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BAUM-BOTT RESIDUE CURRENTS

LUCAS KAUFMANN & RICHARD LÄRKÄNG & ELIZABETH WULCAN

ABSTRACT. Let F be a holomorphic foliation of rank κ on a complex manifold M of
dimension n, let Z be a compact connected component of the singular set of F , and let
Φ ∈ C[z1, . . . , zn] be a homogeneous symmetric polynomial of degree ℓ with n− κ < ℓ ≤ n.
Given a locally free resolution of the normal sheaf of F , equipped with Hermitian metrics
and certain smooth connections, we construct an explicit current RΦ

Z with support on Z
that represents the Baum-Bott residue resΦ(F ;Z) ∈ H2n−2ℓ(Z,C) and is obtained as the
limit of certain smooth representatives of resΦ(F ;Z). If the connections are
(1, 0)-connections and codimZ ≥ ℓ, then RΦ

Z is independent of the choice of metrics and
connections. When F has rank one we give a more precise description of RΦ

Z in terms of
so-called residue currents of Bochner-Martinelli type. In particular, when the singularities
are isolated, we recover the classical expression of Baum-Bott residues in terms of
Grothendieck residues.

1. INTRODUCTION

Let M be a complex manifold of dimension n, let F be a holomorphic foliation of rank κ
on M and denote by NF its normal sheaf, see Section 2.1 for the definitions. Baum-Bott’s
vanishing theorem asserts that, when F is non-singular, all the characteristic classes of
NF of degree ℓ vanish when n− κ < ℓ ≤ n, see Theorem 3.2 below.

When M is compact and F is singular, the vanishing theorem implies the following
fundamental index theorem: for every connected component Z of the singular set of F ,
sing F , and any homogeneous symmetric polynomial Φ ∈ C[z1, . . . , zn] of degree ℓ with
n − κ < ℓ ≤ n, there exists a cohomology class ResΦ(F ;Z) ∈ H2ℓ(M,C) depending only
on the local behavior of F around Z such that∑

Z⊂sing F

ResΦ(F ;Z) = Φ(NF ) in H2ℓ(M,C),

where Φ(NF ) is the corresponding characteristic class of NF , see (2.19). This should be
seen as a localization formula for Φ(NF ) around the singularities of F .

From the above formula, the question of computing the residues ResΦ(F ;Z) or finding
explicit representatives becomes natural. When F is of rank one and the singular
component Z is a single point p ∈ M , the residue ResΦ(F ; p) is actually a number which
can be computed in terms of the classical Grothendieck residue. More precisely, for any
homogeneous symmetric polynomial Φ ∈ C[z1, . . . , zn] of degree n, if z = (z1, . . . , zn) is a
local coordinate system centered at p so that F is generated by a holomorphic vector
field X =

∑n
i=1 ai(z)

∂
∂zi

near 0 with {a1 = · · · = an = 0} = {0}, then

(1.1) ResΦ(F ; p) = Res0

[
Φ

((
∂ai
∂zj

)
ij

)
dz1 ∧ . . . ∧ dzn

a1 · · · an

]
,
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where the right hand side denotes the usual Grothendieck residue, see [BB72, §8],
[GH78, Ch. 5], and Example 4.2 and Remark 7.9 below. That the class of Φ(NF ) may be
represented as the sum of Grothendieck residues in this situation was proven earlier in
[BB70], see also [Soa01] for an elementary proof.

For foliations of higher rank or with larger singular set, little is known. The available
results are limited and rely on a reduction to the case of rank one foliations with isolated
singularities, where the above formula can be used. For instance, in the particular case
where Φ has degree n − κ + 1, one can slice the foliation by suitable transverse sections
on which the induced foliation has rank one and isolated singularities [BB72, CL19].
Another approach is to use a continuity theorem together with a perturbation to a
foliation with isolated singularities, see [BS15]. Together with (1.1) this can be used to
effectively compute residues of some rank-one foliations with large singular set.

The main goal of this work is to obtain explicit representatives of Baum-Bott residues
in general, without any restriction on the rank of F nor on the dimension of its singular
set. Our main result is that the class ResΦ(F ;Z) can be naturally represented by a certain
current supported by Z. We call these currents Baum-Bott (residue) currents.

Assume that

(1.2) 0 → EN
φN−→ EN−1

φN−1−→ . . .
φ2−→ E1

φ1−→ TM
φ0−→ NF → 0,

is a locally free resolution of NF , where TM is the holomorphic tangent bundle on M
and φ0 : TM → NF is the canonical projection, and assume that TM,E1, . . . , EN are
quipped with a connections D0, D1, . . . , DN , respectively; throughout, we tacitly assume
that all connections are smooth. Given a homogeneous symmetric polynomial
Φ ∈ C[z1, . . . , zn] of degree ℓ with n − κ < ℓ ≤ n, consider the characteristic form
rΦ(D) := (i/2π)ℓΦ(Θ(DN)| . . . |Θ(D0)) associated with the collection D = (D0, . . . , DN),
see Section 2.3 for the precise definition. Baum-Bott showed that if U is a neighborhood
of a compact connected component Z of sing F that deformation retracts to Z, and D is
fitted to (1.2) and U in a certain sense, see Section 3.1, then the restriction rΦZ(D) of
rΦ(D) to U is a form of degree 2ℓ with compact support in U and thus it defines an
element in H2n−2ℓ(Z,C); moreover the class of rΦZ(D) only depends on the local behaviour
of F around Z. The homological Baum-Bott residue resΦ(F ;Z) ∈ H2n−2ℓ(Z,C) is defined
as the class of rΦZ(D). If M is compact, then by inclusion of Z in M and Poincaré duality,
resΦ(F ;Z) corresponds to a class in H2ℓ(M,C); this is by definition ResΦ(F ;Z). For
details, see Section 3.1.

Theorem 1.1. Let M be a complex manifold of dimension n, let F be a holomorphic foliation
of rank κ on M , and let Φ ∈ C[z1, . . . , zn] be a homogeneous symmetric polynomial of degree
ℓ with n−κ < ℓ ≤ n. Assume that the normal sheaf NF of F admits a locally free resolution
of the form (1.2) on M , and that TM,E1, . . . , EN are equipped with Hermitian metrics and
(1, 0)-connections DTM , D1, . . . , DN , respectively, and assume that DTM is torsion free.

Then for ϵ > 0 there are (1, 0)-connections D̂ϵ
0, D̂

ϵ
1, . . . , D̂

ϵ
N on TM,E1, . . . , E0, respectively,

constructed from the Hermitian metrics and connections DTM , D0, . . . , DN , such that

lim
ϵ→0

(
i

2π

)ℓ

Φ(Θ(D̂ϵ
N | . . . |Θ(D̂ϵ

0))

exists as a current
RΦ =

∑
RΦ

Z ,



BAUM-BOTT RESIDUE CURRENTS 3

where the sum runs over the connected components Z of sing F . For each Z, RΦ
Z is a closed

current of degree 2ℓ with support on Z that only depends on (1.2) and the Hermitian metrics
and connections DTM , D1, . . . , DN close to Z. If codimZ ≥ ℓ, then RΦ

Z is independent of the
choice of metrics and connections. Moreover, when Z is compact, RΦ

Z represents the Baum-Bott
residue resΦ(F ;Z) ∈ H2n−2ℓ(Z,C).

To construct the connections D̂ϵ
k we first construct connections D̃k on Ek|M\sing F and

Dbasic on NF |M\sing F such that Dbasic is a so-called basic connection and
(D̃N , . . . , D̃0, Dbasic) is compatible with (1.2) in a certain sense, see Definition 3.1 and
(2.10). The D̃k are defined only over M \ sing F , but their singularity as we approach
sing F can be controlled. More precisely, they can be thought of as singular connections
on M with almost semi-meromorphic singularities along sing F in the sense of [AW18],
cf. Lemma 5.5. The D̂ϵ

k are then constructed as smoothings of the D̃k.
It follows from this control of the singularities that the limits RΦ of the characteristic

forms rΦ(D̂ϵ) exist and are so-called residue currents, or more precisely
pseudomeromorphic currents in the sense of [AW10], and can be seen as generalizations
of the Grothendieck residue, see Section 4. Note that we give meaning to the Baum-Bott
current RΦ

Z even when Z is non-compact.
The characteristic forms rΦ(D̂ϵ) depend on the choices of Hermitian metrics and (1, 0)-

connections on the bundles in (1.2) and consequently so do the limits RΦ. In Section 5.1
we give a description of this dependence. In particular, it follows that RΦ

Z is independent
of the metrics and connections if codimZ ≥ ℓ.

The existence of the currents RΦ relies on the existence of a locally free resolution of
NF . Such a resolution exists, e.g., if M is a is a projective manifold. Also if M is Stein,
it exists after replacing M by some neighborhood of any compact subset, cf., e.g., [Hö90,
Theorem 7.2.1] or [AW07, p. 991].

The construction of RΦ is inspired by [LW22] where, given a locally free resolution
of a coherent analytic sheaf G whose support suppG has positive codimension, explicit
currents that represent the Chern class of G with support on suppG were defined as limits
of certain Chern forms. Here we aim to represent characteristic classes of NF , which has
full support, by currents supported by the proper analytic subset sing F . This is possible
due to the existence of the special connection Dbasic on NF |M\sing F that satisfies a certain
vanishing theorem, cf. Theorem 3.2 and Lemma 5.2 below.

When F has rank one we give a more precise description of the currents RΦ in terms
of so-called residue currents of Bochner-Martinelli type, see Theorem 7.2. In particular,
when Z is a single point, we recover formula (1.1) above, see Corollary 7.8.

