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Hydrodynamic limit of the Schelling model with spontaneous
Glauber and Kawasaki dynamics

Florent BARRET * Niccoldo TORRI *

Abstract

In the present article we consider the Schelling model, an agent-based model describing a
segregation dynamics when we have a cohabitation of two social groups. As for several social
models, the behaviour of the Schelling model was analyzed along several directions, notably by
exploiting theoretical physics tools and computer simulations. This approach led to conjecture
a phase diagram in which either different social groups were segregated in two large clusters
or they were mixed. In this article, we describe and analyze a perturbation of the Schelling
model as a particle systems model by adding a Glauber and Kawasaki dynamics to the original
Schelling dynamics. As far as the authors know, this is the first rigorous mathematical analysis
of the perturbed Schelling model. We prove the existence of an hydrodynamic limit described by
a reaction-diffusion equation with a discontinuous non-linear reaction term. The existence and
uniqueness of the solution is non trivial and the analysis of the limit PDE is interesting in its own.
Based on our results, we conjecture, as in other variations of this model, the existence of a phase
diagram in which we have a mixed, a segregated and a metastable segregation phase. We also
describe how this phase transition can be viewed as a transition between a relevant and irrelevant
disorder regime in the model.

2010 Mathematics Subject Classification: 60K35, 82C22, 82D99.

Keywords: Schelling model, particle systems, hydrodynamics limit, reaction-diffusion equation,
Ising model.

1 Introduction

Schelling’s model of segregation was introduced by Thomas Schelling in 1971 |30} [3T]. The original
model is defined on a square grid of N? sites (or, more generally, on a regular graph with NN sites)
where agents (individuals) belonging to two groups are disposed. Each agent located at a given site
of the grid compares its group with the group of its neighbors. More precisely, we fix a tolerance
threshold T" € [0,1]. We call r,, the fraction of neighbors belonging to the agent’s group at site x and
we say that the agent is satisfied if r, = T. If the agent is unsatisfied, then he moves on a site that
makes him satisfied. What we mean with “moving” depends on the precise dynamics defined on the
grid. If some sites are assumed to be empty, then an unsatisfied agent moves on the nearest empty
site which makes him satisfied. If all the sites are occupied, then either we swap the position between
two unsatisfied agents if the swapping makes both of them satisfied (the so called Kawasaki-Schelling
dynamics), or we change (flip) the group of an unsatisfied agent if this operation makes him satisfied
(Glauber-Schelling dynamics). In the first case we say that the system is closed, while in the second
case the system is open, since this operation can be seen as a swapping with the outside.
Several variations of this model exists, and these variations depend on several parameters [30]:

(1) the neighborhood (its size, its geometry),
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(2) the initial distribution of the agents,

(3) the choice of the satisfaction condition (e.g. the value of the tolerance parameter, or one could
introduce a different tolerance for each group),

(4) the local dynamics between agents.

In the original model, some sites are assumed to be empty. Several variants of Schelling’s model
have been considered in the recent literature in order to study the behaviour of the model when
the fundamental parameters are modified. We refer to [24] for a complete overview on the subject.
Among the different variations, let us mention that there can be more than two groups of agents [17],
or/and that the Schelling dynamics can be perturbed: each site has a positive probability to switch
regardless of its satisfaction (spontaneous Glauber and/or Kawasaki dynamics) [4} 25 32].

The unperturbed model has attracted the interest of the mathematical community over the last
15 years [1, 2, 3], 6], 10, 18, [17].

The main concern is the behaviour of the model for large times: does the model reach a stationary
state 7 a stationary distribution ? If so what are the features of this equilibrium 7

A common result of the considered variants is the existence of three stationary states separated by
two critical thresholds Ty and T, towards which the system evolves, suggesting an universal behaviour
of the model. If Ty < T < T the different groups merge into clusters and we observe the appearance
of at least two macroscopic clusters (segregation), while if 7' < T or T' > T, we do not observe the
appearance of two macroscopic clusters, see [24].

In the present paper, we approach the model from a physical point of view, by interpreting the
agent dynamics as a particle systems in interaction. This approach was adopted by the physical
community to study this model, see for instance |8, [14] 26 27]. In particular we consider the setting
where the points of the grid (a discrete torus T := (Z/N 7). d = 1) are fully occupied and un-
satisfied agents flip their state if it makes them satisfied (Glauber-Schelling dynamics). The size of
the neighborhood taken into account to compute the fraction r,, grows at most logarithmically with
N. Let us stress that the Glauber-Schelling dynamics was consider in the physics literature from a
computer simulation viewpoint with a fixed size of the neighborhood, see e.g. [27].

Moreover we introduce random perturbations, either by flipping a state of an agent at rate
(spontaneous Glauber dynamics) or exchanging the position of two agents at rate aN? (accelerated
spontaneous Kawasaki dynamics).

To summarize, we assume the following features:

(1) the neighborhood size used to compute the fraction r,, is going to infinity with N¢, the number
of sites,

(2) the initial distribution of the agents is fixed (deterministic) and converges as N goes to infinity,
(3) we fix the tolerance parameter 7" € [0, 1],

(4) we introduce two random perturbations of the Glauber-Schelling mechanism: regardless of their
satisfaction, a site can change type (spontaneous Glauber dynamics), and a site can swap type
with a closest-neighbor (spontaneous accelerated Kawasaki dynamics).

From a statistical physics perspective, the main question concerns the impact of the random
perturbations on the system behaviour: is there a phase transition (in the parameter § tuning the
spontaneous Glauber dynamics) between a phase where the disorder supersedes the behaviour of the
model and a phase where the mechanism of the unperturbed model drives the behaviour of the system
o

Our main result (Theorem proves, by rescaling the space as %, an hydrodynamic limit. The
limit is described by a reaction-diffusion equation and we give a complete description of the limit PDE



that we get. The assumption about random perturbations (4) is important to ensure the existence of
a diffusive term and that all the configurations are accessible, which is fundamental in the theory of
the hydrodynamic limit, [21].

In the case where the size of the neighborhood stays finite in the limit, we obtain a classical
reaction-diffusion equation. This is the case where the size of the interaction term stays finite and
thus microscopic. However, when the size of the neighborhood goes to infinity we get a non-linearity
(the reaction term) which is discontinuous at two points. In this case, the interaction of the Glauber-
Schelling dynamics takes into account more and more agents but in the limit, the reaction term
is still purely local but discontinuous. In this “mesoscopic”’ limit, the existence and uniqueness of
the solution of the reaction-diffusion equation with discontinuities is one of the major points of the
paper. Moreover, it is not a mere technical problem since the limiting equation does not have a
unique solution for some class of initial condition, and some values of 3, the parameter tuning the
spontaneous Glauber dynamics.

Finally, we conjecture the existence of a rich phase diagram in which, beyond a disordered (and
mixed) phase, where the spontaneous Glauber dynamics dominates and an ordered (and segregated)
phase, where the Glauber-Schelling dynamics dominates, there is a transition in between. In this
phase, we expect the system to show a metastable behaviour: the mixed and segregation phases
coexist and depending on the parameters, one of them should be the most stable one and dominates
the long-time behaviour of the system. Critical points depend on the parameters 8 and 1" but not
on a, see Figure 2] A rigorous proof of the phase diagram will require a delicate analysis of the local
dynamics that goes beyond the techniques used in the present paper. We reserve this for future work.

Let us stress that in the disordered phase, based on Remark we expect to have a mixed
configuration since we conjecture that a typical configuration looks like a Bernoulli distribution of
parameter p = % on each site, while in the ordered phase the parameter is p = pr g # % This means
that a very large part of the configuration is either 0 or 1 and the appearance of clusters is possible.
With our method, we are not able to predict the precise geometry of the clusters, even if we expect
segregation in this phase, see Section [3.2

In [I7], the authors prove also a convergence of a discrete model of Schelling dynamics to the so-
lution of a reaction equation (without diffusion) baptized a continuous Schelling dynamics. We point
out that the model is quite different since, in their work, the authors consider a macroscopic neigh-
borhood (which gives at the limit, an integro-differential equation), do not assume any spontanous
random perturbation (either Glauber or Kawasaki) and consider a model with M > 2 groups. Also,
the authors consider a fixed tolerance parameter of T' = % and assume that the initial configuration is
given by random independent uniform variables. The proof of the convergence is based on a coupling
between the discrete and the continuous Schelling dynamics.

Our method of proof is based on the technique of the relative entropy method in the framework
developed by Jara and Mezenes in |20} 19] and also used by Funaki and Tsunoda in [13] for a finite
number of particle in the interaction. However, in our setting, we need to improve their bounds to
cover the case where the number of particles in the interaction is going to infinity. More precisely,
in order to use the relative entropy method, a central step is the control of d;Hy(t), the derivative
in time of the relative entropy between the law of the process pun(t) and a discrete measure which
approximates the density solution of the reaction-diffusion equation, see Proposition [£.3]and Equation
. Since the number of particles in the interaction term grows with IV, the size of the system,
we need to retrace the bounds obtained in [20, [19] and [13] by taking into account the size of the
interactions. This is done in Theorem . With our bound , we get that as soon as the diameter
of the interaction grows at most as d(log(N))"/¢ (see Assumption , the relative entropy is O(N?~¢)
for some € > 0 (see Equation ([4.14)) which entails that the empirical measure is close in probability
to a deterministic discrete process defined by Equation (4.10)).

To complete the proof of the main result (Theorem 7 we also prove that this deterministic



discrete process, defined by Equation , converges to a solution of a limiting reaction-diffusion
equation (Equation ) This is done in two steps: we first prove that the limiting PDE has a
solution (in Proposition , and for some class of initial conditions, this solution is locally unique
(in Proposition . The existence result is done via an approximating sequence of smooth non-
linearities which are natural in our framework (defined by Equation ) Note that we do not use
the deterministic process defined by Equation which is discrete in space. The second step is
therefore to prove that the deterministic process, defined by Equation , has accumulation points
in a uniform norm on compact set which are all solutions of Equation (3.3) (this is Theorem . If
we have uniqueness for solutions of Equation , we have the main result.

We establish local uniqueness for only for a class of initial conditions (in Proposition , we
use and adapt arguments of Gianni [I6] and Deguchi [9] (which proves existence and uniqueness with
only one discontinuity). Note that for some initial conditions, does not have a unique solution,
see Remark for a simple concrete example. It would be therefore quite interesting to understand
if for such initial conditions, the empirical measure process converges in some sense. We also reserve
this for future work.

Note also that, still in [I7], the continuous Schelling dynamics does not have a unique solution for
all initial conditions. However, starting from a random Gaussian field, the authors prove the solution
exists and is a.s. unique.

A detailed plan of the method of proof and the article is given at the end of Section [3] containing
the main result and assumptions. In the following Section, we define the model.
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2 The model

2.1 Configurations

For N e N = {1,2,3,...} we let T4 = (Z/NZ)? be the discrete torus and let Qn = {0,1}Tx
be the space of all possible configurations. We call n € Qn a configuration and i € ']I"ij a site.
Let Vv < T%\{0} be a subset of the discrete torus with a diameter which can grow with N (see
Assumption |1| for the precise hypothesis on the geometry of Vy). We say that two sites i,j € ']I‘ﬁlv are
neighbors if i — j € Viy. We denote K = |Vy| its cardinality. For a configuration n € Qx and a site
1€ Tﬁlv we let
1 1
TZ(T]) = 7 2 ]l{n¢:77¢+'} and Pz(”) = 7 Z Ni+j- (21)
e ' Ky &

The quantity p;(n) is the mean field of 1 on the neighborhood Vy + i. Let us observe that p;(n) is
independent of 7;. We note that

ri(n) = pi(N) L, =1y + (1 — pi(n)) L, —0}- (2.2)

For a given configuration, we now introduce the definition of stable, unstable and potentially stable
site.

Definition 2.1. For a given site i, let us denote n® the configuration where we change n; to 1 — n;.



Let T € [0,1]. If ri(n) < T, the site i is said unstable for n, otherwise if r;(n) = T the site is said
stable for 1. An unstable site i for n which is stable for ' is said potentially stable.

Note that 7;(n?) = 1 —7;(n). Thus

1. a site ¢ is potentially stable if and only if r;(n) < T and r;(n) < 1 —T. In particular if T < £
an unstable site for 1 is automatically potentially stable.

2. if T > 1 and 1 —T < ri(n) < T, we have r;(n’) < T and the site i is unstable for 5 and 7.

Let us stress that 7" small (that is, close to 0) entails that the system configuration is easily close
to stability, while T" large (that is, close to 1) entails that it is more difficult for configurations to
be stable, the constraints are not easy to satisfy. We refer to Section [3.2] for a discussion on the
dynamics.

2.2 Infinitesimal generator, construction of the process
Fix a > 0 and 8 > 0. Let us consider the following dynamics: starting from a configuration 7

1. if a site ¢ is potentially stable, we flip the value at ¢ with rate 1 (Glauber-Schelling dynamics),

2. two nearest-neighbors i and j exchange their values with rate aN? (accelerated spontaneous
Kawasaki dynamics),

3. a site ¢ can change its value at rate § > 0 (spontaneous Glauber dynamics).

This dynamics defines an infinitesimal generator £y defined for F' a function on Qy by

LNF(n) = Y, (F(') = F)(Lr,y<rirsm<i-1y + B) + aN> Y1 (F(n9) = F(n)),  (23)
ieTd, i.J€T

where n% is the configuration where the values at site i and j have been exchanged.
The following proposition states that the process is well defined, since the state space is finite.

