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Using a multiomics approach 
to unravel a septic shock specific 
signature in skeletal muscle
Baptiste Duceau1,2,10, Michael Blatzer1,10, Jean Bardon1,3, Thibault Chaze4, 
Quentin Giai Gianetto4, Florence Castelli5, François Fenaille5, Lucie Duarte1,2, 
Thomas Lescot6, Christophe Tresallet7, Bruno Riou8, Mariette Matondo4, Olivier Langeron3, 
Pierre Rocheteau1, Fabrice Chrétien1,9,11 & Adrien Bouglé1,2,11*

Sepsis is defined as a dysregulated host response to infection leading to organs failure. Among them, 
sepsis induces skeletal muscle (SM) alterations that contribute to acquired-weakness in critically ill 
patients. Proteomics and metabolomics could unravel biological mechanisms in sepsis-related organ 
dysfunction. Our objective was to characterize a distinctive signature of septic shock in human SM 
by using an integrative multi-omics approach. Muscle biopsies were obtained as part of a multicenter 
non-interventional prospective study. Study population included patients in septic shock (S group, 
with intra-abdominal source of sepsis) and two critically ill control populations: cardiogenic shock 
(C group) and brain dead (BD group). The proteins and metabolites were extracted and analyzed by 
High-Performance Liquid Chromatography-coupled to tandem Mass Spectrometry, respectively. 
Fifty patients were included, 19 for the S group (53% male, 64 ± 17 years, SAPS II 45 ± 14), 12 for 
the C group (75% male, 63 ± 4 years, SAPS II 43 ± 15), 19 for the BD group (63% male, 58 ± 10 years, 
SAPS II 58 ± 9). Biopsies were performed in median 3 days [interquartile range 1–4]) after intensive 
care unit admission. Respectively 31 patients and 40 patients were included in the proteomics and 
metabolomics analyses of 2264 proteins and 259 annotated metabolites. Enrichment analysis 
revealed that mitochondrial pathways were significantly decreased in the S group at protein level: 
oxidative phosphorylation (adjusted p = 0.008); branched chained amino acids degradation (adjusted 
p = 0.005); citrate cycle (adjusted p = 0.005); ketone body metabolism (adjusted p = 0.003) or fatty acid 
degradation (adjusted p = 0.008). Metabolic reprogramming was also suggested (i) by the differential 
abundance of the peroxisome proliferator-activated receptors signaling pathway (adjusted p = 0.007), 
and (ii) by the accumulation of fatty acids like octanedioic acid dimethyl or hydroxydecanoic. 
Increased polyamines and depletion of mitochondrial thioredoxin or mitochondrial peroxiredoxin 
indicated a high level of oxidative stress in the S group. Coordinated alterations in the proteomic 
and metabolomic profiles reveal a septic shock signature in SM, highlighting a global impairment of 
mitochondria-related metabolic pathways, the depletion of antioxidant capacities, and a metabolic 
shift towards lipid accumulation.

ClinicalTrial registration: NCT02789995. Date of first registration 03/06/2016.
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Sepsis is defined as a dysregulated host response to infection, resulting in acute life-threatening organ  failure1. 
During septic shock, the most severe clinical presentation of sepsis, the overwhelming pro- and anti-inflamma-
tory  responses2 are accompanied by systemic alterations in non-immunologic  pathways3 like vascular, autonomic 
nervous system, neuro-endocrine, metabolic or coagulation disorders, leading to multiple organ failure, including 
skeletal muscle dysfunction. In critically ill patients, muscle dysfunction is multifactorial, resulting both from 
structural alterations related to muscle wasting due to imbalanced protein  turnover4,5, and from functional altera-
tions related to mitochondrial dysfunction and bioenergetics  failure6,7, microcirculatory  disturbance8, muscle 
membranes inexcitability and ion channel  dysfunction9.

Despite the progress over the last decades in the understanding of muscle dysfunction during sepsis, nei-
ther any drug nor targeted therapies have been found to be effective. This partly results from the difficulty and 
complexity of mechanistic studies in human muscle, for both ethical and practical reasons. Proteomics and 
metabolomics as high throughput technologies aim to identify and quantify proteins/metabolites at a large scale 
in biological samples. Plasma metabolomic profiles have been used for the  diagnosis10,11 or the  prognosis12,13 of 
sepsis, but fewer studies have investigated the mechanisms underlying organ dysfunction using these innovative 
techniques, although their integration could allow delineating more holistic effects of sepsis in skeletal muscle 
and providing a better understanding of sepsis-related muscle dysfunction.