The paper is organized as follows. In Section 2 we introduce some notation and provide
some necessary background on complexes of vector bundles, characteristic classes, and
holomorphic foliations. In Section 3 we recall the construction of residues in [BB72] and
in Section 4 we gather some basic definitions and preliminary results on residue currents.
In Section 5 we describe the construction of the connections D̂ϵ

k.
In Section 6 we show that the characteristic forms rΦZ(D̂

ϵ
k) have limits as

pseudomeromorphic currents and prove a more precise and slightly more general
formulation of Theorem 1.1, see Theorem 6.1 and Corollary 6.3; we also investigate the
dependence of the Hermitian metrics and connections. Section 7 is devoted to the rank
one case.



4 LUCAS KAUFMANN & RICHARD LÄRKÄNG & ELIZABETH WULCAN
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2. HOLOMORPHIC FOLIATIONS, VECTOR BUNDLE COMPLEXES AND CHARACTERISTIC CLASSES

Throughout the paper M will be a complex manifold of dimension n.

2.1. Holomorphic foliations. A holomorphic foliation F on M is the data of a coherent
analytic subsheaf TF of TM , called the tangent sheaf of F , such that

(i) TF is involutive, that is, for any pair of local sections u, v of TF , the Lie bracket
[u, v] belongs to TF ;

(ii) F is saturated, that is, the normal sheaf NF := TM/TF is torsion free.

The generic rank of TF is called the rank of F . Note that NF is a coherent analytic
sheaf. The singular set of F is, by definition, the smallest subset sing F ⊂ M outside of
which NF is locally free. It follows from our definitions that sing F is an analytic subset
of M of codimension ≥ 2. We say that F is regular if sing F is empty. By definition,
the restriction of NF to M \ sing F defines a regular foliation whose normal sheaf is a
holomorphic vector bundle of rank n−κ, where κ is the rank of F . Moreover, by Frobenius
Theorem, over M \ sing F , the bundle TF is locally given by vectors tangent to the fibers
of a (local) holomorphic submersion.

The saturation property above is standard in the literature on holomorphic foliations. It
allows one to avoid “artificial” singularities and is convenient when studying the birational
geometry of foliations. This condition is equivalent to the fullness of TF required in
[BB72]. We note that we do not explicitly use this condition in most of our proofs, except
in Section 7, so our main results can be applied to non-saturated foliations if necessary.

2.2. Vector bundle complexes, connections, and superstructure. Consider a vector
bundle complex

(2.1) 0 → EN
φN−−→ · · · φ1−→ E0

φ0−→ E−1 → 0

over M . Following [AW07], we equip E :=
⊕N

k=−1Ek with a superstructure by letting
E+ =

⊕
2k Ek (resp. E− =

⊕
2k+1Ek) be the even (resp. odd) parts of E = E+⊕E−. This is

a Z/2Z-grading that simplifies some of the formulas and computations. An endomorphism
φ ∈ End(E) is even (resp. odd) if it preserves (resp. switches) the ±-components.

The superstructure affects how form-valued endomorphisms act. Assume that α = ω⊗γ
is a form-valued section of End(E), where ω is a smooth form of degree m and γ is a section
of Hom (Eℓ, Ek). We let degf α = m and dege α = k− ℓ denote the form and endomorphism
degrees, respectively, of α. The total degree is degα = degf α+dege α. If β is a form-valued
section of E, i.e., β = η ⊗ ξ, where η is a smooth form, and ξ is a section of E, both
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homogeneous in degree, then the we define the action of α on β by

(2.2) α(β) := (−1)(dege α)(degf β)ω ∧ η ⊗ γ(ξ).

If furthermore, α′ = ω′ ⊗ γ′, where γ′ is a holomorphic section of End(E), and ω′ is a
smooth form, both homogeneous in degree, then we define

(2.3) αα′ := (−1)(dege α)(degf α′)ω ∧ ω′ ⊗ γ ◦ γ′.

The superstructure also affects how endomorphisms act on vector field-valued sections
of E. If α is a section of End(E), u is a vector field on M , and β is a section of E, then

(2.4) α(u⊗ β) = (−1)degαu⊗ α(β).

Given a vector field u on M , we let i(u) denote contraction of a differential form on M
by u. Then i(u) extends to form valued sections of E and End(E) by letting

i(u)(η ⊗ ξ) = i(u)η ⊗ ξ,

if η is a smooth form and ξ is a section of E or End(E). It follows from (2.2) and (2.3)
that if α, α′ and β are form-valued sections of End(E) and E, respectively, then

(2.5) i(u)α(β) = i(u)
(
α(β)

)
− (−1)degαα

(
i(u)β

)
and

(2.6) i(u)(αα′) = i(u)αα′ + (−1)degααi(u)α′.

Assume that each Ek is equipped with a connection Dk. Then there is an induced
connection DE on E, that in turn induces a connection DEnd on End(E), defined by

(2.7) DEndα = DE ◦ α− (−1)degαα ◦DE.

This connection takes the superstructure into account and it satisfies the Leibniz’ rule

(2.8) DEnd(αα
′) = DEndαα

′ + (−1)degααDEndα
′.

Here α and α′ are form-valued sections of End(E). If α : Ek → Eℓ, we will sometimes
write

(2.9) DEndα = DDk,Dℓ
α

when we need to specify the dependence on the connections.
Following [BB72] we say that the collection of connections (DN , . . . , D−1) is compatible

with (2.1) if

(2.10) Dk−1 ◦ φk = −φk ◦Dk

for k = 0, . . . , N . In terms of the induced connection D = DEnd on End(E), the
compatibility conditions simply become Dφk = 0. We note that (2.10) differs by a sign
from the original definition in [BB72, Defintion 4.16]. This is due to the superstructure
convention, cf., [LW22, Remark 4.2].

Assume that α is a scalar-valued section of End(E). It will sometimes be convenient to
consider DEndα as a section of Hom (TM⊗E,E). Let Dα be the section of Hom (TM⊗E,E)
given by

(2.11) Dα : u⊗ β 7→ (−1)degαi(u)DEndα(β).

In view of (2.4), (2.6) and (2.8), D satisfies the Leibniz rule

(2.12) D(αα′) = Dαα′ + (−1)degααDα′.
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We extend i(u) from End(E) to act on (form-valued) sections Dα of Hom (TM ⊗ E,E),
by equipping TM ⊗ E with the same grading as E. In particular,

(2.13) degDα = degα,

and (2.5) and (2.6) hold also if α or α′ is replaced by Dα or Dα′.
If α and β are sections of End(E) and E, respectively, then Dα(β) is the section of

Hom (TM,E) defined by

(2.14) Dα(β) : u 7→ Dα(u⊗ β).

2.3. Characteristic classes and forms. Most of the material in this section can be found
in [BB72, Sections 1 and 4].

Let E be a smooth complex vector bundle over M and let Φ ∈ C[z1, . . . , zn] be a
homogeneous symmetric polynomial of degree ℓ ≤ n. Then there is a unique polynomial
Φ̂, such that

Φ(z1, . . . , zn) = Φ̂
(
e1(z), . . . , eℓ(z)

)
,

where e1, . . . , eℓ ∈ C[z1, . . . , zn] denote the elementary symmetric polynomials. The class
Φ(E) ∈ H2ℓ(M,C) is defined as

(2.15) Φ(E) = Φ̂
(
c1(E), . . . , cℓ(E)

)
,

where cj(E) is the jth Chern class of E.
Assume that E is equipped with a connection D. Then Φ(E) is the de Rham class of the

closed 2ℓ-form (
i

2π

)ℓ

Φ
(
Θ(D)

)
,

where Θ(D) is the curvature form of D and we identify Φ with the corresponding invariant
polynomial on (form-valued) (n× n)-matrices. Note that with this identification,

(2.16) det
(
I +Θ(D)

)
= 1 + e1

(
Θ(D)

)
+ · · ·+ en

(
Θ(D)

)
,

and

(2.17) Φ
(
Θ(D)

)
= Φ̂

(
e1(Θ(D)), . . . , eℓ(Θ(D))

)
.

Note that (i/2π)jej(Θ(D)) is just the jth Chern form of (E,D).

Next, let G be a coherent analytic sheaf over M and assume that G admits a resolution
by smooth complex vector bundles

(2.18) 0 → EN → · · · → E0 → G → 0.

The total Chern class of G is defined as the total Chern class of the virtual bundle∑N
k=0(−1)kEk, i.e.,

c(G ) = c
( N∑

k=0

(−1)kEk

)
=

N∏
k=0

c(Ek)
(−1)k ∈ H•(M,C);

the class c(G ) is independent of the chosen resolution, which follows from the construction
of Chern classes of Green, [Gre80] (see also, e.g., [BB72, §6] in case the resolution is
real analytic, and M is compact). We can write c(G ) = 1 + c1(G ) + · · · + cn(G ), where
cj(G ) ∈ H2j(M,C) is the jth Chern class of G . If Φ ∈ C[z1, . . . , zn] is as above, then
Φ(G ) ∈ H2ℓ(M,C) is defined as

(2.19) Φ(G ) = Φ̂
(
c1(G ), . . . , cℓ(G )

)
,
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cf. (2.15).
Assume that the vector bundles in (2.18) are equipped with connections D0, . . . , DN ,

and let Θ(Dk), k = 0, . . . , N , be the corresponding curvature forms. Generalizing (2.16)
and (2.17) we let ej(Θ(DN)| . . . |Θ(D0)) be the 2j-form defined by
(2.20)

N∏
k=0

(
det
[
I +Θ(Dk)

])(−1)k

= 1 + e1
(
Θ(DN)| . . . |Θ(D0)

)
+ · · ·+ en

(
Θ(DN)| . . . |Θ(D0)

)
,

and we set

Φ
(
Θ(DN)| . . . |Θ(D0)

)
= Φ̂

(
e1
(
Θ(DN)| . . . |Θ(D0)

)
, . . . , eℓ

(
Θ(DN)| . . . |Θ(D0)

))
.

