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PyLTA: A Verification Tool for Parameterized
Distributed Algorithms

Bastien Thomas and Ocan Sankur

Univ Rennes, Inria, CNRS, Rennes, France

Abstract. We present the tool PyLTA, which can model check param-
eterized distributed algorithms against LTL specifications. The param-
eters typically include the number of processes and a bound on faulty
processes, and the considered algorithms are round-based and either syn-
chronous or asynchronous.

1 Introduction

Distributed algorithms — algorithms that run on multiple communicating pro-
cesses — are used in many domains including scientific computing, telecom-
munications and the Blockchain. Standard distributed algorithms typically per-
form relatively simple tasks such as consensus or leader election[I§], but com-
plexity arises from the lack of reliability of the network: some processes may
crash, communications may be lost, faulty processes may send arbitrary mes-
sages (Byzantine faults)...In this setting, various automated verification tech-
niques have been developped in order to provide guarantees on the executions
of such algorithms. Notably, parameterised verification attempts to verify these
algorithms for every possible number of processes and faults at once [4].

Threshold automata [I5] (TA) are a formalism based on counter abstrac-
tion [I9] that model asynchronous distributed algorithms with parameterised
number of processes under crash and Byzantine faults. Verification can be per-
formed using a complete encoding to SMT formulas [I4]. The decidabililty of
generalisations of these models was studied in [I7] while [I] focuses on the com-
plexity of the underlying problems. These algorithms were implemented in the
Byzantine model checker ByMC [16]. However, algorithms based on threshold
automata require bounding the diameter of the underlying transition system,
either in the asynchronous case with bounded protocols (with only finitely many
exchanged messages) in [15], or with unbounded messages but in the synchronous
case, and for reachability properties only [2I]. These techniques are therefore in-
complete for threshold automata where such a bound does not exist.

In this article, we introduce PyLTA, a tool for fully verifying parameterised
distributed algorithms both in the synchronous and asynchronous cases, with-
out bounding the diameter of the state space or the number of exchanged mes-
sages. It is based on layered threshold automata (LTA), a formalism developped
in [3] which can be thought of as some form of infinitely repeating threshold
automata. These generalise the synchronous TAs used in [2I] and can handle



both synchronous and asynchronous communication by exploiting some notions
similar to commaunication closure [9]. This allows us to verify any LTL formula,
including liveness properties, even on algorithms where processes may send un-
boundedly many messages (unlike [I5] where only finite TAs and a fragment of
LTL was considered).

Concretely, PyLTA takes as input the LTA description of a parameterised
distributed algorithm as well as an LTL specification. It then verifies the spec-
ification under all parameter valuations, or finds a counterexample disproving
the specification. The tool is meant to provide support for distributed algorithm
designers. In fact, distributed algorithm design is not a single step process. In
practice, the implemented versions of an algorithm often contain additional fea-
tures or optimizations, and PyLTA can be used to automatically check these
variants for counterexamples.

2 Modeling Distributed Algorithms

In order to illustrate the capabilities of PyLTA, we use the Phase King algorithm
(Algorithm [2]. In general, the algorithms that can be handled by PyLTA
exhibit the following characteristics:

1. They are parameterized: in Algorithm [I| n denotes the number of pro-
cesses and t a bound on the number of Byzantine faults. PyLTA verifies the
algorithm for all the valuations of these parameters at once.

2. They can exchange messages in an unbounded domain: the indices 27
and 2i + 1 in Algorithm [I] are not bounded by a constant.

3. They can be synchronous or asynchronous but must ensure commaunica-
tion closure: sent and received messages are tagged with indices (2¢ and 2i+1
in Algorithm [1)) that can only increase with time. As noted in [9], commu-
nication closure appears both in synchronous and asynchronous algorithms
in the literature.

4. The algorithms should use threshold conditions. This means that the condi-
tions in branches on the algorithms should be arithmetic formulas comparing
numbers of received messages and the values of parameters (see line [10)).