Proposition 2.1. Given an initial configuration ng, Ly is the infinitesimal generator of a Feller
process, denoted (0N (t))=o0.

We let u¥ be the distribution of 'V (t).

Remark 2.1. In this article we focus on the compact setting (torus) because a non compact framework,
as R, presents technical problems for the convergence of the process, nevertheless the discrete model
can be well defined on Z¢ (cf. and Proposition and we conjecture that our main results (cf.
Theorem hold in this setting.

3 Main results
We let i) (i) := E,\[nN(0)], i € T4 be the initial distribution of our process, that is, /¥ (0) is

distributed as a Bernoulli of parameter u} (7).
For a vector v, |v| denotes its euclidean norm and |v|s its uniform norm.

Assumption 1. Assumptions on Vy.

1. Let by be the diameter of V. Then, fy < 5(log N)% for some § > 0.



2. If d = 1, suppose that Vy < Z\N.
Assumption 2. Assumptions on uév.
1. There exists € > 0 such that e < u}' (i) < 1 — & uniformly on i € T4 and N € N.
2. There exists Co > 0 independent of N such that |Vud (i) < %, where Vudl (i) = (udl (i +
er) —udy (i))4_,, with ey, € Z¢ the unit vector of direction k.
3. Let Ui\g\; = ®ie’ﬂ‘§l\, B(uév(z)) be the law of a sequence of independent Bernoulli of parameter

ud’ (7). Suppose that H(pud |viVN(O)) = O(N9=20) for some gy > 0 small, where H(p|v) is the
relative entropy of 4 < v,

_(du dp
H(p|v) = fdleg (dv)dv (3.1)
4. Let Uo N(x) be the linear interpolation on T¢ = (R/Z)?, the d dimensional torus, of ul (i) such
that Y (i/N) = ul (i). Then, there exists ug € C(T9) such that WY converges uniformly to ug
in C(T9).

Remark 3.1. The assumption (2) is only technical and it could be removed by considering the
dimension d = 1 separately from the rest of the dimensions, cf. Remark [{.4).

Remark 3.2. Let us observe that Assumption @(3) 1s stronger than the typical assumption used in
the relative entropy method (see Section , that is H(ud |UUN(0)) = o(N), cf [34 121, which is the
first step to prove the convergence in Theorem [3.1. This is due to the fact that we need a stronger
control on the error term in order to balance the fact that the sequence Vyn grows with N, see (4.14).

Define, for t = 0,
m = m (n,dv) = Nd > mi(t)d(d (3.2)
ze']l'd

the empirical measure associated to the Markov process 1 where the space is rescaled by % iV is a

positive measure on T¢.
We now state our main result, which concerns the convergence in probability of the empirical
measure.

Theorem 3.1. Under Assumptions and@ if ug (the limit of the initial condition, according to
Assumption @-4} is such that

1. ug € CH(T9), with Vug Lipschitz,
2. Vuo(z) # 0 for x € T¢ such that ug(z) = min(T,1 —T) or ug(z) = 1 — min(T,1 —T),
then the reaction-diffusion equation
{atu(t,a:) = 20Au(t, x) + B(1 —2u(t, z)) + goo(u(t, z)),
u(0,2) = uo(x),

with goo defined by go(p) = (1 — p)l{—pemin(r,1—7)} — PLl{p<min(r,1-7)}, has an unique solution
u = u(t,x) with (t,z) € [0,7] x T¢ for some T > 0, where T¢ is the d-dimension torus. Moreover, for
every test function ¢ : T - R and for every e > 0,

lim p (]@N,@—@,@(M):o, vielo,r], (3.4)

(3.3)

N—+0

N

where (TN, ) and (u, ) denote the integral of @ with respect to the measure m or u(z)dx respectively.

Remark 3.3. If the solution of (3.3|) is not unique, which is not a technical difficulty but a real
possibility for some initial conditions (see Remarkfor a concrete example), then any accumulation
point of the sequence of empirical measure is a solution of (3.3), see Theorem .



3.1 Organisation of the paper

To prove Theorem we first prove that the empirical measure is close to a discrete measure u!V

which is a solution of a discrete analogous of , this is Theorem . Its proof is based on an
entropy method approach in which the relative entropy between ¥ and ’UiVN, see Theorem . Even
if this technique is quite standard in the particle systems theory, some new technical estimations
arising from the geometry of the system are needed, this is Theorem In Section [5| we discuss
some central technical estimations about «V, in order to describe the behaviour of the discrete model.
Then, in Section |§| we discuss the existence and uniqueness of and in Section m we show the
convergence of the uY toward the density u by completing the proof of Theorem We stress that
the proof of the existence and uniqueness is not standard and the analysis of this PDE is interesting
in its own.
In Section [3.2] we state our conjecture on the phase diagram of the model.

3.2 Conjecture on the phase diagram

In this Section, we discuss the phase diagram that describes the mixed and segregated phases. We

start by setting the Equation (3.3)) in a more convenient form. Set po(T) := min(7,1 —T) € [0, 5].

For p € [0, 1] we define

( 2
6( —;) +%(p2—po(T)2) for 0 < p < po(T),
1 2
vose) = 15 (n-3) for m(T) <p<1—po(T),  (35)
2
6(p-3) +3(-pP-m@?)  fori-m@<ps

Our conjecture is based on the analysis of v, g and it is represented in Figure [2l We observe that
Yeo,8 s continuous and satisfies v 3(p) = Yoo,8(1 — p). For p # po(T),1 — po(T'), we have that
Vo 5(P) = =B(1 = 2p) — goo(p) and (3.3) can be written as

Oru(t, x) = 2aAu(t, z) — vl g(u(t, )). (3.6)

In such a way v, g can be viewed as a potential function of the system, its analysis provides the
stable and metastable equilibrium points of the system. Therefore, to discuss ghe phase transition we
can look at the structure of v, 3(p), see Figure The function p — 3 (p — %) + % (p2 — o (T)Q) has

a unique minimum at p = p’ := % Therefore, if 0 < p* < po(T) < %, the function 74 g has three

regular minima: p¢:= %, pt and p” := 1 — p’. Note that

T)2
Yoo 8(p) =0 and v 5(p") = Yonp(0) = 4(1 f 26) p0(2 o

Then we get that if po(T) < p™ := 4 /ﬁ, we have v, g(p°) < 'yocﬁ(pe) and if p™ < po(T), we
have that v, 5(p°) > Yoo (P). Tf p* > po(T), p° is the only minimum.

The two thresholds for po(T) are then p® and p™, see Figure Since p’ < p™, we have the
following picture: as T is close to 0 and below p?, we have a unique minimum of Yoo, SO that typical
configurations are close to p = 1/2 which is of lowest energy of v, 3. It means that, at equilibrium,
we expect a configuration balanced between 0 and 1 and we do not have segregation. Then, as T
goes above the threshold p’ but stays below p™, other minima at p = p* and p = p” appear, and
these two configurations are metastable since their energy is higher, so we can have segregation for a



(a) T =03 and §=0.8 (b) T =0.3and =05

(¢) T=0.3and g =0.15 (d)T=03and =0

Figure 1: Representation of v, g(p), p € [0, 1], for different values of 8 and a fixed T = 0.3. The
discontinuities of 7, 5(p) are situated at po(7") and 1 — po(T). In (la) we have that po(T) = 0.3 <
p’ ~ 0.3076 and the unique stable equilibrium point is p® = % In we have that p’ = 0.25 <
po(T) = 0.3 < p™ ~ 0.3535, so that p° = % is stable, while p* and p" are metastable equilibrium. In
we have that po(T) = 0.3 > p™ ~ 0.2401 and p’ and p” become stable while p¢ is metastable.
Finally in we illustrated the limit case with 8 = 0, and the two stable equilibriums are p’ = 0
and p" = 1. In this case, the local minimum p® degenerates into the segment [po(T"), 1 — po(T)].

small proportion of the time. The next threshold is p™, at which the two metastable configurations
become stable and p = 1/2 is the metastable one so that we expect stable segregation. For T above
% the picture is symmetric.

Let us discuss heuristically why if po(T) < p’, we expect that the random perturbation dominates
and that we have a mixed phase. Let us suppose for a while that § = 0, so that we do not consider
the spontaneous Glauber dynamics and the change of the status of a site is only due to the Glauber-
Schelling dynamics. According with the literature (see e.g., [24] and the reference therein), small
and large values of T" produce analogous behaviour of the system, but for different reasons. More
precisely, given a configuration 7, according with Definition [2.1], a site ¢ is potentially stable if and
only if r;(n) < T and r;(T) < 1 —T. Therefore, if T is small, an unstable site is automatically
potentially stable so that unstable sites become stable because of the Glauber-Schelling dynamics.
Moreover, if T is small, the system is already close to a stable configuration since the constraints
are easily satisfied. On the other hand, if T is close to 1, then 1 — T is small, so that the largest
part of the unsatisfied sites do not change their status because this does not make them satisfied and
the Glauber-Schelling dynamics is swiftly blocked. In both these case we do not expect segregation.
If we introduce the spontaneous Glauber perturbation in the system and § is large compared to



I -

Mixing Metastable Segregation
segregation

Figure 2: Representation of the different phases of the system as function of the parameter py(T) €
[0, 3]. When T is close to 0 or 1 (po(T) € (0,p)) we do not have segregation (red parts) and typical
configurations are provided by a mixing of 0 and 1. If T is close to 1/2 (po(T) € (p™, 3)) we have
segregation (green parts): a very large part of the configuration are composed of 0 or 1. We have also
intermediate values of T (po(T) € (p’, p™)) for which the segregation is metastable (yellow parts).

po(T'), we expect that the spontaneous flips drive the behaviour of the system since the noise in each
neighborhood is non-negligible, forcing the Glauber-Schelling mechanism to a continuous flipping of
the sites. We then expect that if po(T) < p’ the typical configuration is a mixing between the two
groups without macroscopic clusters.

On the other hand, if 7" is close to 1/2, the Glauber-Schelling dynamics can give rise to a segrega-
tion process in which typical configurations are composed by a large part of 0 or 1 and we observe the
appearance of macroscopic clusters which stabilizes the configurations. Therefore, if the formation
of the clusters is sufficiently fast compared to the perturbation given by the spontaneous Glauber
dynamics, the dynamics of the system should be close to the one without perturbation. We then
expect the formation of cluster and so segregation.

Finally, we would discuss the role of « in the system. We conjecture that the spontaneous
Kawasaki dynamics acts on the system diffusely, by steering the fluctuations which are responsible
to the convergence of the system around stable configurations given by the lowest energy of 7y g.
In Figure [I| we observe that in the metastable phase, independently from the initial configuration,
after a short time the fluctuations pushes the system to stabilize around a typical configuration close
top = %, the unique stable minimum of v, g. In the extreme case of 8 = 0, we expect that the
fluctuations pushed the system to one of the two stables configurations and one of the two groups
disappears.

Remark 3.4. The hydrodynamic limit (3.3)) has, at least, two different formulations as a gradient
flow:

1. in the classical L*(T) setting, with the potential F defined for u : T¢ — [0,1]

Flu) = JaHVuH? T yoo5(w), (3.7)

Equation (6.2)) can be written as dyu = —0F (u) where 0F denotes the Fréchet derivative of F.

2. in a Wasserstein-like setting defined in [23] with the entropy potential H, for u : T¢ —]0,1],
and &€ : T* - R (seen as an element in the tangent bundle)

Véo,ﬁ(u)
log(2u)

H(u) = ;J(Zu log(2u) — 2u + 1) > 0, K(u)¢ = —2aV - (uVE) + &, (3.8)

FEquation can be written as
oru = —K(u)(6H).

Since 0H = log(2u) and K(u)(dH) = —2aAu + ’Y;J’,OC(U)'



Both formulations could be useful to establish a rigorous proof of the phase diagram given in
Figure[d. In particular, along a gradient flow the potential is non-increasing, thus for all t > 0, along
a solution u we have F(u(t)) < F(u(t = 0)) and if u converges to a stationary solution v, it must be
a stationary point of F (i.e. 0F(v) =0).

For the second formulation, note that

Voo, (1) (B po(T)
: 1 T = —_— .
> 0o, 1] s (1) < = L e e D (3.9)
Thus, for po(T) < p*, we are in the mizing phase of the diagram and KC(u) is positive definite in the
sense that
Jg/c )¢ = fz u|VEPR + X0 ) 2> 0. (3.10)
log(2u)
Then, one can prove that along a solution u, we get that:
d
a?—[ u) = f&’tué’H(u) < — Jyéoﬁ(u) log(2u) < —cH(u) (3.11)

where ¢ = 3— 1—]£’§;50T()T) > 0, and we get that H(u(t)) < H(u(0))e . Thus H(u(t)) goes to 0 ast — oo,
this entails that u converges to the only stationary point of H which is the constant % Heuristically,
it suggests that an exponential relaxation is taking place in the mizing phase of Figure[3

4 Relative entropy method

Using the relative entropy method, in this section we prove that the empirical measure 7'V (t) is close
to uN (t) = (uN (¢, i))iew\, the solution of a suitable discrete PDE.