Then Φ(Θ(DN)| . . . |Θ(D0)) is a closed 2ℓ-form and(
i

2π

)ℓ

Φ
(
Θ(DN)| . . . |Θ(D0)

)
represents Φ(G ). In particular, (i/2π)jej(Θ(DN)| . . . |Θ(D0)) represents cj(G ). If G is locally
free (and (2.18) is equipped with compatible connections) this is reflected on the level of
forms in the following way:

Lemma 2.1 ([BB72] - Lemma 4.22). Assume that the complex (2.1) is pointwise exact over
some open set U ⊂ M . If (DN , . . . , D−1) is a compatible collection of connections, then

Φ
(
Θ(DN)| . . . |Θ(D0)

)
= Φ

(
Θ(D−1)

)
on U.

3. BAUM-BOTT THEORY

The theory of Baum-Bott residues was developed in [BB72], extending the theory of
rank one foliations in [BB70] to general foliations. Part of this theory may also be found
in i.e., [Suw98], where it is developed from a slightly different perspective, making use of
Čech-de Rham cohomology.

The main outcome of Baum-Bott’s theory is the fact that high degree characteristic
classes Φ(NF ) of NF localize around sing F , cf. the introduction. This is a consequence
of a vanishing theorem for the normal bundle of a regular foliation due to the existence
of special connections. Recall that a connection is said to be of type (1, 0), or a
(1, 0)-connection if its (0, 1)-part equals ∂̄.

Definition 3.1. ([BB72] - Definition 3.24) Let F be a regular foliation on M and let
φ0 : TM → NF be the canonical projection. A connection D on NF is basic if it is of type
(1, 0) and

(3.1) i(u)D(φ0v) = φ0[u, v]

for any smooth sections u of TF and v of TM .

It is not hard to see that basic connections always exist, see [BB72, §3] and also
Proposition 5.4 below.

Theorem 3.2 (Baum-Bott’s Vanishing theorem, [BB72] - Proposition 3.27). Let F be a
regular foliation of rank κ on a complex manifold M of dimension n. If D is a basic connection
on NF and Θ(D) denotes its curvature form, then

Φ
(
Θ(D)

)
= 0 on M

for every homogeneous symmetric polynomial Φ ∈ C[z1, . . . , zn] of degree ℓ with n−κ < ℓ ≤ n.
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3.1. Baum-Bott residues. In the presence of singularities, one cannot work directly with
connections on NF , so the use of suitable resolutions is necessary.

Let Z be a compact connected component of sing F . Then one can find an open
neighborhood U of Z in M such that U ∩ sing F = Z and Z is a deformation retract of U ,
and a locally free resolution

(3.2) 0 → EN
φN−−→ · · · φ1−→ E0

φ0−→ NF → 0

of A-modules on U , where A denotes the sheaf of germs of real analytic functions, cf.
[BB72, Proposition 6.3]. The data β = (U, (EN , . . . , E0), (φN , . . . , φ0)) is a called a Z-
sequence.1

Now assume that the vector bundles NF |U\Z , E0, . . . , EN are equipped with connections
D−1, D0, . . . , DN . Following [BB72] we say that the collection (DN , . . . , D−1) is fitted to β if
D−1 is a basic connection and (DN , . . . , D−1) is compatible with (3.2) over U \ Σ for some
compact neighborhood Σ of Z, i.e., (2.10) holds over U \ Σ .

From Theorem 3.2 and Lemma 2.1 it follows that if (DN , . . . , D−1) is fitted to β and
Φ ∈ C[z1, . . . , zn] is a homogeneous symmetric polynomial of degree ℓ with n− κ < ℓ ≤ n,
then

Φ
(
Θ(DN)| . . . |Θ(D0)

)
= Φ

(
Θ(D−1)

)
vanishes in U \ Σ, where Σ is as above. In particular, this is a closed compactly supported
differential form on U . Since Z is a deformation retract of U , the homology groups of U
and Z are naturally isomorphic. Composing this isomorphism with the Poincaré duality
H2ℓ

c (U,C) ≃ H2n−2ℓ(U,C) yields an isomorphism H2ℓ
c (U,C) ≃ H2n−2ℓ(Z,C). Now

resΦ(F ;Z) ∈ H2n−2ℓ(Z,C) is defined as the class of

(3.3)
(

i

2π

)n

Φ
(
Θ(DN)| . . . |Θ(D0)

)
in H2ℓ

c (U,C) under this isomorphism. It is proved in [BB72, Sections 5,6,7] that the class
of (3.3) is independent of the choice of Z-sequence and fitted connections, and that it only
depends on the local behaviour of F around Z.

When M is compact, the compactly supported 2ℓ-form (3.3) extends naturally to a
closed form on M . It follows from the definition that the corresponding de Rham class
ResΦ(F ;Z) ∈ H2ℓ(M,C), is the image of resΦ(F ;Z) under the composition of the map
ι∗ : H2n−2ℓ(Z,C) → H2n−2ℓ(M,C) induced by the inclusion ι : Z ↪→ M and the Poincaré
duality H2n−2ℓ(M,C) ≃ H2ℓ(M,C).

4. RESIDUE CURRENTS

We say that a function χ : R≥0 → R≥0 is a smooth approximant of the characteristic
function χ[1,∞) of the interval [1,∞) and write

χ ∼ χ[1,∞)

if χ is smooth and χ(t) ≡ 0 for t ≪ 1 and χ(t) ≡ 1 for t ≫ 1.

Remark 4.1. Note that if χ ∼ χ[1,∞) and χ̂ = χj, then χ̂ ∼ χ[1,∞) and

dχ̂ = jχj−1dχ and ∂̄χ̂ = jχj−1∂̄χ

1In fact, in [BB72] the notion Z-sequence has a slightly different meaning. There, the bundles in (3.2)
are assumed to be smooth vector bundles on U , and the morphisms in the complex are only assumed to exist
and be pointwise exact in U \ Z. It is clear that a locally free resolution of NF of A-modules gives rise to a
Z-sequence in this sense, cf. [BB72, Section 7].
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4.1. Pseudomeromorphic currents. Let f be a (generically nonvanishing) holomorphic
function on a (connected) complex manifold M . Herrera and Lieberman, [HL71], proved
that the principal value

lim
ϵ→0

∫
|f |2>ϵ

ξ

f

exists for test forms ξ and defines a current, that we with a slight abuse of notation denote
by 1/f . It follows that ∂̄(1/f) is a current with support on the zero set Z(f) of f ; such
a current is called a residue current. Assume that χ ∼ χ[1,∞) and that s is a generically
nonvanishing holomorphic section of a Hermitian vector bundle such that Z(f) ⊆ {s = 0}.
Then

1

f
= lim

ϵ→0

χ(|s|2/ϵ)
f

and ∂̄

(
1

f

)
= lim

ϵ→0

∂̄χ(|s|2/ϵ)
f

,

see, e.g., [AW18]. In particular, the limits are independent of χ and s. Note that χ(|s|2/ϵ)
vanishes identically in a neighborhood of {s = 0}, so that χ(|s|2/ϵ)/f and ∂̄χ(|s|2/ϵ)/f are
smooth. More generally, if f is a generically non-vanishing holomorphic section of a line
bundle L → M and ω is an L-valued smooth form, then the current ω/f is well-defined.
Such currents are called semi-meromorphic, cf. [AW18, Section 4].

In the literature there are various generalizations of principal value currents and residue
currents. In particular, Coleff and Herrera [CH78] introduced products like

(4.1)
1

fm
· · · 1

fr+1

∂̄
1

fr
∧ · · · ∧ ∂̄

1

f1
.

If codimZf = m, where Zf = {f1 = · · · = fm = 0}, then the Coleff-Herrera product
∂̄(1/fm) ∧ · · · ∧ ∂̄(1/f1) is anti-commutative in the factors and has support on Zf .

One application of residue currents in general has been to provide explicit or canonical
representatives of cohomology classes. In particular, the Coleff-Herrera product has been
used to provide explicit canonical representatives in so-called moderate cohomology,
[DS96].

Example 4.2. Assume that f1, . . . , fn are holomorphic functions in some neighborhood U
of p ∈ M , such that Zf = {p}. Let η be a holomorphic (n, 0)-form on U . Then the action of
1/(2πi)n∂̄(1/fn) ∧ · · · ∧ ∂̄(1/f1) on η is given by the integral

1

(2πi)n

∫
Γϵ

η

f1 · · · fn
,

where Γϵ := {|f1| = ϵ, . . . , |fn| = ϵ} is oriented by d(arg fn) ∧ · · · ∧ d(arg f1) > 0, for a
sufficiently small ϵ > 0. This equals, by definition, the Grothendieck residue

Resp

[
η

f1 · · · fn

]
,

see [GH78, Ch. 5].

In [AW10] the sheaf PMM of pseudomeromorphic currents on M was introduced in
order to obtain a coherent approach to questions about residue and principal value
currents; it consists of direct images under holomorphic mappings of products of test
forms and currents like (4.1). See, e.g., [AW18, Section 2.1] for a precise definition. The
sheaf PMM is closed under ∂ and ∂̄ and under multiplication by smooth forms.
Pseudomeromorphic currents have a geometric nature, similar to closed positive (or
normal) currents. For instance, the dimension principle states that if the
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pseudomeromorphic current µ has bidegree (∗, p) and support on a variety of
codimension strictly larger than p, then µ vanishes.

The sheaf PMM admits natural restrictions to constructible subsets of M . In particular,
if W is a subvariety of the open subset U ⊆ M , and s is a holomorphic section of a
Hermitian vector bundle such that {s = 0} = W , then the restriction to U \ W of a
pseudomeromorphic current µ on U is the pseudomeromorphic current on U defined by

1U\Wµ := lim
ϵ→0

χ(|s|2/ϵ)µ|U ,

where χ ∼ χ[1,∞). It follows that

1Wµ := µ− 1U\Wµ

has support on W . These definitions are independent of the choice of s and χ.

4.2. Almost semi-meromorphic currents. We refer to [AW18, Section 4] for details of
the results mentioned in this section.