Under these conditions, algorithms can be encoded in an LTA. The last two
conditions can often be worked around. For example, we will show along this
article how Algorithm [I] can be verified despite the fact that the condition on
line 6] is not ameanable to counter abstraction as it uses the identity of processes
which is lost in the abstraction.

Algorithm [If uses the parameters n, and ¢ with the condition ¢ < . We intro-
duce an additional paramter f <t which is the actual number of faulty processes:
the algorithm does not have access to f, but it is used during verification. Com-
munication closure yields a layered structure of our models: a layer indexed by
£ € IN models the portion of the program that deals with messages tagged with
{. In Algorithm [I} the layer ¢ = 2i corresponds to lines while layer £ =27+ 1

corresponds to lines



1 Process PhaseKing(n,t,id,v):
Data: n processes, t < 7 Byzantine faults, id € {0...n -1}, v e {0,1}.
2 for i=0 tot do // Start of layer {=2i
3 broadcast (2i,v) // State a,, ve{0,1}
4 no < number of messages (2i,0) received
5 ny < number of messages (2i,1) received// Start of layer £=2i+1
6 if 4 ==id then // Current process is king
7 if ng >ny, then v« 0 // State ko
8 else v<«1 // State ki
9 broadcast (2i + 1,v)
10 else if no > 5 +¢ then v« 0 // State by
11 else if n; > % +t then v« 1 // State b
12 else v < v where (2i + 1,v") is the king’s message // State b;
13 end
14 return v;

Algorithm 1: The Phase King algorithm [2] is a synchronous algorithm that
solves binary consensus under ¢ < %} Byzantine faults. It executes ¢+1 rounds,
and each round i € {0...t} is further decomposed into two layers (for round 4,
the layers are named 2i and 2i+1). In layer 2i, the processes broadcast their
preferences v, and in layer 2i+1, they update v either to the majority if it is
strong enough, or to the preference of the process with id ¢, which is the king
of the round i.

We use counter abstraction to model executions of the algorithm, meaning
that we define a counter storing the number of processes at each state of the
algorithm. Here, our approach differs from other works on threshold automata
because we count the number of processes that have been through the state
instead of those that are currently in it. It follows that the number of messages m
sent during the execution can be accurately deduced from these counter values
as the number of processes at states where messages m have been sent. The
downside of counter abstraction is that the identities of the processes are lost.
Notably, the condition on line [f| needs to be abstracted with a non deterministic
choice.
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Parameter values: n:5,¢t:1,f:1
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Fig.1: A configuration of the Phase King algorithm (Algorithm .



Configurations. PyLTA verifies properties on all reachable configurations. A con-
figuration can be interpreted as a record of events that occured during an exe-
cution. An example is depicted in Fig. [I] which we now explain.

The configuration contains an instantiation of the parameter values (given on
the bottom of the figure). Moreover, for each layer index, it specifies the number
of correct (i.e. non-faulty) processes that were at a given state at that layer; as
well as the number of correct processes that moved from one state to another
between consecutive layers.

In Fig. [1] initially, 2 correct processes are at state a1, and 2 are at ag, for a
parameter valuation n = 5,¢ =1, f = 1. Recall that layers 27 and 2i+ 1 correspond
to round 4, and that the meaning of the states are given in Algorithm [I} in
particular, a, is the first line of an iteration where variable v has value z. All
4 correct processes go to b, at layer 1, which means that the Byzantine process
was king at round 0. Then three of them go to a; at layer 3, and one of them
goes to ag, etc. This models the situation where the Byzantine process sent a
message (2x 0+ 1,1) to the latter process but (2x 0+ 1,0) to the others. In
the next layer, a correct process is king with value 1 (state k1), and one correct
process has received a majority of value 1 (state b1 ), but not all correct processes
have arrived to layer 4 yet. This configurations thus represents a finite prefix of
an execution. When needed, LTL fairness assumptions can ensure that we only
consider infinite configurations.

3 Input Format and Usage

The input format is based on layered threshold automata (LTA) defined in [3],
which we illustrate on the running example. An input file needs to define three
elements: parameters, states and guards.

In PyLTA, the set of parameters are declared as follows.

