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Evaluating analytically diagonalizable matrix functions in the case of distinct or repeated eigenvalues is described. While matrix functions include inversion, powers, exponentiation, trigonometric, hyperbolic... we illustrate various methods (Infinite series recursion, Similarity transformation, Cayley-Hamilton method, Spectral Decomposition...) by evaluating, in detail, several types of matrices along with several functions and compare their respective performances. The diagonalizable and non-diagonalizable matrix cases are also discussed.

Mathematically, a matrix function f (M ) where M is a square matrix, is defined as:

f (M ) = ∞ i=0 a i M i (1) 
where the coefficients [START_REF] Gradstein | Ryzhik Table of Integrals, Series and Products[END_REF][START_REF] Abramowitz | Handbook of Mathematical Tables[END_REF] depend on the function f . Surprisingly, we evaluate the inverse of a function with a power expansion instead of performing the standard process involving matrix of cofactors [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF], adjoint and determinant evaluation.

Other matrix functions include exponentiation, trigonometric, hyperbolic... Generally, we illustrate matrix function evaluation with:

1. The exponential given by: f (M ) = exp(M ) = ∞ i=0 a i M i with a i = 1 i! by extending the exponential series coefficients to those pertaining to the matrix function. using Cayley-Hamilton theorem, Spectral Decomposition as well as direct methods such as Infinite Series recursion, Similarity transformation and compare their performance.

A. Cayley-Hamilton theorem

Cayley-Hamilton theorem states that for a square (n × n) matrix M , the characteristic polynomial equation is satisfied by the matrix itself. It is valid whether the matrix is diagonalizable or not.

The characteristic polynomial is expressed with Descartes expansion theorem [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF] in the distinct case as:

P (λ) = det(λ1 1 -M ) = (λ -λ 1 )(λ -λ 2 )...(λ -λ n ) = λ n + q 1 λ n-1 + q 2 λ n-2 ... + q n (2) 
where:

q 1 = - n i=1 λ i = -T r(M ), q 2 = n i,j
i =j λ i λ j , q 3 = -n i,j,k i =j =k λ i λ j λ k , ... q n = (-) n λ 1 λ 2 ...λ n = (-) n det(M ) (3)

The characteristic polynomial equation is satisfied by M according to Cayley-Hamilton theorem:

P (M ) = M n + q 1 M n-1 + ...q n 1 1 = 0 (4) thus M n = -q 1 M n-1 -... -q n 1 1. Consequently, the inverse of M is calculated as: M -1 = -1 qn (M n-1 + q 1 M n-2 -... + q n-1 1 1) .
Moreover, any arbitrary power M m of M with m ≥ n can be expressed with powers of M not exceeding n -1 according to Cayley-Hamilton theorem allowing the evaluation of the coefficients b i to obtain:

M m = n-1 i=0 b i M i .
Consequently, any function [START_REF] Gradstein | Ryzhik Table of Integrals, Series and Products[END_REF][START_REF] Abramowitz | Handbook of Mathematical Tables[END_REF] can be written as:

f (M ) = n-1 i=0 b i M i
where the b i are evaluated from the function coefficients a i and the characteristic polynomial.

In order to evaluate b 0 , b 1 ...b n , we apply f (M ) to the eigenvectors, using Dirac notation [START_REF] Landau | [END_REF][START_REF] Merzbacher | Quantum Mechanics[END_REF], |λ 1 , |λ 2 , ... |λ n corresponding to eigenvalues λ 1 , λ 2 ...λ n . Starting from M |λ i = λ i |λ i , we get for an arbitrary power m, the result

M m |λ i = λ m i |λ i and consequently f (M ) |λ j = n-1 i=0 b i M i |λ j = n-1 i=0 b i λ i j |λ j .
Thus we obtain:

f (M ) |λ 1 = f (λ 1 ) |λ 1 = n-1 i=0 b i λ i 1 |λ 1 f (M ) |λ 2 = f (λ 2 ) |λ 2 = n-1 i=0 b i λ i 2 |λ 2 . . . f (M ) |λ n = f (λ n ) |λ n = n-1 i=0 b i λ i n |λ n (5) 
This results in the following (n × n) linear (with respect to b i coefficients) system:

f (λ 1 ) = n-1 i=0 b i λ i 1 f (λ 2 ) = n-1 i=0 b i λ i 2 . . . f (λ n ) = n-1 i=0 b i λ i n ( 6 
)
whose solution yields the n sought coefficients b i , 0 = 1...n -1. In the repeated eigenvalue case, one has k < n distinct eigenvalues while the Cayley-Hamilton theorem, in order to evaluate a function requires n terms, thus the system is under-determined.