We say that a current a is almost semi-meromorphic in M , a ∈ ASM(M), if there exists a
modification π : M ′ → M and a semi-meromorphic current ω/f on M ′ such that a = π∗

(
ω/

f
)
. More generally, if E is a vector bundle over M , an E-valued current a is almost semi-

meromorphic on M if a = π∗
(
ω/f

)
, where π is as above, ω is a smooth form with values in

L⊗ π∗E and f is a holomorphic section of a line bundle L → M ′.
Clearly almost semi-meromorphic currents are pseudomeromorphic. In particular, if

a ∈ ASM(M), then ∂a and ∂̄a are pseudomeromorphic currents on M .

Lemma 4.3 (Proposition 4.16 in [AW18]). Assume that a ∈ ASM(M) is smooth in M \W ,
where W is subvariety of M . Then ∂a ∈ ASM(M) and 1M\W ∂̄a ∈ ASM(M).

Given a ∈ ASM(M), let ZSS(a) (the Zariski-singular support) denote the smallest
Zariski-closed set V ⊂ M such that a is smooth outside V . The pseudomeromorphic
current r(a) := 1ZSS(a)∂̄a is called the residue of a.

Almost semi-meromorphic currents have the so-called standard extension property (SEP)
meaning that 1Wa = 0 in U for each subvariety W ⊂ U of positive codimension, where U
is any open set in M . In particular, if a ∈ ASM(M), χ ∼ χ[1,∞), and s is any generically
non-vanishing holomorphic section of a Hermitian vector bundle over M , then

lim
ϵ→0

χ(|s|2/ϵ)a = a.

It follows in view of Lemma 4.3 that, if {s = 0} ⊃ ZSS(a), then

r(a) = lim
ϵ→0

∂̄χ(|s|2/ϵ) ∧ a = lim
ϵ→0

dχ(|s|2/ϵ) ∧ a.

Remark 4.4. Note that it follows from above that if a ∈ ASM(M) is smooth outside the
subvariety W ⊂ M , χ ∼ χ[1,∞), and s is a generically nonvanishing holomorphic section of
a Hermitian vector bundle over M such that {s = 0} ⊃ W , then the smooth forms

χ(|s|2/ϵ)a, ∂χ(|s|2/ϵ) ∧ a, ∂̄χ(|s|2/ϵ) ∧ a

have limits as pseudomeromorphic currents and the limits are independent of the choice
of χ and s.

If a1, a2 ∈ ASM(M), then a1 + a2 ∈ ASM(M), and moreover there is a well-defined
product a1 ∧ a2 ∈ ASM(M), so that ASM(M) is an algebra over smooth forms, see
[AW18, Section 4.1]. Note that if χ ∼ χ[1,∞) and s is a generically nonvanishing
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holomorphic section of a Hermitian vector bundle such that {s = 0} contains the
Zariski-singular supports of a1 and a2, then a1 ∧ a2 is the limit of the smooth forms
χ(|s|2/ϵ)a1 ∧ a2.

4.3. Residue currents of Bochner-Martinelli type. Let us describe the construction of
residue currents in [And04], see also [AW18, Example 4.18]. Let f be a holomorphic
section of the dual bundle E∗ of a Hermitian vector bundle E → M and let σ be the
minimal inverse of f , i.e., the section of E over M \Zf of minimal norm such that fσ = 1;
here Zf denotes the zero set of f . Moreover consider the section

uf :=
∑
ℓ≥0

σ(∂̄σ)ℓ

of Λ(E⊕T ∗
0,1(M)); note that ∂̄σ has even degree in Λ(E⊕T ∗

0,1(M)), cf. [And04, Section 1].
One can show that σ has an extension as an almost semi-meromorphic current on M , see,
e.g., the proof of Lemma 2.1 in [LW22]. Thus, if χ ∼ χ[1,∞) and s is a generically non-
vanishing holomorphic section of a Hermitian vector bundle over M such that {s = 0} ⊃
Zf , then

Rf := r(uf ) = lim
ϵ→0

∂̄χ(|s|2/ϵ) ∧ uf

is a pseudomeromorphic current on M with support on Zf . We let Rf
k denote the

component of Rf that takes values in ΛkE. Then Rf
k has bidegree (0, k). This current first

appeared in [And04]. If E is trivial and equipped with the trivial metric, then the
coefficients are residue currents of Bochner-Martinelli type in the sense of [PTY00].

Example 4.5. Assume that f = f1e
∗
1 + · · · + fme

∗
m, where e∗1, . . . , e

∗
m is the dual frame of a

local frame e1, . . . , em for E. Moreover assume that the codimension of Zf is m (so that f
defines a complete intersection), then

Rf = Rf
m = ∂̄

1

fm
∧ · · · ∧ ∂̄

1

f1
∧ e1 ∧ · · · ∧ em,

see [And04, Theorem 1.7] and [PTY00, Theorem 4.1].

5. CONSTRUCTION OF CONNECTIONS

Assume that F is a holomorphic foliation of rank κ on M and that (1.2) is a locally
free resolution of O-modules of the normal sheaf NF of F on M , i.e., the vector bundle
complex is pointwise exact outside sing F and the associated sheaf complex of
holomorphic sections is exact. Here φ0 : TM → NF is the canonical projection. From the
exactness, it follows that imφ1 = kerφ0 = TF . Recall that NF is a holomorphic vector
bundle over M \ S, where we use the shorthand notation S = sing F . Throughout will
use the superstructure and sign conventions described in Section 2.2, with the convention
E0 = TM and E−1|M\S = NF |M\S.

In this section we construct a collection of connections that will be essential in the
construction of Baum-Bott currents in Section 6. To this end, we assume that
TM,E1, . . . , EN are equipped with Hermitian metrics and connections DTM , D1, . . . , DN ,2

2Note that the connection Dk is not necessarily the Chern connection of the metric on Ek.
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respectively, such that DTM is a (1, 0)-connection. Moreover, assume that DTM is
torsion-free,3 that is

(5.1) i(u)DTMv − i(v)DTMu = [u, v]

for any pair of vector fields u and v on M .
Starting from these we will construct a basic connection Dbasic on NF |M\S and

connections D̃k on Ek|M\S so that (D̃N , . . . , D̃0, Dbasic) is compatible with (1.2) over
M \ S. Next, by a choice of χ ∼ χ[1,∞) and a generically nonvanishing holomorphic
section s of a Hermitian vector bundle, we will construct connections D̂ϵ

k on M that
coincide with D̃k outside a neighborhood of {s = 0}. In particular, if we replace M by a
neighborhood of a compact connected component Z such that
(M, (EN , . . . , E1, TM), (φN , . . . , φ0)) is a Z-sequence, then we can choose s so that
(D̂ϵ

N , . . . , D̂
ϵ
0, Dbasic) is fitted to it for ϵ small enough.

5.1. The connections Dbasic and D̃k on M \ S. For k = 1, . . . , N , we let σk : Ek−1 → Ek

be the minimal inverse of φk. These are smooth vector bundle morphisms defined outside
the analytic set Zk ⊂ S where φk does not have optimal rank and are determined by the
following properties:

φkσkφk = φk, imσk ⊥ imφk+1 and σk+1σk = 0.

Note that φk and σk have odd degree with respect to the superstructure. It follows from
the definition of σk that in M \ S
(5.2) IEk

= φk+1σk+1 + σkφk,

for 1 ≤ k ≤ N , with the convention φN+1 = 0 and σN+1 = 0, and

(5.3) π0 := I − φ1σ1 : TM → TM

is the orthogonal projection onto (imφ1)
⊥ = (TF )⊥ ⊂ TM .

We start by modifying the connection DTM on TM into a connection which will
ultimately induce the desired basic connection on NF |M\S. The vector bundle TM
carries a canonical one-form valued section, that we denote by dz · ∂/∂z, which is
induced by the identity morphism on TM , viewed as an element of
T ∗M ⊗ TM ∼= Hom (TM, TM). It is defined as

(5.4) dz · ∂

∂z
:=

n∑
k=1

dzk
∂

∂zk
,

where (z1, . . . , zn) are local holomorphic coordinates on M . It is easy to see that the
definition is independent of the choice of coordinates. It readily follows that, for a vector
field u, one has

(5.5) i(u)(dz · ∂/∂z) = u.

Now on TM |M\S let

(5.6) D0 = DTM + Dφ1 σ1(dz · ∂/∂z),
3Such connections DTM with the desired properties always exist. This can be easily seen to hold locally

and a simple argument with a partition of unity yields a connection with the desired properties over the
whole manifold M . If M is Kähler, one can take DTM to be the Chern connection on TM , which is torsion-
free.
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where D is as in Section 2.2 and DEnd is induced by DTM and D1. Since dz · ∂/∂z has
bidegree (1, 0), it follows that

(5.7) b := Dφ1σ1(dz · ∂/∂z)
is a smooth (1, 0)-form in M \ S with values in End(TM |M\S). Thus, since DTM is a (1, 0)-
connection, D0 is a well-defined (1, 0)-connection on TM |M\S.

Lemma 5.1. If u is a smooth section of TF |M\S and v is a smooth section of TM |M\S, then

(5.8) i(u)D0v = [u, v] mod imφ1.

Proof. Consider the section i(u)(Dφ1σ1(dz · ∂/∂z)) of End(TM |M\S). By (2.13), (2.5),
(2.6), and (5.5),

(5.9) i(u)(Dφ1σ1(dz · ∂/∂z)) = Dφ1σ1u.

Since imφ1 = TF , we can locally on M \ S write u = φ1β for some section β of E1, and
thus by (5.2),

Dφ1σ1u = Dφ1σ1φ1β = Dφ1β − Dφ1φ2σ2β.

Since φ1φ2 = 0, it follows from (2.12) that

Dφ1φ2 = φ1Dφ2,

and thus

(5.10) i(u)
(
Dφ1σ1(dz · ∂/∂z)

)
= Dφ1β mod imφ1.

