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Hydrodynamic limit of the Schelling model with spontaneous
Glauber and Kawasaki dynamics

Florent BARRET * Niccold TORRI *

Abstract

In the present article we consider the Schelling model, an agent-based model describing a
segregation dynamics when we have a cohabitation of two social groups. As for several social
models, the behavior of the Schelling model was analyzed along several directions, notably by
exploiting theoretical physics tools and computer simulations. This approach led to conjecture
a phase diagram in which either different social groups were segregated in two large clusters
or they were mixed. As far as the authors know, a rigorous mathematical analysis of some
aspect of the model has been made by Holden and Sheffield in [I2]. In this article, we describe
and analyze a perturbation of the the Schelling model as a particle system model by adding a
Glauber and Kawasaki dynamics to the original Schelling dynamics. We prove the existence of
an hydrodynamic limit described by a reaction-diffusion equation with a discontinuous non-linear
reaction term. The existence and uniqueness of the solution is non trivial and the analysis of the
limit PDE is interesting in its own. Based on our results, we conjecture, as in other variations
of this model, the existence of a phase diagram in which we have a mixed, a segregated and a
metastable segregation phase.

2010 Mathematics Subject Classification: 60K35, 82C22, 82D99.
Keywords: Schelling model, particle systems, hydrodynamics limit, reaction-diffusion equation,
Ising model.

1 Introduction

Schelling’s model of segregation was introduced by Thomas Schelling in 1971 [21] 22]. The original
model is defined on a square grid of N? sites (or, more generally, on a regular graph with N sites)
where agents (individuals) belonging to two groups are disposed. Each agent located at a given site
of the grid compares its group with the group of its neighbors. More precisely, we fix a tolerance
threshold 7" € [0, 1]. We call r, the fraction of neighbors belonging to the agent’s group at site x and
we say that the agent is satisfied if r, = T. If the agent is unsatisfied, then he moves on a site that
makes him satisfied.
Several variations of this model exists, and these variations depend on several parameters [21]:

(1) the neighborhood (its size, its geometry),
(2) the initial distribution of the agents,

(3) the choice of the satisfaction condition (e.g. the value of the tolerance parameter, or one could
introduce a different tolerance for each group),

(4) the local dynamics between agents (swapping between two unsatisfied agents, or between the
exterior and the grid...)

*MODAL’X, UMR 9023, UPL, Univ. Paris Nanterre, F92000 Nanterre France. Email:  flo-
rent.barret@parisnanterre.fr and niccolo.torri@parisnanterre. fr



In the original model, some sites are assumed to be empty. Several variants of Schelling’s model
have been considered in the recent literature in order to study the behavior of the model when the
fundamental parameters are modified. We refer to [18] for a complete overview on the subject. Among
the different variations, let us mention that there can be more than two groups of agents [12], or/and
that the Schelling dynamics can be perturbed: each site has a positive probability to switch regardless
of its satisfaction.

The main concern is the behavior of the model for large times, does the model reach a stationary
state 7 a stationary distribution ? If so what are the features of this equilibrium 7

A common result of the considered variants is the existence of three stationary states separated
by two critical thresholds Ty and T, (a frozen state T' < T}, a segregated state Ty < T < T and a
mized state T > T,) towards which the system evolves, suggesting an universal behavior of the model.
When the system is open (agents can change the group) the behavior of the system is expected to be
symmetric with respect to T' = 1/2, see [19].

In the present paper, we approach the model from a physical point of view, by interpreting the
agent dynamics as a particle systems in interaction. This approach was adopted by the physical
community to study this model, see for instance [3, 8, 1l 19]. In particular we consider the setting
where the points of the grid (a discrete torus T%, := (Z/NZ)?, d > 1) are fully occupied and unsatisfied
agents flip their state if it makes them satisfied (Glauber dynamics). The size of the neighborhood
taken into account to compute the fraction r,, grows at most logarithmically with V.

Moreover we introduce random perturbations, either by flipping a state of an agent at rate 8
(spontaneous Glauber dynamics) or exchanging the position of two agents at rate aN? (accelerated
Kawasaki dynamics).

To summarize, we assume the following features:

1) the neighborhood size is going to infinity with N¢, the number of sites,

(1)
(2) the initial distribution of the agents is fixed (deterministic) and converges as N goes to infinity,
(3) we fix the tolerance parameter 71" € [0, 1],

(4) we introduce two random perturbations of the Schelling mechanism: regardless of their satisfac-
tion, a site can change type (spontaneous Glauber dynamics), and a site can swap type with a

closest-neighbor (spontaneous accelerated Kawasaki dynamics).

Our main result (Theorem is to prove by rescaling the space at -+, an hydrodynamic limit
described by a reaction-diffusion equation and to give a complete description of the limit PDE that
we get. In the case where the size of the neighborhood stays finite in the limit, we obtain a classical
reaction-diffusion equation, this is the case where the size of the interaction term stays finite and
thus microscopic. However, when the size of the neighborhood goes to infinity we get a non-linearity
(the reaction term) which is discontinuous at two points. In this case, the interaction of the Schelling
dynamics takes into account more and more agents but in the limit, the reaction term is still purely
local. In this “mesoscopic” limit, the existence and uniqueness of the solution of the reaction-diffusion
equation with discontinuities is one of the major technical points of the paper. More precisely, the
system does not have a unique solution for some class of initial condition, and some values of 3, the
parameter tuning the spontaneous Glauber dynamics. Finally, we conjecture the existence of a rich
phase diagram in which beyond a mixed and a segregated phase there is a transition in between. In
this phase, the system has the potential to show a metastable segregation: the mixing phase should be
the most stable one but symmetrical stable segregation phases also exist. The critical points depend
on the parameters $ and T but not on «, see Figure[l] A rigorous proof of the phase diagram requires
a delicate analysis of the local dynamics that goes beyond the techniques used in the present paper.
We reserve this for future work.



Let us stress that in [I2] the authors prove also a convergence of a discrete model of Schelling
dynamics to the solution of a reaction equation (without diffusion) baptized a continuous Schelling
dynamics. We point out that the model is quite different since, in their work, the authors consider a
macroscopic neighborhood (which gives at the limit, an integro-differential equation), do not assume
any spontanous random perturbation (either Glauber or Kawasaki) and consider a model with M > 2
groups. Also, the authors consider a fixed tolerance parameter of T = % and assume that the initial
configuration is given by random independent uniform variables. The proof of the convergence is
based on a coupling between the discrete and the continuous Schelling dynamics.

Our method of proof is based on the technique of the relative entropy method in the framework
developed by Jara and Mezenes in [14], [13], and also used by Funaki and Tsunoda in [7] for a finite
number of particle in the interaction. However, in our setting, we need to improve their bounds to
cover the case where the number of particles in the interaction is going to infinity. More precisely,
in order to use the relative entropy method, a central step is the control of 0, Hy(t), the derivative
in time of the relative entropy between the law of the process uy(t) and a discrete measure which
approximates the density solution of the reaction-diffusion equation, see Proposition and .
Since the number of the particles in the interaction grows with IV, the size of the system, we need to
retrace the bounds obtained in [I4], [13] and [7] by taking into account the size of the interactions.
This is done in Theorem With our bound , we get that as soon as the diameter of the
interaction grows at most as d(log(N))? (see Assumption , the relative entropy is O(N9~¢) for
some € > 0 (see Equation (4.14)) which entails that the empirical measure is close in probability to
a deterministic discrete process defined by Equation .

To complete the proof of the main result (Theorem , we also prove that this deterministic
discrete process, defined by Equation , converges to a solution of a limiting reaction-diffusion
equation (Equation (3.3])). This is done in two steps: we first prove that the limiting PDE has a
solution (in Proposition , and for some class of initial conditions, this solution is locally unique
(in Proposition . The existence result is done via an approximating sequence of smooth non-
linearities which are natural in our framework (defined by Equation (6.13])). Note that we do not use
the deterministic process defined by Equation which is discrete in space. The second step is
therefore to prove that the deterministic process, defined by Equation , has accumulation points
in a uniform norm on compact set which are all solutions of Equation (3.3) (this is Theorem . If
we have uniqueness for solutions of Equation (3.3]), we have the main result.

We establish local uniqueness for only for a class of initial conditions (in Proposition, we
use and adapt arguments of Gianni [I0] and Deguchi [4] (which proves existence and uniqueness with
only one discontinuity). Note that for some initial conditions, does not have a unique solution,
see Remark for a concrete example. It would be therefore quite interesting to understand if for
such initial conditions, the empirical measure process converges in some sense. We also reserve this
for future work.

Note also that, still in [I2], the continuous Schelling dynamics does not have a unique solution for
all initial conditions. However, starting from a random Gaussian field, the authors prove the solution
exists and is a.s unique.

A detailed plan of the method of proof and the article is given at the end of Section [3| containing
the main result and assumptions. In the following Section, we define the model.
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2 The model

2.1 Configurations

For N € N = {1,2,3,...} we let T, = (Z/NZ)? be the discrete torus and let Qy = {0,1}T% be
the space of all possible configurations. We call n € Qn a configuration and i € T?lv a site. Let
Vn < T4\{0} be a bounded set. We say that two sites i, € T4 are neighbors if i — j € Vy. We
denote Ky = |Vn| its cardinality. For a configuration n € Qx and a site i € T?V we let

1

1
ri(n) = K Y=,y and  pi(n) = Tn > it (2.1)

JEVN JEVN

The quantity p;(n) is the mean field of  on the neighborhood Vy + 4. Let us observe that p;(n) is
independent of 1;. We note that

ri(n) = pi(n) Ly, =1y + (1 = pi(n) Ly, —0y- (2.2)

For a given configuration, we now introduce the definition of stable, unstable and potentially stable
site.

Definition 2.1. For a given site i, let us denote n' the configuration where we change n; to 1 — ;.
Let T € [0,1]. If ri(n) < T, the site i is said unstable for n, otherwise if ri(n) = T the sile is said
stable for n. An unstable site i for n which is stable for n* is said potentially stable.

Note that 7;(n') = 1 — 7;(n). Thus

1. a site ¢ is potentially stable if and only if 7;(n) < T and r;(n) < 1 — 7. In particular if T' < %
an unstable site for n is automatically potentially stable.

2. i T > % and 1 — T < r;(n) < T, we have r;(n°) < T and the site 4 is unstable for n and n'.

2.2 Infinitesimal generator, construction of the process
Fix o > 0 and B > 0. Let us consider the following dynamics: starting from a configuration 7

1. if a site ¢ is potentially stable, we flip the value at ¢ with rate 1,

2. two nearest-neighbors i and j exchange their values with rate aN? (accelerated Kawasaki dy-
namics),

3. a site ¢ can change its value at rate 8 > 0 (spontaneous Glauber dynamics).
This dynamics defines an infinitesimal generator £y defined for F' cylinder function on Qx by
LnFm) = Y (F0') = F)Lpy<rrim<t-1) + B) +aN? Y1 (F(?) = F(n)),  (2.3)

€T, i,jeTY,

where n% is the configuration where the values at site i and j have been exchanged.
The following proposition states that the process is well defined, since the state space is finite.

Proposition 2.1. Given an initial configuration ng, Ly is the infinitesimal generator of a Feller
process, denoted (0¥ (t))i=0.

We let pi¥ be the distribution of n'V(t).

Remark 2.1. In this article we focus on the compact setting (torus) because a non compact framework,
as R?, presents technical problems for the convergence of the process, nevertheless the discrete model

can be well defined on Z¢ (cf. [2.3)) and Proposition .
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3 Main results

We let i) (i) := E,\ [nMN(0)], i € T4 be the initial distribution of our process, that is, 1/ (0) is
distributed as a Bernoulli of parameter u (7).
For a vector v, |v| denotes its euclidean norm and |v|s its uniform norm.

Assumption 1. Assumptions on Vy.
1
1. Let by be the diameter of V. Then, fy < 5(10g N)E for some § > 0.

2. If d = 1, suppose that Vn < Z\N.

Assumption 2. Assumptions on u(])V.

1. There exists € > 0 such that e < ul' (i) < 1 — ¢ uniformly on i € T% and N € N.

2. There exists Co > 0 independent of N such that |[Vub (i)]e < %, where Vud (i) = (u) (i +
er) — ud (1))4_,, with e € Z% the unit vector of direction k.

