, Atlanta, GA, USA	Investigator	Data collection
Laura Scorr,		Site	
MD	Emory University, Atlanta, GA, USA	Investigator	Data collection
Liana Rosenthal	Johns Hopkins University, Baltimore,	Site	
MD, PhD	MD, USA	Investigator	Data collection
Chiadi Onyike,	Johns Hopkins University, Baltimore,	Site	
MD	MD, USA	Investigator	Data collection
Michael			
Geschwind,	University of California, San	Site	
MD, PhD	Francisco, CA, USA	Investigator	Data collection
Alexandra			
Nelson, MD,	University of California, San	Site	
PhD	Francisco, CA, USA	Investigator	Data collection
Cameron	University of California, San	Site	
Dietiker, MD	Francisco, CA, USA	Investigator	Data collection
Armen			
Moughamian,	University of California, San	Site	
MD, PhD	Francisco, CA, USA	Investigator	Data collection
Sheng-Han Kuo,		Site	
MD	Columbia University	Investigator	Data collection
Vikram			
Shakkottai, MD,		Site	
PhD	University of Michigan	Investigator	Data collection
Christopher			
Gomez, MD,	University of Chicago, Chicago, IL,	Site	
PhD	USA	Investigator	Data collection
Mahesh			
Padmanaban,	University of Chicago, Chicago, IL,	Site	
MD	USA	Investigator	Data collection
Talene			
Yacoubian, MD,		Site	
PhD	Univ of Alabama-Birmingham	Investigator	Data collection

Marissa Dean,		Site	
MD	Univ of Alabama-Birmingham	Investigator	Data collection
Jeremy			
Schmahmann,		Site	
MD, PhD	Mass General Hospital (Harvard)	Investigator	Data collection
Peggy C.		Site	
Nopoulos, MD	University of Iowa	Investigator	Data collection
Annie Killoran,		Site	
MD	University of Iowa	Investigator	Data collection
Puneet Opal,	Northwestern University, Evanston,	Site	
MD, PhD	IL, USA	Investigator	Data collection
Theresa		Site	
Zesiewicz, MD	University of South Florida	Investigator	Data collection
	Stanford University, Stanford, CA,	Site	
Sharon Sha, MD	USA	Investigator	Data collection
Veronica	Stanford University, Stanford, CA,	Site	
Santini, MD	USA	Investigator	Data collection
Jacinda	Stanford University, Stanford, CA,	Site	
Sampson, MD	USA	Investigator	Data collection
Peter Morrison,	University of Rochester, Rochester,	Site	
DO	NY, USA	Investigator	Data collection
Erika	University of Rochester, Rochester,	Site	
Augustine, MD	NY, USA	Investigator	Data collection
Alex			
Paciorkowski,	University of Rochester, Rochester,	Site	
MD	NY, USA	Investigator	Data collection

References

- 1. Jacobi H, du Montcel ST, Bauer P, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. *Lancet Neurol*. 2015;14(11):1101-1108. doi:10.1016/S1474-4422(15)00202-1
- 2. Jacobi H, Reetz K, du Montcel ST, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal

- RISCA study: analysis of baseline data. *Lancet Neurol*. 2013;12:650-658. doi:10.1016/S1474-4422(13)70104-2
- 3. Jacobi H, du Montcel ST, Romanzetti S, et al. Conversion of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 to manifest ataxia (RISCA): a longitudinal cohort study. *Lancet Neurol*. 2020;19(9):738-747. doi:10.1016/S1474-4422(20)30235-0
- 4. Luo L, Wang J, Lo RY, et al. The Initial Symptom and Motor Progression in Spinocerebellar Ataxias. *The Cerebellum*. 2017;16(3):615-622. doi:10.1007/s12311-016-0836-3
- 5. Oliveira CM, Leotti VB, Bolzan G, et al. Pre- ataxic Changes of Clinical Scales and Eye Movement in MACHADO–JOSEPH Disease: BIGPRO Study. *Mov Disord*. 2021;36(4):985-994. doi:10.1002/mds.28466
- 6. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. *Lancet Neurol*. 2010;9:885-894. doi:10.1016/S1474-4422(10)70183-6
- 7. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. *Nat Rev Dis Primer*. 2019;5(1):24. doi:10.1038/s41572-019-0074-3
- 8. van de Warrenburg BP, Hendriks H, Durr A, et al. Age at onset variance analysis in spinocerebellar ataxias: a study in a Dutch-French cohort. *Ann Neurol*. 2005;57:505-512. doi:10.1002/ana.20424
- 9. Velázquez-Perez L, Rodríguez-Labrada R, Canales-Ochoa N, et al. Progression markers of Spinocerebellar Ataxia 2. A twenty years neurophysiological follow up study. *J Neurol Sci.* 2010;290(1-2):22-26. doi:10.1016/j.jns.2009.12.013
- 10. Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. *Lancet Neurol*. 2014;13(5):482-489. doi:10.1016/S1474-4422(14)70027-4
- 11. Velázquez-Pérez L, Rodríguez-Labrada R, Torres-Vega R, et al. Progression of corticospinal tract dysfunction in pre-ataxic spinocerebellar ataxia type 2: A two-years follow-up TMS study. *Clin Neurophysiol Off J Int Fed Clin Neurophysiol*. 2018;129(5):895-900. doi:10.1016/j.clinph.2018.01.066
- 12. Christova P, Anderson JH, Gomez CM. Impaired Eye Movements in Presymptomatic Spinocerebellar Ataxia Type 6. *Arch Neurol*. 2008;65(4):530. doi:10.1001/archneur.65.4.530
- 13. Nanetti L, Alpini D, Mattei V, et al. Stance instability in preclinical SCA1 mutation carriers: A 4-year prospective posturography study. *Gait Posture*. 2017;57:11-14. doi:10.1016/j.gaitpost.2017.05.007
- 14. Faber J, Schaprian T, Berkan K, et al. Regional Brain and Spinal Cord Volume Loss in Spinocerebellar Ataxia Type 3. *Mov Disord*. 2021;36(10):2273-2281. doi:10.1002/mds.28610

- 15. Diallo A, Jacobi H, Cook A, et al. Prediction of Survival With Long- Term Disease Progression in Most Common Spinocerebellar Ataxia. *Mov Disord*. 2019;34(8):1220-1227. doi:10.1002/mds.27739
- 16. Kuo PH, Gan SR, Wang J, et al. Dystonia and ataxia progression in spinocerebellar ataxias. *Parkinsonism Relat Disord*. 2017;45:75-80. doi:10.1016/j.parkreldis.2017.10.007
- 17. READISCA Protocol. Accessed June 13, 2022. https://readisca.org/about/#study-criteria
- 18. Tezenas du Montcel S, Durr A, Rakowicz M, et al. Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. *J Med Genet*. 2014;51(7):479-486. doi:10.1136/jmedgenet-2013-102200
- 19. Peng L, Chen Z, Long Z, et al. New Model for Estimation of the Age at Onset in Spinocerebellar Ataxia Type 3. *Neurology*. 2021;96(23):e2885-e2895. doi:10.1212/WNL.000000000012068
- 20. Schmitz-Hübsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. *Neurology*. 2006;66(11):1717-1720. doi:10.1212/01.wnl.0000219042.60538.92
- 21. du Montcel ST, Charles P, Ribai P, et al. Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. *Brain*. 2008;131(5):1352-1361. doi:10.1093/brain/awn059
- 22. Jacobi H, Rakowicz M, Rola R, et al. Inventory of Non-Ataxia Signs (INAS): validation of a new clinical assessment instrument. *Cerebellum*. 2013;12:418-428. doi:10.1007/s12311-012-0421-3
- 23. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. *Brain*. 2018;141(1):248-270. doi:10.1093/brain/awx317
- 24. Learmonth YC, Dlugonski D, Pilutti LA, Sandroff BM, Klaren R, Motl RW. Psychometric properties of the Fatigue Severity Scale and the Modified Fatigue Impact Scale. *J Neurol Sci.* 2013;331(1-2):102-107. doi:10.1016/j.jns.2013.05.023
- 25. Lynch DR, Farmer JM, Tsou AY, et al. Measuring Friedreich ataxia: Complementary features of examination and performance measures. *Neurology*. 2006;66(11):1711-1716. doi:10.1212/01.wnl.0000218155.46739.90
- 26. Spitzer RL. Validation and Utility of a Self-report Version of PRIME-MDThe PHQ Primary Care Study. *JAMA*. 1999;282(18):1737. doi:10.1001/jama.282.18.1737
- 27. Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: Validity of a brief depression severity measure. *J Gen Intern Med*. 2001;16(9):606-613. doi:10.1046/j.1525-1497.2001.016009606.x
- 28. Rabin R, Charro F de. EQ-SD: a measure of health status from the EuroQol Group. *Ann Med.* 2001;33(5):337-343. doi:10.3109/07853890109002087

