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Abstract

During the last decade, numerous solar forecasting tools have been developed to predict
the energy generation of photovoltaic (PV) farms. The quality of solar forecasts is assessed
by comparing predictions with measured solar data. However, this methodology does not
consider the added value of the forecasts for their applications. As a consequence, what
value could be given to the improvement of forecasts considering this evaluation framework?

To answer this question, this work compares the value of different operational solar
forecasts for a specific application. The aim is to look for relationships between the economic
value and the error metrics defined to evaluate the forecast quality.

A new generation of large-scale PV plants integrates ESS. The aim is to add flexibility
to the injection of the production into the grid and thus to maximize the profit by taking
advantage of the possibilities offered by the electricity market, such as energy arbitrage.
To optimize the operation of these specific ESS, forecasting of the solar production is of
paramount importance. The study case considered in this work is a large-scale PV farm of
several megawatts associated with Li-ion batteries in the Australian energy market context.

For this specific case study, the results show that the metrics used to evaluate the forecast
quality based on the mean absolute error (MAE) have an almost linear relationship with
the economic gain brought by applying the forecast. More precisely, an improvement of 1%
point in MAE results approximately in an increase of 2% points in economical gain.

Keywords: large-scale PV, energy storage, solar forecasting assessment, operation
scheduling, optimization, electricity market, forecast value

∗corresponding author
Email addresses: mathieu.david@univ-reunion.fr (Mathieu David), john.boland@unisa.edu.au

(John Boland), lui.cirocco@unisa.edu.au (Luigi Cirocco), philippe.lauret@univ-reunion.fr
(Philippe Lauret), cyrilvoyant@gmail.com (Cyril Voyant)

Preprint submitted to Elsevier June 3, 2021



1. Introduction1

Solar forecasts for horizons ranging from several minutes to several days ahead are avail-2

able and well documented in the literature. Numerous state of the art studies on the topic3

have already been published during the past 10 years (Diagne et al., 2013; Antonanzas4

et al., 2016; Sobri et al., 2018). Currently, the performances of the forecasts are estimated5

by comparing the forecasts with measurements of solar irradiation or energy production of6

an associated system (PV, CSP, etc.) (Perez et al., 2013; Blaga et al., 2019; Yang et al.,7

2020). A common framework based on this testing approach is widely used by the academic8

community in the realm of solar forecasting. The main error metrics are the Mean Bias9

Error (MBE), the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE) and10

the forecast skill based on the RMSE (Coimbra et al., 2013). Solar forecasts are produced11

to anticipate the future production of solar renewables, to improve grid operation and to12

decrease the cost of energy production. Indeed, they are important inputs to optimize the13

scheduling of unit commitments for grid management or to achieve the optimal control of En-14

ergy Storage System (ESS) needed to add flexibility to solar renewables. As a consequence,15

the value of solar forecasts must also be evaluated with reference to their use.16

A gap currently exists between the developers of solar forecasts and the community that17

develops algorithms to integrate them into energy and power management systems (EMS18

and PMS) such as an optimal controller of ESS. On one hand, solar forecasts are evaluated19

without considering their added value for the users (Perez et al., 2013; Blaga et al., 2019;20

Yang et al., 2020). As a consequence, the improvement of solar forecasts are mainly driven21

by the reduction of the square error between the predictions and the observations. On the22

other hand, even if several works propose operational solar forecast as input of optimization23

methods used to manage energy systems (Ramahatana and David, 2019; Faraji et al., 2020;24