In order to state the main result of this section, we observe that the generator £y in can be
written as Ly = Gy +2aN2K where Gy is the generator which describes the Glauber-Schelling and
spontaneous Glauber dynamics and Ky is the generator which describes the spontaneous Kawasaki
dynamics, that is,

G Fm) = Y, (Vpnm<rmimery + 8) (F') = Fn)), (4.1)
i€TY,;
KnF) =5 ) (FO) — F(n)) (42)
i,j€T4,
ji—jl=1

Let us stress that Gy can be written as follows

GNF(n) = ), (ciln) + B)(F(n') — F(n)), (4.3)

: d
€T,

where ¢;(n) is a local function which describes the dynamics (Glauber-Schelling dynamics). To be
more precise, we write ¢;(n) = ¢o(7;n) where ¢ is the flipping rate of a particle at the origin, that is,

co(n) := Lirg(n)<Tyro(m)<1—T} (4.4)

and (7;m); = 744, likewise for a function u = (ui)ieﬂ“]iv’ 7; acts on u, that is (7;u); = u;+;. Note that
co is a random variable which take the value 0 or 1.

10



We let
Ky = rin(T) = min{[KNTJ — 1| Kn(1— T)J}. (4.5)
We observe that lim A =min(T,1-1T).
) n—-+0o0
Since co(n) = Lirg(m< ity = Vpromm< 72 mo=0p ¥ Liro(m< it o1y, We define

¢ ()= Lpymz1-pay  and ()= Tg ey, (4.6)

Kn

so that co(n) = cg (n)(1 —mn0) + c5 (M)no, by (2.2)). The functions ¢t and ¢~ can be viewed as the rate
of creation and annihilation of a particle at ¢ = 0 respectively.

For any function u = (ui)ieT% we define (recall that B(u) is the law of a Bernouilli of parameter

€ [0,1])
vu(dn) = vl (dn) := Q) B(us)(dn,) (4.7)

; d
€Ty,

and we let ¢j (u) and ¢j (u) be the expectation of ¢ () and cj () under v, that is,

e (u) =Py, (/)0(77) 1-— ;?L) and co (u) =Py, (po(n) Zﬁ) (4.8)

We finally define
G(u) := cf (u)(1 —ug) — g (wWup and G(i,u) := G(riu). (4.9)

Let vV (t) = (uN(t, i))iET‘]iV be the solution of

(4.10)

N,

where Au®(t,4) is the discrete Laplacian on the torus. Note that (4.10) can be interpreted as a
discretized version of ([3.3)).

{atu (t,4) = 2aN2AuN (t,3) + B(1 — 2uN (t,4)) + G(4, u®)
i) = ug (4),

Remark 4.1. Note that (4.10) is a first order ordinary differential equation in RT% . Therefore, we
have a solution, locally in time, starting from every initial condition.

To prove Theorem we first define a discrete approximation of © and we show an equivalent of
Theorem for u"V defined in (4.10). More precisely, we consider 4V as a measure on T<, that is,

1
N . Ny S .
(t,dv) = 5 Du (t,1)31 (dv), (4.11)
€T,
The main result of this section is the following theorem.

Theorem 4.1. Under Assumptions and@ for every test function ¢ : T* — R and for every § > 0
there exists T > 0 such that

lim u <)<7rN,cp>—<uN,ap>‘>(5>=0, Vtelo,7].

N—+00

To prove Theorem the main ingredient is that the relative entropy of UiVN ® (cf. (4.7)) with

respect to Y stays small in time, if it is small at t = 0.
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Theorem 4.2. Under Assumptions [1] and [3, with § > 0 sufficiently small, we have that for some
€ >0 small
H(t) == H(ud ]viVN(t)) = O(N%®), Vtelo,7] (4.12)

with 7 = 7(§) > 0.
To prove Theorem [£.2]it is enough to show that
OHn(t) < CL (HN(t) + O(Nd_“)) (4.13)
with a € (0,1) if d > 2 and a € (0, §) if d = 1, indeed in this case Gronwall’s inequality gives
Ha(t) < (M (0) + tO(Nd—a))eCf%t. (4.14)

Since eCft < NCO by Assumption (1} the proof of Theorem is complete. We prove (4.13]) in
Section .1

Let us observe that Theorem [£.2] implies Theorem .1} Indeed, we recall the entropy inequality
stated for a set A and two measures v < p, cf. A1.8.2 of [2I] or Section 2.2 of [13],
B log2 + H(p|v)

p(A) < og (14‘@) . (4.15)

For a given test function ¢ and § > 0, we let

Ao = {neQu: [N, o) — Wl )| > 6}, (4.16)
so that the proof follows by Theorem and (4.15) if
_ d
Uz]yN(t)(Atfs\/,t,go) <e G (4.17)

Since u¥ € (0,1) (cf. Proposition , the proof of (4.17)) is model independent and follows line by
line the proof of Proposition 2.2 in [I3], we omit the details.

Remark 4.2. Let us note that cy can be expressed as a polynomial on the variables n;’s, as in relation
(1.5) of [13]. This remark will be useful in the sequel of the paper. For this purpose, let A < Vy, we
denote:

k) =110=m) [ m end ) =1[m J] Q=m)=chl=n) (4.18)
JjeA jEANVN JEA  jeAnVy
where 1 — 1 is the configuration with (1 —n); = 1 —n; since ro(n) = ro(1 —n). Note that

1ifni=0forjeAandn;=1forje AnV

CX( ) = f n; ' Jor j 1 for j N (4.19)
0 otherwise.

By an abuse of notation, for a function u = (uj)jeTL]iV we let let also ¢ (u) = HjeA(l —uy) HjeAmvN U

and accordingly for ¢, (u). By (4.6) we have that

KN
S ) = 2, Vrp= i momoy = (1=10) D5 h(m): (4.20)
k=0 AcCVyn
|[Al<kn
Accordingly, we have
KN
¢ () = 2, Lng= oty =0 2, €a(): (4.21)
k=0 AcVyN
|[Al<kn

In the rest of this section we prove Theorem The strategy that we use follows the one used to
prove the analogous result in [I3] and [19], but some extra-technicality is required due to the geometry
of our problem.
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4.1 Proof of Theorem [4.2]
To make the notation lighter, for t > 0, j € T4, p € (0,1) and u® the solution of (#.10]), we let

. N —u;
uj(t) := u™(t, j), x(p) :=p(1 —p), wj =2 —2L. (4.22)

X (u;)
and, more generally, whenever the context is clear we omit the superscript NV, so that UQJLVN ) and pufY

will be denoted simply by v,;) and p; respectively. Therefore, throughout this section u = u!V, the

solution of (4.10)).

To compare p and v, we introduce

Da(dn) := X) B(w) (4.23)

: md
1€Tq

be a sequence of independent Bernoulli of parameter « € (0, 1) defined on the space of configurations.

We define
and Yy 1= 10
t . dﬂa .

We have all the ingredients to state Yau’s inequality in our context. The proof is quite standard (cf.
proof of Lemma A.1 in [19]), so that it is omitted.

dpu

fi = dUu(t)

(4.24)

Proposition 4.3. For any t = 0 we have that
o (®) < = [ T (VAM) vy (@) + | 5100|3701 = aidog v | v, (425)

where E;}U““) is the adjoint of Ly with respect to the measure vy and Tn(h)(n) = Lyh?*(n) —
2h(n)Lnh(n) is the carré du champ operator.

We define the current J; = J;¥ () as
Ti = L3791 — 0, log ;. (4.26)
Our main goal is to estimate the current [J; to control the right hand side of (4.25) and get (4.13).

4.1.1 The current th

To control E;}U”ml we have to compute the adjoint of Ky and of Gy, cf. (4.1) and (4.2). We follow
the computations done in [I3]. By Lemma 2.4 of [I3], we get

[SACE R

2 Y, (i —u)wiwr + Y (Au)iw; (4.27)

i7jET(]iV7 ZET‘]i\,
li—jl=1

where (Au); = 3} cra |;_j1=1(u; — u;) is the discrete Laplacian. Since ¢y satisfies the condition (1.5)
of [13] (see Remark , by Lemma 2.5 of [13] we get
gy 1 = Z (e (M = i) — ¢ (Mui + B(1 = 2u;)) wi
i€TY,
= 3 (e ) — e )1~ w) — (e () — ¢ (W)us) .
ieT4,
+ 3 (e (@)1 —w) — ¢ (wui + B(1 — 2u;)) ws.

; d
€Ty,
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In the second equality we centered the variables ¢ (1) ¢; (1) since under vy, ¢ (n) and c; (n) are

Bernouilli random variables with expectation ¢;" (u) and ¢; (u) respectively. Finally, by Lemma 2.6 of
[13] we get
oy logi(n) = Z (O )wi. (4.29)
ieTd,

Summarizing, we obtain the following result.

Proposition 4.4. The current Jy(n) satisfies

Ji(n) = Z (—Opu; + 2aN2(Au)i + B(1 — 2u;)+G (i, u))w;
€T, (4.30)
- V(u7 77) + V+(u> 77) -V- (U, 77)7

where G was defined in (4.9) and

Vi u,m) = ) (¢f ) = ¢f () (1= wi)wi, (4.31)

i€TY,
V() = Y (e (n) = ¢ () uiw, (4.32)
€T,
V(u,n) = —aN? Z (wi — uj)?wjw;. (4.33)
i,jeT4,,
li—j|=1

In particular, if u satisfies (4.10]) the current reduces to the second line.

In the rest of the section we provide estimates of V*, V= and V.

4.1.2 Estimates of Vt and V~

Let us denote {ey, ea, ..., eq} the canonical basis of Z9. For ¢ : T4 — Randi e T4 and k € {1,...,d},
let Vip(i) = (i + er) — p(i). We denote [Vl = max;  |Vip(i)|.
We note that

Vo (u,n) = =VT(1—ul-n), (4.34)
so that the bound for V' can be transferred to V', see Remark In the following we get an
upper-bound for V*. Denote 9;" = ¢ (n) — ¢/ (u) and w; = (1 — w;)w; = TR

Then
VF(un) = > 0w (4.35)
i€T4,

To bound VT (u,n) we follow the method used by Jara and Menezes [19] and by Funaki and Tsuneda
[13]. For this purpose let us observe that the carré du champ referred to the generator £y, namely,
I'y(h) = Lxyh? — 2hLyxh can be decomposed as

Tn(h) =TS (h) + 2aN?TY (h), (4.36)

where I'Y;(h) and Tk (h) are the carré du champ related to the generator Gy and K respectively (cf.

(4.1) and (4.2))). In particular,
1

PR =5 25 (W) —h(m)*. (4.37)
i,jeTY :
li—jl=1

In the next result we provide the control that we need for V.
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Theorem 4.5. Under Assumption we have that for any u : T4 — [0,1] such that
1ei= 1= [llullle > 0 with ||Jull| = min { Juo, |1 = wls |,

2. |Vu(i)|oo < §2 with Cy independent of N,

and for any density f with respect to v, we have that

JW(u, n).f(n)vy(dn) < ON? ff'z%(\/?) (n)vu(dn) + CLEH(fru |vy) + CoN4°, (4.38)

for any § > 0 and 01:3dd(d+1)6%( ) Cy = 600 for N > 200.

Remark 4.3. Note that if the estimate ( - holds, then it holds for V—. Indeed, using (4.34), the
fact that |||u]||o = [||1 —ul||ee = 1 — € and that, under vi_,(dn), 1 —n has for law v, we get

f V= () f(nou(dn) = — f VL =, 1 — ) f(n)ou(dn)
_ fv+<1 — ) f(1L = n)oru(dn)
< 5N2F§(\/})(1 — n)v1_u(dn) + CLUEH(F(1 — o1y | v1_y) + Coa NI

_ 5N f I (VF) (mva(dn) + CLEH(Fuu | vg) + CaN .

Proof of Theorem[{.5 The proof will proceed in several steps.

