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The sexagesimal place-value notation and abstract numbers in 
mathematical cuneiform texts 
Christine Proust (Laboratoire SPHERE, CNRS & Université de Paris, France)* 

Abstract – The discovery at the end of the 19th century of the mathematical cuneiform texts posed to 
historians the question of the nature of the numbers used in them, i.e. that of the sexagesimal place-
value notation. This notation, although familiar to us today since it is the one we use to measure time, 
has, in the cuneiform texts, specificities which still raise challenges of interpretation. One of these 
specificities is the fact that the cuneiform writing does not indicate the order of magnitude of the 
numbers (for example, 1, 60, 1/60 or any other power of 60 are written in the same way). This article 
outlines the way in which historians of the late 19th and early 20th centuries interpreted this 
specificity. The focus here is on the interpretation proposed by the Assyriologist François Thureau-
Dangin, who in 1930 considered numbers in sexagesimal place-value notation as “abstract numbers”, 
as opposed to “concrete numbers”. 

Résumé – La découverte à la fin du 19e siècle des premières tablettes mathématiques cunéiformes a 
posé aux historiens la question de la nature des nombres qui y étaient utilisés, c’est-à-dire celle de la 
notation sexagésimale positionnelle. Cette notation, quoique familière aujourd’hui puisque c’est celle 
que nous utilisons pour la mesure du temps, revêt dans les textes cunéiformes des spécificités qui 
soulèvent encore aujourd’hui des défis d’interprétation. Une de ces spécificités est le fait que l’écriture 
cunéiforme n’indique pas l’ordre de grandeur des nombres (par exemple, 1, 60, 1/60 ou toute autre 
puissance de 60 s’écrivent de la même façon). Cet article retrace la façon dont les historiens de la fin 
du 19e siècle et du début du 20e siècle ont interprété cette spécificité. L’accent est mis ici sur 
l’interprétation de François Thureau-Dangin, qui, en 1930, considérait les nombres en notation 
sexagésimale positionnelle comme des « nombres abstraits », qu’il opposait aux « nombres concrets ». 
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1- The sexagesimal place-value notation in cuneiform texts 
The sexagesimal place-value notation is found, in the cuneiform documents, almost exclusively in 
astronomical and mathematical texts.1 As their name indicates, these numbers are written in base 
sixty on a positional principle. The 59 sexagesimal digits are composed of signs for the ones (vertical 

wedges ), and signs for the tens (chevrons ), repeated as many times as necessary. For example, the 

digit  (three chevrons and two wedges) corresponds to 32 in modern notation. Digits are thus 
                                                             
1 The context, date and proveniences of both categories are different. The Astronomical texts come from South 
Mesopotamia and are dated to the second part of the first millennium BCE. The mathematical texts originate from 
a vast area—Mesopotamia, Syria and Elam in modern western Iran—and are dated to different periods over three 
millennia, from the mid-third millennium to the very end of the first millennium; but the bulk of them is dated to 
the Old Babylonian period, i.e. the beginning of the 2nd millennium BCE. In rare cases, the sexagesimal place-
value notation is attested in other categories of texts, for example in administrative texts – See (Middeke-Conlin 
2020); (Ouyang and Proust forthcoming) and related bibliography. 
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noted in a decimal additive system. Numbers are composed of sequences of sexagesimal digits, each 
of the signs worth sixty times more than the same sign in the previous place (on its right). For example, 

the number   (1:21) is composed of a sequence of two sexagesimal digits, 1 and 21. The wedge 
in the left-hand position is worth sixty times more than the wedge in the right-hand position. This 
system is similar to our modern sexagesimal system for measuring time, but with an important 
difference: the cuneiform notation does not indicate the position of the units in the number, thus the 
order of magnitude is not specified. The notation is not only sexagesimal and place-valued, but also 

floating. For example, the notation   (1:21) corresponds, in modern notation, at the same time 
to 60+21, to 1+21/60, and to one of these numbers multiplied by any power of sixty.  

This description of the sexagesimal place-value notation reflects my point of view.2 In particular, I refer 
to the absence of indication of the orders of magnitude in the cuneiform writing by the adjective 
“floating”. However, this description differs slightly from that of other authors, especially with respect 
to the “floating” character of the place-value numbers. For example, the absence of indication of the 
orders of magnitude in cuneiform writing may be referred to by the expressions “relative numbers”, 
or “abstract numbers”, or “absence of zero”, or just ignored.3 What is the meaning and what are the 
consequences of these differences? 

The discovery of the sexagesimal place-value notation in mathematical cuneiform texts dates back to 
the end of the 19th century. Since its discovery by Assyriologists, this notation attracted the attention 
of historians of mathematics. For example, in his History of Mathematics, Cajori devotes a brief chapter 
to “The Babylonians” (pp. 5–9), where he refers to the sexagesimal place-value notation as follows: 

Not to be overlooked is the fact that in the sexagesimal notation of integers the “principle of position” 
was employed. Thus, in 1.4 (=64), the 1 is made to stand for 60, the unit of the second order, by virtue 
of its position with respect to the 4. The introduction of this principle at so early a date is the more 
remarkable, because in the decimal notation it was not introduced till about the fifth or sixth century 
after Christ. (Cajori 1893, 7, 1894 edition). 

Cajori notes the problem of the absence of indication of the orders of magnitude in cuneiform writing 
and points out that a consequence of this is an absence of distinction between integers and 
sexagesimal fractions: 

The sexagesimal system was used also in fractions. Thus, in the Babylonian inscriptions, 1/2 and 1/3 are 
designated by 30 and 20, the reader being expected, in his mind, to supply the word “sixtieths”. (Cajori 
1893, 7, 1894 edition). 

At the time Cajori published his “History of Mathematics”, historians relied on very few sources to 
discuss the sexagesimal place-value notation. Cajori was aware of the existence of cuneiform 
astronomical texts that began to be published at that time (Epping et Strassmeier 1889). As for 
mathematical sources, he knew of only two texts: “We possess two Babylonian tablets which exhibit 
its [sexagesimal system] use” (Cajori 1893, 6). One of them was the so-called “Senkereh Tablet” which 
contains numerical tables that circulated at that time, but was not critically edited before 1930 by 
Thureau-Dangin (see Section 2-1). Relying on the same sources, Moritz Cantor relates the same 
observations as Cajori on sexagesimal place-value notation (Cantor 1894 (Third Edition 1907), 73-104). 

Cajori provides much more detail and explanations on the sexagesimal place-value notation used in 
the “Senkereh Table” in his 1928 History of Mathematical Notation vol. I:  

                                                             
2 For more details on this point of view, see (Proust 2013). 
3 See, for example, the descriptions of the sexagesimal place-value notation in (Thureau-Dangin 1932b: 49-72, 
that I deal with in Section 2; Neugebauer and Sachs 1945: 2; Høyrup 2002: 5-11; Friberg 2007: 5-11). 
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Hincks's explanation [i.e “the sexagesimal scale”] was confirmed by the decipherment of tablets found 
at Senkereh, near Babylon, in 1854, and called the Tablets of Senkereh. One tablet was found to contain 
a table of square numbers, from 1² to 60², a second one a table of cube numbers from 13 to 323. The 
tablets were probably written between 2300 and 1600 B.C. Various scholars contributed toward their 
interpretation. Among them were George Smith (1872), J. Oppert, Sir H. Rawlinson, Fr. Lenormant, and 
finally R. Lepsius. (Cajori 1928, 3). 