3. Let UiVN = ®z’e1r§l\, B(uév(z)) be the law of a sequence of independent Bernoulli of parameter
0
ull (7). Suppose that H(ud |UiVN(0)) = O(N9=20) for some gy > 0 small, where H(p|v) is the

relative entropy of u < v,
[ du du
H(p|v) = Jdv log (dv)dv (3.1)

4. Let W) (x) be the linear interpolation on T¢ = (R/Z)?, the d dimensional torus, of ul’ (i) such
that WY (i/N) = ulY (i). Then, there exists ug € C(T?) such that @Y converges to ug in C(T?).
Remark 3.1. The assumption (2) 1s only technical and it could be removed by considering the
dimension d = 1 separately from the rest of the dimensions, cf. Remark[{.3

Define )
N N
w =l (o) = 5 30 (05 () (3.2)
€T,
the empirical measure associated to the Markov process n where the space is rescaled by %, which is
a positive measure on T¢%.

We now state our main result, which concerns the convergence in probability of the empirical
measure.

Theorem 3.1. Under Assumptions and@, if ug (the limit of the initial condition, according to
Assumption [34) is such that

1. ug € CYTY), with Vug Lipschitz,
2. Vug(p) # 0 forp=min(T,1 —T) and p=1—min(7T,1 - T),
then the reaction-diffusion equation

oru(t, z) = 2aAu(t, z) + (1 — 2u(t,x)) + goo(u(t, x)),
(3.3)
u(0,z) = uo(x),
has an unique density solution u = u(t,x) with (t,x) € [0,7] x T¢ for some T > 0, where T? is the
d-dimension torus and geo(p) := (1 —p) L1 _pemin(r,1-1)} — PL{p<min(T,1-7)}- Moreover, for every test
function ¢ : T4 — R and for every e > 0,

Nl—ig-loo uN ( ‘<7TN, vy —<u, cp>‘ > s) =0, Vtelo,7], (3.4)

N

where {7V, ) and (u, ) denote the integral of v with respect to the measure © or u(x)dx respectively.



Remark 3.2. If the solution of (3.3) is not unique, which is not technical difficulty but a real pos-
sibility for some initial conditions (see Remark for a concrete example), then any accumulation
point of the sequence of empirical measure is a solution of (3.3).

3.1 Organisation of the paper

To prove Theorem we first prove that the empirical measure is close to a discrete measure u?

which is a solution of a discrete analogous of , this is Theorem Its proof is based on a entropy
method approach in which the relative entropy between u” and UiVN, see Theorem Even if this
technique is quite standard in the particle system theory, some new technical estimations arising from
the geometry of the system are needed, this is Theorem In Section [5| we discuss some central
technical estimations about «!, in order to describe the behaviour of the discrete model. Then, in
Section [6] we discuss the existence and uniqueness of and in Section [7| we show the convergence
of the u” toward the density u by completing the proof of Theorem . We stress that the proof of
the existence and uniqueness is not standard and the analysis of this PDE is interesting in its own.
In Section we state our conjecture on the phase diagram of the model.

3.2 Conjecture on the phase diagram

In this Section, we discuss the phase diagram that describes the mixed and segregated phases. We
start by setting the Equation (3.3) in a more convenient form. Set po(T) := min(7,1 —T) € [0, 3].
For p € [0, 1] we define

( 2
5(r-3) +350°-mm?) for 0 < p < polD).
1 2
Yoo,8(p) =1 B ( - 2) for po(T) < p <1 —po(T), (3.5)
2
5( _;> +%((1—p)2—p0(T)2) for 1 —po(T) <p < 1.

Our conjecture is based on the analysis of v, g and it is represented in Figure 1L We observe that
Yeo,3 is continuous and satisfies v g(p) = Yoo,8(1 — p). For p # po(T),1 — po(T), we have that
Yoo 5(P) = =B(1 = 2p) — goo(p) and (3.3 can be written as

dru(t, ) = 2aAu(t, x) — v 5(ult, )). (3.6)

To discuss the phase transition we can look at the structure of 74 g(p). The function p +—

Bp- %)2 + % (p* — po(T)?) has a unique minimum at p = pt o= % Therefore, if 0 < pf <

po(T) < %, the function v, g has three regular minima: p®:= %, pt and p" := 1 — p’. Note that

T 2
Yos(0) =0 and Y s(P") = Yo s(p) = i f 7 - po(2 )"

Then we get that if po(T) < p™ := ,/ﬁ, we have 7o 5(0°) < Y0 5(p%) and if p™ < po(T), we
have that Yoo 5(p¢) > Yoo (p). If p* > po(T), p© is the only minimum.

The two thresholds for po(T') are then p’ and p™, see Figure . Since p* < p™, we have the
following picture: as T is close to 0 and below p’, we have a unique minimum of Yoo,3, 50 that typical
configurations are close to p = 1/2 which is of lowest energy 7o g. It means that, at equilibrium, we
expect a configuration balanced between 0 and 1 and we do not have segregation. Then, as T" goes
above the threshold p’ but stays below p™, other minima at p = p’ and p = p” appear, and these



Mixing Metastable Segregation
segregation

Figure 1: Representation of the different phases of the system as function of the parameter po(T) €
[0, 3]. When T is close to 0 or 1 (po(T) € (0,p")) we do not have segregation (red parts) and typical
configurations are provided by a mixing of 0 and 1. If T is close to 1/2 (po(T) € (p™, 3)) we have
segregation (green parts): a very large parts of the configuration are composed of 0 or 1. We have
also intermediate values of T (po(T) € (p’, p™)) for which the segregation is metastable (yellow parts).

two configurations are metastable since their energy is higher, so we can have segregation for a small
proportion of the time. The next threshold is p™, at which the two metastable configurations become
stable and p = 1/2 is the metastable one so that we expect stable segregation. For T above % the
picture is symmetric.

Remark 3.3. The hydrodynamic limit (3.3)) has, at least, two different formulations as a gradient
flow:

1. in the classical L*(T?) setting, with the potential F defined for u : T? — [0,1]

Flu) = f ol Vul? + Yoo (), (3.7)

Equation (6.2) can be written as dyu = —dF (u) where 6F denotes the Fréchet derivative of F.

2. in a Wasserstein-like setting defined in [17] with the entropy potential H, for u : T¢ —]0,1],
and & : TY — R (seen as an element in the tangent bundle)

’Yéo,ﬁ(u)
log(2u)

H(u) = % J (Qulog(2u) —2u+1) 30, K@) = —2aV - (uVe) + & (38)
FEquation can be written as
oru = —K(u)(dH).

Since H = log(2u) and K(u)(dH) = —20Au + 7j ,,(u).

Both formulations could be useful to establish a rigorous proof of the phase diagram given in
Figure[dl In particular, along a gradient flow the potential is non-increasing, thus for all t > 0, along
a solution u we have F(u(t)) < F(u(t = 0)) and if u converges to a stationary solution v, it must be
a stationary point of F (i.e. F(v) =0).

For the second formulation, note that

/
Y;?;Z)) > 0,u €]0,1] <= po(T) < p* = - f% — 8> %. (3.9)
We are thus in the mizing phase of the diagram and K(u) is positive definite in the sense that
2, Yoop(W) o
JﬁlC(u)f = J2au|V§| + log,Tu)é = 0. (3.10)



Then, one can prove that along a solution u, we get that:

—7—[ f&tudH u) < nyéog(u) log(2u) < —cH(u) (3.11)

where ¢ = f— 1 pg}go()T) > 0, and we get that H(u(t)) < H(u(0))e . Thus H(u(t)) goes to 0 ast — oo,

this entails that u converges to the only stationary point of H which is the constant s. Heuristically,
it suggests that an exponential relazation is taking place in the mizing phase of Fzgure

4 Relative entropy method

Using the relative entropy method, in this section we prove that the empirical measure 7%V (t) is close
to uN(t) = (uN (¢, i))iET}iv the solution of a suitable discrete PDE.

In order to state the main result of this section, we observe that the generator Ly in can
be written as Ly = Gy + 2aN2Kn where Gy is the generator which describes the Glauber-Schelling
dynamics and ICn the generator which describes the Kawasaki dynamics, that is,

GvFm) = Y, (Vinmernimei-my +8) (F') = F)), (4.1)
i€TY,
KvF) =5 3 (FO) = F(a)). (12
1,j€T4,

li—j|=1
Let us stress that Gy can be written as follows
GNF(n) = D) (ciln) + B)(F(n') — F(n), (4.3)
€T,
where ¢;(n) is a local function which describes the dynamics (Glauber-Schelling dynamics). To be
more precise, we write ¢;(n) = co(7;n) where ¢ is the flipping rate of a particle at the origin, that is,
co(n) = Lro(m)<Tyro(my<1-T} (4.4)

and (7;m); = ni4;, likewise 7; acts on w. Note that ¢g is a random variable and take the value 0 or 1.
We let

kn = kn(T) := min {[KNTJ — 1| Kn(l - T)J}. (4.5)
We observe that lim K—N =min(7,1—-T).

Since co(7) = 1{m<n><K—N} Lot =0} + Liro(m< 2 =1} Ve define

(M= Lpymzi—pay  and G ()= g ppcmny, (4.6)

N

so that co(n) = ¢ (n)(1 —no) + cg (M)no, by ([2-2). The functions ¢™ and ¢~ can be viewed as the rate
of creation and annihilation of a particle at ¢ = 0 respectively.

For any function u = (ui)iET?v we define

vu(dn) = vy (dn) == &) B(us) (4.7)

: d
€T,



and we let ¢j (u) and cj (u) be the expectation of ¢ () and cj () under v, that is,

cg (u) =Py, (po(n) 1- ZJL) and co (u) =Py, (po(n) < g) (4.8)

We finally define
G(u) := cf (u)(1 —up) — ¢ (wWup and G(i,u) := G(riu). (4.9)

Let u™ (t) = (uN(t, i))ieTﬁlv be the solution of

(4.10)

Nt i) = uf'(3),

where Au'V(t,7) is the discrete Laplacian on the torus. Note that can be interpreted as a
discretized version of .

To prove Theorem we first define a discrete approximation of u© and we show an equivalent of
Theorem for u"V defined in . More precisely, we consider u” as a measure on T%, that is,

{atu (t,4) = 2aN2AuN (t,4) + B(1 — 2uN (£, 1)) + G4, u)
i) =

u™ (t,dv) Nd 2 ﬁ (dv), (4.11)

zer
The main result of this section is the following theorem.

Theorem 4.1. Under Assumptions (md@ for every test function ¢ : T* — R and for every 6 > 0
there exists T > 0 such that

lim p <‘<7rN,cp>—<uN,<p>‘>(5)=O, Vte[0,7].

N—+400

To prove Theorem , the main ingredient is that the relative entropy of UiVN ® (cf. (4.7)) with

respect to pf¥ stays small in time, if it is small at t = 0.

Theorem 4.2. Under Assumptions [1] and [9, with § > 0 sufficiently small, we have that for some
e >0 small
Hu(t) = H(pu o)) = ONT#), Vie[0,7] (4.12)

with 7 = 7(§) > 0.
To prove Theorem [£.2]it is enough to show that
OHN(t) < OF (HN(t) + O(Nd*“)> (4.13)
with a € (0,1) if d > 2 and a € (0, 3) if d = 1, indeed in this case Gronwall’s inequality gives

Hy(t) < (HN(O) + tO(Nd*“)>eC£§1/t. (4.14)

Since Ot < NCO by Assumption , the proof of Theorem is complete. We prove (4.13)) in
Section [A.T]

Let us observe that Theorem implies Theorem {.T] Indeed, we recall the entropy inequality
stated for a set A and two measures v < p, cf. A1.8.2 of [I5] or Section 2.2 of [7],

log2 + H(p|v)
h log (1 + u(A))

1(A) < (4.15)

9



For a given test function ¢ and § > 0, we let

AN ip = {ne Qn: a0y — W, )| > 6}, (4.16)

so that the proof follows by Theorem and (4.15)) if
B d
o (Al) < e N (4.17)

Since u”¥ € (0,1) (cf. Proposition , the proof of (4.17) is model independent and follows line by
line the proof of Proposition 2.2 in [7], we omit the details.

Remark 4.1. Let us note that cy can be expressed as a polynomial on the variables n;’s, as in relation
(1.5) of [7]. This remark will be useful in the sequel of the paper. For this purpose, let A € Vy, we
denote:

ko =1]0=m) [ m end ) =1[m [] Q=m)=chl-n) (4.18)

JjeA jEANVN JEA  jeAnVyn

where 1 — 1 is the configuration with (1 —n); = 1 —n; since ro(n) = ro(1 —n). Note that

(4.19)

) = Lifnj=0forjeAandnj =1 for je AnVy
| 0 otherwise.