- 29. EuroQol Group. EuroQol a new facility for the measurement of health-related quality of life. *Health Policy*. 1990;16(3):199-208. doi:10.1016/0168-8510(90)90421-9
- 30. Kuhle J, Kropshofer H, Haering DA, et al. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. *Neurology*. 2019;92(10):e1007-e1015. doi:10.1212/WNL.0000000000007032
- 31. Archive ND. National Institute of Mental Health Data Archive (NDA). https://nda.nih.gov/
- 32. Farrar MA, Vucic S, Nicholson G, Kiernan MC. Motor cortical dysfunction develops in spinocerebellar ataxia type 3. *Clin Neurophysiol*. 2016;127(11):3418-3424. doi:10.1016/j.clinph.2016.09.005
- 33. Klinke I, Minnerop M, Schmitz-Hübsch T, et al. Neuropsychological Features of Patients with Spinocerebellar Ataxia (SCA) Types 1, 2, 3, and 6. *The Cerebellum*. 2010;9(3):433-442. doi:10.1007/s12311-010-0183-8
- 34. Lo RY, Figueroa KP, Pulst SM, et al. Depression and clinical progression in spinocerebellar ataxias. *Parkinsonism Relat Disord*. 2016;22:87-92. doi:10.1016/j.parkreldis.2015.11.021
- 35. Schmitz-Hübsch T, Coudert M, Tezenas du Montcel S, et al. Depression comorbidity in spinocerebellar ataxia. *Mov Disord*. 2011;26(5):870-876.
- 36. Coarelli G, Darios F, Petit E, et al. Plasma neurofilament light chain predicts cerebellar atrophy and clinical progression in spinocerebellar ataxia. *Neurobiol Dis*. 2021;153:105311. doi:10.1016/j.nbd.2021.105311
- 37. Wilke C, Mengel D, Schöls L, et al. Levels of Neurofilament Light at the Preataxic and Ataxic Stages of Spinocerebellar Ataxia Type 1. *Neurology*. Published online March 9, 2022:10.1212/WNL.0000000000200257. doi:10.1212/WNL.0000000000200257
- 38. da Silva Carvalho G, Saute JAM, Haas CB, et al. Cytokines in Machado Joseph Disease/Spinocerebellar Ataxia 3. *The Cerebellum*. 2016;15(4):518-525. doi:10.1007/s12311-015-0719-z
- 39. Maas RPPWM, van Gaalen J, Klockgether T, van de Warrenburg BPC. The preclinical stage of spinocerebellar ataxias. *Neurology*. 2015;85(1):96-103. doi:10.1212/WNL.000000000001711
- 40. Barnat M, Capizzi M, Aparicio E, et al. Huntington's disease alters human neurodevelopment. *Science*. 2020;369(6505):787-793. doi:10.1126/science.aax3338
- 41. Chandrasekaran J, Petit E, Park YW, et al. Clinically meaningful MR endpoints sensitive to preataxic and early ataxic stages of SCA1 and SCA3.2022.