Our goal was to unravel a specific proteomic/metabolomic septic shock signature in skeletal muscle biop-
sies (S group). Two control populations were included, a cardiogenic shock group (C group) and a brain dead 
group (BD group), both suffering a variety of non-specific muscle insults, and subjected to an inflammatory 
process resembling to  sepsis14–16, in order to control partially for the inflammatory pathways and to focus on the 
non-immunologic pathways that could be associated with or responsible for sepsis-related muscle dysfunction. 
Multi-omic data-integration was conducted to compare septic shock patients to controls in order to identify the 
multi-omic signature of septic shock in skeletal muscle.

Methods
Study design and populations. This non-randomized prospective observational investigation enrolled 
adult patients (≥ 18 years of age) from June 2016 to November 2018, at three intensive care units (ICUs) from 
university hospital in Paris, France. Three populations of patients were prospectively included after written 
informed consent by the patient or his/her relatives: patients with septic shock (S group), patients with cardio-
genic shock (C group), and brain dead patients (BD group). For the S group, the inclusion criterion was an intra-
abdominal septic shock requiring emergent surgery, septic shock being identified by a vasopressor requirement 
to maintain a mean arterial blood pressure ≥ 65 mmHg and/or serum lactate level > 2 mmol/L1. For the C popu-
lation, the inclusion criterion was a refractory cardiogenic shock requiring extra corporeal life support. For the 
BD population, the inclusion criterion was a brain dead patient scheduled for multi-organ retrieval. Extended 
inclusion criteria for the three groups are available in the digital supplemental material methods. The exclusion 
criteria were the same for all three populations: patients under 18 years of age, pregnancy and or preexisting 
neuromuscular diseases. An additional exclusion criterion for the C and BD groups was septic shock. For the BD 
population, the non-objection from relatives for biological sample donation was mandatory.

The results described here are prespecified ancillary study of the Dysfunction of Human muscle stem cells in 
sepsis study (ClinicalTrial.gov NCT02789995, date of first registration 03/06/2016), this study having inconclusive 
results. The research protocol was approved by an Institutional Review Board (Comité de Protection des Person-
nes “Ile de France 5”, #15,051), and the study was declared to the French National Commission on Information 
Technology and Liberties (DR-2016–271), and all experiments were performed in accordance with relevant 
guidelines and regulations. The study size was computed for the original study, this prespecified ancillary study 
included patients with sufficient biological material available. Our report complies with the STROBE statement 
for transparent reporting of an observational  study17.

Muscle samples. The 2  cm3 surgical muscle biopsy was performed under general anesthesia (except in the 
BD group). It aimed to be as minimally invasive as possible and interested skeletal muscle exposed by the surgi-
cal incision. The rectus abdominis muscle was harvested during laparotomy surgery in the S group. The vastus 
lateralis muscle was harvested during the surgical approach of the iliac vessels during extracorporeal life support 
implantation in the C group. The psoas major was harvested during multi-organ retrieval procedure in the BD 
group. The muscle samples were stored in a minimal storage medium (F12 Nutri Mix [Thermo Fisher Scientific, 
Waltham, Massachusetts, USA]; 1% HEPES buffer) at 4 °C and processed within 12 h. The non-muscular tissues 
(adipose tissue, tendons) were carefully removed, to ensure that subsequent analyses were specific to muscle tis-
sue. The muscle was subsampled for the different analyses, these subsamples were snap-frozen in liquid nitrogen, 
then preserved at − 80 °C until further use.

Proteins and metabolites extraction, identification and quantification. Protein and metabolite 
extractions were performed in parallel, but simultaneously for all the samples to avoid any batch effect. After 
mechanical lysis of the muscle samples, extracted proteins and metabolites (see supplemental material methods) 
were subjected to high-resolution liquid chromatography coupled to high resolution mass spectrometry (LC-
HRMS, using two distinct platforms for metabolomics, see supplemental material methods). Raw data extrac-
tion, peak identification, quality check and processing were carried out using MaxQuant freeware (v. 1.5.3.8) 
for proteomics, and Xcalibur (Thermo Fisher Scientific, version 2.1) coupled to XCMS software package (W4M 
 platform18) for metabolomics analyses. Proteins were identified using the UniprotKB human  database19. The 
metabolites annotation was first accomplished using an in-house spectral database according to accurately 
measured masses and chromatographic retention times (see eTable 1). This chemical database includes ~ 1000 
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pure authentic standards mainly of human  origin20. The annotation of relevant metabolites was further validated 
by performing additional tandem mass spectrometry experiments (MS/MS, eTable 2). A label-free quantifica-
tion workflow was used for both proteomic and metabolomic analyses. Peptides and metabolites were quantified 
by integrating their corresponding chromatographic peaks.