PARAMETERS: n, t, f
PARAMETER_RELATION: 4%t < n

The second line declares a constraint on these parameters, here 4t < n, which is
a necessary condition for the correctness of Algorithm [T}

As in our running example, the input format assumes that the states of the
considered systems belong to layers. The following line defines two consecutive
layers A, B, and specifies after layer B, we come back to layer A and loop.

LAYERS: A, B, A

In other terms, this results in the sequence of layers A, B, A, B,.... One can
also specify lasso-shaped sequences; for instance, LAYERS: A, B, B would yield
the sequence A, B, B, B, ....

States can be declared by specifying the name of the layer and the name of
the state separated by a period as below.

STATES: A.0, A.1
STATES: B.kO, B.O, B.u, B.1, B.kl



For instance, the first line defines the states ag and a; in Figure[I] and the second
line is the rest of the states.

Transitions are defined by distinguishing cases for each state using guards.
In Algorithm [I} a process needs to receive more than 3 +¢ messages (2i,1) in
order to move from state a; (line [3) to by (line . These messages can either
come from processes in state a; or from Byzantine processes. In PyLTA, this
condition is called the guard from a; to b; and it is expressed with the formula
2(a1 + f) > n + 2t. State names correspond to the number of correct processes
that have been at that state, so transitions are declared as follows.

FORMULA Afull: A.0O + A.1 + £ == n
CASE A.1:
IF Afull & 2*(A.1 + f) >= n THEN B.ki1
IF Afull & 2%(A.1 + f) >= n + 2%t THEN B.1

The formula Afull is used to enforce synchrony: no process can take a tran-
sition before every message was received. We present the other transitions for
Algorithm [T] in Table [I} Note that Afull or an equivalent Bfull should also be
added each time in order to avoid considering asynchronous executions.

The following instruction is used to declare an LTL specification to be verified
on the configurations:

WITH
A.initial: A.0 + A.1 + £ ==
A.one0: A.0 > 0
B.not_two_kings: B.kO + B.kl1 <=1
VERIFY: (A.initial & ! A.one0 & G(B -> B.not_two_kings)) -> G(A -> ! A.one0)

The instructions between WITH and VERIFY define predicates at given layers,
which can be used in the subsequent LTL formula. Here, A.one0 holds when
at least one process is in state A.0; and B.not_two_kings is used to prevent
executions where more than one king is present in a round. These predicates can
then be used as propositions of the LTL formula that will be verified.

A layer type name (A or B) inside a formula indicates a predicate that only
holds in the corresponding layers. An interpretation of the formula can therefore

Table 1: The guards of the transitions for Algorithm [I}f The table on the left is
for transitions leaving states of layers ¢ = 2i, and the table on the right is for
those with layer ¢ = 2i + 1. Each cell is the guard of the transition from the state
of the row to the state of the column.

{=2i+1 ao al
=2 ko bo by by k1 ’ZO true | false
ao |2(ao + f)[2(a0 + [)| 2a0 < n + 2t |2(a1 + f)[2(a1 + f) 0
br k1 =0lko =0
a1 >n >n+2t [A2a1 <n+2t| >n+2t >n b
kl false | true
1




be the following: “if there are n processes, and no process in A.0, and there is
always at most one non-Byzantine king in layers of type B, then at all layers of
type A, there is no process in A.0.”

4 Tool Overview and Usage

PyLTA is written in Python. In addition to counter abstraction and predicate
abstraction, PyLTA performs counter-example guided abstraction refinement [7].
Since we are working in an unbounded domain due to parameters, the tool uses
an SMT solver to check the realizability of the traces, and refine the abstrac-
tion using interpolants produced by the solver [I3]. The current version uses
MathSAT [6] via PySMT [12]. We use Lark[20] for parsing.

The LTL specification is first negated, and then converted into a Biichi au-
tomaton using Spot [I1]. The product between this automaton and the predicate
abstraction is then built dynamically. We check the language emptiness of the
resulting product automaton; if it is empty, then the specification holds. Oth-
erwise, the abstract counterexample is checked for realizability using the SMT
solver, and either the counterexample is confirmed, or the abstraction is refined.