Now apply this to v. By (2.14), (2.11), (2.7), (2.5),

(5.11) (Dφ1β)v = Dφ1(v ⊗ β) = −i(v)DEndφ1(β) = −i(v)(DEndφ1β) =

− i(v)
(
DTM(φ1β)

)
− i(v)(φ1D1β) = −i(v)DTMu mod imφ1.

By combining (5.10) and (5.11) we get

i(u)D0v = i(u)DTMv + i(u)
(
(Dφ1σ1(dz · ∂/∂z)

)
v = i(u)DTMv − i(v)DTMu mod imφ1.

Now (5.8) follows from the torsion-freeness of DTM , cf. (5.1). □

Next we will use the connection D0 to define a basic connection on NF |M\S. Recall that
φ0 is surjective over M \ S. For a section φ0v of NF |M\S we let

(5.12) Dbasic(φ0v) := −φ0D0(π0v),

where π0 is as in (5.3). This is a well-defined (1, 0)-connection on NF |M\S since D0 is a
(1, 0)-connection on TM |M\S and φ0 and π0 have the same kernel, namely imφ1. The
minus sign in (5.12) is necessary for D0 to define a connection, in view of the
superstructure, cf. (2.7).

Lemma 5.2. The connection Dbasic is a basic connection on NF |M\S.

Proof. We saw above that Dbasic is a (1, 0)-connection. It remains to prove that (3.1) holds
for any smooth sections u and v of TF |M\S and TM |M\S, respectively. Due to the
superstructure, cf. (2.5) and (2.6),

(5.13) i(u)Dbasic(φ0v) = φ0i(u)D0(π0v).

By Lemma 5.1 the right hand side of (5.13) equals

φ0[u, π0v] = φ0[u, v]− φ0[u, φ1σ1v] = φ0[u, v],
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and thus (3.1) holds. In the last step we have used that TF = imφ1 is involutive so that
[u, φ1σ1v] ∈ imφ1 = kerφ0. □

The next step is to modify the connections D0, . . . , DN so that we get a collection of
compatible connections on M \S. Let D = DEnd be the connection on End(E|M\S) induced
by (DN , . . . , D0, Dbasic). Note that, since φkφk+1 = 0, it follows from (2.8) that, for k ≥ 0,

(5.14) Dφkφk+1 = φkDφk+1.

For k = 0, . . . , N , we let

(5.15) D̃k = Dk −Dφk+1σk+1,

where by convention we set φN+1 and σN+1 to be the zero map so that D̃N = DN . Since

(5.16) ak := −Dφk+1σk+1

is a smooth 1-form on M \ S with values in End(Ek|M\S), D̃k is a well-defined connection
on M \ S. In view of (5.6) and (5.7), note that

(5.17) D̃0 = DTM + b+ a0 D̃k = Dk + ak, k ≥ 1.

Remark 5.3. For each k ≥ 0, note that if Dk and Dk+1 are (1, 0)-connections, then ak is a
(1, 0)-form and it follows that D̃k is a (1, 0)-connection. In particular, if we assume that
D1, . . . , DN are (1, 0)-connections, then so are D̃0, . . . , D̃N . Indeed, recall from above that
D0 is a (1, 0)-connection since DTM by assumption is a (1, 0)-connection.

It remains to show that (D̃N , . . . , D̃0, Dbasic) is compatible with the complex (1.2) over
M \ S. Let us first check the compatibility condition (2.10) for 1 ≤ k ≤ N . Let β be a local
section of Ek|M\S. Then

(D̃k−1 ◦ φk + φk ◦ D̃k)β = Dk−1(φkβ)−Dφkσkφkβ + φkDkβ − φkDφk+1σk+1β

= Dφk(I − σkφk)β − φkDφk+1σk+1β

= Dφkφk+1σk+1β − φkDφk+1σk+1β = 0,

where we have used (2.7), (5.2), and (5.14). To check the compatibility condition (2.10)
at level 0, let v be a section of TM |M\S. Then, using that φ0φ1 = 0, cf. (5.3),

Dbasic(φ0v) = −φ0D0(π0v) = −φ0D0v + φ0D0(φ1σ1)v = −φ0D0v + φ0Dφ1σ1v = −φ0D̃0v

To conclude (2.10) holds for each 0 ≤ k ≤ N (with the convention D̃−1 = Dbasic).
We have now proved the following.

Proposition 5.4. The collection of connections (D̃N , . . . , D̃0, Dbasic) on M \ S is compatible
with (1.2) over M \ S.

For future reference we notice that the connections above are almost semi-meromorphic
in the following sense.

Lemma 5.5. The End(E)-valued forms ak and b on M \ S, defined by (5.16) and (5.7),
respectively, have continuations to M as almost semi-meromorphic End(E)-valued currents
on M .

Morally, this means that the End(E)-valued connections D̃k and Dbasic can be continued
to singular connections on M of the form D + α, where D is a smooth End(E)-valued
connection on M and α is an almost semi-meromorphic section of End(E).
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Proof. The main ingredient in the proof is the fact that the mappings σk can be continued
as almost semi-meromorphic sections of End(E), see, e.g., the proof of Lemma 2.1 in
[LW22].

Note that a0 = −DD1,D0φ1, where we have used the notation from (2.9). By (5.6) and
(5.7), D0 = DTM + b. Since φ1 is generically surjective, φ1σ1 = IdE0. Thus, it follows in
view of (2.7) that

a0 = −DD1,DTMφ1σ1 − b.

Furthermore, ak = −DDk+1,Dk
φk+1σk+1 for k ≥ 1. Since DTM , D1, . . . , DN are (smooth)

connections, the φk are holomorphic on M , the σk are almost semi-meromorphic, and
ASM(M) is closed under multiplication by smooth forms, it follows that b and ak are
almost semi-meromorphic for k ≥ 1, cf. Section 4.2. □

5.2. The connections D̂ϵ
k on M . Let χ ∼ χ[1,∞), let s be a generically nonvanishing

holomorphic section of a Hermitian vector bundle over M such that S ⊂ {s = 0}, let
ϵ > 0, let

(5.18) χϵ = χ(|s|2/ϵ),
and let Σϵ denote the closure of {χϵ < 1} in M . If χ(t) = 1 for t ≥ T , then note that
{χϵ < 1} ⊂ {|s|2 < Tϵ}, so that Σϵ is a kind of tubular neighborhood of S. Moreover,⋂

ϵ>0Σϵ = {s = 0} ⊃ S.

Remark 5.6. If ρ is the rank of φ1 in (1.2), we can choose s as the section detρ of ΛρE∗
1 ⊗

ΛρTM ; then, in fact, {s = 0} = S.

Set

(5.19) D̂ϵ
0 = χϵD̃0 + (1− χϵ)D

TM and D̂ϵ
k = χϵD̃k + (1− χϵ)Dk, for k = 1, . . . , N,

where the D̃k are the connections defined in (5.15). Note that D̂ϵ
N , . . . , D̂

ϵ
0 are connections

on M , and that D̂ϵ
k = D̃k in M\Σϵ for k = 0, . . . , N . Since (D̃N , . . . , D̃0, Dbasic) is compatible

with (1.2) in M \ S by Proposition 5.4, it follows as in Section 3.1 that if Φ ∈ C[z1, . . . , zn]
is a homogeneous symmetric polynomial of degree ℓ with n− κ < ℓ ≤ n, then

(5.20)
(

i

2π

)ℓ

Φ
(
Θ(D̂ϵ

N)| . . . |Θ(D̂ϵ
0)
)

is a closed form of degree 2ℓ with support in Σϵ.

Remark 5.7. Note in view of Remark 5.3 that D̂ϵ
k is a (1, 0)-connection if Dk and Dk+1 are.

Also recall from above that D0 is a (1, 0)-connection since DTM is. Hence, if we assume
that D1, . . . , DN are (1, 0)-connections, then so are D̂ϵ

0, . . . , D̂
ϵ
N .

Let us fix a compact connected component Z of S. Then, after possibly shrinking M ,
we may assume that β := (M, (EN , . . . , E1, TM), (φN , . . . , φ0)) is a Z-sequence. In
particular, S = Z and thus we can choose s so that {s = 0} = Z, cf. Remark 5.6. Then, for
ϵ sufficiently small, Σϵ is a compact neighborhood of Z. Since
(D̂ϵ

N , . . . , D̂
ϵ
0, Dbasic) = (D̃ϵ

N , . . . , D̃
ϵ
0, Dbasic) is compatible with the complex (1.2) in M \ Σϵ

by Proposition 5.4 and Dbasic is a basic connection on NF |M\Z by Lemma 5.2, it follows
that (D̂ϵ

N , . . . , D̂
ϵ
0, Dbasic) is fitted to β for ϵ sufficiently small. In fact, one may check that

the construction of fitted connections in [BB72] with some minor adaptation agrees with
(D̂ϵ

N , . . . , D̂
ϵ
0, Dbasic). Now in view of the definition of resΦ(F ;Z), see Section 3.1, we get

the following.
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Lemma 5.8. Assume that (M, (EN , . . . , E1, TM), (φN , . . . , φ0)) is a Z-sequence and that s
is a holomorphic section of a Hermitian vector bundle such that {s = 0} = Z. Then, for
sufficiently small ϵ > 0, the form (5.20) represents the Baum-Bott residue resΦ(F ;Z) ∈
H2n−2ℓ(Z,C).

6. BAUM-BOTT CURRENTS

In this section we prove Theorem 1.1. We prove that the limits of (5.20) as ϵ → 0 exist
as pseudomeromorphic currents with support on S = sing F ; we call these Baum-Bott
(residue) currents. If Z is a compact connected component of S, then the restriction to Z
represents the corresponding Baum-Bott residue.

We have the following more precise version of Theorem 1.1; for the part about the
independence of the choice of metrics and connections, see Corollary 6.3 below.