Bioinformatic analyses. Quality checks were conducted according to the state of the art, causing the 
exclusion of several samples (Figure S1 A–F). The proteomic and metabolomic datasets were treated similarly: 
after log2transformation, a median centering normalization was performed to remove any source of systematic 
variability that may have biased the analyte quantifications (overall analyte concentration, pipetting variation, 
batch effect; Figure S2 and S3). High-throughput data usually generate missing values, even if samples with more 
than 70% of missing values were excluded (see supplemental material methods). Several imputation methods 
were performed to handle missing values in the proteomics dataset, under different hypotheses (see supplemen-
tal material for details, Figures S4 and S5). The main enrichment analysis was conducted using the probabilistic 
minimum imputation  method21, adapted for the missing not-at-random (MNAR) missing values hypothesis 
(Figures S4A and S5A). Two other imputation algorithms adapted for missing completely-at-random (MCAR) 
missing values hypothesis were used to refine the results of enrichment analyses: imputations with the maximum 
likelihood  estimation22 (Figures S4B and S5B) and with the structured least squares  algorithm23 (Figure S4C and 
S5C). Finally, a complete case analysis without any imputation was performed (removal of the proteins with at 
least one missing value). The proportion of missing values being low in metabolomics (less than 3%), only the 
probabilistic minimum imputation method was used.

Statistical and functional analyses. Continuous variables were reported as medians with interquartile 
range [IQR] or means with standard deviation (SD) depending on their distribution. Categorical variables were 
reported as count (percentage). To check for outliers and sample clustering, a principal component analysis 
(PCA) was performed on imputed data matrices of proteomics and metabolomics. First, the differential abun-
dance of proteins and metabolites in the three groups was assessed using an analysis of variance test, and the 
p-values were corrected for multiple imputation by the adaptive Benjamini–Hochberg procedure. Differentially 
abundant metabolites were represented in heat maps. Then, an enrichment analysis was performed on the pro-
teomic dataset, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways  database24,25. The 
aim of enrichment analysis is to assess which relevant functional or mechanistic biological processes are signifi-
cantly enriched between two or more experimental groups. Two different enrichment analysis algorithms were 
used: the covariance analysis (Ancova) global  test26,27 which allows the comparison of three groups of patients, 
and the generally applicable gene-set enrichment (GAGE)28 algorithm which allows pairwise comparisons. A 
competitive null hypothesis was used for enrichment analysis  (H0) “The proteins in the pathway are at most as 
often differentially expressed as the proteins in the entire dataset”. Following proteomics enrichment analyses, 
the results of the metabolomics were manually integrated to identify points of convergence between proteomics 
and metabolomics, that could be interpreted as corresponding relevant biological modifications.

The statistical analyses were performed using R Software (version 3.6.0 for Mac OS, The R foundation for 
statistical computing). The “imp4p”  package29 was used for missing values imputation. The “gage”28 and the 
“GlobalAncova”27 packages were used for enrichment analyses and the “pathview”  package30 was used to generate 
the KEGG pathway graphs. Heat maps were generated using the “ComplexHeatmap”31 package, with scaling of 
relative intensities along the samples for each analyte. Except otherwise stated, a p value < 0.05 was considered 
for significance and all comparisons were two-tailed. The Benjamini–Hochberg  procedure32 was performed 
when required to account for multiple comparisons, significance being defined by a false discovery rate (FDR) 
adjusted p values < 0.01. Raw p values are presented unless stated differently.

Ethics approval and consent to participate. Patients were prospectively included after written informed 
consent by the patient or his/her relatives. The research protocol was approved by an Institutional Review Board, 
Comité de Protection des Personnes “Ile de France 5”, under the approval number #15051, and the study was 
declared to the French National Commission on Information Technology and Liberties (DR-2016-271).