Note that, according to Hoeffeding Inequality (Lemma [A.4)), under the probability measure v,
192-+ is sub-Gaussian with variance parameter i and w;r i i 41112'
As in Jara and Menezes [19], we proceed to use an averaged version of V. Let £ > 0 and consider
Ay ={0...,£—1}¢ the cube of size ¢ starting at 0. Let py(i) = g_d]]-{ie/\e} and py(i) = K_dﬂ{ie_,\e} =

pe(—i). Then for ¢ defined on T4, we set

P @) =prrpl) = Y pl)elk) = . pe()eli —§) = €4 (i — 5) (4.39)
jt+k=i J JeAe

G =prrpl)= Y pr sz i —3) =74 (i + ). (4.40)
jt+k=i JeNA,

Let us denote g = py#pp. We have q(i) = K*Qd]Ag N (i—Ag)|. Thus, 0 < q,(i) < £~ and gu(i) = 0
if and only if i ¢ Agy_o. All sum being finite, we get for ¢ and 1 defined on 'H“f\,:

290 Wi+ 5)ae() = Y @) + j)pe(k)pe(j — k Zs@ i)pe(k Zwiﬂ'm(j—k)

hj?k

_Z<p i)pe(k)(pe = V) (k + 1) ZZq? $)pe(F — ) (Be = ¥) ()

- 2 (e ) (e x H)G) = NP G) ¥ ().
J

Thus let Vf := ZiETﬁl\r 292*(4);“ with w;” £ = W wi‘:qu(j). We have that

—

> Ot a) = ), 9wt (4.41)

i,jeTY, €T,

Then Theorem is proved with the following two estimates.
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Lemma 4.6. Suppose that |||ul||lc <1 and let e = 1 — |||ul||so. Then for any € > £y
_1,d N
JV%ffuu(dn) < Ce 1£v/2 <7—[(fvu | vy) + gd) . (4.42)

The constant C depends only on the dimension, namely it can be taken as C = 3924/2+2

Lemma 4.7. Suppose e = 1 — |[||ull|ox > 0 and |Vu(i)|e < §& for some Cy > 0 independent of N,
where Vu(i) = (Viu(i))4_,. Then, for any £ > by, with £ = N* for some r > 0, and § > 0

f (V+ — V) fuu(dn) < 5N f I (V) vu(dn)

d d d
+ O 14 9a(0)¢ ((2 + E—V) H(fou|va) + A;) + CoNL (4.43)

VN ¢ /

where Cy = 36% (1 + ]2\,—6;%) and C1 = 3dd(d +1) (% (1 + NLE%) + Cg) depends only on the dimension
and gq(0) is defined in (4.47).
0g4(0)

Indeed, we choose £ such that —= < Cp: more precisely, for any do € (0,1) we take
(=N for d=1, and £=Nal=%) for g>2. (4.44)

Since E% has a log-growth (cf. Assumption , this choice of ¢ together with Lemmas and
concludes the proof of Theorem [£.5] O

We now prove Lemma and Lemma

«— —>

Proof of Lemma[f.6. We start by recalling that V** = Ziew\] 9 ;wt ;. Note that, under v,, using

LemmalA.3| w™

Since c;r

1 1

i is a sub-Gaussian variable with variance parameter ). Ao T2 < o2

(n) is a function of (9i1;)jevy, then for i and j such that |i — j|o > £y, 9 and ﬁ;r are

-
independent, and sub-Gaussian with variance parameter %. Using LemmalA.3| 97 ; is a sub-Gaussian

iabl ith i & 14+ & d<2d—25(\1z
variable with variance parameter ;7 (1 + % ) < e
— —>
We note that all the sites involved in the averages 9% ;w™; are in i + Qe /240, where Qp, =
{—m,...,m}¢ is the d-dimensional cube centered at 0. In particular, for i and j such that |i — j|, >

0y + 2¢, the corresponding averages are independent (under v,). Then, we can take a partition of
’]I‘ﬁlv into independent sites by letting ¢ = j + (¢y + 2)k where j € Ay, 190 and k € AN/ +20))- The
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entropy inequality (cf. (B.3) in [19]) gives

«— —

j VT fu,(dn) = Z Z OF i epr20k 9T ji ey 20k f Vu(dn)

JEMe, v20 Y KEAIN (), 420)]

1
> S (%(fvu | vu)

JE€NL, 120

N

+ Z log J exp {7 O 20k W ja (e 4200k }%@7))

kEAIN/(ey+20)]

by +20)7 1 D
< w’}{(fvu |vy) + — Z logfexp {7 ot wt i}vu(dn)
gl Y
€Ty,
According to Lemma for y~1 = 2d/2+2€_d5_1€$/2, we have that

«— —>

logfexp {v 9wt i}vu(dn) < log3.

Thus we obtain

d d
JVJ“EfUu(dn) < 2d/2+25_1€$,/2 ((2 + EZ) H(foy |vy) + ]Z—d log3> :
O

Proof of Lemmal[{.7] We first prove the Lemma by also assuming that Vy < ZA\N?. In Remark
at the end of the proof we show how to remove this assumption in dimension d > 1. In dimension
d =1 the assumption Vy < Z\N is necessary (cf. Assumption .

We then proceed as in Jara and Menezes [19]. We use the fact that

V+ Z Z 19+ )
ze'JI‘d
1 Vtwi (Lo (4) — qe())- (4.45)
i,jeT4,

We now use Lemma 3.2 in [19] stating that there exists a function ®, : Z¢ x Z? — R which is a
flow connecting the distribution 1yg, to gy, i.e

o (i, j) = — (4, 7)

© 2 ji—jl=1 Pe(i, ) = Loy (i) — qe(d)

o ®y(i,j) = 0fori,j ¢ Ao

e there is a constant C' = C(d) independent of ¢ such that

1 12e(i, §)1? < Cga(f)  and DT 1e(i, §)] < C (4.46)
li—jl=1 li—j|=1
where
fford=1
ga(f) = { log(¢) for d =2 (4.47)
1fordz=>=3
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Using the flow ®; we therefore have

—vHi= N ot DT (k)

i,j€TY k:|j—kl=1
d
= 3 Oy 2R + ) — @l — en )}
i,jeTY, k=1
d
= Z Z 19:_@[(]7] + ek)(w;:-] _wi—:-j-‘,-ek)
k=14 jeT
= Z Z 07 ®0(4, 5 + ex) (W] —wie,)
k=14 jGTd
d
k
SV Y M i) (4.48)
k=14eTd,
where
Z 29+ (I)g JyJjter) = Z 19+ (I)g( J,J +ek). (4.49)
jeTe, JEA2p1
To complete the result we need to estimate (4.48]). We apply Lemma 3.5 of [13], whose assumptions
are satisfied in our case. Note that the hypothesis of Lemma 3.5 are satisfied in our case: u_ = ¢ and

uy = 1—¢ and h¥(nhi*er) = h¥(n) for any configuration 1 inasmuch h¥ is only a function of the sites
Ni—j+s, for s € Vi, j € Agy_1, so that it does not depend on 7; and n;, since Vy < ZA\N?. Moreover,
we observe that Lemmas 3.4 and 3.5 of [13] apply to our case replacing x(u;) by w;. Therefore, for
any o/ > 0 we have that

th(w _wz+ek)fvu dn) < J W \/7 vy (dn)
+ % f(h?)vau(dn) + R} (4.50)

with Cy . = % (1 + N%)?) and where the rest term Rf is controlled as

RF < Co.| Viu; | f R ()| fou(dn) (4.51)

with, for € < %, Coe = :—:% (1 + sz—i%) We now take o/ = 6N?, with § > 0. We get (cf. ([4.37))

J(V — V) fou(dn) = Z Z J — Wil o, ) fou(dn)
k=14eTd,
d
<5N2Jr§(\/f)vu dn) + 5N2 2 > Jh’“ fou(dn) + Z f. (4.52)
k= 1ZETd k=1

The first term is the same of (4.43]), then to conclude the proof we have to upper bound the second
and the third term of (4.52)).

Let us start from the third one. Using that | Vju; | < % and |hF| < 1+ (h¥)? in ([@51) we get

< SO [ (L (b2) foan).
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So that, the last term of (4.52)) is bounded by
1
Y DTN f (W) Fu ()
k=1ieTd
Let us note that this last term dominates the second term of (4.52)). To conclude the proof we need

to upper-bound
d
>3 [hh2van.

=13 d
k 1z€'JI‘N

As we noted above, hf depends only on the sites 7;_j4, for s € Vy and j € Agy_1, so that the random
variables h¥ and h} are independent if |i — i'|o, > (2¢ + £). We then decompose T% as a disjoint
union of cubes of size 2¢+ £y, that is, we write i = j+ (¢y+2()z where j € Ay, 120 and 2 € Ajn /@, +20)]5

O [ TNC RS SRS SR (o e}

€T, JE€A2e10y, ZEATN (41, +20)]

We then apply the entropy inequality and we get

Zf(hf)vau(dnKi > (H(fvu|vu)

€T, JE€M2¢1 ey,

+ logfexp {'y > (h§+z)2} vu(dn)> (4.53)

2EAIN /(0 +20)]

d
(2@ + gy) oy
Y

(Foulen) + 2 3 tog [exp {a (a2} eutan)

s md
1€TS

To conclude we use a concentration inequality. We have that hf is sub-Gaussian random variable, let
o2 be its variance parameter. By Proposition we have that for any v < ﬁ,

f exp {(hE)?} v(dn) < log3.

Moreover, to get an upper bound on the variance parameter, we use the same decomposition of the
sum (4.49) into subsets which are independent (since ﬁ;r is a function of n;y;, for ¢ € Vy and is

sub-Gaussian with variance parameter %) This is done in Lemma F.12 in [19]. We then have that
0?2 < Cdéﬁijgd(ﬁ), where Cy is a constant which depends only on the dimension. By getting + as large
as possible, namely v~ = (d + 1)¢§, g4(¢) we obtain that

d
Z f(hf)vau(dn) < (d + 1) gg(e)e? ((2 + %})d’H (fou|va) + JZ—d log 3). (4.54)

. _rmd
€Ty

To conclude the proof we have to remove the assumption Vy < Z¥\N?. We show that in Remark

4.4 O

Remark 4.4. We now show how it is possible to remove the assumption Vy < ZA\N? if d > 1.
By ([&48) we recall that V¥ — V't = ZZ:1 ZiET‘fv R (wf — w;;ek) where h¥ is defined in ([£.49).
We also observe that, by assumption, £ > fy,. Since hf is a function of the sites 1;_ji s, for s € Vn,
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J € Aoy, whenever |j| > by, then 19?_]- does not depend on n; and 1y, . Therefore we split hf mnto
the sum of two functions hl; and hl. The first one is independent of n; and njie,, while the second
one depends on these sites,

DO G+ er), and Bl = D O 0(j.j + er). (4.55)
i€Aop j€Nop_
j|§| >22£ev1 ]\Je \ <22£fvl
In such a way
Vvt = (v v (vt v s (4.56)
where
d d
(VT —yHty Z —wihe ) and (VF -V 4y Z h” —wi,,)  (4.57)

We can apply the method used above to (Vt — V) obtaining that ([£.54) holds. We control (V* —
VO by showing that (VT — V4 fu,(dn) = O(N9=), for some e > 0. For this purpose we apply
Cauchy-Swartz inequality to the measure fu,(dn), which gives

[t — it ppvatan < ([0 etan)* ([ - et roan)’ sy

Therefore

d
Jr=vreypogan = 30 3 [Hw - ) foudn

d . ! : :
PP ( [z svatanm) ( [(wr - who, 7 foutam)
d d :
< Z (J(h;’ffvu(d??)) Z <J(wj — w;;ek)zfvu(dn» , (4.59)
k=14eTd, k=14eTd,

where in the last inequality we used again Cauchy-Swartz inequality.
We observe that (w} —wi,, ) = (& - Tren) = (2 — L)+ (i — Nite,), 50 that

1+eg Uitep Usj Uite Uitey,

[ — w2 vaam <2 () -

< Ce,vuk‘go + Ce J(m - ni+ek>2fvu(d77) < Cé,

(15 = Mier,)* fou(dn)

>2fvu(d77) + 2f

Ui+ep, i+ey

uniformly on i and N. So that,

Zd: 2 (J(w? Wite,) fvu(dn)) < CLN?. (4.60)
k=14eT¢,

Therefore, by (4.59), to conclude the proof it is enough to show that

Z 2 (f (h7)? fou( dn)) O(N), (4.61)

k=1 zer
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for some e > 0 small. For this purpose we have to look more carefully at the function ®,(j, j+ex) which
defines the flow. We recall (cf. Appendixz G of [19]) that in the construction of the flow connecting
140y and pg*pe, we first define a flow Wy connecting 1oy and py supported in Ay which satisfies (4.46)
and then we define

D5+ ex) == Y Woliyi + ex)pe(j — i),

; d
€Ty

therefore

2 @4, + ex)| < Z Z‘\Ilgll-i-ek‘pgj—l

J€EA2¢—1 JEA20—1 i€TY,
l7]<2¢6y l7]<26v
Ed
i€T4, JEN26—1

l7]<2¢y

d
where we used that Y jen,, , pe(j —1) < % uniformly on i and (4.46) applied to Wy. We deduce that,
lil<2¢y
since W;j\ < 2,

d
3 % ([ roaian) < on o

Since £ = N* for some k > 0 and Bﬁlj grows logarithmically, the result follows (in dimension d = 2).
Remark 4.5. Let us observe that in dimension d = 1 we obtain that the last term is at least O(N?),
so our approach does not allow to remove this assumption.

4.1.3 Estimate of V

We show that under the hypothesis of Theorem V(u,n) satisfies (£.38). For i € T4 and k €
{1,...,d} we let

~k . _ 2 2
W 1= —alN*(uj — Ujte, ) wi.
In such a way we get

V(u,n) = —aN? Z (ui — uj)*wiw;

d
= —aN® Z Z {(Ui - Ui+ek)2wiwi+ek + (u; — uiek)Qwiwiek}

k=14eTd,

For k e {1,...,d} we let Vk = Ziewv ij e wi and vkt .= > T, i, We have that V** and

zek

Vk_ykt satisfy (4.42) and (4.43)) respectively, which implies that V' (u, n) satisfies (4.38]). The proof
follows the same ideas of V* and V'~ and it is actually simpler since we do not have to deal with the

diameter of V. We omit the details.
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4.1.4 Conclusion: Gronwall’s inequality (4.13])

We observe that since TN (v/f) < Tn(V/F), cf. ([£:36) and that the carré du champ operator is non-
negative, is a consequence of Proposition 4.3 and Theorem with u(t) = u (t), the solutions

of (4.10] - f d’“ 1f we show that, like the 1n1t1a1 profile, u!V satisfies Assumptionfor any t € [0, 7].
This is one of the goal of the Section [5] see Propositions [5.2] and [5.3]

5 Estimates on the solutions (u") of (4.10))

We say that u is supersolution of if Gyu; = 2aN?(Au); + B(1 — 2u;) + G(i,u) and that it is a
subsolution if du; < 2aN?(Au); + B(1 — 2u;) + G (i, u).