Between Cajori’s two publications (1893 and 1928), the corpus of mathematical texts had grown 
dramatically thanks to Hermann Hilprecht’s publications of tablets from Nippur in 1906. Hilprecht 
clearly exhibits the use of the sexagesimal place-value notation in mathematical texts. To him, the 

consequence of the “absence of zero” is that the sign  may represent all the powers of sixty.  

 

Figure 1 Hilprecht 1906, 26 

As Neugebauer did later, Hilprecht considered that the power of sixty had to be “determined by the 
context” (Hilprecht 1906, 26). Hence, he felt it necessary to determine the absolute value of the 

number written with one wedge ( ) in different contexts. Hilprecht gave the value 604 to the number 
denoted by one wedge in reciprocal tables. Indeed, he interpreted these tables as the list of the divisors 

of , starting from the a priori that all the divisors given by the table were integers.4 The issue of the 
absolute value of the number written with one wedge in reciprocal tables has been subsequently much 
discussed, and the value 60 was the most often attributed to this sign. For example Scheil (1915, 195) 

wonders “why would  be worth 12960000 and not its documented value of 60?”5  

As we can see, in the first attempts to understand the mathematical cuneiform texts, the description 
of the sexagesimal place-value notation texts raised many questions. One of the thorniest, even today, 
is that of the absence of indication of order of magnitude. François Thureau-Dangin, in his 1930 article 
“Nombres concrets et nombres abstraits dans la numération babylonienne” (Concrete numbers and 
abstract numbers in Babylonian numeration), provided a possible solution to this problem by 
characterizing the numbers in sexagesimal place-value notation as “abstract numbers”:  

This very abstract system, which did not distinguish between integers and fractions, which ignored the 
order of magnitude of the numbers, was used for arithmetic operations, particularly for igi-aré, that is, 
“divisions and multiplications”, which it greatly facilitated. The so-called Esagil tablet perfectly illustrates 

                                                             
4 From there he developed a rather fanciful theory that the number 12,960,000 is the "Plato number" found in 
Plato’s Republic, Book III (p. 29 ff). This theory was much mocked, which obscured the important contributions 
that Hilprecht made on the school context of cuneiform mathematics and on the use of the sexagesimal place-value 
notation in arithmetic texts. 

5 My translation. Original text: “Pourquoi  vaudrait-il 12960000 et non pas sa valeur documentée de 60 ?”. 
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the method used by the Babylonians and shows how, in their calculations, they went from the concrete 
to the abstract, then back from the abstract to the concrete. (Thureau-Dangin 1930b, 117)6 

The analysis of the sexagesimal place-value notation by Thureau-Dangin as abstract numbers is quite 
original, and has hardly had any echo in the historiography of cuneiform mathematics. In this article, I 
present Thureau-Dangin’s conception of “abstract numbers”, and confront it with that of other 
contemporary or later historians. 

2- Thureau-Dangin’s conception of abstract numbers 
François Thureau-Dangin (1872–1944) was one of the pioneers of Assyriology. From 1895 to 1928, he 
was successively attaché, then curator, then director, of Oriental Antiquities at the Louvre Museum 
(Paris). He devoted much of his career to building up the Louvre’s collection of tablets and published 
the cuneiform texts they contain. He made a decisive contribution to the deciphering and 
understanding of the numerical and metrological systems used in administrative and mathematical 
texts, and was one of the decipherers of the Sumerian language.7 The following discussion is based on 
two brief “Assyriological Notes” that Thureau-Dangin published in 1930 in the Revue d’Assyriologie: 
Note LV “La table de Senkereh”, and Note LVI “Nombres concrets et nombres abstraits dans la 
numération babylonienne”.8 

2-1 The “Senkereh Table” 
The note “La Table de Senkereh” (Thureau-Dangin 1930a) is of great historiographical importance 
because it offers a partial transcription of one of the earliest mathematical cuneiform tablets that had 
been brought to the attention of historians of mathematics. The tablet9 contains metrological and 
numerical tables dated to the Old-Babylonian period. The numerical tables, which are tables of square 
roots and cube roots, played an essential role in the earliest modern attempts to understand the 
numerical notations used in mathematical cuneiform texts and provided the material for discussions 
on the sexagesimal place-value notation to many historians of mathematics in the late 19th and early 
20th centuries, as evoked in Section 1.10 

                                                             
6 My translation. Original text: “Ce système très abstrait, qui ne distinguait pas entre les entiers et les fractions, qui 
ignorait l'ordre de grandeur des nombres, servait aux opérations arithmétiques, notamment aux igi-aré, c'est-à-dire 
aux “divisions et multiplications”, qu'il facilitait grandement. La tablette dite de l'Esagil illustre parfaitement la 
méthode employée par les Babyloniens et montre comment, dans leurs calculs, ils passaient du concret à l'abstrait, 
puis revenaient de l'abstrait au concret”. 
7 On Thureau-Dangin’s biography, his works on numbers and metrology and related bibliography, see Pierre 
Chaigneau’s PhD thesis (Chaigneau 2019: Chapters 1, 3). 
8 Senkereh Table and Concrete numbers and abstract numbers in Babylonian numeration (Thureau-Dangin 1930a, 
1930b).  
9 The tablet is now kept at the British Museum under the number 92698, its copy was published by Rawlinson 
(Rawlinson et al. 1861-1884), its first interpretation by Weissbach (1915), and its complete edition by Neugebauer 
(1935: 69). The photo is available on the British Museum website 
(https://www.britishmuseum.org/collection/object/W_-92698, accessed June 2021). 
10 Neugebauer insists on the historiographical importance of this tablet as follows: “The arithmetic tables form the 
earliest known group of "mathematical" texts. With the famous "Tablets of Senkereh"[...] the sexagesimal and 
positional character of the cuneiform numbers was verified for the first time (1854/55), and Hilprecht's large 
publication of the "Mathematical, Metrological and chronological tablets" (1906) treated as "mathematical" only 
texts such as those compiled in this chapter [Chapter I of Mathematische Keilschrift-Texte vol. I]. Thus, the 
knowledge of "mathematical" cuneiform texts was limited until 1916 ... almost exclusively to such tabular texts." 
Original German citation: “Die Rechentabellen bilden die am längsten bekannte Gruppe "mathematischer" Texte. 
An den berühmten "Täfelchen von Senkereh" ... wurde zuerst (1854/55) der sexagesimale und zugleich positionelle 
Charakter der Keilschrift-Ziffern verifiziert, und Hilprechts grosse Publikation der "Mathematical, Metrological 
and chronological tablets" (1906) behandelte an "mathematischen" Texten nur solche, wie sie in diesen Kapitel 
zusammengestellt sind. So beschränkte sich die Kenntnis von "mathematischen" Keilschrifttexten bis 1916 ... so 
gut wie ausschiesslich auf derartige Tabellentexte.” (Neugebauer 1935: 4). This excerpt also reflects the fact that 
Neugebauer minimized the interest of the metrological tables, which he did not consider as truly mathematical. 

https://www.britishmuseum.org/collection/object/W_-92698
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Thureau-Dangin echoes this role as follows: 