Pousinho et al., 2014; Iliadis, Petros et al., 2019), only few of them consider their added25

value or assess the gain of an enhancement of the forecasts (Wittmann et al., 2008; Kraas26

et al., 2011). In the domain of microgrids, where the literature about optimal control of ESS27

is abundant, real forecasts are even seldom used. Most of the works use historical records28

as “perfect forecasts” (Riffonneau et al., 2011; Nguyen et al., 2009; Luu et al., 2015; Morais29

et al., 2010; Wouters et al., 2015) or perturbed measured data (Abdulla et al., 2018; Bridier30

et al., 2016; Choi and Min, 2018). As a consequence, results are missing an accurate idea of31

the value of actual solar forecasts.32

As mentioned above, forecasts for solar PV farms are typically assessed on the accuracy33

of the prediction to actual performance, rather than in the effectiveness of the generation34

system in delivering a desirable financial objective. Currently, the RMSE and the forecast35

skill also based on the RMSE initially proposed by Coimbra et al. (2013) tend to be the36

most predominant error metrics used in the academic literature to rank solar deterministic37

forecasts (Blaga et al., 2019; Yang et al., 2020). The estimation of the market value requires38

one to model and to simulate the selected application. Such a process is expensive in39

both time and calculation means. Some propositions exist to assess the economic value of40

weather forecasts without simulating the system. They are based on the cost caused by an41

error of forecasts such as the cost-loss function approach proposed by Richardson (2000). For42
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Figure 1: Schematic of the system model. The exchanged energy used to model the balance of the system
(see Eq. 1) are given in blue font. The arrows indicate the direction for positive valued energy flows.

instance, this method is relevant to assess the economic performance of renewable production43

forecasts in the case of energy trading when the cost of an error of forecasts is perfectly44

known. However, when an ESS is introduced in the system, adding the possibility to shift45

the energy production, the problem becomes more complex and this simple approach is not46

suitable.47

The aim of the present work is to evaluate the quality and the value of different state48

of the art solar forecasts. First, the assessment of quality will be done with the framework49

commonly used by the solar community. Then, we will evaluate the value of the forecasts50

for a specific application: the day-ahead scheduling of an ESS associated with a large-scale51

PV plant in the Australian electricity market context. Finally, we will highlight the link52

between the error metrics commonly used to assess the quality of forecasts and their impact53

on the economic of the selected application.54

The remainder of this article is organized as follows. The next section details the system55

that is studied and its associated models. Section 3 presents the optimization problem and56

how the forecasts are implemented. Then Section 4 describes the measured and forecast57

data used to simulate the case study. Section 5 gives the evaluation framework. And finally,58

Section 6 presents the results and the associated discussion.59

2. System model60

The ESS integration selected for this work aims at increasing the revenue of a large-61

scale PV farm using the bulk energy price arbitrage of the Australian National Electricity62

Market (NEM). The goal of an energy arbitrage strategy is to benefit from the variations63
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of the electricity prices, i.e. to buy energy when the price is low and to sell it when it64

is more profitable. The Hornsdale Power Reserve (HPR), built by Tesla and located at65

the Hornsdale Wind Farm in Jamestown, South Australia, well illustrates this type of ESS66

usage. Indeed the main source of revenue of the HPR comes from energy arbitrage. It is67

also worth noting that non negligible additional revenue of the HPR comes from contingency68

frequency control ancillary services (FCAS) (Aurecon Group, 2020). An extensive literature69

focused on the use of storage for energy arbitrage in the context of increasing penetration of70

intermittent renewable exists. For instance, Zhao et al. (2015) give an overview on the topic71

but restricted to wind farms and Berrada and Loudiyi (2016) extend the review to take into72

account the PV plants.73

In this work, the storage is added to a PV farm to firm and to shift in time the PV74

generation in order to benefit from better selling prices. A classical type of PV and storage75

coupling is assumed. The ESS is connected to the AC bus between the PV farm and the76

grid connection point (see Fig. 1). With this configuration, the total power of the system77

is not limited by the maximum power of the inverter of the PV plant. However, to benefit78

from possible investment tax credit (ITC) (IRENA, 2020), the ESS will charge exclusively79

with the energy generated by the PV plant. The EMS controls the system and aims at80

maximizing the revenue provided by the electricity generation. The energy balance of the81

system is given by the following equation:82

Egrid = Epv − Echa
ess + Edis

ess , (1)

where Epv and Egrid are respectively the energy produced by the PV field and the energy83

supplied to the grid. And Echa
ess and Edis

ess correspond to the charge and discharge of the84

storage system. In the following subsection details are given of the different models used to85

compute these energies.86

2.1. PV system model87

Detailed models of PV systems, such as the ones proposed in the pvlib package (Holmgren88

et al., 2018), could produce very accurate results in comparison with real systems but they89

also require a detailed description of the system components (i.e. PV modules and inverters).90