Table 1: Characteristics of the patients with a pathological ATXN1 expansion according to the subgroup (control, preataxic, ataxic)

	READISCA Partici	pants		P-value	· •		
Variable	Control group (n=39)	Preataxic group (n=14)	Ataxic group (n=31)	Global	Control - Preataxi c	Preataxic - Ataxic	Control - Ataxic
Sex (Women)	18 (46.2%)	10 (71.4%)	17 (54.8%)	0.2622	-	_	_
Age (years)	38 [30.5;46.5]	39 [34.0;45.5]	47 [40.5;54.0]	0.0065	0.8738	0.0619	0.0092
Normal CAG repeat size	-	30 [29;30]	29 [29;30] n=30	-	-	0.4811	-
Expanded CAG repeat size	-	42 [42;45]	45 [43;49] n=30	-	-	0.0125	-
Age at onset (years)	-	-	40.0 [32.0;48.3] n=28	-	-	-	-
Disease duration (years)	-	-	6.5 [4.0;9.5] n=29	-	-	-	-
Estimated disease duration (years)	-	-5.6 [-9.4;-0.8]	9.4 [4.1;11.1] n=30	-	-	< 0.0001	-
Plasma Neurofilament light chain (pg/mL)	5.7 [4.3;7.2] n=34	18.0 [12.3;21.9] n=11	28.9 [23.2;34.4] n=26	<0.0001	<0.0001	0.0057	<0.0001
SARA/max worse value 40	0 [0;1.4] n=38	1.0 [0;2.0] n=13	9.0 [7.0;9.5]	-	0.2699	-	-
SARA axial/ max worse value 24	0 [0;0] n=38	0 [0;1.0] n=13	5.0 [4.0;5.0]	-	0.2536	-	-
SARA appendicular/ max worse value 16	0 [0;1.0] n=38	0 [0;1.0] n=13	4.0 [3.0;4.5]	-	0.6184	-	-
CCFS	0.875[0.834;0.922] n=32	0.861 [0.827;0.888] n=10	n=22	0.0001	0.537	0.0001	0.0002
CCAS	104.0 [100.3;109.0] n=38	102.0 [99.8;105.8] n=12	89.0 [83.0;97.3] n=28	<0.0001	0.719	0.0106	<0.0001
CCAS failed > 2	4 (10.5%) n =38	0 (0%) n=12	13 (50.0%) n=26	0.0001	0.8542	0.0055	0.0297
PHQ9/max worse 27	1.0 [0;3.0]	0 [0;3.0] n=13	4.0 [1.0;8.5]	0.0062	0.8426	0.0314	0.016
FSS/ max worse 63	19.0 [12.5;24.5]	15.0 [13.5;19.8] n=12	22.0 [13.5;32.5]	0.254	-	-	-
FARS-ADL/ max worse 22	0 [0;1.0]	0 [0;1.0] n=13	6.0 [3.1;8.4] n=30	< 0.0001	0.9958	< 0.0001	< 0.0001
Functional stage/ max worse 7	0 [0;0] n=37	0 [0;1.0] n=12	2.0 [1.8;2.5]	< 0.0001	0.1342	< 0.0001	< 0.0001
EQ5D/max worse 100	90.0 [80.0;90.0]	90.0 [85.0;98.0] n=13	77.5 [70.0;88.8] n=30	0.0007	0.2342	0.0036	0.0085
INAS count/max worse value 16	0 [0;1.0]	2.0 [1.0;2.0] n=13	2.0 [1.0;3.0]	<0.0001	0.0004	0.2761	<0.0001
Upper motoneuron signs	2 (5.1%)	8 (61.5%) n=13	20 (64.5%)	< 0.0001	0.0003	1	< 0.0001