By an abuse of notation, for a function u = (uj)jeT‘ziv we let let also cfi(u) = [Lieal—uj) [ Lieanvy i
and accordingly for c,(u). By ({.6) we have that

KN
M =D Lgmym o momoy = (L=10) D ch(n). (4.20)
k=0 N ACVN
|Al<kn
Accordingly, we have
KN
0 (M =2 Loyt oy =70 D, €alm). (4.21)
k=0 N AcCVyN
|Al<KkN

In the rest of this section we prove Theorem The strategy that we use follows the one used to
prove the analogous result in [7] and [13], but some extra-technicality is required due to the geometry
of our problem.

4.1 Proof of Theorem
To make the notation lighter, for t > 0, j € T4, p € (0,1) and u” the solution of (#.10]), we let

' Ty
uj(t) := u™(t, j), x(p) :=p(1 —p), wj = 2L—2L. (4.22)
X (u;)
and, more generally, whenever the context is clear we omit the superscript IV, so that UQJLVN @ and puf’
will be denoted simply by v,(;) and p; respectively.
To compare u and v, we introduce

= X B(a) (4.23)

;~rmd
€Ty,
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be a sequence of independent Bernoulli of parameter « € (0, 1) defined on the space of configurations.

We define
dpu

_ . d'Uu(t)
d'Uu(t)

fe: and Py 1= .

(4.24)

We have all the ingredients to state Yau’s inequality in our context. The proof is quite standard (cf.
proof of Lemma A.1 in [13]), so that it is omitted.

Proposition 4.3. For any t = 0 we have that

tn(®) < = [ Tn (VEM) vy @) + | 0 [£3701 = dlog ] vy (@n), (425)

where £7\}U“(t) is the adjoint of Ly with respect to the measure v,y and Tn(h)(n) = Lyh*(n) —

2h(n)Lnh(n) is the carré du champ operator.
We define the current J; = J¥ () as

Tp = L3791 — &, log ;. (4.26)

Our main goal is to estimate the current J; to control the right hand side of (4.25) and get (4.13).

4.1.1 The current th

To control [,EU““)I we have to compute the adjoint of Ky and of Gy, cf. (4.1) ans (4.2). We follow
the computations done in [7]. By Lemma 2.4 of [7], we get

Y u 1
K01 = ~5 Z (ui — uj)’wjw; + Z (Au);w; (4.27)
i,j€TY, i€T4,
ji—jl=1
where (Au); = 3 ;era j;j-1(u; — u;) is the discrete Laplacian. Since co satisfies the condition (1.5)
N
of [7] (see Remark , by Lemma 2.5 of [7] we get

Oy 1= > (ef ()1 = w) — ¢ (i + B(1 — 2u;)) w;
€T,

= > ((ef () = ¢ (W)X = w) = (e () — ¢ (w))u;) w; (4.28)

: d
1€TS,

+ 3 (e @A = wi) = ¢ (wyus + B(1 — 2uy)) wp.

: —rmd
€Ty,

In the second equality we centered the variables ¢ (1) ¢; (1) since under vy, ¢ (n) and ¢; (n) are

Bernouilli random variables with expectation ¢;" (u) and ¢ (u) respectively. Finally, by Lemma 2.6 of
[7] we get
drlog () = ) (Grui)w;. (4.29)
€T,

Summarizing, we obtain the following result.

Proposition 4.4. The current Ji(n) satisfies

Ji(n) = Z (—0pu; + 2aN2(Au)i + B(1 — 2u;)+G (i, u))w;
e, (4.30)
- V(’LL, 77) + V+(u7 77) -V- (U, 77)7
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where G was defined in (4.9)) and

V(u,n) = Z (cf(n) — c:r(u)) (1 — u)wi, (4.31)
i€TY,
V() = ) (¢ (n) — ¢ (w) uiw;, (4.32)
i€TY,
V(u,n) = —aN? Z (ui — uj)wjw;. (4.33)
i,j€T%,,
ji—jl=1

In particular, if u satisfies (4.10) the current reduces to the second line.

In the rest of the section we provide estimates of V™, V™ and V.

4.1.2 Estimates of VT and V—

Let us denote {ey, e, ...,eq} the canonical basis of Z?¢. For ¢ : ’]I‘ﬁlv — Randie ’]I“]iv and ke {1,...,d},
let Vip(i) = p(i + er) — ¢(i). We denote [|Vp|o = max; i |Vip(i)|.
We note that

V_(uv 77) = _V+(1 —u,1- 77)7 (434)
so that the bound for V't can be transferred to V', see Remark In the following we get an
upper-bound for V*. Denote 9;" = ¢ (n) — ¢/ (u) and w; = (1 — w;)w; = TR

Then
VE(un) = ) Ofwf (4.35)
€T,

To bound V' (u,n) we follow the method used by Jara and Menezes [I3] and by Funaki and Tsuneda
[7]. For this purpose let us observe that the carré du champ referred to the generator £y, namely,
I'y(h) = Lyh? — 2hLyxh can be decomposed as

Tn(h) = T (h) + 2aN?TX (h), (4.36)
where I'Y;(h) and Tk (h) are the carré du champ related to the generator Gy and K respectively (cf.

(4.1) and (4.2)). In particular,

Ch(h) =5 25 (A@™) —h(m)?*. (4.37)

i,j€TY :
li—jl=1

1
2

In the next result we provide the control that we need for V.

Theorem 4.5. Under Assumption we have that for any u : T4 — [0,1] such that
1= 1 |lullloo > 0 with [[julllo := min { Juloo, |1~ o },
2. [Vu(i) e < % with Cy independent of N,

and for any density f with respect to v, we have that

f V() (v (d) < N7 jr’ﬁ(ﬁ) (Mouldn) + CLEH(fuu | v) + N0, (438)

for any 6 >0 and Cy z?)dal(d—i-l)g2 (% —i-@), Cy = 66—(’;0 for N > 25%

2
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Remark 4.2. Note that if the estimate (4.38)) holds, then it holds for V. Indeed, using ({4.34), the
fact that |||ul|lc = |||1 —ul|lec =1 — € and that, under vi_,(dn), 1 —n has for law v, we get

| v smenan == [V w1 - s
- [V - wns = norutan)
<N [ TR (VI = nora(dn) + CLEH(F(L = o] ) + CaN~e
= N [T (V) @valdn) + CLbH (o |0,) + CaN'.

Proof of Theorem[{.5. The proof will proceed in several steps.
Note that, according to Hoeffeding Inequality (Lemma , under the probability measure v,,
19? is sub-Gaussian with variance parameter % and wf is sub-Gaussian with variance parameter 4%2.
As in Jara and Menezes [13], we proceed to use an averaged version of V*. Let £ > 0 and consider
Ay ={0...,£—1}¢ the cube of size ¢ starting at 0. Let py(i) = E*d]l{ie/\e} and py(i) = K*dﬂ{ie,/\z} =
pe(—i). Then for ¢ defined on T, we set

@) =pere) =Y. peli)ek) = Y peli)eli — §) = 4D (i — ) (4.39)
k=i j jeA,

G ) =perpli) = Y pr Epg pli—7) =1 (i + ). (4.40)
J+k=i jeAy

Let us denote gy = py#pg. We have q(i) = €724 Ay~ (i— Ag)|. Thus, 0 < (i) < 7% and g,(i) = 0
if and only if i ¢ Agy_o. All sum being finite, we get for ¢ and 1 defined on T‘f\,:

Zso V(i + 7)ae(d) = D, @i+ 5)pe(k)pe(i — k 290 i)pe(k warjpe(]—k)

1j?k

—Z‘P i)pe(k) (be * ) (k + ) ZZ@ D)pe(j — i) (Be = ¥)(5)
= Yo DDGe+0)) = X, TG V0

Thus let V¢ .= ZieTg{, 29i+wi+’€ with w?’g =2 wi‘:qu(j). We have that

—>

= > dfwlap) = ) WW (4.41)

]ET ze']l'd

Then Theorem [{.5]is proved with the following two estimates.
Lemma 4.6. Suppose that |||ul||lw <1 and let e = 1 — |||ul||s. Then for any € > {y

Nd
JVH fou(dn) < Ce 16/ (”H( fou | va) + gd) : (4.42)
The constant C depends only on the dimension, namely it can be taken as C = 3924/2+2
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Lemma 4.7. Suppose ¢ = 1 — |||ul||c > 0 and |Vu(i)| < % for some Cy > 0 independent of N,
where Vu(i) = (Vku(i))%zl. Then, for any £ > by, with £ = N* for some kK >0, and § > 0

j<v+ — V) fuu(dy) < 6N f I (V) vu(dn)

ga(0)0° ¢ N _
+a@dN «”ﬁw U%w@+ﬁ7+@M1(M$

where Cy = % (1 + 12\705%) and Cy = 3%(d + 1) (% (1 + Nisog) + C’z) depends only on the dimension

and gq(0) is deﬁned in (4.47).

Indeed, we choose ¢ such that %

< Cp: more precisely, for any dp € (0,1) we take
(=N2%) for d=1, and £=Nal"%) for 4>2. (4.44)

Since Ed has a log-growth (cf. Assumption ' this choice of ¢ together with Lemmas E and .
concludes the proof of Theorem [4.5]

We now prove Lemma and Lemma

<——>

Proof of Lemma[[.6. We start by recalling that V¢ = Zler 9" ;wt ;. Note that, under v, using

—

Lemma|A.3] w™; is a sub-Gaussian variable with variance parameter Y !

_1 1
€Ay 402020 S 4e20d°

Since ¢ (n) is a function of (19i4+;) evy, then for i and j such that |i — j|o > £y, ¥ and 19;r are

-
independent, and sub-Gaussian with variance parameter %. Using Lemma|A.3, 97 ; is a sub-Gaussian
: : . 02 o\ _ qaotd
variable with variance parameter i (1 + 7) <2 7
— —>

We note that all the sites involved in the averages 9% ,;w™

i are in @ + Qp,,/24¢, Where Qp, =
{—m,...,m}¢is the d-dimensional cube centered at 0. In particular, for i and j such that |i — j|e >
0y + 24, the corresponding averages are independent (under v,). Then, we can take a partition of
T‘fv into independent sites by letting i = j + (¢y + 20)k where j € Ay, 190 and k € Apyy(e, 420 The

entropy inequality (cf. (B.3) in [13]) gives

—>

JV+’£fvu(d77) = ] J > O o420k W jy oy 420k S Vu(dn)

J€Me, +20 Y KEAIN/(£y,+20)]

y ol (’H(fvu [00)

JEAL, 420

N

«— —
+ Z log J exp {7 D 20k W o420k }vu(dn)>
1

KEAIN /(e +20)
Oy + 20)° 1 T
< w’;—[(fvu | vy) + ; Z logjexp {7 It wt i}Uu(dn)

Y T
€Ty,
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According to Lemma , for y~1 = 2d/2+2€_d5_1€%/2, we have that

«— —>

logJeXp {’y It wt i}vu(dn) < log 3.