As highlighted by Mayer and Gróf (2021), the choice of the PV system model has a little91

impact on the accuracy of the whole chain of conversion ranging from the available solar92

resource to the PV system generation. Furthermore, as the case study is an imaginary93

case, the PV system model will be used to compute both the real PV production and the94

forecasted PV production. Thus, we propose here to use simple but efficient models for the95

PV system as they offer the best trade-off between complexity of implementation of the PV96

model and accuracy of the results of the study.97

The direct current (DC) PV production EDC
pv is computed with a simple model proposed98

by Luque and Hegedus (2011). This model takes into account the solar energy received on99

the tilted plane of the solar modules, so called global tilted irradiation (GTI in Wh/m2),100

and the temperature of the modules Tpv. Eq. (2) and (3) give the computation details.101

The temperature of the modules (Eq. (2)) depends on the ambient temperature Tair, the102
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Parameter Value
Area (A) 1.64 m2

Efficiency at STC (ηSTC
pv ) 0.195

Temperature coefficient (TCSTC
pv ) -0.0038 ◦C-1

Temperature NOCT (TNOCT
pv ) 46 ◦C

Total installed costs (Cpv) 2175 AUD/kW

Table 1: Characteristics of the modules LG NEON2 320 Wp and utility-scale PV costs in Australia (IRENA,
2019)

temperature of the module observed under the nominal operating cell temperature TNOCT
pv103

and the received irradiance GTI. Then Eq. (3) computes the PV production, with A the area104

of the PV plant, ηSTC
pv the efficiency and TCSTC

pv the temperature coefficient of the selected105

modules under the standard test conditions (STC). For our case study, we chose modules106

LG NEON2 with a peak power of 320 W because this model is currently very popular in107

Australia. Table 1 presents the main characteristics of this module, which are used in Eqs.108

(2) and (3):109

Tpv = Tair + (TNOCT
pv − 20)×GTI/800, (2)

110

EDC
pv = GTI× A× ηSTC

pv × (1− TCSTC
pv × (Tpv − 25)). (3)

Even if we assume a large-scale PV plant with a peak power of at least several megawatts,111

the production will be derived from a PV system of 1 MWp, i.e. 3125 modules for a total112

area of approximately 5000 m2. This specific installed power will allow normalizing all the113

results.114

To compute the AC output of the PV plant (Epv = ηinvE
DC
pv ), the simple inverter model115

proposed by Riffonneau et al. (2011) has been used. A second order polynomial of the DC116

power ratio r estimates the global efficiency of the inverter ηinv as follow:117

ηinv = 1− (0.0094 + 0.043r + 0.04r2)/r, (4)
118

r =
EDC

pv

∆tPinv

. (5)

In Riffonneau et al. (2011), the DC power ratio of the inverter r is the ratio between the119

DC PV power and the nominal power of the inverter Pinv. Here, we assume that the DC120

output power of the PV farm is constant during a time step ∆t and can be easily derived121

from the produced DC energy as indicated in Eq. (5). To take into account the working122

limits of the inverter, we also set its start-up at 10% and its clipping at 110% of the nominal123

power Pinv as observed by King et al. (2007). Hence, when the ratio r is below 0.1 the124

inverter does not work and when r is above 1.1 the inverter caps the production. Finally,125

we define a rated power of the inverter equal to the installed capacity of PV (i.e. an inverter126

of 1 MW for 1 MWp of PV). For grid connected systems, it is common to have the inverter127

rating match or be slightly smaller than the peak installed PV capacity (Luque and Hegedus,128