In order to retrieve the required missing equations, let us suppose one eigenvalue, say λ i has multiplicity m i , then we are able to restore the missing number of relations by expressing the equivalence of all derivatives of the function f (λ) and its polynomial equivalent

P f (λ) = n-1 k=0 b k λ k .
This originates from dividing the function f (λ) by its characteristic polynomial P (λ) to obtain Q(λ)P (λ) + R(λ) where the rest of the division R(λ) = P f (λ).

When λ is taken as any eigenvalue λ i we get the relation: f (λ i ) = Q(λ i )P (λ i ) + P f (λ i ) yielding f (λ i ) = P f (λ i ) since the characteristic polynomial P (λ i ) = 0. Accounting for the fact all derivatives of the characteristic polynomial whose order is < m i are zero [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF], we obtain the relations:

d l f (λ) dλ l λi = d l P f (λ) dλ l λi , l = 0, 1...m i -1 (7) 
Thus we get m i relations and the system relating the b i coefficients is no longer under-determined. A better possibilty is to turn to Spectral decomposition, as explained further below, since it is faster than Cayley-Hamilton and calculates functions with exactly k < n required terms.

Le Verrier Algorithm

One straightforward method for the determination of the characteristic polynomial coefficients is Le Verrier algorithm:

1. Calculate all powers M r for r = 2...n 2. Calculate all traces s r = T rM r for r = 1...n 3. Starting from q 0 = 1, do q i = -1 i i j=1 q i-j s j

In Le Verrier algorithm, the power of the matrix might lead to large values leading to conditioning and divergence whereas the Souriau-Faddeev method introduces recursively matrices M i , B i containing subtractions in order to avoid these problems along these lines:

For i = 1, ..n, do M 1 = M, q 1 = T r(M ), B 1 = M 1 -q 1 1 1, M 2 = M B 1 , q 2 = 1 2 T r(M 2 ), B 2 = M 2 -q 2 1 1, ... M i = M B i-1 , q i = 1 i T r(M i ), B i = M i -q i 1 1... For i = n B n = M n -q n 1
1 = 0 and the q i , i = 1, ..n are the characteristic polynomial coefficients [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF].

While the algorithm cures large values occurrence, it still might eventually lead to large errors.

B. Spectral decomposition and Sylvester formula

Spectral decomposition is a procedure allowing writing any non-singular n × n square M , as: M = k j=1 λ j P j with projection operators P j operating toward eigen sub-spaces pertaining to eigenvalues λ j , j = 1...k where k ≤ n is the number of eigenvalues. A projection operator P j attached to eigenvalue λ j transforms any vector to one belonging to the eigenspace spanned by λ j (see Appendix). Their properties are:

1. P 2 j = P j Idempotency 2. P i P j = δ ij Orthogonality when i = j.

3.

k i=1 P i = 1 1 Closure relation
Sylvester's formula expresses an analytic function [START_REF] Gradstein | Ryzhik Table of Integrals, Series and Products[END_REF][START_REF] Abramowitz | Handbook of Mathematical Tables[END_REF] f (M ) of a matrix M as a polynomial in M on the basis of Cayley-Hamilton theorem, in terms of the eigenvalues and eigenvectors [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF] of M and the projection operators with M having a number of distinct eigenvalues

λ 1 , λ 2 , • • • λ k where k ≤ n allowing presence of repeated values.
Using λ i the eigenvalues of M , the projection operators are (see Appendix):

P j ≡ k i=1 i =j (M -λ i I) λ j -λ i
built with Lagrange interpolation [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF] formula extended to matrices.