Hyperreflexia	2 (5.1%)	7 (53.8%) n=13	19 (61.3%)	< 0.0001	0.0015	0.9926	< 0.0001
Extensor plantar reflex	0 (0%) n=37	2 (16.7%) n=12	3 (10.0%) n=30	0.0691	-	-	-
Spasticity	0 (0%)	4 (30.8%) n=13	10 (32.3%)	0.0006	0.011	1	0.0023
Lower motoneuron signs	0 (0%)	1 (7.7%) n=13	4 (12.9%)	0.076	-	-	-
Fasciculations	0 (0%)	0 (0%) n=12	3 (9.7%)	0.0772	-	-	-
Muscle atrophy	0 (0%)	0 (0%) n=13	1 (3.2%)	0.4279	-	-	-
Paresis	0 (0%)	1 (7.7%) n=13	0 (0%)	0.0655	-	-	-
Extrapyramidal signs	0 (0%)	1 (7.7%) n=13	3 (9.7%)	0.1493	-	-	-
Resting tremor	0 (0%)	0 (0%) n=13	1 (3.2%)	0.4279	-	-	-
Rigidity	0 (0%)	1 (7.7%) n=13	2 (6.5%)	0.2467	-	-	-
Dystonia	0 (0%)	0 (0%) n=13	0 (0%)	-	-	-	-
Areflexia	4 (10.3%)	1 (7.7%) n=13	3 (9.7%)	0.9638	-	-	-
Impaired vibration sense at ankles	3 (7.7%)	2 (15.4%) n=13	16 (51.6%)	0.0001	0.9638	0.1664	0.0006
Chorea / Dyskinesia	0 (0%)	1 (7.7%) n=13	0 (0%)	0.0655	-	-	-
Nystagmus	2 (5.1%)	3 (23.1%) n=13	8 (25.8%)	0.0443	0.3977	1	0.1075
Ophthalmoparesis	0 (0%)	0 (0%) n=13	3 (9.7%)	0.0735	-	-	-
Dysmetric saccades	1 (2.6%)	0 (0%) n=13	20 (64.5%)	< 0.001	1	0.0016	< 0.001
Diplopia	0 (0%)	0 (0%) n=13	5 (16.1%)	0.0115	0.5959	0.1023	
Urinary dysfunction	1 (2.6%)	0 (0%) n=13	5 (16.1%)	0.0513	-	-	-
Dysphagia	0 (0%)	0 (0%) n=13	17 (54.8%)	< 0.0001	-	0.009	< 0.0001
Cramps	3 (7.7%)	3 (23.1%) n=13	14 (45.2%)	0.0013	0.6051	0.5863	0.0036

Data are expressed as median [IQR] or frequency (percent). N are mentioned only for the cells with missing data. PS: preataxic

Table 2. Characteristics of the patients with a pathological ATXN3 expansion according to the subgroup (control, preataxic, ataxic)

	READISCA Partici	pants		P value	, -	,	
Variable	Control group (n=39)	Preataxic group (n=36)	Ataxic group (n=80)	Global	Control - Preatax ic	Preataxic - Ataxic	Control - Ataxic
Sex (Women)	18 (46.2%)	23 (63.9%)	41 (51.2%)	0.2802	-	-	_
Age (years)	38.0 [30.5;46.5]	36.0 [32.0;41.3]	48.5 [40.8;54.0]	< 0.0001	0.9573	0.0001	0.0009
Normal CAG repeat size	-	23 [21;26]	23 [20;24] n=75	-	-	0.2402	-
Expanded CAG repeat size	-	70 [69;72]	72 [69;73] n=79	-	-	0.1238	-
Age at onset (years)	-	-	41.0 [30.0;47.0] n=74	-	-	-	-
Disease duration (years)	-	-	5.0 [3.0;9.8] n=74	-	-	-	-
Estimated disease duration (years)	-	-2.2 [-6.8;3.4]	9.9 [5.5;13.6] n=79	-	-	< 0.0001	-
Plasma Neurofilament light chain (pg/mL)	5.7 [4.3;7.2]	19.8 [13.9;27.3] n=24	31.4 [26.4;36.4] n=64	<0.0001	<0.0001	<0.0001	<0.0001
SARA/max worse value 40	0 [0;1.4] n=38	1.0 [0.4;2.0]	7.0 [5.5;8.5]	-	0.0199	-	-
SARA axial/ max worse value 24	0 [0;0] n=38	0 [0;1.0]	4.0 [3.0;5.0]	-	0.0869	-	-
SARA appendicular/ max worse value 16	0 [0;1.0] n=38	0.5 [0;1.0]	3.5 [2.5;4.0]	-	0.1496	-	-
CCFS	0.875 [0.834;0.922] n=32	0.851 [0.829;0.886] n=29	0.963 [0.903;1.012] n=71	<0.0001	0.4116	<0.0001	<0.0001
CCAS	104.0 [100.3;109.0] n=38	101.0 [94.0;111.0] n=33	94.0 [87.0;101.0] n=75	<0.0001	0.3769	0.0142	<0.0001
CCAS failed >2	4 (10.5%) n=38	3 (9.1%) n=33	32 (42.1%) n =75	0.0001	1	0.0059	0.0066
PHQ9/max worse 27	1.0 [0;3.0]	2.0 [1.0;5.3]	4.0 [2.0;8.0] n=79	0.0012	0.2973	0.0914	0.0017
FSS/ max worse 63	19.0 [12.5;24.5]	21.0 [18.8;33.0]	31.0 [18.5;41.5] n=79	0.0003	0.1527	0.1143	0.0003
FARS-ADL/ max worse 22	0 [0;1.0]	0 [0;1.8] n=35	5.0 [2.5;9.0] n=77	< 0.0001	0.2119	< 0.0001	< 0.0001
Functional stage/ max worse 7	0 [0;0] n=37	0 [0;1.0]	2.0 [1.5;2.3] n=79	< 0.0001	0.0132	< 0.0001	< 0.0001
EQ5D/max worse 100	90.0 [80.0;90.0]	87.5 [80.0;96.3]	79.0 [70.0;85.0] n=79	< 0.0001	0.8391	0.0003	0.0004
INAS count/max worse value 16	0 [0;1.0]	1.0 [0;2.0]	3.0 [2.0;4.0] n=79	<0.0001	0.003	< 0.0001	<0.0001
Upper motoneuron signs	2 (5.1%)	11 (30.6%)	41 (51.9%) n=79	<0.0001	0.034	0.1551	<0.0001