The “Table de Senkereh” has, since the beginning of Assyriology, been a crux interpretatum. If one 
studies this text in the light of the very similar text that I have published above, p. 74 […], one realizes 
that it owes its obscurities and contradictions only to errors attributable either to the scribe or to the 
editor. [...] The restitution that Weissbach proposes is probably excessive. We give below the part of the 
text which can be restored with certainty [...] (Thureau-Dangin 1930a, 115)11  

The historical importance of the “Senkereh Table” comes from the fact that it begins with a 
metrological table, i.e. a correspondence between measurement values and numbers in sexagesimal 
place-value notation. Unlike the two numerical tables, this metrological table was seldom commented 
on historiographically. Yet, this metrological table offers a crucial key to the understanding of the 
relationship between measurement values and numbers as conceived by the ancient scribes, authors 
or users of the Old Babylonian mathematical texts. Let us therefore examine a translation of this text, 
or at least of the beginning of the fragment that was known to Thureau-Dangin (my own translation; 
bold is mine).12 

Obverse, col. 1 
1 šu-si 10 
2 šu-si 20 
3 šu-si 30 
4 šu-si 40 
5 šu-si 50 
6 šu-si 1 
7 šu-si 1:10 
8 šu-si 1:20 
9 šu-si 1:30 
1/3 kuš 1:40 
1/2 kuš 2:30 
2/3 kuš 3:20 
2/3 kuš 1 šu-si 3:30 
2/3 kuš 2 šu-si 3:40 
2/3 kuš 3 šu-si 3:50 
2/3 kuš 4 šu-si 4 
2/3 kuš 5 šu-si 4:10 
2/3 kuš 6 šu-si 4:20 
2/3 kuš 7 šu-si 4:30 
2/3 kuš 8 šu-si 4:40 
2/3 kuš 9 šu-si 4:50 
1 kuš 5 
1 1/3 kuš 6:40 
1 1/2 kuš 7:30 
1 2/3 kuš 8:20 
2 kuš 10 
3 kuš 15 
4 kuš 20 
5 kuš 25 

                                                             
11 My translation. Original text: “La « Table de Senkereh » est, depuis les débuts de l’assyriologie, une crux 
interpretatum. Si on étudie ce texte à la lumière du texte tout à fait semblable que j'ai publié ci-dessus, p. 74, on 
se rend compte qu'il ne doit ses obscurités et ses contradictions qu'à des erreurs imputables soit au scribe, soit à 
l’éditeur.  […] Nous donnons ci-dessous la partie du texte qui peut être restaurée avec certitude […].” 
12 1 ninda (1 pole, ca. 6 m) is worth 12 kuš; 1 kuš (1 cubit, ca. 50 cm) is worth 30 šu-si (šu-si means digit, ca. 1,6 
cm). 
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1/2 ninda 30 
1/2 ninda 1 kuš 35 
1/2 ninda 2 kuš 40 
1/2 ninda 3 kuš 45 
1/2 ninda 4 kuš 50 
1/2 ninda 5 kuš 55 
1 ninda 1 
1 1/2 ninda 1:30 
2 ninda 2 
2 1/2 ninda 2:30 
3 ninda 3 

Obverse, col. 2 
[…] 
10 ninda 10 

This metrological table is presented in two sub-columns, the left one containing length measurements 
in ascending order, the right one containing numbers written in sexagesimal place-value notation. The 
correspondence between measurement values and numbers in sexagesimal place-value notation is, at 
first sight, proportional:  

- To 1 šu-si (1 finger, ca. 1,6 cm) corresponds the number 10, so to 2 šu-si (2 fingers) corresponds 
the number 20, etc.  

- To 1 kuš (1 cubit = 30 fingers) corresponds the number 5, so to 2 kuš (2 cubits) corresponds 10, 
etc.  

- To 1 ninda (1 pole = 12 cubits) corresponds 1, so to 2 ninda corresponds 2, etc.  

However, the proportionality seems only local because it appears to be disturbed by a phenomenon 
of cyclicity: the same number in the right sub-column corresponds to several length measurements in 
the left sub-column. For example, in this table, the number 10 corresponds to three length 
measurements, 1 šu-si, 2 kuš and 10 ninda, which differ by a factor 60 (these items are underlined in 
bold in the translation above). This phenomenon is due to the fact underlined in Section 1 that the 
cuneiform notation does not indicate the position of the units in the number. Consequently, the left 
sub-column appears as a regular and increasing progression, while the right sub-column appears as 
cyclic. Another difference between the sub-columns is that the numbers are not written in the same 
numerical system. For example, in the item “1 ½ ninda 1:30”, the number of ninda, 1 ½, includes a 
fraction and its order of magnitude is determined, whereas the number that corresponds to this length 
measurement, 1:30, is written in floating sexagesimal place-value notation. Another striking difference 
is that the left sub-column is composed of measurement values, i.e. numbers followed by a 
measurement unit (“concrete numbers” in Bézout’s sense), while the right-hand sub-column is 
composed of numbers alone (“abstract numbers” in Bézout’s sense).13  

                                                             
13 Bézout’s definition is the most commonly adopted nowadays: for him, a concrete number is followed by a 
denomination (measurement units or names of the items counted), while an abstract number is not. “A number 
which is stated without designating the kind of units, as when one simply says three or three times, four or four 
times, is called an abstract number; and when one states at the same time the kind of units, as when one says four 
pounds, one hundred barrels, it is called a concrete number”. My translation. Original text: “Un nombre qu'on 
énonce sans désigner l'espèce des unités, comme quand on dit simplement trois ou trois fois, quatre ou quatre fois, 
s'appelle un nombre abstrait; et lorsqu'on énonce en même temps l'espèce des unités, comme quand on dit quatre 
livres, cent tonneaux, on l'appelle nombre concret” (Bézout 1764 (ed. 1781)). For more comments on Bezout’s 
definition, see other chapters of the present Special Issue (Vandendriessche & Proust, Ferreira & Schubring, 
Chambris & Visnovska). 



In Concrete Numbers versus Abstract Numbers, ed. C. Proust & E. Vandendriessche, Historia Mathematica, PREPRINT 

7 
 

2-2 “Nombres concrets et nombres abstraits” 
Just after the note on the “Table de Senkereh”, Thureau-Dangin published a note entitled “Concrete 
numbers and abstract numbers in the Babylonian numeration” (“Nombres concrets et nombres 
abstraits dans la numération babylonienne”) where he offers a penetrating analysis of the role of 
sexagesimal place-value notation in calculations.  

[In the “Esagila Tablet”] it is a question of calculating three rectangular surfaces: that of the large 
courtyard, that of the courtyard of Ištar and Zababa and that of the base of the multi-story tower. The 
concrete data of each problem are translated into abstract numbers, without a determined order of 
magnitude, and it is on these numbers that the calculator operates. [...] The result is still an abstract 
number. The last operation consists in going from the abstract to the concrete.14  

However, surprisingly, Thureau-Dangin describes the process of calculation through the so-called 
"Esagil Tablet", an administrative text dating from the Hellenistic period, more than one millennium 
after the Old-Babylonian period. Thus, he makes no explicit connection between Note LV on the “Table 
de Senkereh” and the process from the concrete to the abstract and vice versa, which he describes in 
the next note.  