Thus we obtain

0 N
JVJr,ZfUu(dT]) < 2d/2+25*1£§lj/2 ((2 + Z) H(foy | vu) + 7 log 3) :
O

Proof of Lemma[{.7. We first prove the Lemma by also assuming that Vy < Z¥\N?. In Remark
at the end of the proof we show how to remove this assumption in dimension d > 1.
We then proceed as in Jara and Menezes [13]. We use the fact that

+ +.4 _ +(,,F 4
Vr=v _Zﬁi(“}i_wi )
€T,

= > el (o) — a)- (4.45)
i,j€T4,

We now use Lemma 3.2 in [I3] stating that there exists a function ®, : Z¢ x Z¢ — R which is a
flow connecting the distribution 1oy to gy, i.e

b (I)Z(Zvj) = _q)f(ja Z)
o X timjl=1 Pe(i, ) = Loy (9) — qe(d)
b (I)Z(Zh]) = 0 for Z>.] ¢ A2f—1

e there is a constant C = C(d) independent of ¢ such that

D1 12e(i, §)1? < Cga(f)  and DT 1e(i, )| < C (4.46)
li—jl=1 li—j|=1
where
Cford=1
ga(f) = < log(?) for d =2 (4.47)
1ford>3

Using the flow ®; we therefore have
7( — y
ViV = Y ofel > (k)

i,j€T k: \J‘*k\zl

- X ol {<I>g<j,j+ek>—<1>e<j—ek,j>}

% je’]l‘d

Z Z 19+@£ ] ] + ek)( zJ,»] 'L—:’j*‘rek)
k= 12]€Td

DO+ en) (Wi —wit,)
jETd

—wt ) (4.48)

1t+eg
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where

W =nt = N 0r @ g ten) = D) 08 ®(j, i+ er). (4.49)

jeTd, JEN2p1
To complete the result we need to estimate (4.48). We apply Lemma 3.5 of [7]. Note that the
hypothesis of Lemma 3.5 are satisfied in our case: u_ = ¢ and u; = 1 —¢ and h¥(n’*+e) = h¥(n) for

any configuration 7 inasmuch h¥ is only a function of the sites 9;_;4s, for s € Vi, j € Agy_1, so that
it does not depend on 7; and 74, since Vy < ZN\N?. Moreover, we observe that Lemmas 3.4 and
3.5 apply to our case replacing x(u;) by u;. Therefore, for any o/ > 0 we have that

J\hf(wz Z+ek)fvu d77 J \/ Z H—ek \/ Uu d77

y e f (WY fuuldn) + Y. (450)

with C ¢ = E% (1 + & 2) and where the rest term Rf is controlled as
R < Coc| Vi | [ |1 fou(an) (451)

with, for e < %, Coe = % (1+ 2CO) We now take o' = §N?, with § > 0. We get (cf. (4.37))

J( — VT fou(dn) = 2 > Jh’“ — Wye, ) fu(dn)

k=1 ze’]I‘d

<5N2JF§(\/f)vu dn) + (scjlvz 2 > Jhk Fou(dn) + Z DURFE. (452)

k=1ieTd, k=14erd,

The first term is the same of (4.43)), then to conclude the proof we have to upper bound the second
and the third term of (4.52).

Let us start from the third one. Using that | Vyu; | < €0 and |[h¥| < 1+ (hF)? in (E5I) we get

k s k
R} < —~ (L + (RF)?) fou(dn).

So that, the last term of (4.52)) is bounded by

d
CoCae | N1+ %Z J $)* fou(dn)
k=14eT¢,

Let us note that this last term dominates the second term of (4.52). To conclude the proof we need

to upper-bound
3y |t ontan),

k=1 ze’]I‘d

As we noted above, hf depends only on the sites 7,_j4, for s € Vy and j € Agy_1, so that the random
variables h¥ and h% are independent if |i — i'|o, > (2¢ + ¢y). We then decompose T4, as a disjoint
union of cubes of size 2(+ £y, that is, we write i = j+ (£y+2()z where j € Ay, 120 and 2 € Ajn e, 420)]5

N (TN SED Y [ Tk

€T, J€A2010, ZEAIN (0, +20)]
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We then apply the entropy inequality and we get

Z J (RF)2 fu,(dn) < 5 2 ”H(fvu‘vu) + logfexp {7 Z (h?JrZ)Q} Uy (dn)

€T, J€M20 10, ZEAIN /ey +20)] (4.53)
20+ ¢
= (PyV) H(fvu|vu) + = Z logjexp hk) }Uu(dn)

ze’]I‘d

To conclude we use a concentration inequality. We have that hf is sub-Gaussian random variable, let
o2 be its variance parameter. By Proposition we have that for any v <

1
~ 40.27
[ exp {342} vutan) < og3.

Moreover, to get an upper bound on the variance parameter, we use the same decomposition of the
sum (4.49) into subsets which are independent (since 19+ is a function of n;1;, for i € Vy and is

sub Gaussian with variance parameter 7) This is done in Lemma F.12 in [13]. We then have that
Cdfvgd( ), where Cy is a constant which depends only on the dimension. By getting ~ as large
as p0551b1e namely 7! = (d + 1)¢{, ga(¢) we obtain that

d
Z f (R)2 fuu(dn) < (d 4 1) gg(£)? ((2 + é )dH (fou|va) + JZ—d log 3). (4.54)

ze’]l'd

To conclude the proof we have to remove the assumption Vy < Z¥\N?. We show that in Remark

4.3l O

Remark 4.3. By [{.48) we recall that V -Vt = 2%:1 Zie’ﬂ“}v hF(wi — Z+ek) where h¥ is defined
in (4.49). We also observe that, by assumption, ¢ > fy. Since hf is a function of the sites 1;—jis, for
s € VN, j € Noy_1, whenever |j| > Ly, then ﬁztj does not depend on n; and n;iye,. Therefore we split

hf into the sum of two functions hl and hl]. The first one is independent of 1; and 7., , while the
second one depends on these sites,

hl = 2 5 ;@e(j,J + ex), and hl = Z v ;.7 + ex). (4.55)
J€A2e_1 JEA2, 1
l1>2¢y l7]<26y

In such a way

/A AR | VA VA R N ( T il U (4.56)
where
d d
Vv =3 N Bwf —wfy,,) and (V- VY Z 2w —wh,)  (457)
k=14eTd h=1ieTg,

We can apply the method used above to (VT — VY obtaining that ([{A.54) holds. We control (V+ —
VO by showing that (VT — V4" fu,(dn) = O(N=¢), for some ¢ > 0. For this purpose we apply
Cauchy-Swartz inequality to the measure fu,(dn), which gives

[ =it pvatan < ([ rean) ([ - wi i)’ @5
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Therefore

d
Jorr—vetypoan = 30 3 [Her —wi) foun

d
k= 116'[FN

<3 (Jh" fvu<dn>)l(f<wi+— o Fuald)’

k=1 4eT

[

d d
Z 2 (f (n})? Fou(n)) 2 2 (f —wh @) | (459)
S i 2.5

where in the last inequality we used again Cauchy-Swartz inequality.

i MNi+ey,
We observe that (w;" —w;l . ) = (1 — u:ribz) = (u% — uziek) uiiek (M — Nite,), SO that
+ 1 L \2 2
(i = w2 rvalan) <2 i = === ) Fouldn) +2 | <501 = mive) 2 vuldn)
Us Ui+ep,

i+eg
< CVule + O [ = e fou(dn) < L
uniformly on i and N. So that,

Z 2 J Wite, fvu(dn)) < CLN?. (4.60)

k=1 ZETd

Therefore, by (A.59)), to conclude the proof it is enough to show that

2 > Jh” Fou( dn O(N4#), (4.61)

k=1 ze'JTd

for some ¢ > 0 small. For this purpose we have to look more carefully at the function ®,(j, j+ex) which
defines the flow. We recall (cf. Appendiz G of [13]) that in the construction of the flow connecting
Lyoy and pe+pe, we first define a flow Wy connecting 1ygy and py supported in Ay which satisfies
and then we define

O, 5 +ex) == ), Woliyi + ex)pe(j — i),
i€TY,

therefore

Z D44, + ex)| < Z Z (Wo(i,i + ex)|pe(j — i)

JEA20—1 JEA20—1 i€TY,
li[<26y 7]<2¢v
gd
< 2 ‘\I/g(l,l+€k)‘ 2 p@(j_l) <C€€da
’LET?V jEAQ[_l

l7]<2¢y

d
where we used that Y jen,, , pe(j —1) < %dﬁ uniformly on i and (4.46) applied to Vy. We deduce that,
li[<2¢6y

since |792tj <2

7

5. 3, (forrnuimn) <ov ot

i 2(d=1)"
i€

Since £ = N* for some k > 0 and Eﬁl, grows logarithmically, the result follows (in dimension d > 2).
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4.1.3 Estimate of V

We show that under the hypothesis of Theorem V(u,n) satisfies (£.38). For i € T4 and k €
{1,...,d} we let

~k

w; = —ozNQ(ui — ui+€k)2wi.

In such a way we get

V(u,n) = —aN? Z (ui — uj)*wiw;

i,jeT4,
i1
d
= —_aN? RV o Y200
= -« (uz ulJrek) WilWite, T+ (Uz szek) Wili—ey,
k=14eT4,
d d
_ R + ~k =9 ~k
- Wi Witey, Wi—e,Wi [ = Wi—e, Wi
k=1 jeT4 k=14eT4,
—
vk . ~k . 7kl . _ ~k ; 17k,0
For ke {1,...,d} we let V¥ := ZieTﬁlv Wi, wi and V= ZieT?v W;' ¢, wi. We have that V™" and

Vk_ykt satisfy (4.42) and (4.43)) respectively, which implies that V(u,n) satisfies (4.38). The proof
follows the same ideas of V* and V'~ and it is actually simpler since we do not have to deal with the

diameter of V. We omit the details.

4.1.4 Conclusion: Gronwall’s inequality (4.13)

We observe that since F]’f[(\/f) < Tn(V/f), cf. (4.36) and that the carré du champ operator is non-
negative, (4.13) is a consequence of Proposition 4.3/ and Theorem 4.5 with u(t) = u™V(t), the solutions
of (£.10), f = dgf(tt if we show that u” satisfies Assumption [2| for any ¢ € [0, 7]. This is one of the
goal of the Section , see Propositions [5.2) and [5.3

5 Estimates on the solutions (u") of (4.10)

Note that is a first order ordinary differential equation in RTA. By standard theory, we have
a solution, locally in time, starting from every initial condition.

We say that u is supersolution of if Opu; = 2aN2(Au); + B(1 — 2u;) + G(i,u) and that it is
a subsolution if dyu; < 2aN?(Au); + B(1 — 2u;) + G(i,u).

Note that any solution is both a super- and a subsolution. We have a comparaison lemma between
super and subsolutions.

Proposition 5.1. Let u be a supersolution, and v be a subsolution such that u(0,i) = v(0,3) for all
i€ T4. Then, for allt >0 and all i € TS, u(t,i) = v(t, ).

Proof. Since u and v have derivative in time they are continuous, consider i and ¢ such that u(t,7) =
v(t,i) and u(t, j) = v(t,j). Then, we have G(i,u(t)) = G(i,v(t)) by Proposition and thus

A¢(u(i, t) — v(i,t)) = 2aN? Z (u(j, t) —v(j4,t)) + G(i,u(t)) — G(i,v(t)) = 0. (5.1)
Jili=jl=1

This proves that u stays above v at all time. O
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From the two previous propositions we conclude:

Proposition 5.2. Lel § = ﬁ and suppose 0 < § < é. Let also 46 < T <1 —40 and 0 < e < 2.
For all Ky > “Ogs(ﬂ, and all N, consider the solution (uN(tvi))ie’]T?\] of Equation (4.10) starting

from ug € [g,1 — €], then we have that u™¥ (t,i) € [e,1 — €] for all i and t > 0.
Note that the proposition holds for € = 0.

Proof. Let p e [0,1], and set u(i) = p, for all ¢. Using that gx, (p) = G(i,p), we have that
o if gx\ (p) + B(1 —2p) = 0, then u is a subsolution;
o if g\ (p) + B(1 —2p) <0, then u is a supersolution.

Then, by using the result of Proposition on the analysis of gx(p) close top =0 and p =1, it
is easy to check that u(i) = ¢ is a subsolution and u(:) = 1 — ¢ is supersolution, for ¢ satisfying the
hypothesis of the proposition.

In particular, for p = 1, gi, (1) = 0, we have a supersolution. For p =0, gk, (0) = 0, we have a
subsolution.

O
In the next result, we show that if u solves (4.10) and |[Vu(0,7) [0 < %, then |Vu(t,i)|o < %ﬂ
for any t > 0.

Proposition 5.3. Let u be a solution of (4.10) with u(0) = wg such that, there exists Cy > 0 for
which [Vug|e < % Then, there exists C > 0 such that |Vu(t, )] < COJ“TM for allt > 0.

To prove Proposition we follow [7] and the reference therein, in particular [5]. Using the
notation of [5] we let p(¢, x, z) be the heat kernel of discrete Laplacian

Au(t,i) = Y a(t,iyi+ §)[ult,i + j) — u(t,i)], (5.2)
jezd

with a(t,4,7) = Lyj_jery and I' = {*e;, i = 1,...,d}, that is,

{p('v i0, 2) = 5i0(')7

atp(tv iOa Z) = Ap(ta 7:07 /L)

In this case (comments below (1.2) of [5]) we have that a*(t,4,j) = a(t,i,7) so that p*(¢,4,j) =
p(t,i,7). Let Viu(t,i) = u(t,i + ex) — u(t,i), then since p is a uniform transitions function, there
exist ¢, C > 0 independent of ¢, k such that (cf. (1.3) of [5])

p(ct,0,i)
Vivit
We refer to [5], Section 4 and the reference therein for a proof. We stress that the delicate point is to

extend the classical theory of E. De Giorgi, J. Nash and J. Moser to discrete operators. The authors
follow mainly [6], but similar results can be also found in [9] (Appendix B) and [23].