Matrix M is rewritten in terms of the projectors as:

1. M = k j=1 λ j P j ,
2. Its inverse is given by: M

-1 = k j=1 λ -i 1 P i , 3. Any arbitrary power m of M is given by M m = k j=1 λ m 1 P i 4. Any function f (M ) of M writes as: f (M ) = k j=1 f (λ i )P i .

II. COMPARATIVE MATRIX FUNCTION EVALUATION

For a given function defined with its initial a i coefficients, the b i coefficients are evaluated.

For instance, we illustrate the function evaluation with the exponential of a 2×2 matrix possessing distinct eigenvalues comparing the results with several methods.

Later we work out with spectral decomposition the case of a 4×4 matrix possessing repeated eigenvalues.

A. First case: Distinct eigenvalues Let us first consider the complex exponential exp(iM ) of the matrix M = σ • a where σ is a vector composed of Pauli matrices σ x , σ y , σ z whereas a is a simple 3D vector.

Matrices σ x , σ y , σ z pertaining to spin (1/2) are given by :

σ x = 0 1 1 0 , σ y = 0 -i i 0 , σ z = 1 0 0 -1 1. Analytic continuation
In order to evaluate exp(iM ) we perform an analytic continuation of Euler formula: exp(ix) = cos x + i sin x from the scalar to the matrix M case. Thus exp(iM ) = cos M + i sin M . The cosine series is given by: cos x = ∞ k=0 (±) x 2k (2k)! and the sine series by: sin x = ∞ k=0 (±) x 2k+1 (2k+1)! , the analytic continuation is given by: cos

M = ∞ k=0 (±) M 2k (2k)! whereas sin M = ∞ k=0 (±) M 2k+1 (2k+1)! .
Evaluation of M powers yields:

M 2 = a 2 1, M 3 = a 2 M, M 4 = a 4 1, M 5 = a 4 M ...
Consequently, any integer power M m of M is given by a m 1 for m even and a m-1 M for m odd. Thus cos M is proportional to 1 whereas sin M is proportional to M .

Substituting M powers in the analytical continuation we obtain: cos M = (cos a)1 and sin M = ( sin a a )M .

Infinite Series

We start by performing direct recursive calculation of

M = σ • a, M 2 = a 2 1 with a = a 2
x + a 2 y + a 2 z . This entails evaluating successive powers of M such as:

M 3 = a 2 M, M 4 = a 4 1 ...
Any integer power M m of M is given by a m 1 for m even and a m-1 M for m odd.

After decomposing the series of exp

(iM ) = ∞ m=0 (iM ) m m!
into even powers (cosine) multiplying 1 and odd (sinus) multiplying M , we obtain: exp(iσ • a) = (cos a)1 + i( sin a a )σ • a.

Cayley-Hamilton

Cayley-Hamilton theorem states that for a square (n × n) matrix M , the characteristic polynomial is satisfied by the matrix itself and any function f (M ) is expressed as f (M ) = n-1 i=0 b i M i meaning that the function f (M ) expansion can go as far as n -1 and the coefficients b i depend on both f and M .

Let us apply these notions to the evaluation of f (M ) = exp(iM ) where M = σ • a.

The characteristic polynomial of matrix

M = σ • a is: λ 2 -a 2 = 0 with a = a 2
x + a 2 y + a 2 z . Cayley-Hamilton theorem gives: M 2 = a 2 1 since the characteristic polynomial is λ 2 -a 2 = 0 whose eigenvalues are λ 1 = -a, λ 2 = a.

Since matrix M is (2×2) (n=2), any function f (M ) is expressed as b 0 + b 1 M , meaning that the function f (M ) expansion can go up to n -1 = 1.
In order to evaluate b 0 , b 1 , we apply f (M ) to the eigenvectors, using Dirac notation [START_REF] Landau | [END_REF][START_REF] Merzbacher | Quantum Mechanics[END_REF],

|λ 1 , |λ 2 corresponding to eigenvalues λ 1 = -a, λ 2 = a.
Thus we get:

exp(iσ • a) |λ 1 = exp(iλ 1 ) |λ 1 = (b 0 + b 1 λ 1 ) |λ 1 exp(iσ • a) |λ 2 = exp(iλ 2 ) |λ 2 = (b 0 + b 1 λ 2 ) |λ 2 (8)
This results in the following system:

exp(-ia) = b 0 -b 1 a, exp(ia) = b 0 + b 1 a (9) 
Taking the sum ad difference of both equations, we get: b 0 = cos a, b 1 = i( sin a a ).