Today we know abundant sources—unknown in Thureau-Dangin’s time—which are much more 
relevant than the Esagil tablet to serve as evidence for an explanation of the use of the sexagesimal 
place-value notation in calculation. These sources are school texts which date to the same period, and 
come from the same region, South Mesopotamia, and were produced in the same environment, scribal 
schools, as the “Senkereh Table”. In my view, the process described by Thureau-Dangin is clearly 
apparent in school tablets devoted to the calculation of the area of a square, such as those found in 
large numbers in Nippur.15 For example, on the tablet from Nippur kept at the University of 
Philadelphia under the number UM 29-15-192 (Figure 2), one sees the “concrete” data, the length of 
the sides of the square (here 2 šu-si, that is, 2 fingers, ca. 3,2 cm), and the multiplication implemented 
on “abstract” numbers in sexagesimal place value notation, in this case the square of the number 20, 
which produces 6:40. As I already stressed elsewhere several times,16 the key point is that the 
relationship between the “concrete” length of the sides and the “abstract” numbers in sexagesimal 
place value notation is precisely that given by the metrological tables. For example, 2 šu-si, the side of 
the square given in the tablet, corresponds to the number 20 in the metrological table “Senkereh 
Table” (BM 92698) published by Thureau-Dangin (see translation above); 20 is the number noted on 
the left top of the tablet, of which the square, 6:40, is given. The number 6:40 corresponds to the area 
1/3 še (1/3 grain, ca. 10 cm²) according to metrological tables for surfaces, abundantly attested in 
school archives.  

                                                             
14 My translation. Original text: « [Dans la « Tablette de l’Esagil »], il s'agit de calculer trois surfaces 
rectangulaires : celle de la grande cour, celle de la cours d'Ištar et Zababa et celle de la base de la tour à étages. 
Les données concrètes de chaque problème sont traduites en nombres abstraits, sans ordre de grandeur déterminé, 
et c'est sur ces nombres qu'opère le calculateur. … Le résultat est encore un nombre abstrait. La dernière opération 
consiste à passer de l'abstrait au concret. » Thureau-Dangin 1930b : 117, from which the quotation in Section 1 is 
also extracted. 
15 These tablets were not published until the 1940s by Otto Neugebauer and Abraham Sachs. 
16 See in particular Proust 2013. 
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20 
20 
6:40 
 
 
 

2 šu-si the side 
Its surface how much? 
Its surface is 1/3 še 

Figure 2 Tablet UM 29-15-192, copy Neugebauer and Sachs 1984, 251; my translation 

This tablet, which was unknown to Thureau-Dangin, perfectly illustrates the process he described in 
1930: “the method used by the Babylonians [which] shows how, in their calculations, they went from 
the concrete to the abstract, then back from the abstract to the concrete” (Thureau-Dangin 1930b, 
117, already quoted in Section 1).  

Thureau-Dangin does not explain how precisely, in his view, the scribes, in their calculations, passed 
from the concrete to the abstract and vice versa. He does not refer to the metrological tables, in 
particular to the table of length which is precisely included in the “Senkereh Table”. However, if Notes 
LV (“La table de Senkereh”) and LVI (“Nombres concrets et nombres abstraits”) were placed by 
Thureau-Dangin one after the other in the same issue of the “Revue d'Assyriologie”, it was probably 
intentional, and we can guess that Thureau-Dangin had in mind a link between these two notes. 
However, this link is not explicitly stated. Thureau-Dangin’s caution can be explained by the lack of 
comparative material available at the time, and perhaps also by the intellectual context.17 

2–3 Abstract numbers: Thureau-Dangin versus Bézout 
The opposition between concrete and abstract numbers in Thureau-Dangin’s sense refer specifically 
to certain properties of numbers in cuneiform mathematical texts. These two categories are not only 
modern distinctions imposed by historians, but they were undoubtedly recognized as such by the 
ancient actors. It is clear in the layout of school texts, particularly the metrological tables and the 
calculations of the area of squares discussed above, where the two categories are separated. This 
opposition may have existed in the ancient terminology. In the Sumerian language used in school texts, 
two terms for “numbers”, or “calculation” are attested: “shid” seems to refer to calculations with 
numbers in sexagesimal place-value notation, and “nig” seems to refer to counting with quantities. In 
any case, it is clear that these two categories correspond to distinct moments of the calculation, 
carefully identified by the ancient masters of scribal schools. 

However, the opposition between concrete and abstract numbers as it was formalized by Thureau-
Dangin may be confusing to a modern reader. Indeed, it induces the idea (which Thureau-Dangin did 
not have, by the way) that an abstract number is a concrete number from which one has removed the 
measurement units. Yet, Thureau-Dangin’s “abstract” numbers are different in nature from the 
“concrete numbers” associated with measurement units: the former are written in floating 
sexagesimal place-value notation, and therefore they are unsuitable to be used to express quantities; 
the latter are written in notations based on an additive principle (a different sign is used for each order 

                                                             
17 This paradox is discussed with great finesse by Pierre Chaigneau in Chapter 3 of his PhD thesis (Chaigneau 
2019). The battle of wits between Neugebauer and Thureau-Dangin in the 1920s about the sexagesimal place-
value notation is particularly revealing in this regard (Ibid: Section 3.5.2). One can suspect that Neugebauer could 
have intimidated the Assyriologist with his aura as a mathematician. I will persue this point later. 
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of magnitude, for example for 1, 10, 60, 600, 3600, etc.), so their order of magnitude is perfectly 
defined, and they are suitable the expression of quantities. For Thureau-Dangin, it is not the presence 
or absence of measurement units that fundamentally distinguishes concrete numbers from abstract 
numbers. As we can see, Thureau-Dangin does not give to the expression “abstract number” the same 
meaning as Bézout in his arithmetic. 

However, Thureau-Dangin’s definition coincides in most cases with Bézout’s. Indeed, as a general rule, 
the “abstract” numbers (in Thureau-Dangin’s sense) are not followed by measurement units, and the 
“concrete” numbers are followed by measurements units. This general rule, which Thureau-Dangin 
had certainly noticed but did not mention, probably justifies the choice he made of the expressions 
“abstract numbers and concrete numbers”.  

There are, however, exceptions to this general rule. Actually, it happens in some instances that 
“concrete numbers” in Thureau-Dangin’s sense are “abstract numbers” in Bézout’s sense and vice 
versa. Thureau-Dangin remarked that in some instances, an “abstract number” is followed by a 
measurement unit. 18 This measurement unit is not a part of a measurement value, like in the notation 
“1 ½ ninda”, where 1 ½ is the number of ninda that composes the measurement of a length. The 
measurement unit is simply apposed to the number. The measurement unit plays the role of a kind of 
determinative: it is an indication of the order of magnitude of the quantity which corresponds to a 
number in sexagesimal place-value notation.19  

Such a notation [sexagesimal place-value notation] could easily lead to ambiguity. Sometimes, in order 
to prevent a possible misinterpretation, the scribe follows the learned notation by the common 
notation. Thus, in problems 44 [...] and 231 [...], the number 5, which here designates 5’ of NINDA [i.e. 
5/60 NINDA], is followed by the indication “1 cubit”. It was also written in abbreviated form 5 ammatum, 
which in this case does not mean “five cubits”, but “5’ (or 1) cubit”. (Thureau-Dangin 1938, xvi)20 

Conversely, a “concrete number” may be deprived of measurement units or name of the items counted 
that would be attached to it. This phenomenon is rare, and was unknown to Thureau-Dangin because 
it appears in texts that were published after his death. It is attested for example in a lexical list (CBS 
11319+) where the signs used to count are enumerated systematically by increasing order, like in the 
rhyme “1, 2, 3, etc.” (Proust 2008). It also happens that “concrete numbers” (in Thureau-Dangin’s 
sense) are separated from measurement units in the margins of administrative tablets where they 
reflect traces of additions and subtractions (Ouyang and Proust forthcoming). Removing the 
measurement units is interpreted by some historians as a process of decontextualization and 
abstraction, leading to the concept of abstract number, as we will see in Section 4. However, the 
examples just evoked show that removing the measurement units may reflect other types of processes 
than abstraction, for example a lexical approach in the former example, and an accounting calculation 
in the latter. 