Note that any solution is both a super- and a subsolution. We have a comparaison lemma between
super and subsolutions.

Proposition 5.1. Let u be a supersolution, and v be a subsolution such that w(0,7) = v(0,7) for all
i€ T4, Then, for allt >0 and all i € T, u(t,i) > v(t,1).

Proof. Since u and v have derivative in time they are continuous, consider i and ¢ such that u(t,i) =
v(t,4) and u(t,j) = v(t, ). Then, we have G(i,u(t)) = G(i,v(t)) by Proposition [B.1] and thus

au(ulint) —v(it)) = 2aN2 S (u() = v(ji.t) + Gli u() — Gliv(t) = 0. (5.1)
]7|7'7]‘:1
This proves that u stays above v at all time. O
From the two previous propositions we conclude:

Proposition 5.2. Let § = @ and suppose 0 < 6 < =. Let also 40 < T <1 —46 and 0 < e < 20.

For all Ky > %, and all N, consider the solutzon (u (t,z))iew\, of Equation (4.10) starting
from ug € [g,1 — €], then we have that u™¥ (t,i) € [e,1 — €] for all i and t = 0

Note that the proposition holds for € = 0.

Proof. Let p € [0, 1], and set u(i) = p, for all i. Using that g, (p) = G(4,p), we have that
o if g\ (p) + B(1 —2p) = 0, then u is a subsolution;
o if gi\(p) + B(1 —2p) <0, then u is a supersolution.

Then, by using the result of Proposition on the analysis of gx(p) close to p =0 and p = 1, it
is easy to check that u(i) = € is a subsolution and (i) = 1 — ¢ is supersolution, for ¢ satisfying the
hypothesis of the proposition.

In particular, for p = 1, gi, (1) = 0, we have a supersolution. For p = 0, gk, (0) = 0, we have a
subsolution.

O

In the next result, we show that if u solves (4.10) and |[Vu(0,1)|s < %, then |Vu(t, )| < %ﬁ
for any t > 0.

Proposition 5.3. Let u be a solution of (4.10) with u(0) = ug such that, there exists Cy > 0 for

which Vgl < % Then, there exists C > 0 such that |Vu(t, )]s < %M forallt =0
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To prove Proposition we follow [13] and the reference therein, in particular [12]. Using the
notation of [12] we let p(¢, x, z) be the heat kernel of discrete Laplacian

Au(t,i) = > aliyi+ §)[u(t,i+ ) — u(t,i)], (5.2)
jezd

with a(i,j) = 1j_jery and I' = {te;, i = 1,...,d}, that is,

{p('v i0, Z) = 61'0(')’

Oip(t,io, i) = Ap(t,io, 7).

In this case (comments below (1.2) of [12] for the definition and discussion of a* and p*) we have that
a*(t,i,7) = a(t,i,7) so that p*(¢,i,7) = p(t,i,7). Let Viu(t,i) = u(t,i + er) — u(t, i), then since p is
a uniform transitions function, there exist ¢, C' > 0 independent of ¢, k such that (cf. (1.3) of [12])

p(ct,0,1)

Vlvt'

We refer to [12], Section 4 and the reference therein for a proof. We stress that the delicate point
is to extend the classical theory of E. De Giorgi, J. Nash and J. Moser to discrete operators. The
authors follow mainly [I1], but similar results can be also found in [I5] (Appendix B) and [33].

|Vip(t,0,9)| < C (5.3)

Proof of Proposition[5.3 Using Duhamel’s formula (i.e., variation of constant) we get that

t
u(tyiy = Y (0, pw(ti,g) + f ds 3 (B(1 - 2u;) + G (u))p (t — 5,1,), (5.4)
jeTY, 0 jeTY,

where py(t,i,5) = Y. cnzaP(2aN?t,i,j + z) is the heat kernel of discrete Laplacian on the torus
speeds up by a factor 2aN? and p(t, i, 7) is the heat kernel introduced above. We observe that (5.3)
gives

C pn(ct,0,1)
N N
For the first term, using that py(¢,4,j) = pn (¢, + 2, + 2) for any 4,7,z € T% and the assumption
on Vug (cf. Assumptions [2)), an integration by parts gives

Vipn (t,0,4)] < (5.5)

W X w0 iid) | = | B u0.0) vl + ) - ot
jeTY, jeTg,
-] S 0wt e — 3 w0t
jeTY, jeTY,
| B (u0.5+ e~ a0, ) Joteii)| < 5
jeTg,

By using that (8(1 — 2u;) + G;j(u)) is bounded and ([5.5) we get that for any k =1,...,d,

ds = —/t.

cC (1 C
éi -
N 0 t—s N

’vk{ f: ds > (B(1 —2uy) + G;(w))pn(t — 5,1, 5)

i=md
JeTY
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6 Existence and uniqueness of reaction-diffusion PDE

In Section [7, we prove that in the limit N — oo, the solution of the discretized Equation with
uN(t = 0) = ul €0, 1]~ satisfying Assumption [2| converges to a solution of the scalar nonlinear
reaction diffusion equation

e when Ky — K as N — oo:

oru(t, ) = 20Au(t, ) + B(1 — 2u(t,x)) + gk (u(t, z)), (6.1)

e when Ky — o0 as N — oo:

oru(t, ) = 2aAu(t,z) + (1 — 2u(t,x)) + goo(u(t, x)). (6.2)

The main difference between the two equations is that in the first case (K < 4+m), gk is a C*
function on [0, 1] (thus Lipschitz) so the reaction diffusion equation is very classical, whereas
for the second case (K = +00), since go is not even continuous we need to consider as a
subdifferential inclusion.

The main results of this section are
(i) Proposition which proves existence of a solution, in a suitable sense, for the equation (6.2)),

(ii) Proposition which proves local uniqueness of the solution, in a suitable sense, for the equation
(6.2), starting from a suitable class of initial conditions,

(iii) and Theorem |7.1| which proves that all accumulation points of (uV)y is a solution, in a suitable
sense, for the equation (6.2)).

In the rest of this section we change our notations and define v = 2u — 1. We center the solution
around the constant steady state u = % It simplifies the presentation and proofs of our results. The
original form of our equations can be retrieved by letting u = %(v +1). In such a way (6.1)) takes the
form

dr(t,z) — 2080t 7) + 280 — 2gxc (;(v + 1)) 0. (6.3)

6.1 Solution of (6.1)

Let us denote s(¢,z,y) the semigroup of the operator %A on T¢, that is,
1 |z —y — K[
S(t,x,y) = (me)d/QkEZZ]d exp (_Qt . (64)

Denote also so(t,x,y) the semigroup of the operator %A on R,

1 z —yl?
so(t,z,y) = Wexp <_”2t|> : (6.5)

Note that £ — s¢(t,0, &) is the density of d independent normal random variables with variance ¢.
Let us consider (S{\’V) the semigroup on L'(T¢) defined by, for f e L'(T%), A > 0 and v > 0

SMf @) = |

Td

~

st ) )y = [ Msalatoa) T (6.

where for a measurable function f on T%, we denoted f its extension on R? defined by f(z) = f(z—|z]).
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Another way to define St)‘ "7 is to use the Brownian motion: denote by X a Brownian motion on
R? starting from 2 on some probability space (€2, F,P,), indeed we have S, f(z) = e ME,(f(X41)),
and for all A > 0, and v > 0, S™ is a Cyp-contraction semigroup on LP(T?) for p € [1, +0].

As we will look at in its mild form, the following result is crucial to study the regularity of
the solution.

Proposition 6.1. For vg € L®(T9) and g € L*([0,7] x T%), define

t
olt,a) i= S Tun(e) + [ Sg(s. ) (@)ds. (6.7
0
then v e C([0,7], T¢). We have the following estimates, for all (t,x) € R* x T¢,

1 1
—X -
[o(t 2)] < e Mvoleo + (1 =™ )lgloo < Jvollos + L9l (6.8)

A

and for all 7 > 0, there exists a constant C' depending only on T,v,\ and d, such that for all
(t,x), (s,y) € [1/7,7] x T with s <t

vt ) —o(s,y)| < C((t = 5)[log(t — )| + | = y[) (Igleo + lvolleo)- (6.9)

Remark 6.1. v is called a mild solution of the equation dpv — IAv + v = g with initial value v.
The fact that a mild solution is a classical solution if g is sufficiently reqular is a result from Pazy

([28], Corollary 4.2.5).
Estimates and are quite standard but we include the proof for the sake of completeness.
Proof of Proposition[6.1. The fact that v € C([0,7], L*(T%)) is a consequence of the fact that S

is a Cp contraction semigroups on L®. For the first estimate (6.8), we have that:

lv(t, )| < | S vo ()] + U SM (z)du

S

< Mole | solt, 20z + gl |
R

e Mt J so(y(t — u), z, z)dzdu
0 R4

1

Z(1 — —At .

(1= e )gl

For the estimate , we start by letting s < £, we have
[o(t,2) = v(s,9)| < 157 vo() — 52w (y)]

#|[ stutatu n@an— [ 827 6w D

0

= e Mvoflos +

< It|voloe + (T2 + I3)] 9] o
where

e Mso(yt,x,2) — e~ Sso(fys,y,z)‘dz,

Jo

j e MW g0 (y(t — ), z, 2)dzdu.
R4

—A(s—u)

n=l
v,
6=

(vt —u),x,z)—e so(y(s —u),y, z)| dzdu,

R ]
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We have that I3 <t — s. For I1 and Iy, we use the fact that, fori=1...d

[€? _d

atSQ(t,O,g) = EAESO(tv[lg) 2 < t2 - t) 80(t707€)
§i

agiSQ(t,O,f) = _*SO(t 0, 6)

First for I1, denote ¢1(r) =rt+ (1 —r)sand co(r) =r(z —2z)+ (1 —r)(z —y)) = 2 — (re + (1 — 1)y)
for r € [0, 1], We have that

d
yer(r)

so(ve(r), 0, c2(r))

ca(r)|?
[(0:50) (yer(r), 0, ca(r))] < % (J‘Y;c(l(za)Q 4

|ea(r)il
yer(r)

) so(ver(r), 0, ea(r))

[(9¢;50) (ver(r), 0, ea(r))| <

Ilzj
R4

1
< de f |Cl1 (’l“)at(e—Atsg(’}/t, 0, 5))\t=c1(7‘),£=cz(r) |d7‘dz

Therefore

e Mso(vt,0, 2 — x) — e Ms0(ys,0, 2 — y)‘ dz

j JZ@ i0e, (€ 50(74,0,€)) jtmen 1) e |2

<L+,

where we have, by applying Fubini and a change of variable

_ “Aer(r lea(r ||2
Li=(t—s fRdJ { 2 < Cl Cl 7") o(ve1(r),0,ca(r))drdz
dryc d
- —Xei(r) i 1
<= [ 043 (7 o m(r)” ’
+

< (t—s) fo 1 [)\e)‘cl(r) + Clc(lr)} dr = J t <)\eA“ ) du
— e (1 — e 9 4 dlog (Z) < <>\ + j) (t—s).

For the term I 2, we get, using Cauchy-Schwarz, Fubini and a change of variable

Lo —f J Z lyi — wile” Aerlr |'YCE())| so(vei(r), 0, ca(r))drdz

—Xei(r) —/\cl (r)

NeTG)

(&

0 W()J |ca(r)||so(yer(r), 0, ca(r))dzdr = |z — y’J

t —)\u du Cl
<Cillo—yl | i < il

where (] is the expectation of the quadratic norm of X = (X1, X»,... Xy) of d independent standard
normal variables: C; = E(|X||) < E(| X|?)"? = v/d (we also have C} = V2l D2 (dj1-/12)/2) ~ Vd). We get
that, for s >

< [z =yl = 1rCl

1
T

d d d
I < ()\+> (t—8)+ x| —]z—y| <\ +dr)(t—s) + 4] —|z —yl.
S S 0
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For I, we make the same computations with ¢;(r) =r(t—u) + (1 —r)(s—u) =rt+ (1 —r)s—u

where u € [0, s], we have, since ¢} (r) =t — s,

s rt—u t—u —)\v
Igéff ()\6)‘” )dvdu—kC&x—yJJ
0 Js—u ‘ H —u TV t—

For the first integral, we have

s rt—u N d N S N S t—u
J J ()\e_ v+ >dvdu =(l—e" (t_s))J e MWy + dJ log ( ) du
0 Js—u v 0 0 S—u

i(l e~ Alt— S))(l o e—/\s)

+ d[tlog(t) — slog(s) — (t — s) log(t — s)]

s(t —s) + d[s(log(t) —log(s)) + (t — s)(log(t) — log(t — s))]
s(t—s)+d(t—s)+d(t—s)(|log(t)] + |log(t — s))|)
(As +d + |log(t)])(t — s) + d(t — s)|log(t — s)].

<
<
<

For the second integral, we get

f f ’ wdvdu —s)f: \/ﬁdu=(t—s)\/2§.

Then we obtain, for 1/7 < s <t <7

Iy < (s +d+|log(®))(t —s) + d(t — s)|log(t — s)| + Ci]z — y\/Q:S
< O\ + d+ [Tog(P))(t — 5) + d(t — 5)|Tog(t — )| + 2%@ —y.