Finally the result writes: exp(iσ • a) = (cos a)1 + i( sin a a )σ • a.

Spectral decomposition

Given any non-singular n × n square M , spectral decomposition is such that: M = k j=1 λ j P j with projection operators P j operating toward eigen sub-spaces pertaining to eigenvalues λ j , j = 1...k where k ≤ n is the number of eigenvalues.

Sylvester formula yields: f (M ) = k j=1 f (λ j )P j where projection operators are defined with Lagrange interpolation formula (see Appendix).

Matrix M = σ • a has distinct eigenvalues λ 1 = -a, λ 2 = a with a = a 2 x + a 2 y + a 2 z . Thus k = 2, M = λ 1 P 1 + λ 2 P 2 and P 1 = (M -λ21) (λ1-λ2) = -(M -a1) 2a
. In addition, closure formula yields:

P 2 = 1 -P 1 .
In order to evaluate exp(iM ), the corresponding scalar function is: f (x) = exp(ix), hence: exp(iM ) = e -ia P 1 + e ia (1

-P 1 ) = -e -ia (M -a1) 2a + e ia (1 + (M -a1) 2a ) = 1
2 (e ia + e -ia )1 + (e ia -e -ia ) 2a

M

Using Euler identities: cos a = 1 2 (e ia + e -ia ), sin a = 1 2i (e ia -e -ia ), we finally get: exp(iσ • a) = (cos a)1 + i( sin a a )σ • a.

Landau-Lifshitz method

For any function σ • a + b, we may write: We conclude that Landau-Lifshitz method uses implicitly the Cayley-Hamilton theorem while exploiting as well the analytical continuation.

f (σ • a + b) = σ • A + B1.

Similarity transformation

This is the most lengthy method. M = σ • a is diagonalized such that D = S -1 M S (thus M = SDS -1 ) with S the transformation matrix from the initial basis to the M eigenbasis M built with eigenvectors |λ 1 , |λ 2 corresponding to eigenvalues λ 1 , λ 2 . M has eigenvalues λ 1 = -a, λ 2 = a (distinct case) with a = a 2

x + a 2 y + a 2 z the modulus of vector a whose components a x , a y , a z ∈ R.

Any function of M writes as:

f (M ) = f (SDS -1 ) = S[f (D)]S -1 .
Therefore we get exp(iM ) = S exp(iD)S -1 = S e -ia 0 0 e ia S -1 .

The eigenvectors

|λ 1 = 1 - (ax+iay)(a+az) a 2 x +a 2 y = 1 A , |λ 2 = 1 (ax+iay)(a-az) a 2 x +a 2 y = 1 B yield: S = 1 1 A B S -1 = 1 B -A B -1 -A 1 (10) with parameters A = - (ax+iay)(a+az) a 2 x +a 2 y , B = (ax+iay)(a-az) a 2 x +a 2 y .
Thus:

exp(iM ) = 1 1 A B e -ia 0 0 e ia 1 B -A B -1 -A 1 = 1 B -A 1 1 A B e -ia 0 0 e ia B -1 -A 1 = 1 B -A -Ae ia + Be -ia 2i sin(a) -2iAB sin(a) -Ae -ia + Be ia = -A B-A e ia + B B-A e -ia 2i sin(a) 1 B-A -2i AB B-A sin(a) -A B-A e -ia + B B-A e ia . ( 11 
)
Using identities:

B -A = 2a(a x + ia y ) a 2 x + a 2 y , B + A B -A = - a z a , 2a B -A = a x -ia y , AB B -A = - a x + ia y 2a , 1 B -A = a x -ia y 2a A B -A = - a + a z 2a , B B -A = a -a z 2a ( 12 
)
we infer:

exp(iM ) =
a+az 2a e ia + a-az 2a e -ia 2i sin(a)

ax-iay 2a

2i sin(a)

ax+iay 2a a+az 2a e -ia -a-az 2a e ia = cos a + ia z ( sin a a ) i(a x -ia y )( sin a a ) i(a x + ia y )( sin a a ) cos a -ia z ( sin a a ) . Since σ • a = a z a x -ia y a x + ia y -a z and i( sin a a )σ • a = ia z ( sin a a ) i(a x -ia y )( sin a a ) i(a x + ia y )( sin a a ) -ia z ( sin a a )
, we finally get: exp(iσ • a) = (cos a)1 + i( sin a a )σ • a.