Theorem 6.1. Let M be a complex manifold of dimension n, let F be a holomorphic foliation
of rank κ on M , and let Φ ∈ C[z1, . . . , zn] be a homogeneous symmetric polynomial of degree ℓ
with n−κ < ℓ ≤ n. Assume that the normal sheaf NF of F admits a locally free resolution of
the form (1.2). Moreover, assume that TM,E1, . . . , EN are equipped with Hermitian metrics,
and connections DTM , D1, . . . , DN , respectively, and assume that DTM is of type (1, 0) and
torsion free. Let χ ∼ χ[1,∞) and let s be a generically nonvanishing holomorphic section of
a Hermitian vector bundle over M such that {s = 0} ⊃ sing F , and let D̂ϵ

0, . . . , D̂
ϵ
N be the

connections defined by (5.19).
Then

(6.1) RΦ := lim
ϵ→0

(
i

2π

)ℓ

Φ
(
Θ(D̂ϵ

N)| . . . |Θ(D̂ϵ
0)
)

is a well-defined closed pseudomeromorphic current on M of degree 2ℓ with support on
sing F . Moreover RΦ only depends on the complex (1.2) and the Hermitian metrics and
connections DTM , D1, . . . , DN close to sing F , and in particular is independent of the choice
of χ and s. If we assume that also D1, . . . , DN are of type (1, 0), then RΦ is a sum of currents
of bidegree (ℓ+ j, ℓ− j) for 0 ≤ j ≤ ℓ.

Let Z be a connected component of sing F and let

(6.2) RΦ
Z = 1ZR

Φ.

If Z is compact, then RΦ
Z represents resΦ(F ;Z).

Proof. We partially follow the proof of [LW22, Theorem 5.1].
We first prove that the limit (6.1) exists and is a pseudomeromorphic current. This is a

local statement and we may therefore work in a local trivialization. Let θTM , θ1, . . . , θN be
the connection matrices for DTM , D1, . . . , DN , respectively. Then the connection matrices
for D̂ϵ

k are given by

θ̂ϵ0 = θTM + χϵ(b+ a0), θ̂ϵk = θk + χϵak, k ≥ 1,

cf. (5.17) and (5.19), where b and ak are defined by (5.7) and (5.16), respectively. It
follows that for k ≥ 1 the curvature matrix equals

Θ̂ϵ
k = dθ̂ϵk + (θ̂ϵk)

2 = Θk + d(χϵak) + θk ∧ χϵak + χϵak ∧ θk + χ2
ϵak ∧ ak,

and similarly

Θ̂ϵ
0 = ΘTM + d(χϵ(b+ a0)) + θTM ∧ χϵ(b+ a0) + χϵ(b+ a0) ∧ θTM + χ2

ϵ(b+ a0) ∧ (b+ a0).
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Since b and ak are smooth forms in M \ S that have continuations to M as almost
semi-meromorphic currents by Lemma 5.5, and ASM(M) is an algebra, cf. Section 4.2, it
follows that, for k = 0, . . . , N , Θ̂ϵ

k is a matrix-valued form of the form

(6.3) Θ̂ϵ
k = αk + χϵβ

′
k + χ2

ϵβ
′′
k + dχϵ ∧ β′′′

k ,

where αk, β
′
k, β

′′
k , and β′′′

k are independent of χϵ, αk is smooth, and β′
k, β

′′
k , and β′′′

k are almost
semi-meromorphic currents that are smooth in M \S. To see this, note that if a ∈ ASM(M)
is smooth outside S, then χϵda = χϵ1M\Sda and since 1M\Sda is almost semi-meromorphic,
see Lemma 4.3, then χϵda is of the form χϵβ

′
k.

In view of (2.20), note that the entries of Φ(Θ(D̂ϵ
N)| . . . |Θ(D̂ϵ

0)) are polynomials in the
entries of Θ̂ϵ

k, k = 0 . . . , N . Since ASM(M) is an algebra and dχϵ ∧ dχϵ = 0, it follows that
each entry of Φ(Θ(D̂ϵ

N)| . . . |Θ(D̂ϵ
0)) is of the form

(6.4) A+
∑
j≥1

χj
ϵB

′
j +
∑
j≥1

χj−1
ϵ dχϵ ∧B′′

j ,

where A,B′
j and B′′

j are independent of χϵ, A is smooth, and B′
j and B′′

j are almost semi-
meromorphic currents that are smooth in M \ S. We conclude in view of Remarks 4.1
and 4.4, that the limit as ϵ → 0 of each term in (6.4) exists as a pseudomeromorphic
current and the limit is independent of the choice of χ and s. Hence (6.1) is a well-defined
pseudomeromorphic current independent of the choice of χ and s. Since it is independent
of s we may assume that {s = 0} = S, cf. Remark 5.6. Then, since (5.20) has support
in Σϵ, see Section 3.1, it follows that RΦ is a closed current of degree 2ℓ with support in⋂

ϵ>0Σϵ = S.

Note that the connections D̂ϵ
k are locally defined, in the sense that on any open set U ,

the D̂ϵ
k only depend on (1.2), the Hermitian metrics, and the connections DTM , D1, . . . , DN

on U , cf. Section 5. It follows that RΦ is locally defined in the same sense.
Assume now that D1, . . . , DN are (1, 0)-connections. Then so are D̂ϵ

0, . . . , D̂
ϵ
N , see

Remark 5.7. Thus each Θ̂ϵ
k has components of bidegree (1, 1) and (2, 0). It follows that

Φ
(
Θ(D̂ϵ

N)| . . . |Θ(D̂ϵ
0)
)

only has components of bidegree (ℓ + j, ℓ− j), 0 ≤ j ≤ ℓ. Hence so
has the limit RΦ.

Now let Z be a compact connected component of S. Since RΦ is locally defined, after
possibly shrinking M we may assume that (M, (EN , . . . , E1, TM), (φN , . . . , φ0)) is a
Z-sequence; then Z is the only connected component of S and thus RΦ

Z = RΦ, cf. (6.2).
Since RΦ is independent of s we can choose s so that {s = 0} = Z, cf. Remark 5.6. Now,
by Lemma 5.8, the form (5.20) represents resΦ(F ;Z) for all ϵ > 0 sufficiently small. Thus
so does the limit RΦ

Z by Poincaré duality. □

6.1. Dependence on the metrics and connections. The following result gives a
description of how the Baum-Bott currents depend on the choice of metrics and
connections.

Proposition 6.2. Let M , F , Φ, and (1.2) be as in Theorem 6.1. For each j = 1, 2, assume
that TM,E1, . . . , EN are equipped with Hermitian metrics and connections
DTM

(j) , D
(j)
1 , . . . , D

(j)
N , such that DTM

(j) is of type (1, 0) and torsion free, and let RΦ
(j) denote the

corresponding Baum-Bott current (6.1). Then there exists a pseudomeromorphic current NΦ

of degree 2ℓ− 1 with support on sing F such that

(6.5) dNΦ = RΦ
(1) −RΦ

(2).
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Furthermore, if also D
(j)
1 , . . . , D

(j)
N are of type (1, 0), then NΦ is a sum of currents of bidegree

(ℓ+ j, ℓ− 1− j) for 0 ≤ j ≤ ℓ− 1.

Proof. Let σ(1)
k and σ

(2)
k denote the minimal inverses of φk with respect to the two different

choices of Hermitian metrics. Next, for j = 1, 2 and k = 0, . . . , N , let D̂
(j),ϵ
k be the

connection (5.19) constructed in Section 5 from the connections DTM
(j) , D

(j)
1 , . . . , D

(j)
N and

the minimal inverses σ(j)
1 , . . . , σ

(j)
N .

Following the proof of Proposition 5.31 in [BB72], let M̃ = M×[0, 1] and let π : M̃ → M
be the natural projection. Next, for t ∈ [0, 1], k = 0, . . . , N , define

D̂ϵ
t,k := tD̂

(1),ϵ
k + (1− t)D̂

(2),ϵ
k ,

where D̂
(j),ϵ
k now denote the pullback connections on π∗Ek, and let

NΦ
ϵ =

(
i

2π

)ℓ

π∗Φ
(
Θ(D̂ϵ

t,N)| . . . |Θ(D̂ϵ
t,0)
)
.

Then, by (the proof of) Proposition 5.31 in [BB72], NΦ
ϵ is a form of degree 2ℓ − 1 with

support in Σϵ, such that

(6.6) dNΦ
ϵ =

(
i

2π

)ℓ

Φ
(
Θ(D̂

(1),ϵ
N )| . . . |Θ(D̂

(1),ϵ
0 )

)
−
(

i

2π

)ℓ

Φ
(
Θ(D̂

(2),ϵ
N )| . . . |Θ(D̂

(2),ϵ
0 )

)
.

To prove existence of the limit of NΦ
ϵ , we may as in the proof of Theorem 6.1 work in

local chart. Since the σ
(j)
k are almost semi-meromorphic, see the proof of Proposition 5.4,

as in the proof of Theorem 6.1 we get that the curvature forms Θ̂(j),ϵ
k corresponding to the

D̂
(j),ϵ
k are of the form (6.3). Moreover, since Φ(Θ(D̂ϵ

t,N)| . . . |Θ(D̂ϵ
t,0)) is a polynomial in the

entries of Θ̂ϵ
t,k it follows that (each entry of) Φ(Θ(D̂ϵ

t,N)| . . . |Θ(D̂ϵ
t,0)) is of the form (6.4).

Hence, as in that proof, it follows that the limit of NΦ
ϵ as ϵ → 0 exists as a

pseudomeromorphic current NΦ of degree 2ℓ − 1. As before we may assume that
{s = 0} = S and, since NΦ

ϵ ha support in Σϵ, it follows that NΦ has support on S. Taking
limits in (6.6) we get (6.5).