For Thureau-Dangin in 1930, an “abstract number” is not a “concrete number” deprived of its 
measurement unit, but a calculation tool, essentially for multiplication and division. There is thus an 
essential difference between the way Thureau-Dangin considers the concrete versus abstract 
dichotomy, and the one found in the histories of arithmetic of the 19th century, for example that of 

                                                             
18 In his later publications, Thureau-Dangin replaced the expression “abstract numbers” by “learned notation” 
(notation savante). More on this revealing change of terminology in Section 3. 
19 See an inventory of all attestations of apposition in the mathematical texts from the Diyala region, located in 
Northern Mesopotamia, in (Gonçalves forthcoming).  
20 My translation. Original text: « Un tel mode de notation [la notation sexagésimale positionnelle] pouvait 
aisément prêter à ambiguïté. Parfois, en vue de prévenir une erreur d'interprétation possible, le scribe fait suivre la 
notation savante par la notation commune. Ainsi, dans les problèmes 44 … et 231 …, le chiffre 5, qui désigne ici 
5' de NINDA [i. e. 5/60 NINDA], est suivi de la mention" 1 coudée". On écrivait aussi en abrégé 5 ammatum, qui, 
dans ce cas, signifie non pas "cinq coudées", mais « 5' (ou 1) coudée. » 
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Peacock or Bézout - See other chapters of the present Special Issue, for example (Proust & 
Vandendriesshe, Vandendriessche, Chambris & Visnovska, Ferreira & Schubring). Indeed, for them the 
operations act in the same way on both kinds of numbers. In Peacock’s “Arithmetic”, for example, we 
can read: 

We are thus lead to the distinction of numbers into abstract and concrete, though the abstraction exist 
merely in the word by which any number is designated, or in the equivalent symbol by which it is 
represented in different arithmetical systems. ln Arithmetic we consider both kinds of numbers, though 
the operations are in all cases the same as if the numbers were perfectly abstract; the association of 
qualities being merely of use in directing us to the particular operations or reductions to be performed, 
and in assisting us in the proper interpretation of the result. (Peacock 1826 (ed. 1845), 147, note to 
section 2) 

By contrast, in the case of cuneiform texts, the operations are not the same according to whether they 
are performed on “concrete” numbers or on “abstract” numbers. In the first case, the numbers are 
quantities on which additions and subtractions essentially operate; in the second case, numbers are 
calculation tools written in floating sexagesimal place-value notation on which multiplications and 
divisions essentially operate.21 Thureau-Dangin does not clearly formulate the opposition between 
addition-subtraction on the one hand, and multiplication-division on the other, but he does draw a link 
between “this very abstract system” (the sexagesimal place-value notation) and “divisions and 
multiplications” (Thureau-Dangin 1930b , 117, already quoted in Section 1). 

Note that some historians of mathematics of the beginning of the 20th century, like David Eugene 
Smith or Florian Cajori, as well as Otto Neugebauer subsequently, rejected or ignored the dichotomy 
“abstract numbers / concrete numbers” (in Bézout’s sense), considering that only the “abstract 
numbers” (or “pure numbers”) belong to mathematics, the concrete numbers, i.e. the numbers 
specified by a measurement unit, being excluded from the mathematical field.22  

3- How “abstractness” is reflected in transcriptions of numbers? 
For Thureau-Dangin in 1930, the floating character of the numbers in sexagesimal place-value notation 
is clear when he refers to “This very abstract system, which did not distinguish between integers and 
fractions, which ignored the order of magnitude of the numbers” (Thureau-Dangin 1930b , 117, 
already quoted in Section 1). What is abstract in these numbers is first and foremost the absence of an 
order of magnitude.  

Thureau-Dangin’s understanding of numbers in cuneiform texts was largely ignored by contemporaries 
and successors.23 Thureau-Dangin’s description of the place-value notation in 1930, with his emphasis 
on the absence of indication of the order of magnitude, is subtly different from that of later historians, 

                                                             
21 For a more thorough discussion on the fundamental reasons why the additive systems used in metrological 
notations are suitable for additions and subtractions, and the sexagesimal place-value notation, a floating system, 
is suitable for multiplications and related operations, see (Proust 2013) To fix ideas without going into details, an 
example will suffice. One cannot add the numbers 1:30 and 30 if one does not know their orders of magnitude, at 
least relative; depending on their relative positions, one will obtain 31:30, or 2, or 2:30:30, etc. On the other hand, 
multiplying these two numbers in floating notation gives 45, no matter how one places them relative to each other. 
Similarly, dividing 1:30 by 30 gives 3 in floating notation.  
22 (Smith 1925 : 11-12; Cajori 1893). In fact, Cajori does not explicitly mention this dichotomy, but implicitly 
assumes it insofar as metrology is absent from his history of mathematics.  
23 Jens Høyrup insists on Thureau-Dangin's deep understanding of the numerical notations in cuneiform texts, in 
particular in his Esquisse d’une histoire du système sexagésimal (Thureau-Dangin 1932b), and on the little 
historiographical impact of Thureau-Dangin's point of view: “Thureau-Dangin’s Esquisse d’une histoire du 
système sexagésimal [...] points out very explicitly that the place value system was introduced as an instrument de 
calcul (p. 51). This publication [...] gives much more insight into the overall numerical culture of ancient 
Mesopotamia than Neugebauer’s papers on the topic from 1930 to 1932. However, [...] this study never had much 
impact on the historiography of mathematics” (Høyrup 2016: 184). 
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who interpreted this absence as a default of the cuneiform notation. As a consequence, most of the 
historians of mathematics specify the order of magnitudes of the numbers in sexagesimal place-value 
notation in their translations and/or commentaries, following Neugebauer: “In my view, indication of 
order of magnitude only seems justified when it comes to a translation of a text” (Neugebauer 1932-
3).24  

What is more puzzling is that Thureau-Dangin himself watered down his first analysis later and 
abandoned the expression “abstract numbers”. In 1938, he no longer speaks of “abstract numbers” 
but of “learned notation” (notation savante) (Thureau-Dangin 1938). This change of terminology is 
associated with a change in the representations of numbers in his publications. In 1930, he does not 
specify the orders of magnitude, while in 1938, he does so.  