B. Second case: Repeated eigenvalues

We consider the binary 4×4 matrix with repeated eigenvalues:

M =    1 1 1 1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1   
whose characteristic polynomial is: det(λ1 1 -M ) = λ 4 -4λ 3 + 16λ -16 that can be factored as: (λ + 2)(λ -2) 3 . Thus we have two eigenvalues: λ 1 = -2 (simple) and λ 2 = 2 (triple) and the number of distinct eigenvalues is k = 2.

Cayley-Hamilton

The characteristic polynomial coefficients that can be evaluated directly or from Le Verrier algorithm are: q 1 = -4, q 2 = 0, q 3 = 16, q 4 = -16.

Consequently, the inverse of M is calculated as:

M -1 = -1 qn (M n-1 + q 1 M n-2 + q 2 M n-3 + q 3 M n-4 + ...q n-1 1 1),
thus we have:

M -1 = 1 16 (M 3 -4M 2 + 161 1) which yields: M -1 = 1 4    1 1 1 1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1  
 agreeing with the direct inversion and the Spectral decomposition below.

In order to calculate a matrix function such as the exponential, we rely on the system of relations 7 using

λ 1 = -2 (simple) and λ 2 = 2 (triple). Using P f (λ) = b 0 + b 1 λ + b 2 λ 2 + b 3 λ 3 and
its first and second derivatives yields the system:

e λ1 = b 0 + b 1 λ 1 + b 2 λ 2 1 + b 3 λ 3 1 e λ2 = b 0 + b 1 λ 2 + b 2 λ 2 2 + b 3 λ 3 2 e λ2 = b 1 + 2b 2 λ 2 + 3b 3 λ 2 2 e λ2 = 2b 2 + 6b 3 λ 2 (13) 
After solving for the b i , i = 0..3 coefficients we get:

we get exp(M ) = b 0 + b 1 M + b 2 M 2 + b 3 M 3 = 1 4    3e 2 + e -2 e
2 -e -2 e 2 -e -2 e 2 -e -2 e 2 -e -2 3e 2 + e -2 -e 2 + e -2 -e 2 + e -2 e 2 -e -2 -e 2 + e -2 3e 2 + e -2 -e 2 + e -2 e 2 -e -2 -e 2 + e -2 -e 2 + e -2 3e 2 + e -2

  

Another way is to rely on spectral decomposition that requires only k < n while Cayley-Hamilton requires all n terms.

Spectral decomposition

Given any non-singular n × n square M , spectral decomposition is such that: M = k j=1 λ j P j with projection operators P j operating toward eigen sub-spaces pertaining to eigenvalues λ j , j = 1...k where k ≤ n is the number of eigenvalues.

Sylvester formula yields: f (M ) = k j=1 f (λ j )P j where projection operators are defined with Lagrange interpolation formula. Thus k = 2 and the Lagrange projectors are:

P 1 = (M -λ21) (λ1-λ2) = 1 4    1 -1 -1 -1 -1 1 1 1 -1 1 1 1 -1 1 1 1    and P 2 = 1 -P 1 = (M -λ11) (λ2-λ1) = 1 4    3 1 1 1 1 3 -1 -1 1 -1 3 -1 1 -1 -1 3   .
These results can be checked by evaluating the projector from the definition |λ 1 λ 1 | where λ 1 is the normalized eigenvector corresponding to eigenvalue λ 1 given by:

λ 1 =    1/2 -1/2 -1/2 -1/2   .
Performing the operation

|λ 1 λ 1 | as    1/2 -1/2 -1/2 -1/2    1/2 -1/2 -1/2 -1/2 we recover P 1 = 1 4    1 -1 -1 -1 -1 1 1 1 -1 1 1 1 -1 1 1 1   
Same with projector P 2 by applying Meyer [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF] rule, in the degenerate case, by building the matrix [X|0] where X contains the three eigenvectors of M corresponding to eigenvalue λ 2 and building matrix [X|Y ] where Y contains the eigenvector of M corresponding to eigenvalue λ 1 .