[Vip(t,0,i)] < C (5.3)

Proof of Proposition[5.3. Using Duhamel’s formula (i.e., variation of constant) we get that

ut, i) = Y, uw(0,5)pn(t,i,§) + fo ds D7 (B(1 = 2uy) + G;(w)pn(t — 5,1, 5), (5.4)

J€TY, jeT,
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where pn(t,i,5) = D cnza P(2aN?t,i, 5 + z) is the heat kernel of discrete Laplacian on the torus
speeds up by a factor 2aN? and p(t,1, ) is the heat kernel introduced above. We observe that (5.3)
gives
C pn(ct,0,1)

v t,0,1)] < —=———F——. 5.9

‘ kpN( ) 72)‘ N \/E ( )
For the first term, using that py(t,4,j) = pn(t,i + 2, + 2) for any 4,4, 2 € T% and the assumption
on Vug (cf. Assumptions [2)), an integration by parts gives

Vi B w0imnttin] =] T w0 ovi+end) - px(ti)

jeTS, jeTY,

= 2 u(07j)pN(t7i7j_ek)_ Z U(O,j)pN(t7i,j)‘

jETY, jeTg,
. . . C
= Z <U(O,j + ek) - U(O,]))p]\[(t,’&,]) < N
JETY,

By using that (8(1 — 2u;) + G;(u)) is bounded and (5.5)) we get that for any k = 1,...,d,

‘vk{ f: ds 3 (B(1 = 2u;) + G (u))px(t — s,i,j)}‘ < % Ot ﬁds _ %\/Z.

semd
JETS

6 Existence and uniqueness of reaction-diffusion PDE

In Section [7| we prove that in the limit N — oo, the solution of the discretized Equation 4.10] with
uN(t = 0) = ulf €0, 1]T7V satisfying Assumption , converges to a solution of the scalar nonlinear
reaction diffusion equation

e when Ky —» K as N — oo:

drult, z) = 20u(t, z) + B(1 — 2u(t, 7)) + g (u(t, 7)), (6.1)

e when Ky — o as N — o0:

oru(t, r) = 2aAu(t, ) + B(1 — 2u(t, z)) + goo(u(t, x)). (6.2)

The main difference between the two equations is that in the first case (K < +0), gk is a C!
function on [0,1] (thus Lipschitz) so the reaction diffusion equation (6.1) is very classical, whereas
for the second case (K = +0), since go is not even continuous we need to consider as a
subdifferential inclusion.

The main results of this section are
(i) Proposition which proves existence of a solution, in a suitable sense, for the equation (6.2,

(ii) Propositionwhich proves local uniqueness of the solution, in a suitable sense, for the equation
(6.2)), starting from a suitable class of initial conditions,

(iii) and Theorem [7.1{ which proves that all accumulation points of (u™ )y is a solution, in a suitable
sense, for the equation (6.2)).
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In the rest of this section we change our notations and define v = 2u — 1. We center the solution
around the constant steady state u = % It simplifies the presentation and proofs of our results. The
original form of our equations can be retrieved by letting u = %(v +1). In such a way (6.1) takes the
form

ou(t,x) — 2aAv(t, z) + 26v — 29K (;(v + 1)) =0. (6.3)

6.1 Solution of (6.1)

Let us denote s(t,z,y) the semigroup of the operator %A on T9, that is,
1 |z —y — k|]?
S(t,ﬂf,y) = Wkéd exXp <_2t . (64)

Denote also so(t, x,y) the semigroup of the operator %A on R¢,

1 xr—y|?

Note that £ — s¢(t,0, &) is the density of d independent normal random variables with variance ¢.
Let us consider (St’\’v) the semigroup on L'(T%) defined by, for f e L'(T%), A > 0 and v > 0

~

st ) )y = | salota) T (6.6

s2@) = |

’]I‘d

where for a measurable function f on T¢, we denoted f its extension on R? defined by f(z) = f(z—|z]).
Another way to define St)‘ "7 is to use the Brownian motion: denote by X a Brownian motion on
R? starting from 2 on some probability space (€2, F,P,), indeed we have ;"7 f(z) = e ME,(f(X41)),
and for all A > 0, and v > 0, S™ is a Cyp-contraction semigroup on LP(T?) for p € [1, +0].
As we will look at in its mild form, the following result is crucial to study the regularity of
the solution.

Proposition 6.1. For vg € L®(T?) and g € L*([0,7] x T9), define

t
oft,a) = S Tw(e) + [ o0 N @)ds. (6.7)
0
then v e C([0, 7], T¢). We have the following estimates, for all (t,x) € R* x T¢,

_ 1 _ 1
Jo(t,z)| < e Mvolleo + yd-e gleo < volleo + 119l (6.8)

and for all = > 0, there exists a constant C' depending only on T,v,\ and d, such that for all
(t,x), (s,y) € [1/7,7] x T with s < t

vt ) —v(s,y)| < C((t = 5)|1og(t — )| + | = y[) (gl + l[vo]lo)- (6.9)

Remark 6.1. v is called a mild solution of the equation dyv — IAv + v = g with initial value v.
The fact that a mild solution is a classical solution if g is sufficiently reqular is a result from Pazy

([20], Corollary 4.2.5).

Estimates and are quite standard but we include the proof for the sake of completeness.
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Proof of Proposition[6.1 The fact that v € C([0,7], L°(T¢%)) is a consequence of the fact that S*7
is a Cj contraction semigroups on L. For the first estimate , we have that:

ot < 1527w+ [ 8200t D)

S
< e_’\tHUoHoo J so(yt, x, 2)dz + | gllo J e~ Mt—u) j so(y(t — u), z, 2)dzdu
Re 0 R?

1
50 = gl

For the estimate , we start by letting s < t, we have

= ¢ *voleo

[u(t, 2) — v(s,9)| < 15200 () — S0 (y) |+U $M(g >><x>du—f:sm(g(u,-))(y)du

< Itfvolles + (T2 + I3)|g]loo
)\t

I =f e Vso(vt,z,z) —e 880(vs,y72)‘dz,
d

b=, Jk

t
I = J f e M= g0 (y(t — ), z, 2)dzdu.
s JR

where

M= g0 (y(t = u), z, 2) — e MW s (v(s — w), y, 2)| dzdu,

We have that I3 <t —s. For I} and I3, we use the fact that, fori=1...d

2
0g,50(t,0,8) = —%SO(t,o,g).

First for I, denote c1(r) =rt+ (1 —r)sand ca(r) =r(z—z)+ (1 —7)(z —y)) = 2 — (re + (1 — 1)y)
for r € [0,1], We have that

Co\T 2
’”72205 (3"|)2 + ’ycld(r)) SO(VCl(T)v 0, CQ(T»

(@e,s0) (71 (70, ex(r)] < 2L (1), 0, )

yei(r)
Il = J e
Rd

1
< || e 50(08.0.6) syt

(@) rea(),0nca(r) < 5

Therefore

—At

s0(7t,0, 2 — ) — e Ms9(7s,0, 2 —y)|dz

o[ 2|c2 26, 50011, 0, —er (116 en 7

<Ilig+ 11,2,



where we have, by applying Fubini and a change of variable

=t [ [ Jremot 3 (L0l 0 )
- S)L P03 (B +seer)

! e (r) d ' A
o —Xei(r _ —\u

< (t S)JO {)\e + 01(7“)} dr L (/\e
— e (1 —e M) 4 dlog (i) < ()\ + d) (t—s).

For the term I; 2, we get, using Cauchy-Schwarz, Fubini and a change of variable

] so(ye1(r), 0, co(r))drdz
d

Lo = JdJ Z |y — xile” Aca(r) |’>’CE())| so(yer(r), 0, co(r))drdz

f/\cl (r)

f)\clr
-4l j o7 [ I, 0e0sar = ey [ <= are,

c—|f A“d“ i
T —y Mt — 78$ Y

where C1 is the expectation of the quadratic norm of X = (X1, Xs,... Xy) of d independent standard
normal variables: C; = E(| X)) < E(|X|?)¥? = v/d (we also have C; = \[F(FCEZ}Q)/Q ~ V/d). We get
that, for s >

1
T

I (A+ (t —s) 4/ =yl <+ dr) (t = 9) 4/ |z —y|.

For I5, we make the same computatlons with e1(r) =r(t—u)+ (1 —r)(s—u)=rt+(1—r)s—u
where u € [0, s], we have, since ¢} (r) =t —

s pt—u d —u f)\v dv
Ir < J J ()\e_)‘” ) dvdu + C1|x — J J du
? 0 Js—u lH yH s—u yv t—

For the first integral, we have

s prt—u d N s N s t—u
f f ()\e_)‘” + )dvdu =(1—-e" (t_s))J e AW dy 4 dj log ( ) du
0 Js—u v 0 0 s—u

(1 — e M=) (1 — %) + d[tlog(t) — slog(s) — (t — s) log(t — )]
As(t — s) + d[s(log(t) — log(s)) + (t — s)(log(t) — log(t — s))]

As(t — s) + d(t — s) + d(t — s)(] log(t)| + [log(t — s))|)

(As +d + |log(t)])(t — s) + d(t — s)|log(t — s)].

For the second integral, we get

2s

qu wdvdu —s)J:\/ﬁdu:(t—s) =.
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Then we obtain, for 1/7 < s <t <7
2
Io < (As+d + |log(t)|)(t — s) + d(t — s)|log(t — s)| + Ci|z — yl|a /?S
2dt
< (4 d o+ [Tog(n) (e = 9) +d(t — )] 1og(t = )]+ T~y

At last, we get the following estimate

o(t, z) = v(s, )| < [(A +dr) (t—s) + \/%lﬂﬁ - yl] [ volloo

' [w # Hog(r)] + d+ 1)(t = ) + d(t = 5) log(t = ) + 4| "o - y|] lolee

O]

We modify a little our equation , both in order to obtain a sharper estimate on the uniform
norm of the solution and to get a coherent notation with the solution of the limit equation when
K — +o0.

We define for ¢ € [-1,1],

3(a+1)
ri(q) := _J 4gx (s)ds. (6.10)

2

=

We have that

e (q) = —2g9K G(q + 1)) =—(1- q)P%q [X < w(K,T)] +(1+ q)P% [X <w(K,T)]. (6.11)

So we let hg be

—1for g < —1
hi(q) = =k (q) + q for g€ [-1,1] (6.12)
1forg>1

Since r%(1) = 0 and rf(—1) = 0, hx is continuous on R. We have that, for g € [-1,1],
hic(q) = =ri(a) + ¢ = (1 = Py [X < 6(K, T)] = (14 q)P s [X < w(K,T)] +q.
We now solve the following equation
oo(t, z) — 20Av(t, ) + (28 + 1)v = hi (v(t, x)). (6.13)

Note that, this equation and (6.3) are exactly the same with the term v added on both sides if
[v]eo < 1, since for g ¢ [—1,1], hx(q) # ¢. Thus, a solution v of (6.3) with |v], < 1 will also be a

solution of (6.13)) and reciprocally.

Proposition 6.2. For vg € L®(T?) with |[vo|e < 1, there exists a unique solution (v(t,z),t >0,z €
T%) to the problem

e v is continuous from R* to L®(T?)

e v satisfies, for allt > 0 and x € T¢

o(t, z) = ST (1) + L t S LA e (0(s, )| () ds. (6.14)
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We say that v is a mild solution to (6.13). We have also that |v]|« < 1 and v satisfies
o(t,2) = S2 J S0 e (o(s, )] () ds (6.15)

and thus is a mild solution of (6.3).

Proof. The first part of the proposition comes from a fixed point argument (see also Pazy [20], Theo-
rem 6.1.2) applied to the following functional let 7 > 0 and define the functional F : C(]0, 7], L*(T9)) —
C(]0, 7], L®(T9)) defined by

F(v)(t,z) := Sy ( J S8 LA (u(s, ) () ds. (6.16)

We equip C(]0,7], L®(T¢)) with the uniform topology on all compact subset. We can apply the
Banach fixed point Theorem to F' (see the proof of Pazy [20], Theorem 6.1.2. Moreover, the mapping
vg > v is Lipschitz continuous from L® to C(]0, 7], L®(T%)).

An application of Proposition proves that ||v]e < 1.