For example, in 1938, describing the “Esagil Tablet”, Thureau-Dangin states that the length “10 GAR 6 
pas 2/3” corresponds to the abstract number “10.33.20” and formulates the operations as follows:  

10.33.20 × 4.30 = 47.30;        47.30 × 18 = 14.15 (Thureau-Dangin 1930b, 117) 

These operations are multiplications of numbers corresponding to the length and width of rectangles, 
producing the areas. These “equalities” show clearly that the orders of magnitude are ignored. 

In 1932, Thureau-Dangin does not specify the orders of magnitude in the translations (Figure 3a) but 
specify them in brackets in his explanations (Figure 3b).25  

                                                             
24 Neugebauer specified the orders of magnitude of the numbers by introducing a semi-column (“;”) to separate 
the integer and the fractional part of a number (eg. 1;30 means 1+30/60) and by completing the numbers with zeros 
if necessary (eg. 1.0 means 60, or 0;1 means 1/60). More on this in (Proust forthcoming). 
25 Thureau-Dangin specified the orders of magnitude of the numbers by using an extended version of the system 
“degree, minutes, seconds, etc.” that we use today for time, and he fixed the degree as unit. For example, 3`30°15’ 
means 3×60 + 30 + 15/60. 
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Figure 3a (Thureau-Dangin 1932a, 5) 

 
Figure 3b (Thureau-Dangin 1932a, 9) 

Figure 3 Partial translation and explanation of problem 1 in tablet AO 8862 (Thureau-Dangin 1932a, 5, 
9).  

As we can see in Figure 3a, Thureau-Dangin translates the beginning of the procedure without 
indication of the orders of magnitude of the numbers: 

You, in your procedure, add 27, the sum of the flank [length] and the front [width], to 3.3, (this gives 
you) 3.30. Add 2 to 27, (this give you) 29. You will break into two 29, (this gives you 14.30). 
14.30 × 14.30 = 3.30.15. 

In 1938, Thureau-Dangin specifies the orders of magnitude, as shown in Figure 4 by the translation of 
the same problem as in Figure 3 (problem 1 in tablet AO 8862): 

 

Figure 4 Partial translation of problem 1 in tablet AO 8862 (Thureau-Dangin 1938, 65) 

As we can see in Figure 4, Thureau-Dangin translates the beginning of the same procedure by 
introducing an indication of the orders of magnitude of the numbers (the units are followed by the 
symbol for degree [°], the sixtieth by the symbol for minute [’], and so on): 

You, in your procedure, add 27, the sum of the flank [length] and the front [width], to [3’.3]: 3’.30. Add 
2 to 27: 29. You will fraction in two 29: 14°30’. 14°30’ × 14°30’: 3’30°15’. 

In Thureau-Dangin’s publications, the expression “abstract numbers” disappears together with the 
introduction of the orders of magnitudes of numbers in translations. This confirms that, for Thureau-
Dangin, the “abstract” character of numbers is linked to their “floating” nature. 
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The thousands of mathematical school tablets known today allow us to revive and systematize the first 
intuitions of Thureau-Dangin.26 We know that metrological tables belong to the corpus of “school 
texts”, i.e. texts that were used in Old Babylonian scribal schools for the education of future 
bureaucrats and scholars. The metrological tables served to teach the metrological and numerical 
systems used in mathematics, trade and administration. In the context of elementary education in the 
Old-Babylonian scribal schools, the numbers in sexagesimal place-value notation were used exclusively 
for multiplication and division (and derived operations). There is no addition nor subtraction in 
elementary mathematical training. It appears that the floating character of the place-value numbers 
would be inherent to the numerical system, and that the place of the units is not indicated, not because 
it is implicit, but because it does not exist. Anyway, without any indication of their order of magnitude, 
numbers in sexagesimal place-value notation are suitable for multiplication and division, but not for 
quantification. This case can be compared to the case of numbers represented on the abacus in certain 
contexts in China (Chemla forthcoming).  

4- Abstraction seen as a step in a historical process 
These considerations lead to an interest in the use of the word “abstract” in historiography. Eric 
Vandendriessche’s article in this special issue shows how, in 19th century ethnographic writings, 
abstraction is seen as a process of thought development. Ferrara & Valerio’s article in this same issue 
shows how the history of number in Mesopotamia is told as a process from the concrete to the 
abstract. To complete these analyses, I propose some comments on the way in which the history of 
arithmetic is considered in the landmark book Archaic Bookkeeping. Writing and Techniques of 
Economic Administration in the Ancient Near East (Nissen, Damerow, and Englund 1993). I concentrate 
my comments on this book because it is very influential and popular among Assyriologists and the 
general public. The book, which has become an indispensable textbook for teaching the early 
intellectual history of Mesopotamia, is based on a first-hand analysis of numerous sources dating from 
the invention of writing in the middle of the 4th millennium BCE to the development of mathematics 
in the Old-Babylonian period. The authors, who are among the foremost specialists in archaic 
documents, detail the history of the writing of numbers and measurement units, essentially in 
connection with their accounting uses. 

Chapter 16, written by Peter Damerow and Robert Englund, deals with “The development of 
Arithmetic”. The chapter distinguishes three main stages: “proto-arithmetic”, “archaic arithmetic”, and 
“arithmetic” proper. The authors contrast the modern “concept of number” with the earliest forms of 
representation of numbers by tokens, or “counting aids”. 

There is a fundamental difference between modem numerical signs, on the one hand, for example, the 
sign “5,” and symbolic counting aids on the other, as in the case of fingers used in counting. The ability 
to use the sign “5” requires the understanding of its meaning, namely, an understanding of what a 
number is and the knowledge of the specific number “5” represented by the sign. With finger-aided 
calculations, the situation is clearly different. In this case, fingers do not represent numbers but rather 
represent merely the counted objects or higher counting units such as counting groups. This use of 
symbols, which stand for discrete, concrete objects and so function only as an indirect means of carrying 
information about their number, assumes no developed forms of arithmetic thought and no concept of 
number, but rather only the ability to establish correspondences between the number symbols and the 
counted objects. Since these aids and their related techniques precede the developmental stages of 
proper arithmetic, such techniques are called “proto-arithmetical.” (Nissen, Damerow, and Englund 
1993, 125) 

We recognize here an issue often discussed in the field of the history of mathematics, the question of 
knowing if some ancient actors have or have not acceded to the “concept of number”. For Damerow 
and Englund, a material system that serves to count concrete objects does not testify to an 

                                                             
26 This is the thesis I have defended in numerous publications - See (Proust 2013) and the related bibliography. 
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understanding of what “a number is”, and thus does not fall within the concept of number. The “proto-
arithmetic” stage is described as primitive, and as often in such cases, especially in ethnographic 
historiography (see Vandendriessche’s article in the present Special Issue), is paralleled with that of 
“primitive societies” and that of small children: 

Proto-arithmetical aids are known from virtually all studied primitive cultures. They also occur in modem 
society, since they are of great assistance in conveying our notion of abstract numbers to small children. 
In every culture, the proto-arithmetical aids form the foundation and necessary precondition for the 
development of an explicit number concept. (Nissen, Damerow, and Englund 1993, 125) 

Along the same lines as Schmandt-Besserat (see Ferrara & Valerio’s chapter in this Special Issue), 
Damerow and Englund analyze the clay tokens, as well as their printed traces on the outside of the 
bullae that sometimes contained these tokens, as precursors of the numerical signs written on archaic 
tablets. These first-written signs conveyed quantitative information, but, according to the authors, 
were not “abstract numbers”.  