Assume now that D
(j)
1 , . . . , D

(j)
N are (1, 0)-connections. Then so are the D̂

(j),ϵ
k , see

Remark 5.7. Thus the Θ̂
(j),ϵ
k have components of bidegree (1, 1) and (2, 0). It follows that

Φ
(
Θ(D̂ϵ

t,N)| . . . |Θ(D̂ϵ
t,0)
)
= Φϵ

0 + Φϵ
1 ∧ dt,

where Φϵ
0 is a 2ℓ-form with no occurrences of dt and Φϵ

1 is a (2ℓ− 1)-form with components
of bidegree (ℓ+ j, ℓ− 1− j), 0 ≤ j ≤ ℓ− 1 with no occurrences of dt. Hence

NΦ
ϵ =

(
i

2π

)ℓ

π∗(Φ
ϵ
1 ∧ dt)

has components of bidegree (ℓ+j, ℓ−1−j), 0 ≤ j ≤ ℓ−1 and consequently so has NΦ. □

From Proposition 6.2 we get that RΦ
Z is canonical in the following sense when codimZ ≥

deg Φ.

Corollary 6.3. Assume that we are in the setting of Theorem 6.1 and that in addition
D2, . . . , DN are of type (1, 0). Let Z be a connected component of sing F . Assume that
codimZ ≥ ℓ. Then RΦ

Z is independent of the choice of Hermitian metrics and connections on
TM,E1, . . . , EN .
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Proof. Let RΦ
Z,(j), j = 1, 2, denote the Baum-Bott currents corresponding to two different

choices of metrics and connections. Then, by Proposition 6.2,

RΦ
Z,(1) −RΦ

Z,(2) = 1ZdN
Φ,

where NΦ is a pseudomeromorphic current with components of bidegree (∗, q) with q ≤ ℓ−
1, cf. (6.2). Let U be a neighborhood of Z containing only the connected component Z of S.
Since NΦ|U has support on Z of codimension ≥ ℓ, it follows from the dimension principle,
see Section 4.1, that NΦ|U vanishes, and consequently so does dNΦ|U . Furthermore, since
1ZdN

Φ only depends on dNΦ|U , it follows that 1ZdN
Φ vanishes. Thus RΦ

Z,(1) = RΦ
Z,(2),

which proves the result. □

7. BAUM-BOTT CURRENTS OF HOLOMORPHIC VECTOR FIELDS

Let us consider the situation when F is a rank one foliation on M . Since F is a subsheaf
of TM , it is torsion-free. Then, it follows by i.e., [OSS11, Lemmas 1.1.12, 1.1.15 and
1.1.16] that F being saturated implies that L := TF is a line bundle and F defines a
global section X ∈ H0(M,TM ⊗ L∗). Note that sing F = {X = 0}. In particular, seeing
X as a morphism L → TM , we obtain a locally free resolution form

(7.1) 0 → L
X→ TM → NF → 0

of NF .
In this section we give an explicit description, Corollary 7.8, of the Baum-Bott currents

RΦ
{p} when p is an isolated singularity. We first consider the case when F is given by a

global vector field X, not necessarily with isolated singularities. Then the line bundle L is
trivial and the map OM → TM is given by multiplication by X. We show that in this case
the Baum-Bott currents RΦ can be expressed in terms of the residue current of Bochner-
Martinelli type associated with X, cf. Section 4.3, see Theorem 7.2 below. In particular,
when X has isolated singularities, we recover the usual Baum-Bott formula in terms of the
Grothendieck residue, cf. (1.1).

Let Ω = (TM)∗. Then X is a section of the dual bundle Ω∗. Assume that TM is equipped
with a Hermitian metric and equip Ω with the dual metric. Let σ be the minimal inverse
of X and let

RX =
∑
k

RX
k := lim

ϵ→0
∂̄χϵ ∧

∑
ℓ≥0

σ(∂̄σ)ℓ,

where χϵ is as in (5.18), be the residue current of Bochner-Martinelli type as defined in
Section 4.3.

By the natural isomorphism
Ω = (TM)∗ ∼= T ∗M

a section of Ω can be regarded as a (1, 0)-form. Let σ̃ denote the form corresponding to σ.
Then note that

(7.2) σ̃ = σ

(
dz · ∂

∂z

)
,

where dz · ∂
∂z

is the canonical TM -valued (1, 0)-form (5.4). Similarly sections of
Λ(Ω ⊕ T ∗

0,1(M)) are naturally identified with forms, cf. Section 4.3. Let R̃X
k denote the

pseudomeromorphic (k, k)-current corresponding to RX
k . Then

(7.3) R̃X
k = lim

ϵ→0
∂̄χϵ ∧ σ̃ ∧ (∂̄σ̃)k−1.
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Example 7.1. Assume that {X = 0} consists of the point p ∈ M . Let (z1, . . . , zn) be a local
coordinate system centered at p. Then X is of the form X =

∑n
i=1 ai(z)

∂
∂zi

near p. It follows
from Example 4.5 that

(7.4) R̃X = R̃X
n = ∂̄

1

an
∧ · · · ∧ ∂̄

1

a1
∧ dz1 ∧ · · · ∧ dzn.

To describe the Baum-Bott currents in this case we need to introduce some notation. As
above, see Section 2.3, we identify a homogeneous symmetric polynomial
Φ ∈ C[z1, . . . , zn] of degree ℓ with the corresponding invariant symmetric polynomial on
(form-valued) (n × n)-matrices. Recall that the polarization of Φ is the invariant
symmetric function Φ̃(A1, . . . , Aℓ) that satisfies Φ(A) = Φ̃(A, . . . , A). For 0 ≤ k ≤ ℓ, and
two (n× n)-matrices A and B (that are possibly form-valued of even degree), we let

(7.5) Φk(A,B) =

(
ℓ

k

)
Φ̃(A, . . . , A︸ ︷︷ ︸

k times

, B, . . . , B︸ ︷︷ ︸
ℓ− k times

),

so that

(7.6) Φ(A+B) =
∑

0≤k≤ℓ

Φk(A,B).

In the statement below, D is as in (5.6).

Theorem 7.2. Let M be a complex manifold of dimension n and let X be a holomorphic
vector field on M . Let F be the corresponding rank one foliation and consider the resolution

(7.7) 0 → OM
X→ TM → NF → 0.

Assume that TM and OM are equipped with Hermitian metrics and (1, 0)-connections DTM

and D1, respectively, and assume that DTM is torsion free. Let Φ ∈ C[z1, . . . , zn] be a
homogeneous symmetric polynomial of degree n, and let RΦ denote the associated Baum-Bott
current (6.1). Then there exists a pseudomeromorphic (n, n− 1)-current NΦ with support on
{X = 0} such that

(7.8) RΦ =

(
i

2π

)n n∑
k=codim {X=0}

R̃X
k ∧ Φk

(
Dφ1,Θ(DTM)

)
+ ∂̄NΦ.

Proof. Let us use the notation from the previous sections (with the convention E1 = OM).
In particular, let φ1 : OM → TM be the map given by multiplication by X and let σ1 be its
minimal inverse. By Proposition 6.2, we may assume that OM is equipped with the trivial
metric and D1 = d is the trivial connection, because these choices will only affect the term
∂̄NΦ in (7.8). Indeed, since D1 and d are (1, 0)-connections the difference between the
corresponding Baum-Bott currents is of the form dNΦ, where NΦ is a pseudomeromorphic
current of bidegree (n, n− 1).

Let D̂ϵ
0 and D̂ϵ

1 be the connections defined in (5.19). Then, by definition,

RΦ = lim
ϵ→0

(
i

2π

)n

Φ
(
Θ(D̂ϵ

1)|Θ(D̂ϵ
0)
)
.

Observe that, in the notation of the previous sections, we have that φ2 = 0. Therefore,
D̂ϵ

1 = D1 = d, see (5.15) and (5.19); in particular, Θ(D̂ϵ
1) = 0. Hence

RΦ = lim
ϵ→0

(
i

2π

)n

Φ
(
Θ(D̂ϵ

0)
)
,
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cf. Section 2.3. Now (7.8) follows by combining Lemmas 7.4 and 7.5 below. □

Let

(7.9) Dϵ
0 = χϵD0 + (1− χϵ)D

TM ,

where D0 is as in (5.6).

Remark 7.3. Since DTM is a (1, 0)-connection on M and D0 is a (1, 0)-connection on M \S,
Dϵ

0 is a (1, 0)-connection on TM . Note that Dϵ
0 = D0 on M \ Σϵ.

Lemma 7.4. Assume that Dϵ
0 and D̂ϵ

0 are the connections on TM defined by (7.9) and (5.19),
respectively. Then there exists a pseudomeromorphic (n, n − 1)-current NΦ with support on
{X = 0} such that

(7.10) lim
ϵ→0

Φ
(
Θ(D̂ϵ

0)
)
= lim

ϵ→0
Φ
(
Θ(Dϵ

0)
)
+ ∂̄NΦ.

Lemma 7.5. Assume that Dϵ
0 is the connection on TM defined by (7.9). Then

(7.11) Φ
(
Θ(Dϵ

0)
)
=

n∑
k=codimZ

R̃X
k ∧ Φk

(
Dφ1,Θ(DTM)

)
.

To prove the lemmas we recall from [BB72, §8] that, if X is a non-vanishing vector field
on some open set U ⊂ M , a connection D on TM |U is called an X-connection if D is of
type (1, 0) and if

(7.12) i(X)DY = [X, Y ]

for every vector field Y on U .
The following result is the analogue of Theorem 3.2 for X-connections.

Lemma 7.6. [BB72, Lemma 8.11] Let X be a non-vanishing holomorphic vector field on
U ⊂ M and let D be an X-connection on TM |U . Then Φ(Θ(D)) = 0 for any homogeneous
symmetric polynomial Φ ∈ C[z1, . . . , zn] of degree n.

Lemma 7.7. The connection D0 defined in (5.6) is an X-connection on TM |M\{X=0}.

Proof. (Compare to Lemma 5.1.) By assumption X is non-vanishing in M \ {X = 0}, so
that the statement makes sense.