Since hg is differentiable, then, if vy € C2(T4), vg is in the domain of A and thus v is classical
solution of (Theorem 6.1.5 [20]). Thus v is a classical solution of since |v]s < 1 and a
mild solution of (6.3). Now consider an approximating sequence (vo,) in C?*(T?) of vy € L®, and
(v) the sequence of mild solutions with initial value vg , and v the mild solution of with initial
value v. Then, since vy + v is Lipschitz continuous, by the dominated convergence theorem, we get
that, uniformly on [to, 7] x T¢ for all ty > 0, the right hand side of

on(t, z) = S, J SHAALE (1, (s, )] (2)ds (6.17)

converges to S, s P v(s, ))](z)ds, whereas the left hand side converges to v. So
we obtain that v is a mlld solutlon of . O

203, 4a S 25 4a
0

6.2 Solution of (6.2)

6.2.1 Existence of a solution

We use the same transform as before, and let hy be the pointwise limit of hx. The equation (6.2)) is
now formally

ov(t,x) — 2alv(t,z) + (26 + 1)v = he(v(t, T)). (6.18)

For the limiting equation, we prove first that the family (vg ) of solutions associated to hx with
common initial value vg € L®(T%) in C(R} x T) is compact (with uniform norm on all compact
subset). Then, by taking the limit, any accumulation point vy of the sequence satisfy the mild
formulation of the limiting equation relaxed as a subdifferential inclusion.

In order to prove this, we set some notations:

5(g+1)
Too(q) == — ﬁ 4goo(s)ds (6.19)

heo, the pointwise limit of hg, is the function on R

1+4+¢

hoo(q) = 2900 (2> +q=—lg<—2p + ql_2p<g<2p + Lg=2p- (6.20)
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Then hy is non-decreasing and is the left-derivative of the convex function Ho,

2
Hao(g) 1= —1ola) + & (6.21)

1
= [_q +2p + 2p2]1{q<72p} + §q21{72p<q<2p} + [q —2p+ 2p2]ﬂ{2p<q}
The subdifferential of Hy, at ¢ is defined as
OHw(q) = {p e R, Ho(q') — Hu(q) = p(¢' — q), for all ¢’ € [-1,1]}.

In particular we have,

{—1} for ¢ < —2p,
[1,-20] forq =2,
0Hw(q) = < {q} for —2p < q < 2p, (6.22)
2p1]  forg=2p
{1} for ¢ > 2p.

We adopt the following definition for a solution of the equation:
ou(t,x) — 2aAv(t,x) + (26 + 1)v € dHp (v(t, x)). (6.23)

Definition 6.1. We say that v is a mild solution of Equation (6.23)) if it satisfies, for some T > 0
and all t < 7

o(t, z) = S2PTAY g ( f S LA (5, )] () ds. (6.24)

where w € L2([0,7] x TY), with w(t,z) € 6Hy(v(t,r)) almost everywhere.

Proposition 6.3. For vg € L®(T?), any accumulation point (in C(R% x T%) equipped with uniform
norm on each compact set), of the sequence (vi) of solutions given by Proposition s a mild

solution of (6.23)).

As a consequence of the proposition, there exists (v(t,z),t = 0,2 € T¢) a mild solution of
such that v is continuous from R* to L®(T%), and |v]s < 1.

The existence of a solution for a given initial condition vy is not difficult and can be prove in
different ways. Here we adopt some kind of regularization procedure, since we have a natural family
of differentiable functions (namely the (hg)) approximating hs and we use the convergence of the
sequence (vk) in the next section to prove the convergence of the stochastic process. We also present
the proof because we need its arguments in order to prove the Theorem

In the Remark , we present another construction of solution(s) using the monotonicity of Ao
which is interesting since it also gives an insight on the problem of non-uniqueness.

Proof. For each K, we have a mild solution vg from Proposition From Proposition [6.1], we have
that each solution is uniformly bounded, uniformly continuous on [1/7,7] x T%, and the modulus of
continuity only depends on 7 > 1 (since the others parameters are fixed).

Therefore, by the Arzela-Ascoli Theorem, the sequence (vg)g is compact on C([1/7,7] x R%)
and we can extract a subsequence converging uniformly in C([1/7,7] x R%), and then by a diagonal
argument, a sequence converging to a limit ve, in C(]0, oo[ xR?), uniformly on each compact. Note
that since |vi| < 1 for all K, we also have |vy| < 1. We show that vy, satisfies

Let us assume that p > 0. Denote for any s > 0, A,(s) := {y € R: |voo(s,y) i 2p| = 0}. Note
that since hoo is uniformly continuous on [—1,—2p[, | — 2p,2p[ and ]|2p, 1], we have that for any
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y ¢ Ay(s), im0 hx (Vi (5,9)) = ho(veo(s,y)). Let y € Ay(s) and assume vy (s,y) = 2p without
loss of generality, since vk (s,y) converges to ve(s,y), for all € > 0 such that 2p — e > 0, there exists
Ky such that for all K > Ky, 2p —e < vi(s,y) < 2p + . Thus, using Lemma , we have that, for
all K > Ko, 2p — 2 < hx(vk(s,y)) < 1. Then taking the limits in K and € — 0, we get

he(2p) = 2p < hmlnfhK(vK(s y)) < limsup h (v (s,9)) <1 = he(2pT). (6.25)

K—w

For p = 0, we have the same inequality since then ho(0) = —1 and hy (0+) = 1.
Let w4 (s,y) = imsupg_,o hx (Vi (s,y)) and w_(s,y) = liminfx o hx (VK (s,y)), thus we have
that for all (s,v) €]0, +-o00[ x T¢:

hOO(UOO(Svy)) < w,(s,y) < w+(3’y) < hOO(UOO(Svy)+)' (626)

Since hk (vk) is bounded, by the Banach Alaoglu Theorem, the sequence is weakly compact in
L2(]0, 7[xT%), and we have a subsequence of (hx (v))x converging weakly to w € L2 (]0, 400 xT%).
Since the density of the semigroup S28+14¢ is in L2(]0, 7] x R%) for all T > 0, we have as K — +o0,

v (t, ) = S J S (6 ) (2)ds. (6.27)

Moreover, w_ and w, are bounded and therefore in L2(]0,7] x T%). Let ¢ € L2(]0,7] x T?) and
© = 0, by the Fatou Lemma we get

0= J liminf(hg(vk) —w_)e
10,7]

«Td K—+0

< liminff (hx(vig) —w_)p = J (w—w_)p. (6.28)
]0,7]x T4 ]0,7]x T4

K—+w

We also have

0= f liminf(w,; — hx(vi))e
10,7]x T4 K—>+°0( (vc)

< lim inf

fmin | s b= [ - e (6.29)
— =00 ]O,T]XTd ]OT]XTd

Thus, almost everywhere on 0, +00[xT¢, we have that

hoo (Vo) S w_ < w < wy < hoo(v3). (6.30)

Therefore, w € 0Hqy(vy) a.e. O

6.2.2 Uniqueness of solution of ([6.23)

The main problem concerns the uniqueness of a solution. We prove first that, we do not have
uniqueness for a constant initial condition vo(z) = 2p when 2p < ﬁ, so we are in the case of
segregation or metastable segragation described by Figure [I}

Remark 6.2. We describe three possible solutions starting from the initial condition vo(x) = 2p when
20 < 1335-
Note that

SPPA (@) = J e Do (1,2, y)2pdy = 2pe” BTHDL, (6.31)
Rd
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Suppose that v does not depend on x, v(t,x) = c(t) for all x € T, we have

J 52,8+1 4a o (v(s, N](x)ds = Jt hoo(c(s))e~ FTDE=9) g, (6.32)

0

Let us consider the functions

vl (t, ) = L (t) = 2pe 2P (6.33)
1
2 _201) — 9 .—(28+1)t _ o —(28+1)t
ve(t,x) = c“(t) = 2pe +1+25(1 e )
1
_ _ (2841
2p + <1 23 Zp) (1 e ) . (6.34)

Since, c'(t) € [0,2p[, for t > 0, we have ho(c'(t)) = c'(t) and then

t t
J hoo (¢! (s))e~FDE=s)qg — f 2pe2Ps = (2OHVE=8) gy — 9pe~ (2T (! — 1), (6.35)
0 0
Therefore
StQﬂJrlez f SQﬂJrl 4a 1}1 (S, ))](x)ds _ 2p67(26+1)t + 2p67(26+1)t(6t _ 1)
= 2pe 28 = vl(¢, z). (6.36)
Since 2p < 1+25, c2(t) €]2p,1], for t > 0, we have hoo(c?(t)) = 1 and then by the same computa-
tion,
t
_ s 1 _
L hoo (2 (s))e A=) qg — = 25(1 — e~ (28+1)t) (6.37)
Therefore, we also have
STy J S22 A oy (03 (s, ))(x)ds = v2(t, ). (6.38)

Thus, both v' and v? are mild solutions to (6.18) and thus to (6.23)) with the same initial conditions.
Note that at t = 0, we have v'(0,z) = v?(0,2) = 2p and

0 (0,2) = —4Bp = —(28+ 1)2p +2p = —(28 + 1)2p + heo(2p7) (6.39)
0v%(0,2) = =2p(26 + 1) +1 = —(28 4+ 1)2p + hoo (2p™). (6.40)

We see that non uniqueness comes from the fact that at t = 0, where v(t,x) = 2p, we have at least
two choices for the derivative due to the fact that he is not continuous.

Note that if we consider the mild solution to the subdiffrential inclusion , then we have at
least a third solution: v3(t,z) = 2p. We consider w(t,x) = 2p(28 + 1), we have

t
STy, f S LA (s, )] (z)ds = 2pe= P+t L 2p(28 + 1)J e~(P00=s)qs  (6.41)
0

= 2p.

Since, 2p < we have that 2p < 2p(26 + 1) <1 so w(t,x) € dH(2p).

_1
1+287
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Therefore, we cannot expect uniqueness for all initial condition, we have to impose some condition
on the initial condition if we want a unique solution.

In the literature, we can find different conditions ensuring that the solution of Equation is
unique. Adapting [10] and [4], we prove that the regularity of the initial condition at the levels where
the non-linearity ho is not continuous is sufficient.

Definition 6.2. A function vy : T¢ — [—1,1] in CY(T?) is regular at level q €] — 1,1[ if for all
x € T, such that vo(x) = p, we have Vuvg(z) # 0.

Proposition 6.4. For vy € CY(T%), such that Vg is Lipschitz on T and reqular at levels 2p and
—2p, the solution v to Equation (6.23) is locally unique. Moreover, the Lebesgue measure of the set
A,(s) := {y e R%: |u(s,y) £ 2p| = 0} is zero.

We adapt two arguments by [10] and [4].

Lemma 6.5. If v is a mild solution of (6.23)) with vy € CY(T%), and such that Vg is Lipschitz on
T¢, then, for all T > 0, there exists a constant C > 0 such that, for all t € [0, 7]

lu(t) — volle < CEY2, IVu(t) — Vgl < CEY/2. (6.42)

Proof. Since v is a mild solution of (6.23)) there exists w € L ([0 4+ co[xT?) with |w]e < 1 since
w € 0Hw(v). Thus we get

v(t) —vo = S — g +J S8 LA, (6)ds. (6.43)

Then, we have for the last integral

U SQB-H 1(5)ds

t
<J (2819 g < 1.