At last, we get the following estimate

v(t, z) —v(s,y)| < [(A +dr)(t—s)+ \/§|w - yll] [volloo
2dt
+ [(/\T + [log(7)| + d + 1)(t — s) + d(t — s)|log(t — s)| + VT””” - y] lglco-

O

We modify a little our equation (6.1]), both in order to obtain a sharper estimate on the uniform
norm of the solution and to get a coherent notation with the solution of the limit equation when

K — +oo.
We define for g € [—1,1],

5(g+1)
rr(q) == — ﬁ 49K (s)ds.

2

We have that

re(q) = —2gK <;(q + 1)) =—(1- q)ﬂ%%q [X < (K, T)]+(1+ q)P% [X < w(K,T)].

27

(6.10)

(6.11)



So we let hi be

—1forg<—1
hi(q) = —7k(q) + q for g€ [-1,1] (6.12)
1forg>1

Since (1) = 0 and % (—1) = 0, hk is continuous on R. We have that, for g € [—1,1],
hi(q) = =1 (q) +q= (1 — Q)P 1 [X < k(K T)]—(1+ q)IP’%g, [X < k(K,T)]+q.
We now solve the following equation
ou(t,z) — 20Av(t, ) + (28 + 1)v = hi (v(t, x)). (6.13)

Note that, this equation and (6.3 are exactly the same with the term v added on both sides if
|v]oo < 1, since for ¢ ¢ [—1,1], hx(q) # q. Thus, a solution v of (6.3)) with |v]s, < 1 will also be a
solution of (6.13)) and reciprocally.

Proposition 6.2. For vy € L*(T%) with |vo|e < 1, there exists a unique solution (v(t,x),t = 0,z €
T%) to the problem

e v is continuous from R% to L*(T9)

e v satisfies, for allt > 0 and x € T?
u(t,z) = ST (1) + JO t S LA B (0(s, ) () ds. (6.14)
We say that v is a mild solution to (6.13). We have also that ||v]s < 1 and v satisfies
ot ) = §254 f S (u(s, )] ()ds (6.15)

and thus is a mild solution of ([6.3] .

Proof. The first part of the proposition comes from a fixed point argument (see also Pazy [2§],
Theorem 6.1.2) applied to the following functional. Let 7 > 0 and define the functional F :
(1o, 7], L*(T4)) — C(]0, 7], L*(T%)) defined by

F(u)(t,z) := S+ Aay( f S LA (s, )| () ds. (6.16)

We equip C(]0,7], L°(T¢9)) with the uniform topology on all compact subset. We can apply the
Banach fixed point Theorem to F' (see the proof of Pazy [28], Theorem 6.1.2. Moreover, the mapping
v — v is Lipschitz continuous from L® to C(]0, 7], L®(T%)).

An application of Proposition [6.1] proves that [[v[, < 1.

Since hy is differentiable, then, if vy € C?(T4), vg is in the domain of A and thus v is classical
solution of (Theorem 6.1.5 |28]). Thus v is a classical solution of since |[v]x < 1 and a
mild solution of (6.3). Now consider an approximating sequence (vg) in C?(T%) of vy € L®, and
(vn) the sequence of mild solutions with initial value v, and v the mild solution of with initial
value v. Then, since vg — v is Lipschitz continuous, by the dominated convergence theorem, we get
that, uniformly on [to, 7] x T¢ for all ty > 0, the right hand side of

t
vn(t, ) = S0 0 () — f SP e (vn(s, )] () ds (6.17)
0
2,8,4a 2,6’ 4a .
converges to S} So Pl v(s, ))](x)ds, whereas the left hand side converges to v. So
we obtain that v is a mlld solution of (6-3). O]

28



6.2 Solution of ([6.2)
6.2.1 Existence of a solution

We use the same transform as before, and let ho, be the pointwise limit of hyx given below in (6.20)).
The equation (6.2)) is now formally

ou(t,x) — 20Av(t, ) + (26 + 1)v = ho(v(t, z)). (6.18)

For the limiting equation, we prove first that the family (vx)x of solutions associated to hx with
common initial value vy € L®(T?) in C(R} x T) is compact (with uniform norm on all compact
subset). Then, by taking the limit, any accumulation point vy of the sequence satisfy the mild
formulation of the limiting equation relaxed as a subdifferential inclusion.

In order to prove this, we set some notations:

$(g+1)

reo(q) == — ﬁ 490 (s)ds (6.19)

2

hs, the pointwise limit of hg, is the function on R

1+4+¢

hoo(q) = 2900 (2 ) +q=—lg<—2p + ql_2pcq<2p + Lg=2p. (6.20)

Then hg, is non-decreasing and is the left-derivative of the convex function Ho,

2
Hao(g) = —rol) + & (6.21)

1
= [0+ 20+ 20" | Lige2p) + 50" V(—2pgzzny + [0 20+ 20" |Lipcqy
The subdifferential of Hy, at ¢ is defined as
0Ho(q) = {p € R, Ho(q') — Huo(q) = p(¢' — q), for all ¢’ € [-1,1]}.

In particular we have,

({—1} for g < —2p,
[1,-20] for g = —2p,
0Hwy(q) = 1 {q} for —2p < q < 2p, (6.22)
2p1]  forg=2p,
{1} for g > 2p.

We adopt the following definition for a solution of the equation (|6.18)):
o(t, x) —2aAv(t,z) + (28 + 1)v e dHy(v(t, x)). (6.23)

Definition 6.1. We say that v is a mild solution of Equation (6.23|) if it satisfies, for some T > 0
and allt < 7

ot z) = S f S5 ] (2)ds. (6.24)
where w € L*([0,7] x T?), with w(t,z) € dHy(v(t,z)) almost everywhere.

Proposition 6.3. For vg € L°(T%), any accumulation point (in C(R* x T?) equipped with uniform
norm on each compact set), of the sequence (vi) of solutions given by Proposition s a mild

solution of (6.23]).
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As a consequence of the proposition, there exists (v(t,z),t = 0,z € T¢) a mild solution of
such that v is continuous from R% to L®(T9), and |[v]e < 1.

The existence of a solution for a given initial condition vy is not difficult and can be proved in
different ways. Here we adopt some kind of regularization procedure, since we have a natural family
of differentiable functions (namely the (hx)) approximating ho and we use the convergence of the
sequence (vk) in the next section to prove the convergence of the stochastic process. We also present
the proof because we need its arguments in order to prove the Theorem

In the Remark we present another construction of solution(s) using the monotonicity of hq,
which is interesting since it also gives an insight on the problem of non-uniqueness.

Proof. For each K, we have a mild solution vk from Proposition [6.2] From Proposition we have
that each solution is uniformly bounded, uniformly continuous on [1/7,7] x T%, and the modulus of
continuity only depends on 7 > 1 (since the others parameters are fixed).

Therefore, by the Arzela-Ascoli Theorem, the sequence (vk ) is compact on the space C([1/7, 7] %
R9) and we can extract a subsequence converging uniformly in C'([1/7, 7] x R?), and then by a diagonal
argument, a sequence converging to a limit v, in C(]0, o0[ xR%), uniformly on each compact. Note
that since |vk| <1 for all K, we also have |ju,| < 1. We show that vy, satisfies (6.23).

Let us assume that p > 0. Denote for any s > 0, A,(s) := {y € R%: |vy(s,y)| = 2p}. Note
that since hy, is uniformly continuous on [—1,—2p[, | — 2p,2p[ and ]|2p, 1], we have that for any
y & Ay(s), limg o hr (v (s,¥)) = ho(veo(s,y)). Let y € Ay(s) and assume vy (s,y) = 2p without
loss of generality, since vk (s,y) converges to vy (s,y), for all € > 0 such that 2p — e > 0, there exists
Ky such that for all K > Ky, 2p —e < vk(s,y) < 2p + . Thus, using Lemma we have that, for
all K > Ko, 2p — 2e < hx(vi(s,y)) < 1. Then taking the limits in K and € — 0, we get

ha(2p) =2p < li}(ninf hi (v (s,y)) < limsup hg (vi(s,y)) <1 = he(2pT). (6.25)
—w0

K—o

For p = 0, we have the same inequality since then hy(0) = —1 and hy (0+) = 1.
Let w4 (s,y) = limsupg_, ., hx(vi(s,y)) and w_(s,y) = liminfx .o hx (v (s,y)), thus we have
that for all (s,y) €]0, +oo[ x T¢:

hoo (Vo (8,9)) < w—(s,y) < wi(s,y) < hoo(voo(s,y)+). (6.26)

Since hk (vk) is bounded, by the Banach Alaoglu Theorem, the sequence is weakly compact in
L2(]0, 7[xT%), and we have a subsequence of (hx (vk))x converging weakly to w € L2 (]0, +00[ xT%).
Since the density of the semigroup S2#+14 is in L2(]0, 7] x R?) for all T > 0, we have as K — 400,

Vo (£, ) = SEPTHAy( f SETLA (5, ) (2)ds. (6.27)

Moreover, w_ and w, are bounded and therefore in L2(]0,7] x T%). Let ¢ € L%(]0,7] x T?) and
p = 0, by the Fatou Lemma we get

0 [ B ) = )

< lim ian (hg(vg) —w_)p = f (w—w_)p. (6.28)
10,71 x T4 10,7]x T4

K—+w

We also have

= liminf(w, — h
0 L]WI(H;E;O(M K (vK))ep

< liminf (wy — hi(vi))p = f (wy —w)p. (6.29)
K—+% J10,r]xTd 10,7 xTd
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Thus, almost everywhere on 0, +oo[xT¢, we have that
hoo(Vep) < w— < w < wy < ho(vd). (6.30)

Therefore, w € 0Hy(vy) a.e. O

6.2.2 Uniqueness of solution of (6.23))

The main problem concerns the uniqueness of a solution. We prove first that, we do not have
uniqueness for a constant initial condition vg(z) = 2p when 2p < so we are in the case of

1
1+28°
segregation or metastable segragation described by Figure [2|

Remark 6.2. We describe three possible solutions starting from the initial condition vo(xz) = 2p when

Note that

SPH A (2) = J e~ B Dlso (1,2, y)2pdy = 2pe” BIHDL, (6.31)
Rd

Suppose that v does not depend on x, v(t,x) = c(t) for all x € T¢, we have
t
f SETLA (s, )] (z)ds = f hoo (c(s))e™2B+DE=9) g, (6.32)

0

Let us consider the functions

vl (t, ) = L (t) = 2pe 2P (6.33)
1
2 — 2(t) = 2pe— 28+ 2B+t
ve(t,x) = c“(t) = 2pe +1+2ﬁ<1 e )
1
=2 —2p ) (1—e @A+ 34
p+<1+25 p)( ¢ ) (6.34)

Since, c'(t) € [0,2p[, for t > 0, we have hy(c'(t)) = c'(t) and then

t t
f hoo (¢t (s))e”ZAFDE=s) g — J 2pe2Ps=(20HD(E=s) g — 9pe= (AT (! _ 1), (6.35)
0 0
Therefore
St2,3+17404 J SQ,B+1 4a 1}1 (8, ))](x)ds _ 2p67(26+1)t + 2p67(2,8+1)t(et _ 1)
= 2pe 2Pt = vl(t, z). (6.36)

Since 2p < ﬁ, c2(t) €]2p,1], for t > 0, we have ho(c?(t)) = 1 and then by the same computa-
tion,

t
1
L hoo (2 (s))e”GATDE=s)qg — s B(l — e~ (28410t (6.37)

Therefore, we also have

SP7F Mg () + fo S22 hap (0% (5, )] (@)ds = (2, ). (6.38)
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Thus, both v' and v? are mild solutions to (6.18) and thus to (6.23)) with the same initial conditions.
Note that at t = 0, we have v'(0,z) = v*(0,7) = 2p and

0wl (0,2) = —4Bp = — (26 + 1)20 +2p = —(28 + 1)2p + hep(2p7) (6.39)
0v?(0,2) = —2p(26 + 1) + 1 = —(28 4+ 1)2p + hoo (2p7). (6.40)

We see that non uniqueness comes from the fact that at t = 0, where v(t,x) = 2p, we have at least
two choices for the derivative due to the fact that hy is not continuous.

Note that if we consider the mild solution to the subdiffrential inclusion , then we have at
least a third solution: v3(t,x) = 2p. We consider w(t,z) = 2p(28 + 1), we have

t
Stw“’m f SQﬂH (s, )(@)ds = 2pe Dt L 2p(28 + l)f e~ 2BDE=9) s (6.41)
0

= 2p.
Since, 2p < ﬁ, we have that 2p < 2p(26 + 1) <1 so w(t,z) € IHy(2p).

Therefore, we cannot expect uniqueness for all initial condition, we have to impose some condition
on the initial condition if we want a unique solution.

In the literature, we can find different conditions ensuring that the solution of Equation is
unique. Adapting [16] and [9], we prove that the regularity of the initial condition at the levels where
the non-linearity ho, is not continuous is sufficient.

Definition 6.2. A function vy : T — [—1,1] in C*(T9) is regular at level q €] — 1,1[ if for all
x e T, such that vo(x) = q, we have Vug(z) # 0.

Proposition 6.4. For vy € CY(T?), such that Vg is Lipschitz on T and regular at levels 2p and
—2p, the solution v to Equation (6.23) is locally unique. Moreover, the Lebesque measure of the set
A,(s) == {y e R%: |u(s,y)| = 2p} is zero.