Results
Patients. Fifty patients which all required mechanical ventilation were included in the study (S group n = 19, 
C group n = 12, BD group n = 19, see Fig. 1 and Table 1), allowing the identification of 3346 unique proteins 
and the annotation of 265 metabolites (Fig. 1). After the filtering step, 2264 proteins in 31 patients (S n = 10, C 
n = 9, BD n = 12) and 259 metabolites in 40 patients (S n = 17, C n = 6, BD n = 17) remained for further analysis 
(metabolites are detailed in eTable 1 and eTable 2). Regarding demographics, no differences were found between 
the groups (Table 1). The SAPS2 score was significantly higher in the BD group, related to the neurologic failure. 
The vasopressors used differed significantly in type and dose due to good medical practices regarding disease 
management in each group. The muscle biopsies were performed early, in median 3 days [interquartile range 2, 
4] after ICU admission, without significant difference between the three groups. Although biopsies were har-
vested from patients of different age, different sex and also different muscles, the proportions of myosin heavy 
chain, troponin and tropomyosin isoforms did neither show any difference in muscle composition (eTable 3), 
nor did non-muscle tissue-specific proteins reveal any significant contamination like Schwann cells, adipo-
cytes, connective tissue cells, endothelial cells, immune cells or serum (eTable 4). Pro- and anti-inflammatory 
mediators were not detected, as well as interleukins, TNF-alpha or NK-κB in the muscle biopsies. Neverthe-
less, some chemokines and prostaglandins were detected, however without any differences between the groups 
(chemokines CXCR2, CCL18, CXCL12 and prostaglandins PG A1/B1/F1 and PGF1-alpha).
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Figure 1.  Study design and general overview.

Table 1.  Basal characteristics of the three patient groups. The results are presented in count (%), mean 
(standard deviation) or median [interquartile range]. The doses of vasopressors are the highest recorded on the 
day of the muscle biopsy. * The patients in the C group may have receive vasopressors combinations. SAPS II, 
Simplified acute physiology score II. ICU, Intensive care unit. NA, Non applicable.

Characteristics

Proteomics (n = 31) Metabolomics (n = 40)

Septic shock (n = 12)
Cardiogenic shock 
(n = 9) Brain dead (n = 10) p Septic shock (n = 17)

Cardiogenic shock 
(n = 6) Brain dead (n = 17) p

Sex, male 6 (50%) 5 (89%) 5 (50%) 0.13 9 (53%) 4 (67%) 11 (65%) 0.73

Age, years 64 (15) 64 (15) 59 (11) 0.52 65 (18) 65 (5) 57 (10) 0.22

Body weight, kg 77 (19) 79 (134 66 (10) 0.20 74 (18) 76 (18) 68 (14) 0.50

SAPS II 42 (12) 43 (17) 56 (11) 0.044 45 (15) 37 (6) 57 (10) 0.001

Antibiotic, yes 12 (100%) 3 (33%) 2 (20%)  < 0.001 17 (100%) 1 (17%) 4 (24%)  < 0.001

Vasopressor use*

Norepinephrine, 
n (%) 12 (100%) 4 (44%) 9 (90%) 0.030 17 (100%) 2 (33%) 14 (82%) 0.005

Dose, µg  kg−1  min−1 0.6 [0.4–1.0] 0.2 [0.1–0.3] 0.2 [0.1–0.3] 0.001 0.6 [0.5–0.9] 0.4 [0.3–0.5] 0.1 [0.1–0.3] 0.002

Epinephrine, n (%) 0 2 (22%) 0 0.023 0 2 (33%) 0  < 0.001

Dose, µg  kg−1  min-1 NA 0.8 [0.6,1.0] NA – NA 0.9 [0.8, 1.1] NA –

Dobutamine, n (%) 0 5 (56%) 0  < 0.001 0 4 (67%) 0  < 0.001

Dose, µg  kg−1  min−1 NA 12 [11–13] NA – NA 11 [11–12] NA –

ICU admission to 
biopsy, days 3 [1–8] 2 [2–4] 3 [2–4] 0.50 2 [1–4] 2 [1–3] 3 [2–4] 0.20

Days ventilated 3 [3–4] 3 [2–36] 3 [2–4] 0.79 3 [2–4] 4 [3–15] 3 [2–4] 0.46

ICU length of stay, 
days 10 [7–23] 31 [8–45] 3 [2–4] 0.002 10 [7–24] 21 [6–35] 3 [2–4]  < 0.001