Thus [X|0] =    1 0 0 0 0 1 0 0 0 0 1 0 1 -1 -1 0    whereas [X|Y ] =    1 0 0 1 0 1 0 -1 0 0 1 -1 1 -1 -1 -1   
We recover P 2 from the operation :

P 2 = [X|0][X|Y ] -1 = (M -λ11) (λ2-λ1) = 1 4    3 1 1 1 1 3 -1 -1 1 -1 3 -1 1 -1 -1 3   .
Note that in the Meyer rule, one could use non-normalized eigenvectors as above, but in the distinct case, eigenvectors should be normalized since the projector should be idempotent as shown below. Supposing a distinct eigenvalue λ j whose projector P j = |λ j λ j |, then taking its square P 2 j = |λ j λ j | |λ j λ j | = |λ j λ j | since λ j | |λ j =1. Consequently the matrix M = λ 1 P 1 + λ 2 P 2 and its inverse may be checked by direct inversion of M that is:

M -1 = 1 4    1 1 1 1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1    agreeing with M -1 = λ -1 1 P 1 + λ -1 2 P 2 .
In addition, we may write the following functions:

M m = λ m 1 P 1 + λ m 2 P 2 and f (M ) = f (λ 1 )P 1 + f (λ 2 )P 2 .
For example, we get exp(M ) = e -2 P 1 + e 2 P 2 = 1 C. Third case: Non-diagonalizable matrix

Cayley-Hamilton

We consider an example consisting of a 3 × 3 matrix:

M =   6 2 8 -2 2 -2 0 0 2   (14) 
The characteristic polynomial is λ 3 -10λ 2 + 32λ -32 = 0 that is factored as: (λ -2)(λ -4) 2 = 0. Hence, the eigenvalues are: λ 1 = 2 (single), λ 2 = 4 (double).

M is non-diagonalizable since the normalized eigenvectors are:

|λ 1 = (1/ √ 6, 2/ √ 6, -1/ √ 6), |λ 2 = (1/ √ 2, -1/ √ 2 , 
0), and λ 2 = 4 being double, requires two eigenvectors while only one is found. Therefore the number of linearly independent eigenvectors is smaller than the dimension of M . Consequently, the eigenvectors alone cannot form a basis in the matrix vector space in order to diagonalize it with a similarity transformation.

Using Cayley-Hamilton, the inverse of M is calculated as:

M -1 = - 1
q n (M n-1 + q 1 M n-2 + q 2 M n-3 + q 3 M n-4 + ...q n-1 1 1), (15) thus we have: n = 3, q 1 = -10, q 2 = 32, q 3 = -32, thus M -1 = 1 32 (M 2 -10M + 321 1) yielding:

M -1 = 1 8   1 -1 -5 1 3 -1 0 0 4   (16) 
agreeing with the cofactor method. In order to evaluate other functions, we turn to spectral decomposition.

Spectral decomposition

In this case, spectral decomposition requires Hermite interpolation (see Appendix). Hermite interpolation should be used to compute any function of M with:

f (M ) = f (λ 1 )G 1 + f (λ 2 )G 2 + f (λ 2 )(M -λ 2 1 1)G 2 (17) 
where the first derivative of the function f is required since eigenvalue λ 2 is doubly degenerate. In order to determine the generalized projection operators G i , i = 1, 2 we apply the above to two different functions f (x) = 1, f (x) = (x -4) 2 to obtain successively:

f (x) = 1, f (x) = 0, f (2) = f (4) = 1 → f (M ) = 1 1 = G 1 + G 2 f (x) = (x -4) 2 , f (x) = 2(x -4), f (2) = 2, f (4) = 0 → f (M ) = (M -41 1) 2 = 4G 1 (18) 
Solving the system: G 1 + G 2 = 1 1, 4G 1 = (M -41 1) 2 we extract: G 1 = (M -41 1) 2 /4, G 2 = 1 1 -G 1 confirming the closure relation.