We run PyLTA on an input file as follows.

python -m pylta [input_file]
The output on the file corresponding to our running example is the following:

VERIFYING R.initial & ! R.one0 & G (B -> B.not_two_kings)
Formula is Valid

More details such as the abstract counter examples encountered and the added
predicates can be obtained by adding a -v flag. In this case, a single refinement
was necessary, which added the predicate B.k0 + B.0 + B.u <= 0.

The verification algorithm does not require user interaction since abstrac-
tions are refined automatically. However, any predicate defined in the VERIFY
instruction is used in the predicate abstraction, even if it does not appear in
the formula. This behaviour provides a way to manually add predicates in order
to help with the verification. The tool is distributed under the GNU GPL 3.0
licence and is available at https://gitlab.com/BastienT /pylta.

5 Conclusion

We have presented PyLTA, a tool for verifying parameterised distributed algo-
rithms. Despite the undecidability barrier even in simple versions of the problem
[21], PyLTA is able to verify complex properties on distributed algorithms, and
unlike previous works, makes no assumptions on bounds on the state space or ex-
changed messages. As future work, one might explore the use of implicit predicate
abstraction [22] to speed up the verification process. Another direction would be
to integrate well ordered functions providing termination arguments [§] as used
in [I0] which could extend the usability of PyLTA.


https://gitlab.com/BastienT/pylta
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A  Tool Demonstration

In this section, we detail how the tool will be demonstrated. We will start by
giving an example of a simple distributed algorithm, called the Flood-Min Algo-
rithm, that can be modeled and verified with PyLTA. This algorithm is simpler
than Phase King described in the core of the paper; although it does not illustrate
all the capabilities of the tool, it is more convenient and easier to understand for
an oral presentation.

We will thus focus on the modeling aspects, and the usage of the tool by
showing a property that is easy to prove, and another property that requires
some interaction, thus showing the strengths but also the limitations of the tool.

The Flood-Min algorithm is from [5] and given in Algorithm

=

Process FloodMin(n,t,v):
Data: n processes, t allowed crashes, v € {0,1}.

2 for 1=0 to t do // t+1 iterations
3 broadcast v

4 receive values uog, ..., u;—1 from all

5 v < min{ug,...,ui-1}

6 end

7 return v;

Algorithm 2: The Flood-Min algorithm [5], is a synchronous algorithm that
solves consensus under at most t crashes.

We will directly explain configurations and the semantics of threshold au-
tomata without excessively formalizing these. A configuration can be thought
of as some records of events that happened up to a point of an execution. A
configuration of Algorithm [2]is represented on Figure

Parameter values: n:5,¢:2

Fig. 2: A configuration of the Flood-Min algorithm (Algorithm .

Figure [2] specifies the valuation of parameters n and ¢. Additionally, each
column contains the possible states of a process at each iteration of the loop.



Such a column is called a layer. The shown configuration contains the number
of processes that are at each state of each layer. For example, state vy (resp. vg)
in layer ¢ = 0 has value 4 (resp. 0) meaning that 4 (resp. 0) correct processes had
v =1 (resp. v = 0) at the first iteration of the loop.

The states ¢y (resp. ¢1) represent processes that had values 0 (resp. 1) but
have crashed during the execution of the round. It is important to represent
them separately since these processes may not have sent their values to all other
processes.

Indeed, in the next layer, we see that a single process updates its value to
0 (by going to state cg), meaning that it received a value 0 while the others
only received 1’s. This illustrates the correction argument of the algorithm that
depends on the existence of a round where no process crashes (guaranteed by
executing t + 1 rounds).

Next, we will show how this algorithm is described in PyLTA’s input format.
The parameters and states of these configurations are defined as follows:

PARAMETERS: n, t
LAYERS: L, L
STATES: L.cO, L.vO, L.v1l, L.cl

The first line defines the two parameters n and t. The second line says that
there is only one layer L, and that each layer L is followed by another layer L.
The last line defines the four states that appear in layers L.