In-hospital death 2 (16.7%) 5 (55.6%) 10 (100%) – 5 (33.3%) 3 (50%) 17 (100%) –
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Omics profiling of skeletal muscle in ICU patients. Dimensionality reduction using principal PCA in 
muscle proteome and metabolome partially discriminated patients from the three groups (Fig. 2). The first 20 
proteins that accounted for this difference (second principal component) were all mitochondrial proteins and 
ten (n = 10/20) were involved in the oxidative phosphorylation (eTable 5). Other proteins comprised enzymes 
of mitochondrial fatty acid degradation, pyruvate carrier2, mitochondrial apoptosis inducing factor1, Nipsnap 
homolog2 and dihydrolipoyl dehydrogenase. Similarly, the first 20 metabolites that help to distinguish the groups 
of patients based on the PCA are presented in the eTable 6. The PCA analyses stratified on confounding factors 
such as the sex, the age or the patient’s severity (SAPS II) did not reveal any noticeable effect of these covariates 
(Figure S6). One hundred and fifty-five proteins and 39 metabolites were differentially abundant between the 
three groups (eTable 7 and eTable 8). Histidine was significantly down regulated in the S group compared to the 
controls. Histidine metabolism is interconnected with nucleotide formation as the intermediate aminoimida-
zolecarboxamide ribonucleotide (down regulated in the S group) can be recycled via the purine pathway and 
purines are up-regulated in the control groups. Inosine and Inosine monophosphate were also among the top 
metabolites down regulated in the S group and contribute to precursor supply of purine metabolism.

Hierarchical clustering of these metabolites found a clear discrimination of the metabolic pattern according 
to the S group (Fig. 3). Fatty acids and lipids were significantly higher in the S group (eTable 9).

Enrichment analyses of proteomics data. Enrichment analysis applying the ANCOVA global test were 
performed separately on the KEGG metabolic pathways and the KEGG signaling pathways databases respec-
tively, shown in Table 2. In accordance with the PCA, the most down regulated pathways were metabolic path-
ways belonging to mitochondrial metabolism, being negatively impacted in the S group: oxidative phosphoryla-
tion (adjusted p = 0.007, Figure S7); branched chained amino acids degradation (adjusted p = 0.005, Figure S8); 
citrate cycle (adjusted p = 0.005, Figure S9); ketone body metabolism (adjusted p = 0.003, Figure S10) or beta 
oxidation (Fatty acid degradation, adjusted p = 0.007, Figure S11). The signaling pathways differentially abun-
dant were the peroxisome proliferator-activated receptors (PPARs) signaling pathway (adjusted p = 0.007, Figure 
S12) and the retrograde endocannabinoid signaling pathway (adjusted p = 0.007). The robustness of these results 
was challenged with another enrichment analysis algorithm (GAGE algorithm) which confirmed the results 
(eTable 10 and 11, Figure S13). However, the pairwise comparisons lacked the power to detect small changes 
regarding ketone body metabolism, sulfur metabolism, arginine and proline metabolism, or differences in the 

Figure 2.  Principal component analyses of proteomic and metabolomic datasets. The two first dimensions 
are shown, defining the subspace maximizing the variance of the dataset. Every point represents an individual 
muscle proteome (A) or metabolome (B). The individuals are color-coded according to their group. Points that 
are close together tend to have similar proteome/metabolome. Large points and ellipses represent respectively 
the barycenter of each group and its 95% confidence interval. Dim indicates Dimension. Some samples were 
discarded due to quality checks. N = 31 patients analyzed for the proteomics (Septic shock n = 12, cardiogenic 
shock n = 9, brain dead n = 10) and N = 40 for the metabolomics (Septic shock n = 17, cardiogenic shock n = 6, 
brain dead n = 17).
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Figure 3.  Heat map of the differentially abundant metabolites. Each row represents a metabolite, each column 
a patient color-coded according to its group. The overlying dendrogram is a graphical representation of patient 
similarity assessed by the euclidean distance: patients in the same cluster are more similar than patients in 
two separate clusters. The relative intensities were scaled by rows. Some samples were discarded due to quality 
checks. N = 40 patients analyzed for the metabolomics (Septic shock n = 17, cardiogenic shock n = 6, brain dead 
n = 17).

Table 2.  Enrichment analysis displaying Kyoto encyclopedia of genes and genomes (KEGG) pathways. This 
enrichment analysis used the covariance analysis global test on the KEGG pathways database. Missing values 
were imputed using the probabilistic minimum imputation method. The pathways that are not considered 
differentially abundant (adjusted p value > 0.01) are not shown. Ile, Isoleucine; Leu, Leucine; Val, Valine; TCA, 
Tricyclic acid; PPARs, Peroxisome proliferator-activated receptors.