2011).129
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2.2. ESS model130

Numerous technologies of ESS are currently available. They are commonly classified131

regarding their capacity, power and response time. With few hours of production per day132

and fast variations of their output, PV systems require ESS with very short response time133

and with a power in the same order of magnitude of the installed power. Electrochemical134

batteries and more specifically Li-ion ones are currently the most affordable ESS that possess135

these properties. Thus, as many PV operators, we naturally choose to use Li-ion batteries.136

The power units associated to the batteries are AC/DC converters. In this work, we assume137

a constant efficiency for these converters. The current and expected future characteristics138

of the selected ESS model were derived from a recent report published by the International139

Renewable Energy Agency (IRENA, 2017) and they are given in Table 21. The self-discharge140

of the Li-ion batteries, around 0.1% per day, is neglected because we assume that the ESS141

will realize almost a full-cycle every day.142

To compute the energy transfers corresponding to a variation of the state of charge143

∆SOC of the ESS, we applied the round trip efficiency to the charging phase while the144

discharge is only subject to the efficiency of the AC/DC converter. Eqs. (6) and (7) below145

detail how the charging and discharging energies are obtained:146

Echa
ess =

∆SOC{∆SOC>0}

ηcha
ess × ηess

× ESScapa, (6)

147

Edis
ess = −∆SOC{∆SOC<0} × ηdis

ess × ESScapa, (7)

where ESScapa is the rated capacity of the ESS and ηcha
ess , ηdis

ess and ηess are respectively the148

charging, discharging and round-trip efficiency of the ESS. Their values are given in Table149

2. As a discharge corresponds to a negative variation of the SOC (i.e. ∆SOC < 0), one can150

notice that a minus is added to Eq. (7) to obtain a positive energy of discharge Edis
ess and151

thus to be coherent with the Eq. (1) about the energy balance of the overall system.152

The ageing model proposed by Riffonneau et al. (2011) is used to evaluate the level of153

degradation of the batteries. This model is simple and appealing. Indeed, it assumes a154

linear degradation of the capacity of the batteries that can be applied to a large number155

of technologies. Let’s consider a discharge of the ESS corresponding to the decrease of the156

state of charge ∆SOC{∆SOC<0}. The associated reduction of the state of health ∆SOH is157

∆SOH = z ×∆SOC{∆SOC<0}. (8)

In the Eq. (8) above z is the ageing coefficient that can be derived from the ESS life158

time CLF expressed in number of full cycles and from the corresponding reduction of the159

state of health of the ESS as follows160

z =
SOH0 − SOHmin

CLF × ESScapa

, (9)

1An exchange rate of 1.4 USD/AUD has been used to convert the capital expenditures (CAPEX) and
operating expenses (OPEX) proposed in (IRENA, 2017).
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Parameter
Value

2020 2025 2030
Round trip efficiency (ηess) 0.955 0.961 0.968
State of charge (SOCmax and SOCmin) 1 - 0.1 1 - 0.1 1 - 0.1
Charging (ηcha

ess ) / Discharging efficiency (ηdis
ess) 0.98 0.98 0.98

Power unit limit (P cha
max / P dis

max) 3.5 W/Wh 3.5 W/Wh 4 W/Wh
Life time in equivalent full-cycles (CLF ) 2406 3032 3820
State of health (SOH0 and SOHmin) 1 - 0.8 1 - 0.8 1 - 0.8
ESS cost (Ccapa

ess ) 452 AUD/kWh 325 AUD/kWh 234 AUD/kWh
Conversion units cost (Cpower

ess ) 119 AUD/kW 92 AUD/kW 70 AUD/kW
Annual O&M costs (Com

ess ) 1.5% of investment cost

Table 2: Current and future characteristics of Li-ion NMC (cathode combination Nickel-Manganese-Cobalt)
batteries and of the associated AC/DC power units (IRENA, 2017).

where SOH0 and SOHmin are respectively the initial and critical state of health of the161

ESS. Their values are given in Table 2. This model will be used during the simulations to162

decrease the actual ESS capacity after every discharge. Furthermore, the ESS should be163

changed when the SOH reaches SOHmin and the corresponding cost should be added to the164

operation costs. But, in our study case we will consider a 10 years period for the economical165

analysis (see Subsection 5.2) and SOHmin will not be reached.166

2.3. Grid model167

The electricity produced by the production system is sold to the grid at the spot price168