[…] before the appearance of the first true ideograms, numerical notations were already known. In other 
words, the first written signs were therefore exclusively “numerical”. During this phase, their shapes 
most probably did not follow strict conventions. They certainly were not numerals in the modern sense. 
In fact, they were signs used for counting units with qualitative connotations and by no means signs for 
abstract numbers. […] This development still did not seem to lead to a modern kind of numerical 
notation, but rather to a peculiar symbol system for the codification of quantitative information 
unparalleled in the later history of arithmetic. (Nissen, Damerow, and Englund 1993, 130) 

After the “proto-arithmetic”—according to the authors—comes the “archaic arithmetic”. In the 
periods of the Early Dynasties (ED I-II, ca. 2900-2700 BCE), the calculation of areas illustrates what the 
authors call “archaic arithmetic”, that is an arithmetic which does not have the abstract concept of 
number nor general methods of calculation (Nissen, Damerow, and Englund 1993, 134). For them, only 
with the texts of the Fara period (ca. 2600-2500 BCE) arithmetic begins (Nissen, Damerow, and Englund 
1993, 138). They consider that the decisive following step is the invention of the sexagesimal place-
value notation. 

The appearance of the sexagesimal place-value notation in these texts is generally dated to the Ur III 
period (ca. 2100-2000 BCE). Indeed, the earliest evidence of a systematic use of this notation is found 
in reciprocal tables from this period. However, Damerow and Englund date the probable appearance 
of the sexagesimal place-value notation later, to the Old-Babylonian period (Nissen, Damerow, and 
Englund 1993, 142, col. 2).27 For these authors, the invention of the sexagesimal place-value notation 
seems to be linked to the need for a “short” notation for large numbers. The sexagesimal place-value 
notation “offered virtually unlimited possibilities of calculating according to uniform rules with 
arbitrarily large or small numbers”. (Nissen, Damerow, and Englund 1993, 142). According to the 
authors, the scribes had to invent a system to convert numbers written in the old notation into writing 
in the “new” more convenient notation, to express small and large numbers and perform calculations. 
This conversion tool was, they thought, the role of the metrological tables. 

In order to use the new calculation techniques in the scribal profession, the traditional numerical 
notations had to be translated into the new notations. Scribes really did perform such exercises, as is 
evidenced by the fragments of the tablets shown in figures 125–126 [these figures represent 
metrological tables]. (Nissen, Damerow, and Englund 1993, 143). 

In the rest of the chapter, the authors oppose the “traditional notation” and the “new notation”. They 
do not mention—as Thureau-Dangin did—any link between the sexagesimal place-value notation and 
two particular operations: multiplication and division. 

                                                             
27 On the problem of dating these reciprocal tables, see (Ouyang and Proust forthcoming). 
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In summary, the authors of chapter 16 of “Archaic Bookkeeping”, by recognizing three stages, proto-
arithmetic, archaic arithmetic and arithmetic proper, adopt an evolutionary scheme to outline the 
history of arithmetic. This evolution would be based on changes in the conceptions of numbers, from 
a “concrete” approach—the numbers being dependent on what is quantified—to an increasingly 
abstract approach of the number concept, suitable for arithmetic thinking. The “concept of number” 
functions as the focus point toward which the subsequent generations of scribes evolved. The 
sexagesimal place-value notation is presented as not only a conceptual progress, but also as a technical 
one, facilitating the writing of large numbers and calculation. In this evolutionary scheme, the 
sexagesimal place-value notation was intended to replace the ancient non-positional notations.  

However, the cuneiform sources of the 2nd and 1st millennia show that several systems of numeration, 
additive and positional, have always coexisted in mathematical cuneiform texts. The sexagesimal 
place-value notation has never driven out the non-positional notations, as pointed out by Thureau-
Dangin as soon as 1932: 

This system [the sexagesimal place-value notation] was, as we can see, eminently abstract. It was not 
created in order to be substituted, in the expression of concrete numbers, for the traditional system, 
but in order to be an instrument of calculation. (Thureau-Dangin 1932b, 51–52).28 

The place-value notation is therefore an invention with a precise function, different from that of other 
notations. By establishing a link between the “abstract numbers”, to wit, the sexagesimal place-value 
notation without indication of the order of magnitude, with the techniques of multiplication and 
division, Thureau-Dangin developed a profound analysis which, however, remained largely ignored by 
his contemporaries and successors. 

5- “Abstract numbers”: flash idea or historiographical chimera? 
I consider that Thureau-Dangin’s characterization of place-value numbers as “abstract numbers” in 
1930 was visionary in that it highlighted their floating character. For this reason, in my view, this 
characterization was not adopted by other historians of mathematics, who saw the indeterminacy of 
the order of magnitude as a defect of cuneiform writing to be corrected in translations and 
commentaries, and not as an intrinsic property of the numbers themselves. Thureau-Dangin became 
subsequently influenced by this dominant trend. Going against the grain, when I began studying 
cuneiform mathematics, Thureau-Dangin’s characterization of the numbers in place-value notations 
as “abstract” seemed insightful to me, and I adopted this expression in my early publications. However, 
I question this choice today because I realized, particularly in discussions concerning the notions of 
“abstract number” and “abstraction” that took place in the SPHERE29 seminars, that the word 
“abstract” conveys many implicit meanings (I give some examples in Section 4). Moreover, while my 
earliest works focused on Old Babylonian texts (dated ca. 2000-1600 BCE), later on I explored older 
documents (4th and 3rd millennia), and I was confronted with a profusion of forms and syntaxes of 
quantification that defied the very definition given to the word “abstract”, and even to the word 
“number”. Therefore, I now, prefer to use the expression “abstract numbers” more cautiously because 
of the parasitic undertones that the notion of abstraction carries in historiography.  

The examples given in this brief overview show that the notion of abstraction is quite relative. The shift 
of numbers from concrete to abstract is not perceived in the same way by the different historians who 
studied it. For Denise Schmandt-Besserat, the shift occurred at the time of the invention of writing 
(end of the 4th millennium). For Damerow and Englund, it marks the beginning of arithmetic with the 
emergence of the concept of number (mid-3rd millennium). For Thureau-Dangin, it is embodied by the 

                                                             
28 My translation. Original text: “Ce système était, on le voit, éminemment abstrait. Il a d'ailleurs été créé non pas 
en vue d'être substitué, dans l’expression des nombres concrets, au système traditionnel, mais en vue d'être un 
instrument de calcul.” 
29 Sciences, Philosophie, Histoire, UMR 7219, CNRS & Université de Paris.  
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sexagesimal place-value notation, and this kind of “abstraction” is specific to numbers which are tools 
of calculation. More generally, Eric Vandendriesche’s work has highlighted the historiographical biases 
conveyed by the notion of abstraction, particularly in the milieu of 19th and 20th century 
anthropologists. Abstraction turns out to be an evanescent notion, falling under fluctuating categories, 
or conveying anachronistic views.  