Pathways

Number of proteins

Pathway total (n) Identified (n, %) Raw p value Adjusted p value

KEGG metabolic pathways

Metabolism of ketone body 10 6 (60  < 0.001 0.003

Butanoate metabolism 28 12 (43)  < 0.001 0.003

Citrate cycle (TCA cycle) 30 26 (87)  < 0.001 0.005

Val, Leu and Ile degradation 48 34 (71)  < 0.001 0.005

Propanoate metabolism 34 22 (65)  < 0.001 0.005

Oxidative phosphorylation 133 93 (70)  < 0.001 0.007

Sulfur metabolism 10 7 (70) 0.001 0.007

Fatty acid degradation 44 27 (61) 0.001 0.007

Arginine and proline metabolism 50 21 (42) 0.001 0.007

KEGG signaling pathways

PPARs signaling pathway 77 27 (35)  < 0.001 0.007

Retrograde endocannabinoid signaling 148 53 (36)  < 0.001 0.007
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signaling pathways database. The use of different algorithms for missing values imputation (eTable 12 and 13) 
and the complete case analysis (n = 555 proteins, eTable 14) showed consistent results, although PPARs signal-
ing pathway was not found differently abundant in the complete case analysis. All the mitochondrial respiratory 
complexes were deficient in the S group (Fig. 4). Heat maps of the oxidative phosphorylation pathway (Figure 
S14) confirmed the partial clustering of the S group compared to the two control groups on the basis of mito-
chondrial respiratory complexes subunits.

Energy metabolism. The mitochondrial shutdown noticed in proteomic enrichment analysis was coupled 
with a significant decrease in mitochondrial carriers in the S group like the mitochondrial pyruvate carriers 
(MPC1 p = 0.031; MPC2 p = 0.021), the oxoglutarate/malate carrier (SLC25A11 p < 0.001), the voltage depend-
ant anion-selective channels (VDAC1 p < 0.001; VDAC2 p = 0.014; VDAC3 p = 0.018), the adenine nucleotide 
translocator (SLC25A4 p < 0.001), and the carnitine-acylcarnitine translocase (SLC25A20 p = 0.02). Consist-
ently, we observed metabolites accumulating upstream the mitochondria in the S group, like phosphoenolpyru-
vate (p = 0.003) or fatty acids, in particular octanedioic acid dimethyl (ANOVA p < 0.001, S versus C log2 fold 
change + 1.08 [0.05; 2.10], S vs BD + 1.84 [1.10; 2.58]) and hydroxydecanoic acid (ANOVA p < 0.001, S vs C 1.03 
[0.28; 1.78], S vs BD 0.81 [0.27; 1.36]) which were more abundant in the S group regardless of the control group 
(Fig. 3, eTable 11). Other pathways highlighted by the proteomics were not reflected in the results obtained by 
the metabolomics. The decrease in branched-chain amino acids catabolism observed in proteomics (enrich-
ment analysis) had no apparent resonance in metabolomics with no significant difference in the amino acids 
Valine (p = 0.12), Leucine (p = 0.07) or Isoleucine (p = 0.10). Similarly, despite a decrease in the ketone body 
metabolism enzymes in the S group, there was no significant difference regarding the sole ketone body identi-
fied, 3-Hydroxybutyrate (p = 0.18).

Oxidative stress. Our results highlight another point of convergence between proteomics and metabo-
lomics regarding oxidative stress related proteins and metabolites (Fig. 5, eTable 15). Mitochondrial isoforms 
of key antioxidant enzymes were depleted in the S group, such as the thioredoxin/peroxiredoxin system. The 
glutathione reductase (mitochondrial) was not differentially abundant (ANOVA p = 0.74), nor were the cyto-
plasmic glutathione peroxidase 1 (p = 0.17) and 3 (p = 0.61), the cytoplasmic glutaredoxin 1 (p = 0.07) and 3 
(p > 0.99). Only the glutaredoxin 5 (mitochondrial) was decreased in the S group (p = 0.010). Metabolomics 
results mainly emphasized differences between the S and the BD groups, with a decrease in reduced glutathione 
(Tukey’s post-hoc test, S versus BD p = 0.001), a decrease in vitamin derivatives that are substrates for redox 
reactions (nicotinamide p = 0.002; ß-nicotinamide mononucleotide p = 0.007), an increase in the polyamines 
(spermidine p = 0.050; N-acetylspermidine p = 0.001) and in oxidative catabolites from vitamin B6 (4-pyridoxic 
acid p = 0.007).