(Cgrid). We assume that the grid operator will buy the whole supplied energy. Furthermore,169

the size of the considered power plant is not significant enough to influence the spot prices of170

the electricity market. The Australian Energy Market Operator (AEMO) defines the spot171

price as the selling price of electricity for the energy producers. It corresponds to an average172

price computed every half-hour. The details of the computation of the spot price are given173

in AEMO Markets (2018).174

3. Data175

3.1. Ground measurements176

The ground measurements correspond to two consecutive years (2016 and 2017) of air177

temperature (Tair), Global Horizontal Irradiation (GHI), Beam Normal Irradiation (BNI)178

and Diffuse Horizontal Irradiation (DHI) measured at Adelaide Airport (34.95◦ N, 138.51◦ S).179

The site experiences a Mediterranean climate with a significant annual GHI of approximately180

1760 kWh/m2/year. The initial sample rate of the records is 1 minute and an averaging was181

applied to the data to obtain 30 minute means. Considering only the daylight hours, the182

raw measurements present less than 1% of missing data. The shorter gaps, corresponding to183

a maximum of 30 minutes, were filled by linear interpolation. The longer gaps, (e.g. there184

is a gap of 3 consecutive days between January and February 2017) were filled with GHI185

estimations corresponding to the same period from the MERRA-2 reanalysis available for186
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free via the SoDa portal (MINES ParisTech, 2020). The comparison between the MERRA-2187

estimations and the 2 years of data used in this work gives a mean bias error (see Eq. 18)188

of +7%. This result is consistent with assessments done for other regions (Zhang et al.,189

2020). Considering the very small rate of missing data and this slight overestimation of190

the MERRA-2 data, we assume that the gap filling will not affect the overall results of the191

study.192

No PV generation was recorded on-site as the study case is an imaginary power plant of193

1MWp with storage. We assume PV panels facing North and and inclined at 35◦, which is194

the tilt that maximizes the annual solar energy received on the plane of the PV modules.195

The solar energy received on the PV modules (GTI), is derived from the measured GHI,196

DHI and BNI by using a transposition model. Here we use the anisotropic transposition197

model proposed by Hay and Davies (1980) with an albedo of 0.2. Then, from the GTI198

and the measured air temperature (Tair), the PV output is computed with the PV model199

depicted in Section 2.1. According to Hofmann and Seckmeyer (2017), the estimation of the200

PV production by the combination of selected models results in a very low mean error (less201

than 2% in average).202

3.2. Forecasts203

The goal of this work is to analyse the effect of the error of solar forecasts on the204

revenues of the selected system. The scheduling optimization studied here requires day-205

ahead forecasts of the PV generation profile with a 30-min time step. Regarding this horizon206

of forecast, Numerical Weather Predictions (NWPs) are the most suitable (Diagne et al.,207

2013; Antonanzas et al., 2016). Indeed, they commonly exhibit the best accuracy for forecast208

horizons ranging from 6 hours to several days ahead. NWPs are commonly associated with209

post-processing methods that permit decreasing their error when compared with GHI ground210

measurements. To generate the PV production forecasts from the GHI ones, the following211

combination of models is required:212

1. A decomposition model that divides the GHI in the beam (BNI) and diffuse (DHI)213

components of the solar irradiance;214

2. A transposition model that computes the solar energy received on the plane of the PV215

modules (GTI) from the GHI, BNI and DHI;216

3. And a PV production model that converts the received solar energy in electricity217

generation.218

3.2.1. GHI Forecasts219

The short-term NWPs of the GHI used in this work are provided by the European Centre220

of Medium-range Weather Forecasts (ECMWF) (Leutbecher and Palmer, 2008) and National221