Applying formula 17 to the inverse of M using the function f (x) = 1/x, f (x) = -1/x 2 , we get :

M -1 = λ -1 1 G 1 + λ -1 2 G 2 -λ -2 2 (M -λ 2 1 1)G 2 (19) 
to obtain the result:

2 . 3 .

 23 Trigonometric functions such as: cos M = ∞ k=0 (±) M 2k (2k)! and sin M = ∞ k=0 (±) M 2k+1 (2k+1)! Hyperbolic functions such as: cosh M =

  Taking z axis along vector a direction, the eigenvalues of σ • a + b are b ± a and consequently the corresponding values of the operator f (σ • a + b) will be f (b ± a). Thus we get: A = a 2a (f (b + a) -f (b -a)) and B = 1 2 (f (b + a) + f (b -a)). In this case, we have b = 0 and consequently: exp(iσ • a) = (cos a)1 + i( sin a a )σ • a.

3e 2

 2 + e -2 e 2 -e -2 e 2 -e -2 e 2 -e -2 e 2 -e -2 3e 2 + e -2 -e 2 + e -2 -e 2 + e -2 e 2 -e -2 -e 2 + e -2 3e 2 + e -2 -e 2 + e -2 e 2 -e -2 -e 2 + e -2 -e 2 + e -2 3e 2 + e -2    agreeing with the Cayley-Hamilton result.

agreeing with the cofactor method and Cayley-Hamilton.

In addition, we can write the exponential as:

to obtain:

agreeing with direct series expansion.

Given a number of nodes x i , i = 1...n it is possible to build a polynomial function going through all these distinct points, with Lagrange interpolation [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF] formula:

such that p j (x i ) = δ ij .

Hermite interpolation

Hermite method requires the function and its derivatives f (l) i at the given points x i , i = 0, ..m with x 0 < x 1 .. < x m and k = 0...n i -1 such that the interpolating polynomial writes:

where L ik (x) are the generalized Lagrange polynomials and defined from the auxiliary polynomials:

i , p (1) 

where the upper index (i), i = 0...k indicates derivation order.

Extension to matrices

Extending Lagrange interpolation to the matrix case entails introducing projection operators defined from the eigenvectors using Dirac notation [START_REF] Landau | [END_REF][START_REF] Merzbacher | Quantum Mechanics[END_REF] as P j = |λ j λ j | where |λ j is the eigenvector corresponding to the eigenvalue λ j .

Consequently, for any vector V expressed in the eigenvalue basis as V = k i=1 v i |λ i we get the action of the projector P j on it as:

Thus the projector P j transforms any vector into one along |λ j direction. When λ i the eigenvalues of M , are all distinct, the corresponding projection operators are:

In the degenerate case, assuming that m j is the multiplicity of eigenvalue λ j , then the projector is [START_REF] Merzbacher | Quantum Mechanics[END_REF]:

where λ (i) j

, i = 1...m j are the different eigenvectors spanning the eigenspace corresponding to eigenvalue λ j .

Then M = k i=1 P i λ i and consequently:

Another method exists when k = 2 according to Meyer [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF]. It consists of building the matrix [X|0] where X contains the three eigenvectors of M corresponding to repeated eigenvalue λ 2 and building matrix [X|Y ] where Y contains the eigenvector of M corresponding to single eigenvalue λ 1 . The projector is obtained from the operation :

Sylvester's formula applies for any diagonalizable matrix M with k distinct eigenvalues, λ 1 , λ 2 , • • • λ k and any function f defined on some subset of the complex numbers such that f (M ) is well defined. This means that every single eigenvalue λ i and that every repeated eigenvalue λ i with multiplicity m i > 1 belong to the function f domain and f itself is (m i -1) times differentiable [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF] at λ i .

In the non-diagonalizable case, interpolation may be done with Hermite method [START_REF] Stoer | Introduction to Numerical Analysis[END_REF] that requires (in sharp contrast to Lagrange interpolation requiring only function values) the function and its derivatives. Thus Sylvester's method can be an extended to the matrix case on the basis of Hermite interpolation polynomials [START_REF] Meyer | Matrix Analysis and Applied Linear Algebra[END_REF][START_REF] Higham | Functions of matrices: theory and computation[END_REF] such that:

where G j are generalized projection operators.