References  
Primary sources (cuneiform texts) 
BM 92698, British Museum, CDLI number P254448, published in Neugebauer 1935, 69. Photo: 

https://www.britishmuseum.org/collection/object/W_-92698 (accessed June 2021) 

UM 29-15-192, University of Pennsylvania Museum of Archaeology and Anthropology, CDLI number 
P254900, published in Neugebauer and Sachs 1984. Photo: https://cdli.ucla.edu/P254900 
(accessed June 2021) 

Primary sources (printed texts) 
Bézout, E. 1764 (ed. 1781). Cours de mathématiques à l'usage des gardes du pavillon et de la marine, 

Eléments d'arithmétique. Vol. I Eléments d’arithmétique. Paris: Imprimeur Ph.-D. Pierres. 
Cajori, F. 1893. A history of mathematics. London: The Macmillan Company. 
---. 1928. A history of mathematical notations. vol. 1. Chicago: The Open Court Publishing Company.  
Cantor, M. 1894 (Third ed. 1907). Vorlesungen uber Geschichte der Mathematik. Vol. I. Leipzig: Druck 

und Verlag Von B. G. Teubne. 
Hilprecht, H. V. 1906. Mathematical, Metrological and Chronological Tablets from the Temple Library 

of Nippur. Babylonian Expedition Vol. 20/1. Philadelphia: University of Pennsylvania. 
Peacock, G. 1826 (ed. 1845). Arithmetic. In Encyclopaedia Metropolitana. London: Smedley & Rose, 

pp. 369-523 
Smith, D. E. 1925. History of Mathematics II. Boston etc: Ginn & Co. 

Secondary literature  
Chaigneau, P. 2019. Editions de collections de tablettes cunéiformes au contenu mathématiques 

publiées par O. Neugebauer et F. Thureau-Dangin dans la première moitié du XXe siècle. PhD 
thesis, Université de Paris. 

Chemla, K. 2022. Cultures of Computation and Quantification in the Ancient World: an introduction. 
In: Chemla, K., Keller A. and Proust C. (eds.), Cultures of Computation and Quantification in the 
Ancient World. Dordrecht: Springer. 

Friberg, J. 2007. A Remarkable Collection of Babylonian Mathematical Texts. New York: Springer. 
Gonçalves, C. 2022. Quantification and Computation in the Mathematical Texts of Old Babylonian 

Diyala. In: Chemla, K., Keller A. and Proust C. (eds.), Cultures of Computation and 
Quantification in the Ancient World. Dordrecht: Springer. 

Høyrup, J. 2002. Lengths, Widths, Surfaces. A Portrait of Old Babylonian Algebra and its Kin. Berlin and 
London: Springer. 

---. 2016. As the Outsider Walked in the Historiography of Mesopotamian Mathematics Until 
Neugebauer. In: Jones A., Proust C. and Steele J. (Eds.), A Mathematician's Journeys: Otto 
Neugebauer and Modern Transformations of Ancient Science. New York: Springer, pp. 165-
196. 

Middeke-Conlin, R. 2020. The Making of a Scribe: Errors, mistakes, and rounding numbers in the Old 
Babylonian kingdom of Larsa. Dordrecht: Springer. 

Neugebauer, O. 1932-3. Zur transcription mathematischer und astronomischer Keilschrifttexte. Archiv 
fur Orientforschung 8, 221-223. 

---. 1935. Mathematische Keilschrift-Texte I. Berlin: Springer. 
Neugebauer, O. and Sachs A. J. 1945. Mathematical Cuneiform Texts. New Haven: American Oriental 

Series & American Schools of Oriental Research  

https://www.britishmuseum.org/collection/object/W_-92698
https://cdli.ucla.edu/P254900


In Concrete Numbers versus Abstract Numbers, ed. C. Proust & E. Vandendriessche, Historia Mathematica, PREPRINT 

17 
 

---. 1984. Mathematical and Metrological Texts. Journal of Cuneiform Studies 36, 243-251. 
Nissen, H. J. , Damerow, P., and Englund, R. 1993. Archaic Bookkeeping. Writing and Techniques of 

Economic Administration in the Ancient Near East. Chicago and London: The University of 
Chicago Press. 

Ouyang, X., and Proust C. 2022. Place value notations in the Ur III period: marginal numbers in 
administrative texts. In: Chemla, K., Keller A. and Proust C. (Eds.), Cultures of Computation and 
Quantification in the Ancient World. Dordrecht: Springer. 

Proust, C. 2008. Les listes et tables métrologiques, entre mathématiques et lexicographie. In: Biggs R., 
Myers J. and Roth M. (Eds.), Proceedings of the 51st Rencontre Assyriologique Internationale 
held at the University of Chicago, July 18-22, 2005. Lexicography, Philology, and Textual 
Studies. Chicago: The Oriental Institute, pp. 137-153. 

---. 2013. Du calcul flottant en Mésopotamie. La Gazette des Mathématiciens 138, 23-48 (translation 
in English in Cuneiform Digital Library Preprints 05). 
http://smf4.emath.fr/Publications/Gazette/2013/138/smf_gazette_138_23-48.pdf.  

---. 2019. Foundations of mathematics buried in school garbage (Southern Mesopotamia, early second 
millennium BCE). In: Schubring, G. (Ed.), Interfaces between Mathematical Practices and 
Mathematical Education. New York: Springer. 

---. Forthcoming. Representing numbers and quantities in editions of mathematical cuneiform texts. 
In: Keller, A. and Chemla, K., Shaping the sciences of the ancient world: Text criticism, critical 
editions and translations of ancient and medieval scholarly Texts (18th-20th centuries). 
Dordrecht: Springer. 

Rawlinson, H. C., Norris E., Smith G., and Pinches T. G. 1861-1884. The Cuneiform Inscriptions of 
Western Asia. 5 vols. London. 

Scheil, V. 1915. Les tables igi x gal-bi. Revue d'Assyriologie 12, 195-198. 
Thureau-Dangin, F. 1930a. La table de Senkereh. Revue d'Assyriologie 27, 115-116. 
---. 1930b. Nombres concrets et nombres abstraits dans la numération babylonienne. Revue 

d'Assyriologie 27, 116-119. 
---. 1932a. 1. Le prisme mathématique AO 8862; 2. Un post-scriptum. Revue d'Assyriologie 29, 1-10, 

pl. 1-4; p. 89-90. 
---. 1932b. Esquisse d'une histoire du système sexagésimal. Paris: Geuthner. 
---. 1938. Textes Mathématiques Babyloniens. Leiden: Brill. 
Weissbach, F. H. 1915. Die Senkereh-Tafel. Zeitschrift der Deutschen Morgenländischen Gesellschaft 

69, 305-320. 

http://smf4.emath.fr/Publications/Gazette/2013/138/smf_gazette_138_23-48.pdf

	The sexagesimal place-value notation and abstract numbers in mathematical cuneiform texts
	1- The sexagesimal place-value notation in cuneiform texts
	2- Thureau-Dangin’s conception of abstract numbers
	2-1 The “Senkereh Table”
	2-2 “Nombres concrets et nombres abstraits”
	2–3 Abstract numbers: Thureau-Dangin versus Bézout

	3- How “abstractness” is reflected in transcriptions of numbers?
	4- Abstraction seen as a step in a historical process
	5- “Abstract numbers”: flash idea or historiographical chimera?

	References
	Primary sources (cuneiform texts)
	Primary sources (printed texts)
	Secondary literature