0 0

We have also

|sfﬂ*1A“vocr>——z@<x>|sse-*2ﬁ+lﬁ‘[ s(dat, 2, y)lo(y) — vo(@)]dy
Td

<Le@mw{[saamxwﬂy—ﬂwm
Rd
< Le~COVGard < Lv/dad!?

where L is the Lipschitz constant of vy and the third inequality comes from the computation of the
upper bound of the quadratic norm of d independent random variables with common variance 4at.
Therefore we obtain

v(t) = vollw < (LNV4ad + /7)Y (6.44)

For the second bound, we use the fact that d%iso(t,x,y) = —diyiso(t,:r,y), thus we have, using an
integration by parts
00, 5774 (wo) = 877 (8,,v0). (6.45)

Then, we have

85 0(t) — dzyvo = ST (05,00) — (8,0)

t
+ f J e~ BHNI=9) 0 so(da(t — s), z, y)w(s,y)dyds.  (6.46)
0 JRd
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We can treat both integrals as before, for the last integral:

t
J J e~ @BNE=9), so(da(t — s), x,y)w(s, y)dyds
0 JR4

t o (28+1)(ts)
h JO do(t — s)
t o—(2B8+1)(t—s)
JO 4ot — s)

f |zi — yilso(4a(t — s),z,y)dyds
Rd
2a(t — s)ds

—(26+1)u2du < \/%

1 Vi
< —= e .
\/204]0 V2«

For the first integral, we have the same estimates as before
|52 (5 v) (@) — O, v0(x)| < L'V Aadt'? (6.47)

where L' is the maximum of the Lipschitz constants of (0,,v9);. Thus, we get

IVu(t) — Vug|e < (L'\/4ad + (6.48)

1 ) 41/2
V2«

We now prove Proposition

Proof. Let us assume that we have two solutions, v1 and vy and let e(t) = [v1 — v2]| L ([0, xre)- Note
that the previous Lemma entails that, for all 7 > 0, there exists C', such that for ¢ < 7, we have
e(t) < Ct.
We define I;t ={(s,9),s < t,|vi(s,9) —2p| < e(t)} and I, = {(s,¥),5 < t,|vi(s,y) +2p| < e(t)}.
Since v1 and vy are solutions of , there exists w; and wy such that w; € dHy(v1) ae.
and we € Hy(v2). We can decompose each w; as w;i(t,x) = fo(vi(t,z)) + gi(t,x) where fq is the
continuous part of Hgy:

—2p for g € [—1,—2p]
folg) = q for q € [—2p, 2p] (6.49)
2p for q € [2p, 1]
and g;(t,x) = wi(t,z) — foo(vi(t,x)). Note that

gi(t,x) = =1+ 2p ae. on {(t,x),vi(t,z) < —2p},
gi(t,x) =0 a.e. on {(t,z), —2p < vi(t,z) < 2p}, (6.50)
gi(t,x) =1 —2p a.e. on {(t,z),v;(t,z) > 2p},

since w; = hoo(v;) a.e. on {(t,x), |vi(t, x)| = 2p}.

As a consequence we have that, up to a negligible set, {(s,y),s < t,91(s,9) # g92(s,9)} I;ft ulg,
since, g1(s,y) # g2(s,y) entails that one of the following inequalities is true va(s,y) < 2p < v1(s,9y)
or va(s,y) < —2p < vi(s,y) or vi(s,y) < 2p < va(s,y) or vi(s,y) < —2p < va(s,y). For each case,
the inclusion is true: for the first one for example, if s < ¢ and va(s,y) < 2p < v1(s,y)

e(t) = vi(s,y) —va(s,y) = vi(s,y) —2p +2p — va(s,y) = vi(s,y) —=2p =0 (6.51)

thus (s,y) € I, The same is true for the other cases.
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Therefore we obtain the following expression for the difference v; — vo:

t
zu(t,x>-—za<t,x>:=‘[ J‘ N (4ot — ), 2,9) (Foo(v1(5,9)) — foolva(5,)))dyds
0 JTd
¢ (6.52)
+ff BN g(da(t - 5),2,9)(g1(5 ) — g2(s,y))dyds.
gtuI_
For the first integral in (6.52)) we note that fo is 1-Lipschitz, thus

—@BEDE=) g (40 (t — 5), 2, ) (foo (v1(5, 1)) = foo(va(s, y)))dyds

Td
¢

< J J e~ CBENE=5)g(4a(t — 5), z, y)e(t)dyds < te(t).
0 Jrd

For the second integral in (6.52]) we note that |g;| < 1 — 2p, then we first have

e~ D=9 s(da(t — 5), 2, y)(g1(5, y) — g2(s,y))dyds

+ —
Is,tUIs,t

¢
< 2(1-2p) f J e~ CADE=3) (40 (t — s), z,y)dyds.
Sl

Let s < t, since vg is regular on the level set {vg = 2p} which is compact (since T¢ is) and Vg
is a Lipschitz function, we can find 6,7 > 0 such that on {vo = 2p} + Bs(0), |Vvo(z)| > n. Using
the second part of Lemma and since e(t) < C+/'t, there exists T > 0 such that for s <t < T,
I7,  {vo = 2p} + B5(0) and on I, [Vui(s)| > n/2.

Since I : , 1s compact and Vvy(s) # 0, by the implicit function theorem, we can find a finite cover
by open balls (B;)1<i<n centered on points on I 1 such that locally on each ball B;, the level set
{vi(s,y) = 2p} is the graph of a function, e.g y1 = p(y2,...yq). Note that since {vy = 2p} is compact,
N is uniform in s < T, since by the lemma, we can make the cover of open balls on {vg = 2p} and
take their traces on {v1(s,y) = 2p}.

By the mean value theorem on the first coordinate y; of v1(s), we have I, B; < [—2¢(t) /v, 2¢(t) /v] x
IT1;(B;), where II; is the projection along the first coordinate. Thus,

t
J f e~ @D 540 (t — 5), 2, y)dyds
th

t C det)
(2B+1)(t=s) (4a(t — s),0, (0 Ndys - - - dygd
e slax s), U, \YU, 92, .- - Ya Y2 Yyqds
L va/Aalt—s) Jn, (s,
Jte (@28+1)(t—s) _ 2€(t) ds < 2€(t)t1/2.
0 vi/a(t —s) vy/a
Thus
t IN 1/2
J L eI s(da(t — 5), 2, y)dyds < 5% (6.53)
Since the same holds for I ;, we obtain, that for some constant C'> 0, and all ¢ <7
o1 (t, ) — va(t,x)| < (t + Ct2)e(t) < (1 + CTV?)e(7). (6.54)

Then e(1) < (1 + C7Y/?)e(r), and taking 7 small enough, we obtain e(r) = 0 thus v; = vy on
[0,7] x T O
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Remark 6.3. Mazimal and minimal solutions. Another approach to (6.2) is to use a monotone
construction of solutions, which arises from a comparison principle close to the one developed in
Proposition . This was done initially in [2] and also in [{] Define hy, the right continuous version

of heo (Equation by
%(Q) = _]lq<72p + q172p<q<2p + ILq>2p- (655)

Note that he, and he are non decreasing (recall that 2p € [0,1]). Recall that (S;) is the semigroup on
LY(T%) associated to —2aA, we denote

F(u)(t,z) := e~ PG00 (2) + f e~ @BNE=9) G, The(v(s,))](x)ds (6.56)
0

Fu)(t,z) := e~ @FTDIG00(2) + f t e~ 2BN=9) G, The(v(s, )] (x)ds. (6.57)
0

Then, fized points of the maps above are mild solutions of these two formulations of our subdifferential
inclusion:

o(t, ) — 2alAv(t,x) + (26 + Dv(t, z) = heo(v(t, x)) (6.58)
dv(t, ) — 2aAv(t,x) + (28 + Dov(t, z) = heo(v(t, 2)) (6.59)

Since heo (resp. he) is non decreasing and that he(p) < ho(p) for all p € [—1,1], we have that, for
u, v two functions such that —1 < v < u < 1,

1. F(o)(t,7) < F(u)(t,2)
(v)(t,2) < F(u)(t,)
(w)(t, ) < F(u)(t,2)

We define the sequences (V™), and (W™, of functions on RY x T¢: VO(t,z) = 1, WO(t,z) = —1
and for alln =1

2. F <F
3. F <F

VPt z) = e PBHDLG u0(2) + f t e~ BFV=s) g, [F(V (s, )] (x)ds (6.60)
0

W (t,z) = e BHDEG,p0(x) + f t e~ 2BDI=9) g, [F(W" (s, -))](z)ds. (6.61)
0

Thus, for —1 < vo(x) < 1, we can prove by induction that the sequences (V™) and (W™) satisfy, for
all n
—1<WhSW2o. WSV << V2V <L (6.62)

By a compactness and monotony argument, one can prove that (W™) and (V™) converge to functions
w and w which are mild solutions of the subdifferential inclusion. These are the minimal and mazimal
solutions of the subdifferential inclusion, in the sense that any other solution (Deﬁm'tion must be
bounded below by w and above by v. Uniqueness follows if one can prove that w = v.

7 Convergence of the discrete PDE

In analogy with the continuous setting, we deﬁneNvN = 2u™ — 1 where u" is the solution of the
discretized Equation ([{{.10) and H(i,v") = 2G(i, “5™2) + vV (i).
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In such a way (4.10) becomes

{6tvN(t,i) = 2aN2AuN (¢,1) — (28 + 1)l (t,4) + H(i,v") 1)
( .

N0,i) = 2ul’ (i) — 1,
We main goal of this section is to prove the following result which states the convergence of vV

Theorem 7.1. Let vV be the solution of , Then (vV) is pre-compact for the uniform convergence
on each compact sets of de]O, +oo[ and any accumulation poinls v is a solution of (6.23). In
particular, whenever the solution of is a.e. unique, Vo, is also (the) mild solution of and
the whole sequence vN converges to vy, uniformly on all compact sets of T?x]0, +oo|.

To prove Theorem we need some technical results. Let consider the semigroup of the discrete
Laplacian 1 N2AYN on T% and Z?, denoted by s™ (¢, 1, j) and s{) (7¢, 1, j) respectively. In particular we
have that sV (t,4,7) = pn(t,i,7), where pn(t,i,7) is heat kernel of discrete Laplacian on the discrete

torus, cf. (5.2).

For any A\, >0 and f : + +T4 — R, we let (SN A"y) be the semigroup defined by

N >
Sy M f@y =Y, e MsN(yt, Na, Ny) f Z e Msg (v, Nz, Ny) f(y) (7.2)
yex TS ye % Z4
where, as in , ]? is the periodic extension of f on %Zd.

In the remaining part of this article we will consider SN)‘Wf( ) with f € C(T?). In that case
we mean that the function f is restricted on N']I'd c T¢, which is equlvalent to consider fV(x) :=
f(|Nz|/N). We observe that if f is also Lipschitz, then ||f — f|pa < ~a for some ¢ > 0 and

1fN|pa < ||f|ga. Then, with the same extension to T? for sV we can write, for any x € T¢
N, ~
S @) = [ NS (N, N £ () (73)

By a slight abuse of notation, we still denote by v"V the linear interpolation on T? such that
N(t, %) = v]¥(t). We also redefine the function H on the torus T? by the linear interpolation such
that H(5,v") = H(i,v") and we define H" as f~ in (7.3).

Definition 7.1. Let N € N and v)¥ € L®(T¢). We say that (vV (t,x),t > 0,2 € T?) is a mild solution

of (T if
e for any N, v is continuous from R% to L®(T9),

o for allt >0 and x € T?

N(t,a) = SYAHLAN (N (1) 4 f gastLanta [V (0N (s, |(@)ds. (74)
0

Let u be the unique solution of (@.10]), so that vV = 2u® — 1 satisfies (7.1). Of course, for any
N the solution vV of ( exists and 1t is umque

The proof of Theorem n is based on the representation of vV as in (7.4). We define 9N as a
slight modification of { . that is,

WV (t 2) = S J S (oY (5, ) | ). (7.5)
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Lemma 7.2. For any 7 >0
: ~N _ N _
im 7 = v e = 0- (7.6)

Proof. Let 7 > 0, then

sup
te[L,7], zeTd

T

W (t, x) — oV (e, x)‘ < sup
te[L,7], zeTd

T

N,\,N? A,
YAV (@) = 5o )|

+ sup
te[L,7], zeTd

T

| s [N o, )| @) - 8279 [H Y 6 @) a7

We show that the right hand side of converges to 0. We detail the convergence of the second
term, which is more delicate. The argument can be adapted to the first term by using Assumption
which ensures that v}’ converges to vy in C(T?).

We fix € € (0, 2) and we get that

[ sz o o)) = 2 [ )
_ Ut_s Sﬁ,g,BHANQa[HN(-’vN(S, .))](a;) _ g2 Lo [H(.,UN(S, .))](:z:)ds‘ +Ce, (78)
0

where we used that Lemma which implies that H(-,v"V) is bounded by 1 uniformly on N. The
integral on the right hand side of ([7.8)) is bounded from above by

t—e
J e~ (2B+1)(t—s) f (NdsN(4N2a(t —5),Nz,Ny) — s(4da(t — s), z, y))HN(y, vN(s, y)) dy ‘ ds
0 Td

t—e
+L e AU | (4ot - 8),x,y)‘HN(y,vN(s,y)) - H(y,vN(s,y))‘dde- (7.9)

Td

Since sup,sq yera |HY (y,v™ (s,9)) — H(y,vN(s,y))‘ < +, the second integral is smaller than 2.