Hyperreflexia	2 (5.1%)	11 (31.4%) n=35	34 (43.0%) n=79	0.0001	0.0289	0.6296	0.0003
Extensor plantar reflex	0 (0%) n=37	1 (2.9%) n=34	8 (10.7%) n=75	0.0587	-	-	-
Spasticity	0 (0%)	0 (0%)	17 (21.5%) n=79	0.0001	-	0.024	0.0171
Lower motoneuron signs	0 (0%)	3 (8.3%)	27 (34.2%) n=79	< 0.0001	0.4577	0.0263	0.0005
Fasciculations	0 (0%)	3 (8.3%)	26 (32.9%) n=79	< 0.0001	0.4577	0.0356	0.0007
Muscle atrophy	0 (0%)	1 (2.8%)	2 (2.5%) n=79	0.5929	-	-	-
Paresis	0 (0%)	0 (0%)	3 (3.8%) n=79	0.234	-	-	-
Extrapyramidal signs	0 (0%)	1 (2.8%)	12 (15.2%) n=79	0.0077	0.9992	0.2641	0.0806
Resting tremor	0 (0%)	0 (0%) n=35	3 (3.9%) n=77	0.2297			
Rigidity	0 (0%)	1 (2.8%)	5 (6.4%) n=78	0.2232	-	-	-
Dystonia	0 (0%)	0 (0%)	4 (5.1%) n=79	0.1424	-	-	-
Areflexia	4 (10.3%)	2 (5.7%) n=35	31 (39.2%) n=79	< 0.0001	0.9593	0.0029	0.0102
Impaired vibration sense at ankles	3 (7.7%)	13 (36.1%)	47 (59.5%) n=79	< 0.0001	0.0248	0.1042	< 0.0001
Chorea / Dyskinesia	0 (0%)	0 (0%)	2 (2.5%) n=79	0.3822	-	-	-
Nystagmus	2 (5.1%)	8 (22.2%)	56 (70.9%) n=79	< 0.0001	0.1854	< 0.0001	< 0.0001
Ophthalmoparesis	0 (0%)	1 (2.8%)	18 (22.8%) n=79	0.0003	0.9992	0.055	0.0123
Dysmetric saccades	1 (2.6%)	3 (8.3%)	53 (67.1%) n=79	< 0.0001	0.837	< 0.0001	< 0.0001
Diplopia	0 (0%)	7 (19.4%)	41 (53.2%) n=77	< 0.0001	0.0445	0.0063	< 0.0001
Urinary dysfunction	1 (2.6%)	3 (8.3%)	25 (31.6%) n=79	0.0001	0.837	0.0477	0.0037
Dysphagia	0 (0%)	5 (13.9%)	31 (39.2%) n=79	< 0.0001	0.1506	0.0437	0.0001
Cramps	3 (7.7%)	9 (25%)	50 (63.3%) n=79	<0.0001	0.2249	0.0015	<0.0001

Data are expressed as median [IQR] or frequency (percent). N are mentioned only for the cells with missing data.