We adapt two arguments by [16] and [9].

Lemma 6.5. If v is a mild solution of (6.23) with vy € C1(T9), and such that Vg is Lipschitz on
T¢, then, for all T > 0, there exists a constant C > 0 such that, for all t € [0,7]

|o(t) — vl < CtY2, IVo(t) — Vgl < CHY/2. (6.42)

Proof. Since v is a mild solution of - there exists w € L
w € 0Hy(v). Thus we get

([0 + oo[xT9) with |w|e < 1 since

loc

v(t) — v = Sfﬁﬂ’m — vy + J 52ﬁ+1 129 (s)ds. (6.43)
Then, we have for the last integral

f S2,8+1 da,, (s)ds

t
SJ e~ (B (-5) g < 1.
o0 0
We have also

82BN () g (a)] < e~ @IV f s(dat, 2, y)lo(y) — vo(@)|dy
']I‘d

< Le (28411 f so(dat,z, )|y — z]2dy
Rd
< Le_(mﬂ)t\/ datd < LV dadtt/?
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where L is the Lipschitz constant of vy and the third inequality comes from the computation of the
upper bound of the quadratic norm of d independent random variables with common variance 4at.
Therefore we obtain

[o(t) = vollo < (LVdad + v/7)E2 (6.44)

For the second bound, we use the fact that %so(t,x,y) = —d%iso(t,x,y), thus we have, using an
integration by parts
0u, PP (wg) = ST (0,,00). (6.45)

Then, we have
Or(t) = Oz,v0 = S;7 % (25,00) — (O, v0)

t
+ J J e~ BDI=9) 0 so(da(t — s), x, y)w(s,y)dyds.  (6.46)
0 JRd

We can treat both integrals as before, for the last integral:

t
jf e~ 2BDI=9) 0 so(da(t — s), z, y)w(s, y)dyds
0 JR4

t o= (26+1)(t—s) ) .
s Cda(t—s) i —o)ydy
Jo do(t — s) fRd |z — yi|so(4a(t — s), z,y)dyds

t o—(28+1)(t—s) |
T T oalt —
L dat —s) a(t — s)ds

Vit
< 1J e*(23+1)“2du < i
\/204 0 \ 200

For the first integral, we have the same estimates as before
|54 (0 vo) (@) — O v0(z)| < L'V4adt? (6.47)

where L' is the maximum of the Lipschitz constants of (0z,v9);. Thus, we get

1
IVu(t) — Voo < (L’\/4ad + m) t1/2 (6.48)

We now prove Proposition [6.4]

Proof. Let us assume that we have two solutions, v1 and vz and let e(t) = [v1 — va2| ([0, xra)- Note
that the previous Lemma entails that, for all 7 > 0, there exists C', such that for ¢ < 7, we have
e(t) < Cv/t.
We define I, = {(s,9),s < t,[v1(s,y) —2p| < e(t)} and I, = {(s,9),5s <, |v1(s,y) +2p| < e(t)}.
Since v; and wy are solutions of ([6.23]), there exists w; and we such that w; € 0Hy(v1) a.e.
and wy € 0Hy(v2). We can decompose each w; as w;(t,x) = fo(vi(t,x)) + ¢i(t, z) where fo is the
continuous part of 0Hgy:

—2p for g € [-1, —2p]

fola) = §  qfor g€ [~2p,2p] (6.49)
2p for q € [2p, 1]
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and g¢;(t,z) = w;(t,x) — foo(vi(t,x)). Note that

gi(t,x) = =1+ 2p a.e. on {(t,x),v;(t,z) < —2p},
gi(t,x) =0 a.e. on {(t,z), —2p < v;(t,z) < 2p}, (6.50)
gi(t,x) =1—2p a.e. on {(t,z),v;(t,z) > 2p},

since w; = ho(v;) a.e. on {(t,x), |vi(t,x)| = 2p}.

As a consequence we have that, up to a negligible set, {(s,y),s < t,91(s,9) # 92(s,9)} < I;t ulg,
since, g1(s,y) # g2(s,y) entails that one of the following inequalities is true va(s,y) < 2p < v1(s,y)
or va(s,y) < —2p < vi(s,y) or vi(s,y) < 2p < va(s,y) or vi(s,y) < —2p < va(s,y). For each case,
the inclusion is true: for the first one for example, if s < ¢ and va(s,y) < 2p < v1(s,y)

e(t) = vi(s,y) —va(s,y) = vi(s,y) —2p + 2p — va(s,y) = vi(s,y) —2p =0 (6.51)

thus (s,y) € I;ft. The same is true for the other cases.
Therefore we obtain the following expression for the difference v; — vo:

t
nlta) ~va(te) = [ [ eI salt — 8), ) (Foloa(s,0) ~ on(vals, )
0 Jrd
t (6.52)
s e alt - 9.0 ) o1(s,0) ~ g2, )duds,
o Jrf,ur;,
For the first integral in (6.52)) we note that fy, is 1-Lipschitz, thus

[ e e stdate = .. () = a3l

t
< j J e~ PBHNE=S) g(4a(t — 5), x,y)e(t)dyds < te(t).
0 JTd

For the second integral in (6.52)) we note that |g;| < 1 — 2p, then we first have

1
J J e” B s(4a(t — 5),2,9)(91(s,y) — g2(s, y))dyds
o Jrf,ur;,

t
<2(1- 2p)f f e~ AHNE=5) g(4a(t — 5), x, y)dyds.
0Jrf, oIz,

Let s < t, since vg is regular on the level set {vg = 2p} which is compact (since T¢ is) and Vg
is a Lipschitz function, we can find 4,7 > 0 such that on {vg = 2p} + Bs(0), |Vug(z)| > n. Using
the second part of Lemma and since e(t) < C+/t, there exists T > 0 such that for s <t < T,
I, < {vo = 2p} + B;(0) and on I, [Vui(s)| > /2.

Since 1 ;’ , 1s compact and Vi (s) # 0, by the implicit function theorem, we can find a finite cover
by open balls (B;)1<i<n centered on points on I;t such that locally on each ball B;, the level set
{vi(s,y) = 2p} is the graph of a function, e.g y1 = ¥(y2,...yq). Note that since {vg = 2p} is compact,
N is uniform in s < T, since by the lemma, we can make the cover of open balls on {vy = 2p} and
take their traces on {v1(s,y) = 2p}. By the mean value theorem on the first coordinate y; of vy(s),
we have I, n B; ¢ [—2e(t) /v, 2e(t)/v] x T11(B;), where ITj is the projection along the first coordinate.

34



Thus,

t
f f e” @AV 5(4a(t — 5),2,y)dyds
I7,nB;

0
t de(t)
—(@8+1)( s(da(t —s),0,(0,y2,...yq))dys - - - dyqds
fo At gy 49500, 0o )
f s 260 2ot
0 V«/O&(t ) vy
Thus
! 2Ne(t)t!/?
~@BHD=9) g (4 (t — dyds < —————. .
| ], s(dalt = s).z,)dyds < 2 UE (6.53)
Since the same holds for I, we obtain, that for some constant C'> 0, and all ¢ <7
lvi(t, ) — va(t, )| < (t + Ct2)e(t) < (1 + CTV?)e(7). (6.54)

Then e(1) < (1 + C7Y/2)e(r), and taking 7 small enough, we obtain e(r) = 0 thus v; = vy on
[0,7] x T O

Remark 6.3. Mazximal and minimal solutions. Another approach to existence of a solution
to Equation 18 to use a monotone construction of solutions, which arises from a comparison
principle close to the one developed in Proposition[5.1, This was done initially in [7] and also in [9]
Define ho, the right continuous version of he (Equation by

E(Q) = _lq<—2p + q]l—2p<q<2p + I[q>2p- (655)

Note that he, and he, are non decreasing (recall that 2p € [0,1]). Recall that (S;) is the semigroup on
LY(T%) associated to —2a/\, we denote

F(v)(t,z) := e~ DG, 00(2) + f e~ 2BDE=9 G, Tho(v(s,-))](x)ds (6.56)
0

F(v)(t,z) :== e~ @G, 00(2) + J t e~ @BHNE=9) G, Theo(v(s,-))](x)ds. (6.57)
0

Then, fized points of the maps above are mild solutions of these two formulations of our subdifferential
inclusion:

ov(t,x) — 20Avu(t, z) + (268 + v(t, z) = ho(v(t,x)) (6.58)
ow(t, ) — 2alv(t, ) + (28 + 1)v(t, z) = he(v(t, ) (6.59)

Since hoo (resp. ho) is non decreasing and that hy(p) < ho(p) for all p € [~1,1], we have that, for
w, v two functions such that —1 < v < u < 1,
1. F(v)(t,z) < F(u)(t,x)

2. F(v)(t,z) < F(u)(t, )
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We define the sequences (V™) and (W™), of functions on Rt x T¢: VO(t,x) = 1, Wo(t,z) = —1
and for alln > 1

VP(t,z) = e PPHDIG 0 () + Jt e~ 2BD=9) g, [F(V"(s,-)](z)ds (6.60)
0

W™(t,z) = e PBHDEG,p0(x) + Jt e~ AN g, (W L(s,-))](x)ds. (6.61)
0

Thus, for —1 < vo(z) < 1, we can prove by induction that the sequences (V™) and (W™) satisfy, for

all n
—1<SWHSW2 . SWhSV < < V2PV L (6.62)

By a compactness and monotony argument, one can prove that (W™) and (V™) converge to functions
w and w which are mild solutions of the subdifferential inclusion. These are the minimal and mazximal
solutions of the subdifferential inclusion, in the sense that any other solution (Definition must be
bounded below by w and above by v. Uniqueness follows if one can prove that w = v and is proved
usually (e.g. in [9]) along the lines of Proposition |0.4).

7 Convergence of the discrete PDE

N

In analogy with the continuous setting, we define vV = 2u” — 1 where u"V is the solution of the

discretized Equation (#.10) and H(i,v") = 2G(i, ”N2—+1) + oV (4).
In such a way (4.10) becomes

{@vN(t, i) = 2aN2AuN (t,4) — (28 + Dol (¢, 1) + H(i, o)

oN(0,7) = 2u) (i) — 1, (7.1)

The main goal of this section is to prove the following result which states the convergence of v'".

Theorem 7.1. Let vV be the solution of (7.1)). Then (vY) is pre-compact for the uniform convergence
on each compact sets of T?x]0, +oo[ and any accumulation points vy is a solution of (6.23). In
particular, whenever the solution of (7.1) is a.e. unique, vy is also (the) mild solution of (6.2)) and

the whole sequence vN converges to vy, uniformly on all compact sets of T¢x]0, +oo[.

To prove Theorem we need some technical results. Let consider the semigroup of the discrete
Laplacian %NQAN on T4, and Z¢, denoted by sV (¢,1, j) and s} (t, 1, j) respectively. In particular we
have that sV (t,4,5) = pn(t,i, ), where pn(t,i,7) is heat kernel of discrete Laplacian on the discrete

torus, cf. (5.2)).

For any A\, >0 and f : %Tﬁl\f — R, we let (StN”\”) be the semigroup defined by
N B B ~
SUM @)= D e MsN(yt, Na, Ny)f(y) = . e s (vt Na, Ny) f(y) (7.2)
yeLTd yeLzd
N N N

where, as in , ]? is the periodic extension of f on %Zd.

In the remaining part of this article we will consider Siv A (z) with f € C(T9). In that case
we mean that the function f is restricted on %’]I"}V c T?, which is equivalent to consider f(z) :=

f(INz|/N). We observe that if f is also Lipschitz, then |f — fN|pa < & for some ¢ > 0 and
IfN|a < ||f|pa. Then, with the same extension to T? for s’V we can write, for any x e T¢

S f () = Ld e M NI (4, N, Ny) £~ (y)dy. (73)
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By a slight abuse of notation, we still denote by vV the linear interpolation on T? such that
N(t, &) = v](t). We also redefine the function H on the torus T? by the linear interpolation such
that H(4,v") = H(i,v") and we define H" as " in (7.3).

Definition 7.1. Let N € N and v}¥ € L*(T9). We say that (vN (t,x),t = 0,2 € T?) is a mild solution

of (T1) i

e for any N, vV is continuous from R% to L*(T9),

o for allt >0 and x € T?

Nt,a) = 5P o) @) + jo SN BN (0N (s, )| (@), (7.4)

Let vV be the unique solution of , so that vV = 2u® — 1 satisfies . Of course, for any
N the solution vV of exists and it is unique.

The proof of Theorem is based on the representation of vV as in . We define 7V as a
slight modification of , that is,

WV (1, ) = 2y f S (oY (s, ) | ). (7.5)
Lemma 7.2. For any 7 > 0
m [3% — o1 7rxme = 0. (7.6)

Proof. Let 7 > 0, then

W (t,z) — oV (e, x)‘ < sup
tE[%,T],CEETd

jot {Si e EN N (s, | (@) = STV H 0N (5,) | @) Jas| - (27)

S ) - St

te[% ,7], z€Te

+ sup
te[L,r], zeTd

We show that the right hand side of converges to 0. We detail the convergence of the second
term, which is more delicate. The argument can be adapted to the first term by using Assumption [2]
which ensures that v{Y converges to vg in C(T9).