Next, we show how to specify the transitions between the defined states. In
most cases, this depends on the number of processes in other states of the same
layer. For example, a process moves from vy to vg if it receives a message 0 in
the current round. This can only happen if another process is in state vy or cg.
This condition is encoded with the linear arithmetic expression vg + cg > 0 where
vo and ¢y are interpreted as the number of processes in the corresponding state.
Conversely, a process moves from vy to vy (of the next layer) if it did not receive
any message 0. This can be encoded with the condition vy = 0, we omit ¢y in
this case because it is possible for the process to not receive a message from a
crashing process.

In PyLTA, this results in the following code:

CASE L.vO:
IF TRUE THEN L.vO
IF TRUE THEN L.cO

CASE L.v1:
IF L.vO + L.cO > O THEN L.vO
IF L.vO + L.cO > O THEN L.cO
IF L.vO == 0 THEN L.v1
IF L.v0O == 0 THEN L.cl

We do not need to give the successors of ¢y and ¢1, processes in these states
will simply not take part in subsequent layers.

Last, we show how to define properties to be verified by PyLTA. First, we will
show how to prove the validity property: ‘If no process has v = 0, then no process



will ever have v = 0’. In order to encode such a property, we need a predicate
that states that a process has v = 0, this can be done with oneg : vg + cg > 0.
Then the property can be stated in linear temporal logic as —oneg — G-oneg.
In PyLTA, this is written as follow:

WITH
L.one0O: L.vO + L.cO > O
VERIFY: ! L.oneO0 -> G ! L.oneO

By this example, we illustrate how predicates (such as L.one0) can be defined,
as used in temporal logic properties.
On this example, PyLTA immediately outputs:

Formula is Valid

Now, let us try to prove the termination of this algorithm. This can only hold
under a fairness property. In this case, an appropriate fairness property can be
that at every layer there are at least n—t non-crashing processes, fair : vy +v; >=
n —t. Under this assumption, a termination condition can be decided : vy + ¢y =
0 or v; +c1 = 0. We will also add the initial condition ini: vg + ¢co + v +¢1 = n.
Then, we can attempt to give PyLTA the following input:

WITH
L.ini: L.vO + L.cO + L.vl + L.cl == n
L.fair: L.vO + L.vl >=n - t

L.decided: L.vO + L.cO == 0 | L.vl + L.cl ==
VERIFY: L.ini & G L.fair -> F L.decided

We now run PyLTA on this model, but it fails:
Cannot verify formula

In order to understand what happened, we run PyLTA again with the verbose
flag:

python -m pylta -v ....

We obtain the following output:

Found an abstract counter example:

L: 01
ini: TF
fair: TT

decided: F F

Loop: 1
Prefix concretisation succeeded but loop failed
Cannot verify formula



We see that PyLTA attempted to instantiate an abstract path (i.e. a Boolean
valuation of the predicates). It managed to instantiate a finite prefix of the path,
but did not manage to concretise the loop. In other terms, it was not able to
determine whether for some valuation of the parameters, there exists an infinite
execution matching the abstract counterexample lasso.

In this case, every finite prefix of the path is concretisable, meaning that with
predicate abstraction alone, PyLTA will not be able to solve this problem. This
shows a limitation of the tool which attempts to solve an undecidable problem.
Future directions to handle these cases are discussed in the paper and will be
shortly mentioned in the demonstration.

We will then show how to bypass this issue in this case. In fact, the reason
why the algorithm is iterated ¢+ 1 time is to provide one clean round, meaning a
round where no process crashes giving the predicate clean : ¢y +c¢; = 0. Assuming
the existence of such a round gives us the following:

WITH

L.ini: L.vO + L.cO + L.vl + 1.c1 == n

L.fair: L.vO + L.vl >=n - t

L.clean: L.cO + L.cl ==

L.decided: L.vO + L.cO == 0 | L.vl + L.cl ==
VERIFY: L.ini & G L.fair & F L.clean -> F L.decided

Under this assumption, PyLTA immediately manages to verify the property.
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