Table 3: Correlations of the estimated time from onset with the clinical outcomes and NfL levels

	SCA1 (n = 45)		SCA3 (n = 116)	
	r (95% CI)	p-value	r (95% CI)	p-value
CCFS	0.412 (0.068; 0.669)	0.021	0.354 (0.169; 0.516)	<0.001
SARA	0.68 (0.477; 0.814)	< 0.001	0.545 (0.402; 0.662)	< 0.001
Axial SARA	0.644 (0.426; 0.791)	< 0.001	0.556 (0.415; 0.671)	< 0.001
Appendicular SARA	0.652 (0.437; 0.796)	< 0.001	0.407 (0.242; 0.549)	< 0.001
CCAS	-0.374 (-0.617; -0.067)	0.019	-0.215 (-0.389; -0.026)	0.026
PHQ9	-0.016 (-0.315; 0.286)	0.92	0.063 (-0.122; 0.244)	0.503
FSS	0.13 (-0.181; 0.418)	0.411	0.149 (-0.036; 0.324)	0.114
FARS-ADL	0.556 (0.304; 0.736)	< 0.001	0.381 (0.209; 0.529)	< 0.001
EQ5D	-0.261 (-0.524; 0.046)	0.095	-0.251 (-0.415; -0.07)	0.007
NfL (pg/mL)	0.633 (0.388; 0.794)	< 0.001	0.407 (0.222; 0.564)	< 0.001

r: Pearson correlation coefficient, 95% CI: 95% confidence interval. The estimated time from onset is the difference between the age at the visit and the predicted age at ataxia onset based on the patient's size of expanded CAG repeat.

Figure legends

Figure 1. Flow-chart with the distribution of the 200 individuals included according to the inclusion target groups, the studied categories and the genotype groups

Figure 2. Distribution of significantly different signs: hyperreflexia (light grey), diplopia (black) and impaired vibration sense at ankle (grey) (panel A, C) and NfL levels (panel B, D) among controls, preataxic and ataxic carriers with a pathological ATXN1 (panel A, B) and ATXN3 (panel C, D) expansion.

Figure 3. Plot of differences between the estimated age at ataxia onset and the reported age at onset versus the mean of the two measurements for SCA1 (panel A) and SCA3 (panel B) patients.

The solid line corresponds to the absence of differences. The bias (dotted lines) is -0.26 [-16.10; 15.6] for SCA1 and -1.54 [-21.00; 17.91] for SCA3.