Discussion
This study provides a unique picture of the bioenergetics of human skeletal striated muscle in sepsis, with the 
integration of proteomics and metabolomics data providing a broad snapshot of the muscular state as a whole. 
The main result is the characterization of a septic shock signature associating a global alteration of mitochon-
drial metabolic pathways specifically in the septic shock group, with a metabolic reprogramming towards lipid 
accumulation and increased oxidative stress.

These results are innovative considering (i) the control groups being ICU patients and (ii) the advanced inte-
gration of proteomics and metabolomics data. The few studies that have performed muscle biopsies in critically 
ill patients have mainly compared septic shock individuals to healthy  controls7,33,34. The originality of our study 
is the comparison of a septic group to two control groups of critically ill patients. Both control groups suffer a 
variety of muscle insults occurring in  ICU8 (impaired perfusion and oxygen delivery, hyperglycemia, inflamma-
tion, bedridden status and muscle discharge, use of glucocorticoids or neuromuscular blocking agents), and are 
subjected to an inflammatory state resembling  sepsis14–16. These insults make them more appropriate controls to 
single out the pathobiology of muscle dysfunction in septic shock than healthy patients. In muscle biopsies, only 
few inflammatory mediators could be detected, either because of a lack of sensitivity of the mass spectrometry 
technique used or the absence of a detectable inflammatory mediators in the examined muscle tissue.

Proteomics and metabolomics provide high dimensionality data on limited cohorts, which raises the challenge 
of the discrimination between background noise and biological phenomena to avoid false positive discoveries. 
We then focused on the biological processes that were significantly impacted in both datasets, to provide an 
integrated view of mechanisms occurring in skeletal muscles during sepsis. Part of our results is consistent with 
those of historical studies, increasing the external validity of our study. In the septic shock group, the exhaustion 
of antioxidant defenses was highlighted by proteomics (decreased in thioredoxin, peroxidredoxin, glutaredoxin 
systems) while metabolomics revealed a high level of oxidative stress (increased in  polyamines35 and 4-pyridoxic 
 acid36, decreased nicotinamide). Taken together, these results confirm the uncontrolled oxidative stress occurring 
in skeletal muscle during septic shock, coupled with a quantitative decrease of the mitochondrial respiratory 
chain, already extensively  discussed7,33. However, our results emphasize a comprehensive impairment of the 
mitochondria, with a global impact on the metabolic pathways, energetic or not, as well as on the mitochondrial 
carriers allowing exchanges of metabolites through the mitochondrial membranes. The glycolysis (with cytoplas-
mic localization) was one of the rare unaffected metabolic pathways. The enzymes of anaplerosis, which replenish 
tricarboxylic acid cycle (Krebs cycle) intermediates, like the catabolism of branched-chain amino acids or the 
beta-oxidation show a significant reduction in the S group and highlight mitochondrial functional impairment. 
Accordingly, major metabolites accumulate in the S group upstream of their mitochondrial metabolism, such 
as phosphoenolpyruvate or lipid metabolites, suggesting the inability of skeletal muscle mitochondria of septic 



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18776  | https://doi.org/10.1038/s41598-022-23544-8

www.nature.com/scientificreports/

Figure 4.  Mitochondrial complexes were decreased in the S group. The subunits of each mitochondrial 
complexes are represented. The subunits that were not identified in the proteomic dataset are not shown 
(Complex I : MT-ND2, MT-ND3, MT-ND6; Complex III : MY-CYB, UQCRHL; Complex IV : COX4l2, 
COX6B2, COX7B, COX7B2, COX8C, COX10, COX15; Complex V : ATP5MF). The bar represents the mean 
difference (Log 2 Fold Change) between the S group and the two control groups, the error bar represents the 
95% confidence interval. N = 31 patients analyzed for the proteomics (Septic shock n = 12, cardiogenic shock 
n = 9, brain dead n = 10). *p < 0.05; **p < 0.01; ***p < 0.001 (Tukey’s post-hoc test, Group S versus Reference).
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patients to metabolize fatty acids efficiently, as already hypothesized by Puthucheary et al.34. Lipid accumulation 
has also been associated with mitochondrial dysfunction in diaphragmatic muscle  fibers37, and metabolic signa-
ture of the efficiency of fatty acid catabolism in the plasma of septic patients has been associated with increased 
 survival38,39. Our results underline, at the muscle level, the lipidic metabolic signature associated with a poor prog-
nosis at the plasma level. Moreover, these results are consistent with the metabolic adaptations thought to have 
a central role in other organ failures that occur during septic shock, like sepsis-induced acute kidney  injury40.