We fix € € (0,2) and we get that

| fo SYPTAN N (- oN (s,)) | (2) = ST H 0V (s, )) | ()|
< ‘Lt—a StN_,gﬁﬂANQa[HN(-,vN(s, '))](:v) _ Sff:l’4a[H(',UN(S, '))](l‘)ds‘ +Ce, (78)

where we used that Lemma which implies that H(-,»"") is bounded by 1 uniformly on N. The
integral on the right hand side of ([7.8]) is bounded from above by

t—e
f o~ (2B+1)(t—5)
0

J (NN (AN%a(t — s),Nz, Ny)
Td
— s(da(t = 5),2,9) H” (y,0" (s,9))dy|ds

t—e
o] e | sa(t = ). [V (00" (509) = F 0¥ ) s
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Ca,8

Since supsq yera |HY (y,v™ (s,9)) — H(y,vN(s,y))’ < +, the second integral is smaller than 2.

For the first integral, we first use that H(-,v") is bounded by 1 uniformly on N and then we operate
the change of variable u = t — s which gives that it is bounded from above by

t
f e(25+1)uf
€ Td

We now use the local central limit theorem (cf. Theorem 2.1.1 and (2.5) in [22]): let p be the Gaussian

r—

Kernel and p(u, z,y) = ﬁp(ﬁ), then

NN (AN%ou, Nz, Ny) — s(4au, y)‘ dy du. (7.9)

Yerni=  sup NN Na, Ny) = plu,z,y)| 25 0, (7.10)

u€le,7], ye%Zd
We also observe that by symmetry the supremium in (7.10) is independent of x. Moreover, by

Proposition 2.4.6 in [22] we have that there exist ¢;,c2 > 0 independent of x,y, u such that

lz—yl2
[NUp(uN?, N, Ny) = plu,,)| < “pee 5, (7.11)

d
2

u
In such a way, for any M > 0 fixed we write T¢ = B, (M) U B,(M)¢ and we get that (7.9) is smaller
than

' —(26+1)u d €1 —c2M72d d
cq | e (M UNes + e ) ds < Cy (M UNer + (7.12)
€

uz2

1
37a)
where ¢4, Cy > 0 are two positive constants that depend only on the dimension d.

We conclude that the right hand side of (7.8)) is bounded by C"‘Tﬁ +eMYYy o7+ 772 T C¢, uniformly
onzeTandte [%,7‘]. Therefore, by taking the limit on N — +00 and then on M — +o00 and

¢ — 0 we conclude the proof. O

Proof of Theorem[7.1. We control 7 to get the convergence of v™. We observe that since H(-,v™ (s, -))
is uniformly bounded so that by Proposition oV is uniformly bounded in N, uniformly continuous
on [1/7,7] x T¢, and the modulus of continuity only depends on 7 > 1. By the Ascoli-Arzela Theorem,
the sequence (V) is pre-compact on C([1/7, 7] x RY) and therefore, by Lemma (7.2), (vVV) also. By
a diagonal argument, we can extract from (v) a subsequence converging uniformly to a limit vs in
C(]0, o[ xR?), uniformly on each compact.

Using Corollary we can adapt the argument used in the proof of Proposition (16.25(H6.30))
to get that each accumulation point vy, is a mild solution of (6.23]), we omit the details. O

7.1 Proof of Theorem [3.1]
Theorem [3.1] is now a consequence of Theorems and

A Concentration inequalities

We follow the definitions in Jara and Menezes [I9] and [20] and Boucheron, Lugosi, Massart [5],
Section 2.3. We omit the proofs since there are present in the references.

Definition A.1 ([19] and [5], Section 2.3). Let X be a real random variable. X is said to be sub-
Gaussian with variance parameter o if, for allt € R

2

Yx(t) :==logE(exp(tX)) < 022

5 (A1)

We denote G(a?) the set of real sub-Gaussian random variables with variance parameter 2.
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Proposition A.1. [[5] and [20], Proposition F.7] The following statements are equivalent:
1. X e G(a?)
2. For anyt >0, P(|X| >t) < 2exp(—%)
3. E(exp(yX?)) <3 for all 0 < v < 4.

Let us complete our family of inequalities:

Lemma A.2. [[20], Proposition F.8] Let X € G(03) and Y € G(03), then for all 0 < v < 1%

40109

E(exp(7XY)) <3

Lemma A.3. [[20], Proposition F.12] Let X1,...,X, be random variables with X; € G(c?), such
that there is a partition of K subsets Pi,..., Pk of {1,...,n} each containing L variables that X, =
o(Xi,i € Py) are independent o-algebra then, for all real a1, . .., oy, the random variable Y = Y, o; X;
is sub-Gaussian with variance parameter LY, a?c?.

Note that if L = 1, the variables are independent.

Lemma A.4 (Hoeffeding Inequality, [5], Section 2.3). Let X be a bounded random variable with
X € [a,b], then X —EX € G (%).

B Controls for the non-linearities

In this section, we collect some results about the specifics of our model. Recall the notations: for
d
ne {0,1}~

C(JJF(W) = l{po(n)gl_ AN 3 co (1) = ﬂ{po(n)gm},

KN

and ky = kn(T) = min{[KNTJ — ;| Kn(1 — T)J} For any function v = (ui)ie’ﬂ“}vﬂ we define
v (dn) = vl (dn) = @ieﬂ% B(u;) where B(u;) denote a Bernoulli distribution with parameter u;.

and we let cg (u) and ¢y (u) be the expectations of ¢f () and ¢y (1) under v,. We set (1in); = ni+;,
and likewise 7; acts on u. Then,

G(u) := (1 —up)cg (v) — upcy (w) (B.1)

KN

and G(i,u) := G(r;u). We start with some results on the non linearity G:

Proposition B.1. Let u,v € [0, 1]T5lv such that u; = v; for all i € Vy and uyg = vo. Then G(0,u) =
G(0,v).

Proof. We construct a coupling between v,, and v,: let (U;) be independent and identically distributed
random variables uniform on [0,1]. Define 7; = 1y, <,,; and nh = Ly, <v;3- We have n; > 7, for all
i € Vy, therefore po(n) = po(n’). This proves that c¢f (u) = ¢f (v) and g (u) < ¢g (v). The results
follows since ug = vyp. ]
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For pe [0,1], T € [0,1], K € N*, we let k(K,T) = min{[KT] —1;|K(1— T)J} < K/2, and we
define g (p) as
g (p) == (1 =p)Pp[X > K — k(K,T)| — pPp| X < k(K,T)]

where X is a random variable with binomial distribution with parameter (K, p) under P,. In partic-
ular, we have that gx, (p) = G(i,u) for u(t,i) = p for all i € T4, Note that gr is C°([0,1]). We
also have

gk (p) = (1 = p)P1p[X < K(K,T)] = pPp[ X < k(K,T)]

k(K,T)—1 K
_ o Nk+l K-k ktlpq  \K—k
= ];0 <k>[(1 p)**'p P p) (B.2)
K
o K(K,T)+1 1_ K—k(K,T)
(e Jp 0 |

We recall go(p) := (1 — p)Lji—pepo(r)} — PLip<po(r)}> Where po(T') = min(T,1 - T).
The following proposition estimates the convergence of g to g, in particular we prove that close
to p =0 (resp. p = 1), gk is negative (resp. positive).

Proposition B.2. For all K € N* U {0}, we have g (0) = g (1) = 0. For all K € N* and p € [0,1],
we have, for |p —po(T)| > ¢ and |(1 —p) —po(T)| >
|95 (P) = 90 (P)| < 2e exp(=2K (po(T) — p)*) + 2eexp(=2K (po(T) — (1 =p))*)  (B.3)

In particular, for any 0 < § < 4—16, T € [46,1 — 40], and K > %, we have that gi(20) < —§ and
gK(l — 25) > 0.

Proof. We consider gx written as in (B.2)). Then, the values at p = 0 and p = 1 are obvious.
Note that, under P, % —p converges to 0 (in L?(Qy)) and is sub-Gaussian with variance parameter

L thus, for any t > 0,

1K>

X
P, (’K —p’ > t> < 2exp(—2Kt%).

We also have that

Then, for p > po(T),

P,[X > k(K,T)] =P, [)Ig -p> K(II((’T) —po(T) + po(T) —p]

<P, [X —p=po(T) —p— H < 2exp(=2K (po(T) —p — 1/K)?)
< 2620 ()=P) oxp(—2K (po(T) — p)?) < 2e exp(—2K (po(T) — p)?).
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Thus, we have the following, for |p — po(T)| > &,

|PP[X < H(K, T)] — ]l{pépo(T)}’ < 2e exp(—QK(po(T) — p)z).

The results follows with the same estimates with (1 — p) instead of p. This prove (B.3).
Let 6 > 0 and set p = 20, and T € [46,1 — 46], then |20 — po(T)| < 2§ for K > % and we have
the same for 1 — p = 1 — 2. Applying the result, we have

9K (28) — goo(20)] = |gx (26) + 26| < deexp(—8K5?)

Then, if 4e exp(—8K42) < &, we get the result. This happens if exp(—8K6§?) < 6 and § < é, which
gives the condition on K. O

Proposition B.3. Let v : T¢ — [0, 1] be a continuous fived density on the torus. For any i€ ’]I‘ﬁlv we
let u; := vin. Then as i/N — x, we have that u; converges to vy. Let v, = ®iET§iv B(ul) Then,
po(n) converges to vy in probability.

Proof. We use the coupling introduced in Lemma we let (U;) be i.i.d uniform random variables on
[0,1] so that under v,, we have that pg(n) and %N Yiievy L{Ui<u;} are equal in law. By the Tchebychev
inequality, we have that for any € > 0

P ’Zz‘eVN Liti<u)  Qiewy Wi
Ky Kn

1
< -
- 6) 4KN€2

Moreover, the sequence KR,I >, u; converges to vy because for any i € Vy, i/N — 0. O

i€V N
We have the following corollary.

Corollary B.4. Let u = (ui)ie’]l“}\, as in Proposition . Then, G(u) and gx, (vo) converge both to
goo(vg) as N — +o0.

Recall that, for g € [—1, 1],

hi(a) = 29k <;(q + 1)> +4q

=(1- q)IP’%[X <K(K,T)] -1+ q)]P’%[X < k(K,T)] +q.

Recall the critical parameter p := p(T) = [T — 3| = 1 — po(T) € [0,3]. Note that hg converges
pointwise to the function hw(q) = 290 (Bﬂ +q = —lg<—2p + ql_2p<g<2p + 14>2,. The points
g = £2p are the discontinuities of hy, and compare the Lemma to the fact that 2p = hy(2p~) and
1 = hy(2p"). A similar estimate holds at ¢ = —2p.

Lemma B.5. For all g€ [-1,1], |hx(q)| < 1. Moreover, for all e > 0 such that 2p — e > 0, there is
Ky > 0 such that for K = Ky,

2p — 2 = heo(2p™) — 26 <hi(q)
—1 = hoo(=2p") <hk(q)

Proof. We start by observing that for all ¢ € [—1,1], P1— [X < k(K, T)] =Piiq [X > K —k(K, T)]
2 2
We also have that

(207) =1 forqe[2p—e,2p+¢]

< heo
Sho(—2pT)+2e=-2p+2c forqe|[-2p—e,—2p+¢€]

1=Puy [X < k(K,T)] 4+ P [6(K,T) < X <K — (K, T)] + Pisg [X > K — k(K,T)].

2
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Thus, using the definiton of hx, we get
hK(Q) = _Pm [X < H(K7T)] + qu [H(KvT) <X<K- R(K7T)]
2 2
+ P [ X > K —k(K,T)].
2
This gives us the result. Indeed, for ¢ € [0, 1], we have

hi(q) < qP1q [R(K,T) < X < K — k(K,T)| + Pisg [X > K — k(K,T)]

N

and

hi(q)

\%

—Pisy [X < H(K, T)] + P [X > K — (K, T)]
qu[ T)] - [X<HKT]>—IP>17?[X:/~@(K,T)].

The last inequality comes form the fact that, by a coupling argument, p — P, [X < k(K, T)] is

- gl
decreasing on [0, 1], and since ¢ = 0, < =2

In particular, for g € [2p — ¢,2p + 5] such that 2p — e > 0, we have the same upper bound as
before for hx(q), and for the lower bound:

hic(@) = —Proa [X < 6(K,T)] + qPraa[X > k(K. T)]
2
P [X < K(K,T)] + (20— ¢) (1 ~Pu [X < (K, T)])
2
>2p —e—2P1q [ X < k(K,T)].
2
From the proof of Proposition [B.2| we have that, for K > Kj:

Pitq [X < k(K T)] < 2exp (*K(q + 2p)2/2) < 9e—2Ko0p”

Choosing K large enough such that the right hand side is less than £/2, we get the result.
For g € [—1,0], the proof is completely similar.
O

Lemma B.6. Let u = (ui)iET‘fv’ with u; € [0,1] and let v = 2u — 1. Then, |H(i,v)| < 1, uniformly
onieT4,.

Proof. We recall (4.9)), in particular that G(i,u) = G(7;u). So that we only prove that |H(v)| < 1,
where H(v) = G((v+1)/2) + vg. The proof is similar to Lemma Indeed, again by (4.9) we have

that
2G<U;1>+vo—co <v;1> 1 — ) —c&(vgl>(1+vo)+vo
G (75) - (5 o (557) -9 (57))

We observe that, by definition, 1 — ¢f (“4%) — ¢5 (¥51) > 0. This implies that —1 < H(v) < 1. O
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