For the first integral, we first use that H(-,v") is bounded by 1 uniformly on N and then we operate
the change of variable u = t — s which gives that it is bounded from above by

t
J —(28+1u J
€ Td

We now use the local central limit theorem (cf. Theorem 2.1.1 and (2.5) in [16]): let p be the Gaussian

NeN(AN%oqu, Nz, Ny) — s(daw, x, y)‘ dy du (7.10)

Kernel and p(u,z,y) = ﬁp(%), then

Yern = sup  [N'(uN? Nz,Ny) - p(u,z, y)‘ X! (7.11)

u€le,r], ye 24

We also observe that by symmetry the supremium in (7.11)) is independent of x. Moreover, by
Proposition 2.4.6 in [16] we have that there exist ¢1,c2 > 0 independent of z, y, u such that

cl lz—y)?

‘Ndp(uNQ,Nx,Ny)—p(u,x,y)‘< e . (7.12)
2

u

In such a way, for any M > 0 fixed we write T? = B,(M) u B,(M)¢ and we get that (7.10]) is smaller
than

c1 M2d

~ 1
ot ) ds < Ca(M e + W) (7.13)

t
CdJ 6_(26-"—1)“ (de]\ﬂgﬂ' +
1>



where ¢4, Cq > 0 are two positive constants that depend only on the dimension d.

We conclude that the right hand side of (|7.8]) is bounded by c‘j‘\‘,ﬁ + M%) N+ 72 T C¢, uniformly

on z € T? and t € [1,7]. Therefore, by taking the limit on N — +o0 and then on M — +a0 and

€ — 0 we conclude the proof. O

Proof of Theorem [7.1. We control 3 to get the convergence of v"¥. We observe that since H (-, vV (s, -))
is uniformly bounded so that by Proposition oV is uniformly bounded in N, uniformly continuous
on [1/7,7] x T?, and the modulus of continuity only depends on 7 > 1. By the Ascoli-Arzela Theorem,
the sequence (V) y is pre-compact on C([1/7, 7] x RY) and therefore, by Lemma (7.2), (v") also. By
a diagonal argument, we can extract from (vV) a subsequence converging uniformly to a limit ve, in
C(]0, oo xR?), uniformly on each compact.

Using Corollary m, we can adapt the argument used in the proof of Proposition E -—-

to get that each accumulation point vy, is a mild solution of (6.23] -, we omit the details.

7.1 Proof of Theorem [3.1]
Theorem is now a consequence of Theorems and [7.1]

A Concentration inequalities

We follow the definitions in Jara and Menezes [I3] and [I4] and Boucheron, Lugosi, Massart [1],
Section 2.3. We omit the proofs since there are present in the references.

Definition A.1 ([I3] and [I], Section 2.3). Let X be a real random variable. X is said to be sub-
Gaussian with variance parameter o if, for all t € R

Yx(t) :=logE(exp(tX)) < 025. (A.1)

We denote G(o?) the set of real sub-Gaussian random variables with variance parameter o2.

Proposition A.1. [[1] and [1]], Proposition F.7] The following statements are equivalent:
1. X eG(a?)

2

207)
3. E(exp(vX?)) <3 for all0 <y < ﬁ.

2. P(|X| > t) < 2exp(—

Let us complete our family of inequality:
Lemma A.2. [[T}], Proposition F.8] Let X € G(03) and Y € G(03), then for all 0 < v < m,

E(exp(yXY)) <3

Lemma A.3. [[T]|], Proposition F.12] Let X1, ..., X,, be random variables with X; € G(c?), such that

there is a partition of K subsets Pi,..., Pk each containing L variables that ¥ = o(X;,i € Py) are
independent o-algebra then, for all real aq, ..., an, the random variable Y = ZZ o; X; is sub-Gaussian
2 2

with variance parameter LY, o;
Note that if L = 1, the variables are independent.

Lemma A.4 (Hoeffeding Inequality, [1], Section 2.3). Let X be a bounded random variable with
€ [a,b], then X —EX € G (%).
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B Controls for the non-linearities

In this section, we collect some results about the specifics of our model. Recall the notations: for
d
ne{0,1}"n

¢ (1) = Lip(z1- 20y, co (1) = L=y

N

_—a . we define
ze’]I‘N’

and ky = kn(T) = min{[KNTJ — 1I;|Kn(1 - T)J} For any function v = (u;)
vy (dn) = vl (dn) := @ie% B(u;) where B(u;) denote a Bernoulli distribution with parameter u;.

and we let cg (u) and cg (u) be the expectations of ¢f () and ¢y (n) under v,. We set (1in); = ni4;,
and likewise 7; acts on u. Then,

Glu)i= (1= w)e () = uoci () = (1= )P, [ o) > 1= 12| — o, o) < 2| (Ba1)

and G(i,u) := G(r;u). We start with some results on the non linearity G-

Proposition B.1. Let u,v € [0, 1]T5IV such that u; = v; for all i € VN and ug = vg. Then G(0,u) >
G(0,v).

Proof. We construct a coupling between v,, and v,: let (U;) be independent and identically distributed
random variables uniform on [0,1]. Define n; = 1y, <,,} and 1; = Lyy,<y,). We have n; = n; for all
i € Vy, therefore po(n) = po(n'). This proves that c¢j (u) = ¢f (v) and ¢5 (v) < ¢g (v). The results
follows since ug = vp. ]

For pe [0,1], T € [0,1], K € N*, we let n(K,T) = min{[KT] — LK1 - T)J} < K/2, and we
define g (p) as
gk (p) == (1= p)Pp[X > K — k(K,T)] — pP,[X < k(K,T)]

where X is a random variable with binomial distribution with parameter (K, p) under P,. In partic-
ular, we have that gx (p) = G(i,u) for u(t,i) = p for all i € T4,. Note that gr is C®([0,1]). We
also have

gr(p) = (1 = p)P1p[X < (K, T)] - pP,[X < k(K,T)]
k(K,T)—1
_ kz::() (I]:) [(1 _ p)k+1pK7k _ pk+1(1 —p)K’k] (B.2)
_ (K(ET)>pK(K,T)+1(1 _p)K—H(K,T).

We recall go(p) := (1 — p)Lj1—pepo(r)y — PLlip<po(r)}> Where po(T) = min(7,1 —T).
The following proposition estimates the convergence of gx to g, in particular we prove that close
to p =0 (resp. p = 1), gk is negative (resp. positive).

Proposition B.2. For all K € N* U {0}, we have gk (0) = gx(1) = 0. For all K € N* and p € [0,1],
we have, for [p — po(T)| > % and |(1 — p) — po(T)| > +

|95 (P) — 9 (p)| < 2e exp(—2K (po(T) — p)*) + 2e exp(—2K (po(T) — (1 — p))?) (B.3)

In particular, for any 0 < § < 4—16, T € [46,1 — 40], and K > “Zgg)‘, we have that g (20) < =9 and
gK(l — 2(5) > 0.
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Proof. We consider gx written as in (B.2)). Then, the values at p = 0 and p = 1 are obvious.
Note that, under P, %—p converges to 0 (in L?(Qy)) and is sub-Gaussian with variance parameter

L thus, for any t > 0,

41K

X
P, (‘K —p‘ > t) < 2exp(—2Kt?).

We also have that

Then, for p > po(T),

PoLX < (5. )) = By |- 5 20— @) + 00 - | <y -

< 2exp(—2K(p — pO(T))Q)a

and for p < po(T) — %,

Pp[X > k(K,T)| = P, [i . K:(f;T)

—po(T) + po(T) — p]

N

Py [i —p=2p(T)—p- 11(} < 2exp(—2K (po(T) — p — 1/K)?)

< 262 exp(—2K (po(T) — p)*) < 2e exp(—2K (po(T) - p)°).

Thus, we have the following, for |p — po(T)| > %,

‘PP[X < H(K7 T)] - ]l{pépo(T)}‘ < 2e eXp(—QK(pO(T) - p)2)'
The results follows with the same estimates with (1 — p) instead of p. This prove (B.3)).

Let 6 > 0 and set p = 2§, and T € [46,1 — 48], then |26 — po(T)| < 26 for K > 55 and we have
the same for 1 —p = 1 — 2. Applying the result, we have

|95 (26) = 900(26)| = |gK (20) + 28] < 4e exp(—8K %)

Then, if 4¢ exp(—8K2) < 6, we get the result. This happens if exp(—8K6§?) < 6 and § < ﬁ, which
gives the condition on K. O

Proposition B.3. Let v : T¢ — [0,1] be a continuous fired density on the torus. For any i€ Tﬁl\, we
let u; == viy/n. Then as i/N — z, we have that u; converges to vy. Let v, = ®i€T§lv B(ul) Then,
po(n) converges to vy in probability.

Proof. We use the coupling introduced in Lemma [B.1} we let (U;) be i.i.d uniform random variables on
[0, 1] so that under v,, we have that po(n) and K%\f >, 14y, <u,y are equal in law. By the Tchebychev
inequality, we have that for any € > 0

P(‘Zie%\] Liv<u)  Qieyy Wi

iEVN

1
< —-.
KN KN >€> 4KN€2

Moreover, the sequence K;,l >, u; converges to vy because for any i € Vy, i/N — 0. ]

i€V N

We have the following corollary.
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Corollary B.4. Let u = (ui)ieTﬁl\r as in Proposition . Then, G(u) and gr, (vo) converge both to
9goo(vg) as N — +o0.

Recall that, for ¢ € [-1,1],
1
hic(q) = 29x (2(q + 1)) +a=(1-gPLy|[X <r(ET)] = (1 + P [X < s(K,T)| +4q

— 3| =3 —po(T) € [0,3]. Note that hx converges

+q = —]lqs,gp +ql 9,<q<2p + 14>2,. The points

Recall the critical parameter p := p(T) = |T
pointwise to the function hs(q) = 290 ﬂ
q = +2p are the discontinuities of he, and compare the Lemma to the fact that 2p = he(2p) and
1 = ho(2p™"). A similar estimate holds at ¢ = —2p.
Lemma B.5. For all g€ [—1,1], |hx(q)| < 1. Moreover, for all € > 0 such that 2p — e > 0, there is
Ko > 0 such that for K =0,

2p — 26 = hoo(2p") — 26 <hg(q) < hee(2p7) =1 forqe[2p—¢e,2p +¢]

—1=ho(-2p") <hg(q) S ho(—2p") +2e = —-2p+2c  forqe[-2p—¢c,—2p+¢]

Proof. We start by observing that for all ¢ € [—1, 1], IP’% [X < k(K, T)] = IP’L;J [X > K — (K, T)]
We also have that

1=Piiq[X < (K, T)] +Prsq [6(K,T) < X < K — (K, T)] + P1s [X > K — 5(K,T)].
2 2 2

h
h

Thus, using the definiton of hg, we get
hi(q) = — P [X <w(K,T)] + qP1sg [(K,T) < X <K — r(K,T)]
+ Posy [X > K — k(K. T)].
This gives us the result. Indeed, for ¢ € [0, 1], we have
hi(q) < qP1ss [#(K,T) < X < K - w(K,T)] + P1sg [X > K — s(K,T)]

and

\Y%

hic(q) = —Pris [X < w(K,T)]+ P1sg [X > K — k(K,T)]
> P q[X <K T)] =Prg [X < (K, T)] 2 =Pusa [X = w(K, T)].

The last inequality comes form the fact that, by a coupling argument, p — IP’p[X < K(K, T)] is

. Lot
decreasing on [0, 1], and since ¢ > 0, < =1

In particular, for g € [2p — ¢,2p + 5] such that 2p — e > 0, we have the same upper bound as
before for hx(q), and for the lower bound:

hi(q) = Py [X <w(K,T)] + qP1sg [X > k(K,T)]
> Py [X < R(KT)] + (2p - 2) (1 —Pusa[X < w(K, T)])
=2p—¢— 2IP’1%[X < /@(K,T)].
From the proof of Proposition we have that, for K > Kj:
Piey[X < A(K,T)] < 2exp (=K (q +2p)*/2) < 2¢ 50"

Choosing Ky large enough such that the right hand side is less than £/2, we get the result.
For q € [—1,0], the proof is completely similar.
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Lemma B.6. Let u = (ui)iETﬁl\r’ with u; € [0,1] and let v = 2u — 1. Then, |H(i,v)| < 1, uniformly
on i€ T‘]jv,

Proof. We recall (4.9)), in particular that G(i,u) = G(mu). So that we only prove that |H(v)| < 1,
where H(v) = G((v+1)/2) 4+ vo. The proof is similar to Lemma [B.5 Indeed, again by (4.9) we have

that
v+1 v+1 _f(v+1
2G< 5 )—i—vo—cO( 5 ) 1 —wp) —CO( 5 )(1+vo)+vo

() () () (3)

) > (0. This implies that —1 < H(v) <1. O

We observe that, by definition, 1 — ¢ (%) —cy (
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