Figure 1

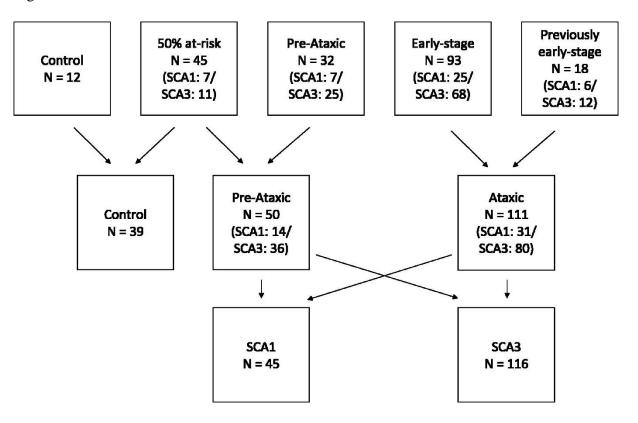


Figure 2

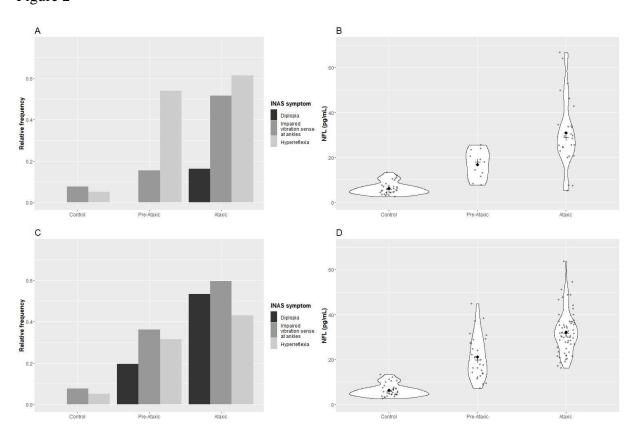
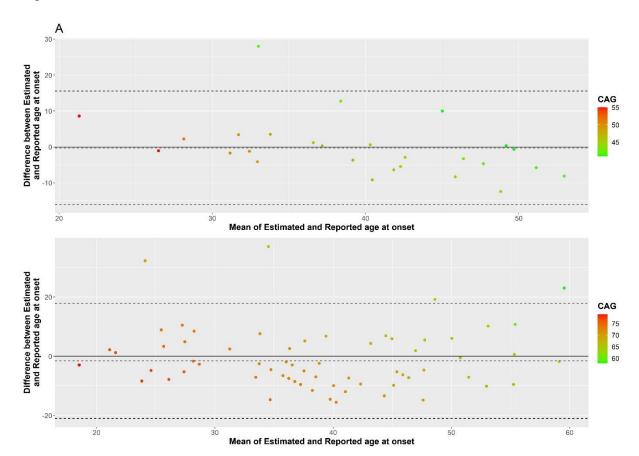



Figure 3

SUPPLEMENTARY MATERIALS: Tezenas du Montcel et al, Sensory and corticospinal signs before ataxia onset in SCA1 and SCA3: the READISCA study

eTable 1: Inclusion Criteria for the five study population categories

Study populatio n category	Study Inclusion category	Expected sample size	Genetic diagnosis of SCA1/SCA3	Age (years)	SARA total score	Gait
Ataxic	Early-stage patients	60	(+) in the subject or 1 st degree relative	18-65	3-9.5	Ambulate without an assisting device (SARA gait subscore <5)
Pre-ataxic	Pre-ataxic carriers	60	(+) in the subject	27-65	0-2.5	Within the normal range
Pre-ataxic /Controls	50%-at-risk subjects	60	Unknown <u>and</u> (+) in 1 st degree relative	27-50	0-2.5	Within the normal range
Ataxic	Previously early-stage patients	20	(+) in the subject	Any age	<10 in 2009- 2012	Any state
Controls	Additional controls	If needed	(-) in the subject	18-65	0-2.5	Within the normal range

eTable 2: Comparison of baseline characteristics according to the country of recruitment

	US $(n = 155)$	France $(n = 25)$	Germany $(n = 20)$	P-value
Age at baseline (years)	43.4 ± 10.4	43.4 ± 9.5	41.65±12.42	0.77
Age at onset (years)	$36.0 \pm 11.0 (n=81)$	$40.4 \pm 10.9 (n=20)$	$41.1 \pm 8.0 \ (n=12)$	0.73
Gender (male)	85 (54.8%)	16 (64.0%)	8 (40.0%)	0.27
SCA1: Expanded CAG				
repeats size	44.9 ± 3.5	45.8 ± 6.4	$45.8 \pm 2.6 \ (n=4)$	0.84
SCA3: Expanded CAG				
repeats size	70.9 ± 3.8	70.8 ± 3.3	68.73±5.39 (n=11)	0.20
SARA	$4.7 \pm 4.4 \; (n=153)$	4.8 ± 3.5	5.83±4.26	0.55

eTable 3: Comparison of the NfL values according to the presence or absence of the significant signs

	SCA1			SCA3		
	Absence of	Presence of	P-value	Absence of	Presence of	P-value
	the sign	the sign		the sign	the sign	
Diplopia	26.7±15.8	27.5±6.3	0.85	18.2±13.3	31.6±8.6	0.0009
	n=39	n =5		n=65	n=48	
Decreased vibration sense	21.9±10.7 n=	=35.5±17.9	0.023	26.8 ± 11.0	30.8 ± 10.1	0.07
at ankles	28	n=18		n=55	n=66	
Hyperreflexia	22.8 ± 16.6	28.8 ± 14.1	0.30	28.0 ± 12.0	29.9 ± 8.5	0.39
	n=18	n=26		n=69	n=45	