We saw in Section 5.1 that D0 is a (1, 0)-connection. It remains to prove that it satisfies
(7.12) in M \ {X = 0}. Since σ1 is the inverse of φ1 in M \ {X = 0}, σ1X = 1 there. Thus,
by (5.9)

i(X)
(
Dφ1σ1(dz · ∂/∂z)

)
= Dφ1σ1X = Dφ11

in M \ {X = 0}. Now, by (2.14), (2.11), and the fact that D11 = d1 = 0,

Dφ11(Y ) = Dφ1(Y ⊗ 1) = −i(Y )DEndφ11 = −i(Y )DTM(φ11) = −i(Y )DTMX;

here DEnd is the connection on End(E) induced by D1 and DTM . Hence

i(X)D0Y = i(X)DTMY + i(X)
(
Dφ1σ1(dz · ∂/∂z)

)
Y = i(X)DTMY − i(Y )DTMX = [X, Y ],

where the last equality follows since DTM is torsion free, cf. (5.1). □

Proof of Lemma 7.4. As in the proof of Proposition 6.2 let M̃ = M × [0, 1] and let π : M̃ →
M be the natural projection. Let

Dϵ
t = tD̂ϵ

0 + (1− t)Dϵ
0,
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where now D̂ϵ
0 and Dϵ

0 denote the pullback connections on M̃ , and let

NΦ
ϵ = π∗Φ

(
Θ(Dϵ

t)
)
.

Then by standard arguments (see, e.g., [Wel80, Chapter III.3]), NΦ
ϵ is a form of degree

2n− 1 such that

(7.13) dNΦ
ϵ = Φ

(
Θ(D̂ϵ

0)
)
− Φ

(
Θ(Dϵ

0)
)
,

cf. the proof of Proposition 6.2.
Recall from the proof of Theorem 6.1 that Θ(D̂ϵ

0) is of the form (6.3); by the same
arguments Θ(Dϵ

0) is as well of the form (6.3). It follows as in the proof of Proposition 6.2
that the limit of NΦ

ϵ exists as a pseudomeromorphic current NΦ. Moreover, since D̂ϵ
0 and

Dϵ
0 are (1, 0)-connections, see Remark 5.7 and 7.3, as in the proof of Proposition 6.2, it

follows that NΦ is of degree (n, n− 1). Taking limits in (7.13) we get (7.10).
Since D̂ϵ

0 = Dϵ
0 = D0 in M \ Σϵ, see Section 5.2 and Remark 7.3, and D0 is an X-

connection there by Lemma 7.7, it follows from Lemma 8.18 in [BB72] that NΦ
ϵ has support

in Σϵ. As in previous proofs we may assume that {s = 0} = {X = 0}; in fact, we can choose
s = X. Hence NΦ has support on {X = 0}. □

Proof of Lemma 7.5. Throughout this proof we write σ = σ1.
Since Dϵ

0 is a (1, 0)-connection, see Remark 7.3, and Φ is of degree n, it follows that

Φ
(
Θ(Dϵ

0)
)
= Φ

(
Θ(Dϵ

0)(1,1)
)
,

where ( · )(1,1) denotes the component of bidegree (1, 1). By (5.6) and (7.9)

Dϵ
0 = DTM + χϵDφ1σ(dz · ∂/∂z) = DTM + χϵDφ1σ̃,

cf. (7.2). Since χϵDφ1σ̃ has bidegree (1, 0), see Section 5.1, it follows that

(7.14) Θ(Dϵ
0)(1,1) = Θ(DTM)(1,1) + ∂̄(χϵDφ1σ̃).

Thus, by (7.6), using that the forms in (7.14) are End(TM)-valued 2-forms,

Φ(Θ(Dϵ
0)) =

n∑
k=0

Φk

(
∂̄(χϵDφ1σ̃),Θ(DTM)(1,1)

)
.

Since σ̃ is a scalar-valued 1-form, σ̃ ∧ σ̃ = 0. Moreover ∂̄χϵ ∧ ∂̄χϵ = 0. Using this we get
that

(7.15) Φk

(
∂̄(χϵDφ1σ̃),Θ(DTM)(1,1)

)
=

χk
ϵ Φk

(
∂̄(Dφ1σ̃),Θ(DTM)(1,1)

)
+ k ∂̄χϵ ∧ σ̃ ∧ (χϵ∂̄σ̃)

k−1Φk

(
Dφ1,Θ(DTM)(1,1)

)
.

Let us consider the contribution to Φ(Θ(Dϵ
0)) from the first term in the right hand side

of (7.15). In view of Remarks 4.1 and 4.4,

(7.16) lim
ϵ→0

∑
k

χk
ϵ Φk

(
∂̄(Dφ1σ̃),Θ(DTM)(1,1)

)
= lim

ϵ→0
χϵ

∑
k

Φk

(
∂̄(Dφ1σ̃),Θ(DTM)(1,1)

)
.

Next, by (7.6) and (5.6), cf. (7.2),∑
k

Φk

(
∂̄(Dφ1σ̃),Θ(DTM)(1,1)

)
= Φ

(
Θ(D0)

)
.

Since D0 is an X-connection over M \ {X = 0} by Lemma 7.7, Φ(Θ(D0)) = 0 there by
Lemma 7.6. Thus, since χϵ vanishes in a neighborhood of {X = 0} we get that (7.16)
vanishes identically on M .
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Next, let us consider the second term in the right hand side of (7.15). In view of
Remarks 4.1 and 4.4 and (7.3),

lim
ϵ→0

k∂̄χϵ ∧ σ̃ ∧ (χϵ∂̄σ̃)
k−1 = lim

ϵ→0
∂̄χk

ϵ ∧ σ̃ ∧ (∂̄σ̃)k−1 = R̃X
k .

Hence, since Φk(Dφ1,Θ(DTM)(1,1)) is a smooth form,

(7.17) lim
ϵ→0

k∂̄χϵ ∧ σ̃ ∧ (χϵ∂̄σ̃)
k−1Φk

(
Dφ1,Θ(DTM)(1,1)

)
= R̃X

k ∧ Φk

(
Dφ1,Θ(DTM)(1,1)

)
.

Since R̃X
k is a pseudomeromorphic current of bidegree (k, k), it vanishes by the dimension

principle when k < codim {X = 0}, see Section 4.1. Also, since DTM is a (1, 0)-connection,
for degree reasons, Θ(DTM)(1,1) may be replaced by Θ(DTM) in (7.17). We conclude that
Φ(Θ(Dϵ

0)) is of the form (7.11). □

From Theorem 7.2 we obtain the following simple expression of the Baum-Bott currents
of an isolated singularity of a rank one foliation.

Corollary 7.8. Let M be a complex manifold of dimension n, let F be a rank one foliation on
M , and let Φ ∈ C[z1, . . . , zn] be a homogeneous symmetric polynomial of degree n. Consider
the resolution (7.1) and assume that TM and L are equipped with Hermitian metrics and
(1, 0)-connections DTM and D1, respectively, and assume that DTM is torsion free. Assume
that p is an isolated singularity of F and let RΦ

{p} be the associated Baum-Bott current. Let
z = (z1, . . . , zn) be a local coordinate system centered at p so that F is generated by the vector
field

(7.18) X =
∑

ai(z)
∂

∂zi

near p. Then

(7.19) RΦ
{p} =

1

(2πi)n
∂̄
1

an
∧ · · · ∧ ∂̄

1

a1
∧ Φ

((
∂ai
∂zj

)
ij

)
dz1 ∧ · · · ∧ dzn.

Remark 7.9. Note in view of Example 4.2 that the action of RΦ
{p} on the function 1 equals

Resp

[
Φ
((∂ai

∂zj

)
ij

)dz1 ∧ . . . ∧ dzn
a1 · · · an

]
In particular, we recover the classical expression of Baum-Bott residues in terms of the
Grothendieck residue given in (1.1), see also [BB72, Theorem 1 and Proposition 8.67].

Proof of Corollary 7.8. Since RΦ
{p} only depends on (7.7) in a neighborhood of p we may

replace M by a neighborhood of p where L is trivial and F is generated by a vector
field X of the form (7.18), so that we are in the situation of Theorem 7.2. Note that
Φn(Dφ1,Θ(DTM)) = Φ(Dφ1), cf. (7.5). Thus, it follows from Theorem 7.2 that

(7.20) RΦ
{p} =

(
i

2π

)n

R̃X
n ∧ Φ(Dφ1).

Indeed, the pseudomeromorphic current NΦ vanishes by the dimension principle, see
Section 4.1, since it has bidegree (n, n− 1) and support on the point p.

Let us make the right hand side in (7.20) more explicit. By Corollary 6.3, RΦ
{p} is

independent of the choice of Hermitian metrics and (1, 0)-connections. We may therefore
assume that DTM and D1 are trivial. If D is the connection on (7.7) induced by DTM and
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D1, then DEndφ1 = dφ1. Since L is trivial D can be regarded as a section of End(TM). By
(2.11), Dφ1(u) = −i(u)dφ1. Recall that φ1 is just multiplication by X. A computation
yields that i(u)dφ1 is multiplication by the Jacobian matrix

(
∂ai
∂zj

)
ij

, cf. (2.11). Thus

(7.21) Φ(Dφ1) = (−1)nΦ

((
∂ai
∂zj

)
ij

)
.

By plugging (7.4) and (7.21) into (7.20), we get (7.19). □
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[Hö90] Lars Hörmander. An introduction to complex analysis in several variables, volume 7 of North-Holland

Mathematical Library. North-Holland Publishing Co., Amsterdam, third edition, 1990.
[HL71] M. Herrera and D. Lieberman. Residues and principal values on complex spaces. Math. Ann.,

194:259–294, 1971.
[LW22] Richard Lärkäng and Elizabeth Wulcan. Chern currents of coherent sheaves. Épijournal Géom.
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