Centers for Environmental Prediction (NCEP) (NCEP, 2015). The ECMWF maintains and222

runs the Integrated Forecast System (IFS). IFS is a global high resolution NWP model that223

generates weather forecasts for the entire earth with a spatial resolution of 0.125◦ in both224

latitude and longitude and temporal resolution of 1 hour for the 4 first days of forecast.225

The NCEP also runs a global NWP model called GFS (Global Forecast System). However,226
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GFS exhibits a coarser resolution than the IFS model with a spatial resolution of 0.250◦ and227

temporal resolution of 3 hours for the 4 first days of forecasts. The GHI forecasts with a228

lead-time of up to 4 days were retrieved from the nearest pixel to the Adelaide airport. To be229

consistent with the Australian market rules, i.e. a 30-min time granularity (see Section 2.3),230

the raw forecasts need to be downscaled. For instance, the forecasts of the NCEP, which231

have a time step of 3 hours, must be converted into a 30-min time series. Several methods of232

oversampling exist such as the linear, cubic or spline interpolations or the nearest neighbors233

approach proposed by Mueen et al. (2017) and used by Yang et al. (2019a) to downscale234

NWPs. If these techniques are suitable to downscale most of the meteorological parameters,235

they are not appropriate to solar irradiation time series as mentioned by Blanc and Wald236

(2010). Indeed, the energy of the oversampled time series is not equal to the original time237

series. In this work, we used the method proposed by the ENDORSE project (Espinar et al.,238

2011). Based on iterative linear interpolations, this method has been designed specifically239

to downscale time series of solar data. The method respects an energy consistency property240

and therefore, in terms of energy, the oversampled time series is equal to the original time241

series. Thus, the downscaling does not add additional bias to the new time series.242

As proposed by the literature about solar forecast evaluation, a reference model, the243

persistence, is also used (Sengupta et al., 2017). Several versions of the persistence are244

available (Yang, 2019). In this work, we use the day ahead persistence of the clear sky index245

(kt∗Persistence): the daily profile of the clear sky index of the current day is repeated for246

the next days. Compared to the GHI persistence, the kt∗Persistence takes into account247

the seasonal evolution of the solar path and it provides slightly better results. The clear248

sky irradiances needed to compute the clear sky index were provided by the McClear model249

(Lefèvre et al., 2013) available for free on the SoDa website (Atmosphere Monitoring Service,250

2020). This model uses the Aerosol Optical Depth (AOD), water vapor and ozone data from251

the MACC project.252

3.2.2. PV Forecasts253

The forecasts of the direct current PV generation are derived from the GHI forecasts254

via the combination of a decomposition model, a transposition model and a PV model. We255

explained previously that the PV production of reference was computed using the transpo-256

sition model proposed by Hay and Davies (1980) and the PV model developed by Luque257

and Hegedus (2011). The same models will be used to obtain the PV forecasts. Regarding258

the decomposition of the GHI, we propose to test two state-of-the-art models. Indeed, the259

decomposition of the GHI is one of the main source of error to derive the GTI and as con-260

sequence to compute the PV generation (Gueymard, 2009; Hofmann and Seckmeyer, 2017;261

Mayer and Gróf, 2021). The first model is the well-known Erbs model (Erbs et al., 1982).262

This model, developed forty years ago and based only on the clearness index, combines sim-263

plicity and accuracy. Furthermore, it is widely used by the community and thus appears to264

be a very good competitor for comparison studies, (Hofmann and Seckmeyer, 2017; Mayer265

and Gróf, 2021). Second, we used the decomposition model developed by Boland, Ridley266

and Lauret, so called BRL, initially developed in Adelaide (Ridley et al., 2010). This more267

recent and more complex model considers multiple predictors as inputs. It is also widely268

9



Raw NWPs Post-processed NWPs

ECMWF
before PV conversion ECMWF-WBb ECMWF-NNb ECMWF-PARb
after PV conversion ECMWF-WBa ECMWF-NNa ECMWF-PARa

NCEP
before PV conversion NCEP-WBb NCEP-NNb NCEP-PARb
after PV conversion NCEP-WBa NCEP-NNa NCEP-PARa