The descriptive nature of our study prevents us any causal inference about the extensive metabolic reprogram-
ming observed; however, the proteomics provides further insights. The PPARs signaling pathway, involved in 
metabolism, lipid transport and adipocyte differentiation, was differentially abundant in the S group. This result 
is consistent with pathological examinations that describe an adipocyte infiltration in human skeletal muscles 
during  sepsis41. The PPAR family of transcription factors have wide-ranging critical regulatory and signal trans-
ducing roles in skeletal muscle and other tissues, from inflammation to fuel selection and contractile function. 
The modification of the PPARs signaling pathway could be related to skeletal muscle dysfunction in sepsis. Nota-
bly, the PPARγ agonists and the co-activator PGC-1ß have been implicated in the reduction of muscle protein 
catabolism during sepsis in animal  models42,43. In Humans, PPARγ co-activator 1-alpha has been shown to be 
involved in mitochondrial biogenesis, a process associated with survival in septic  shock7. Moreover, in a small 
sample phase I randomized controlled trial, pioglitazone (a PPARγ agonist) was associated with a decrease in 
inflammatory mediators in the serum such as interleukins-6 and 8 and TNF-alpha in young adults hospitalized 

Figure 5.  Alterations of the antioxidant and ROS detoxifying proteins and metabolites. The bar represents the 
mean difference (Log 2 Fold Change) between the S group and the two control groups, the error bar represents 
the 95% confidence interval. N = 31 patients analyzed for the proteomics (Septic shock n = 12, cardiogenic 
shock n = 9, brain dead n = 10) and N = 40 for the metabolomics (Septic shock n = 17, cardiogenic shock 
n = 6, brain dead n = 17). *p < 0.05; **p < 0.01; ***p < 0.001 (Tukey’s post-hoc test, Group S versus Reference). 
Glrx, Glutaredoxin; GPx, Glutathione peroxidase; GR, Glutathione disulfide reductase; GSH-S, Glutathione 
synthetase; Prx, Peroxiredoxin; Sod, Superoxide dismutase; Trx, Thioredoxin; TrxR, Thioredoxin reductase. The 
mitochondrial location of an enzyme is indicated by (mt).
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in intensive care for  sepsis44. These results underline the role of PPAR signaling in sepsis and that PPARs modula-
tors hold the potential to be of a therapeutic interest in sepsis-related muscle dysfunction.

The limitations of this study should be mentioned. First, as a non-randomized study, differences in baseline 
characteristics of the groups could have induced selection bias. However, the external validity of the results and 
the consistent findings when comparing the S group to the two control groups increase our overall confidence 
in these results. Second, the sampling of different muscle groups due to ethical constraints may have induced 
a bias related to muscle fiber types. Historical data suggest fairly close ratios of type I fiber between the vastus 
lateralis (52%)45, rectus abdominis (46.1%)46 and psoas major (49.2%)46. Moreover, the relative abundances of 
myosin heavy chain, troponin, and tropomyosin isoforms were not different in the whole muscle sample. These 
results cannot substitute for the reference technique of fiber typing, consisting of the characterization of isolated 
muscle fibers, but the absence of global differences in specific isoforms coupled with historical data decrease the 
probability that a major difference in muscle composition has impacted our results. Third, at each experimental 
or analytical step, quality check may result in the exclusion of samples. This induces an attrition bias but is man-
datory for the reliability of the results. Fourth, as an ancillary exploratory study, no study size was computed. 
The results, even though being considered as hypothesis generating, give a rare and extensive view on changes 
in muscle proteome and metabolome in sepsis compared to two control groups.

Conclusion
Our study describes a septic shock signature in skeletal muscle that associates an uncontrolled oxidative stress 
and a fundamental modification of mitochondrial energetic metabolism with a metabolic shift towards lipid 
accumulation. The integration of these data allows the formulation of hypotheses and distinguishes the PPARs 
signaling pathway as a pathway of interest in sepsis-related muscle dysfunction. Future trials concerning muscle 
injury in critically ill septic patients should focus on this pathway to investigate its relationship with metabolic 
reprogramming.

Data availability
The mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner 
repository for proteomics (identifier PXD0228839) and to the MassIVE repository for metabolomics (identifier 
MSV000088078) to be available on request.
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