Table 3: List of the forecasts derived from the two NWP models considered in this work.

used because it is one of the best models in terms of accuracy (Hofmann and Seckmeyer,269

2017; Bertrand et al., 2015) and it is suitable to generate reliable solar forecasts (Mayer and270

Gróf, 2021).271

Using the combination of models described in the previous paragraph, we derived PV272

predictions from the GHI forecasts of the two considered NWPs (i.e. NCEP and ECMWF)273

and also from the clear sky index persistence (i.e. kt∗Persistence). In addition, we also274

propose to use the simple day-ahead persistence of the PV output.275

3.2.3. Post-processing276

Raw NWPs are commonly post-processed to reduce their error. It is worth noting that277

the aim of the post-treatment is to increase the agreement between the forecasts and the278

measurements. This does not mean that the post-processed NWPs should produce better PV279

forecasts for different indicators at the same time (e.g. quality and value). To evaluate this280

assumption, we propose to test three different post-processing methods. The first technique281

produces a forecast without bias (noted WB) by simply subtracting the mean bias error (see282

Eq. 18) from the raw NWPs. Second, the bias correction is done by an Artificial Neural283

Network (noted NN) as proposed by Lauret et al. (2014, 2016). The third method uses a284

rolling horizon approach based on a periodic autoregressive stochastic process (noted PAR)285

(Franses and Paap, 1994; Voyant et al., 2018). A systematic description of the NN and286

PAR methods is given in the appendix. The post-processing techniques presented above287

will be applied to the NWPs of the GHI but also to the PV forecast derived from the raw288

NWPs. Indeed, even if the literature in the domain provides mainly results concerning post-289

processing of the GHI, the energy operators likely prefer to post-process the PV forecasts.290

3.2.4. Overview of the forecasts used291

We evaluate 31 different forecast models in this work. For reference three persistence292

models are used: the day-ahead persistence of the PV output (Persistence) and two day-293

ahead clear-sky persistence (kt∗ Persistence) models, one associated the Erbs decomposition294

and the other with the BRL decomposition. The remaining 28 models are based on 7295

forecasts for the PV output, formed from a combination of each of the two NWP models,296

ECMWF and NCEP, three post processing methods and each of the two decomposition297

methods, Erbs and BRL. Table 3 presents the 14 combinations of NWP and post-processing298

options before and after converting to PV output; note that evaluating the raw NWP models299

“before PV conversion” are not the subject of this work.300
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4. Formulation of the optimization problem using Linear Programming (LP)301

The LP formulation of the optimization problem only requires consideration of linear302

relationships for the cost function and the constraints. As we assume a constant efficiency303

of the converter associated to the ESS and also a linear behavior of the batteries, the304

proposed optimization problem is linear. Five decision variables are considered: the charge305

(Echa
ess ) and discharge (Edis

ess) energy of the batteries, the energy purchased or injected to the306

grid ( Egrid), the energy generated by the PV plant (Epv) and the state of charge of the ESS307

(SOC). The objective to maximize is the revenue generated by the energy supplied to the308

grid and it is stated as309

R(Epv, E
dis
ess , E

cha
ess , Egrid, SOC) =

T∑
t=1

Cgrid(t)Egrid(t), (10)

where Cgrid is the spot price of electricity and T is the number of considered time steps. In310

our case study, we run the optimization for the next three days with a time granularity (∆t)311

of 30 minutes. So we have T = 144 time steps. The objective is subject to the following312

constraints:313

• The boundaries of the decision variables, which are given by the technical specifications314

of the different component of the system (see Section 2 and Table 2):315

0 ≤ Epv ≤ Emax
pv , (11)

316

0 ≤ Edis
ess ≤ P dis

max ×∆t, (12)
317

0 ≤ Echa
ess ≤ P cha

max ×∆t, (13)
318

−∞ ≤ Egrid ≤ +∞, (14)
319

SOCmin ≤ SOC ≤ SOCmax. (15)

It is worth noting that the energy generated by the PV plant is here considered as320

a decision variable. Indeed, the operator could choose to curtail the PV production321

if this action avoids additional cost, for instance when the spot price is negative.322

Thereby, the energy generated by the PV plant is bounded by the maximum available323

production (Eq. (11)).324

• The energy balance of the system derived from Eq. (1):325

Epv + Edis
ess − Echa

ess + Egrid = 0. (16)

• And the variation of state of charge between two time steps corresponding to the326

energy that flows in and out of the ESS:327

(SOC(t)− SOC(t− 1))× ESScapa = ηessη
cha
ess E

cha
ess −

Edis
ess

ηdis
ess

, (17)

with SOC(0) the initial state of charge.328
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4.1. Implementation of the forecasts329

Considering the current Australian regulation, large-scale PV plants with storage of a330

power of 5 MW or more correspond to scheduled generators which sell their electricity331

through the spot market (AEMO Markets, 2018). As a consequence, the managers of large-332

scale PV farms integrated with an energy storage must schedule the output profile of their333

systems and bid for their prices. Two delivery times are in use. The pre-dispatch, which can334

be seen as a day-ahead market, requires the submission of the initial production schedule and335

price bands at 12:30pm of the current day until 12:30pm of the next day with a half-hourly336

time step corresponding to the period used to compute the settlement price, also called spot337

price (AEMO System Capability, 2016). As the interval used for the real time dispatch is338

5 minutes, generators may submit rebids of their production and prices 5 minutes before339

the start of the next five-minute dispatch interval (AEMC, 2015). Only the 5 minute rebids340

are mandatory. The day ahead submission of the production profile is optional but highly341

recommended for the main energy suppliers. This work focuses on day-ahead forecasts. So,342

only the pre-dispatch stage will be considered. Furthermore, this study is in agreement with343

the recent recommendation of the Australian Department of the Environment and Energy344

to assess the suitability of a day-ahead market (Finkel et al., 2017).345

The day-ahead PV production forecasts are implemented in the optimization with a346

receding horizon approach. Three days of forecasts are used to optimize the schedule of the347

ESS operation but only the first day of the resulting optimal schedule is used to run the348

system. Receding horizon is a widely used approach in energy planning (Yang et al., 2019b).349

Indeed, it permits updating efficiently the operation schedule of the production units when350

a new forecast is available.351

As the forecast is inherently uncertain, the execution of schedule generated by the opti-352

mization will obviously generate deviations with the expected energy balance. During the353

running of the system, these deviations will be compensated by the storage and by curtailing354

the PV production. In case the storage is empty and the system is not able to ensure the355

production plan, we assume that the operator will submit a rebid of their production on the356

5 minutes market. So, we will not consider penalties in this work.357

5. Evaluation framework358

Two attributes of the forecasts will be tested in this work. Firstly, we evaluate the359

agreement between forecasts and observations. Secondly, we establish the value of the360

forecasts in giving a benefit for the user. Additionally in this section, we will investigate361

hybrid metrics that straddle the space between quality and value.362

5.1. Forecast quality363

A framework dedicated to the evaluation of the quality of solar deterministic forecasts is364

now widely used by the academic community and also by forecast providers. This framework365

is detailed in numerous works (Perez et al., 2013; Coimbra et al., 2013; Sengupta et al.,366

2017; Blaga et al., 2019). All the metrics defined in this framework are directly derived367

from the difference between observations Xobs and forecasts X̂fcst (Eq. (21)). In this work368

12



we will assess the quality through the Mean Bias Error (MBE, Eq. (18)), the Root Mean369

Square Error (RMSE, Eq. (19)), the Mean Absolute Error (MAE, Eq. (20)) for a set of N370

observation/forecast pairs. These metrics are given as:371

MBE =
1

N

N∑
i=1

err(i), (18)

372

RMSE =

√√√√ 1

N

N∑
i=1

err(i)2, (19)

373

MAE =
1

N

N∑
i=1

| err(i) | , (20)

where374

err(i) = X̂fcst(i)−Xobs(i) for i = 1, 2, ..., N . (21)

In order to get intelligible results expressed as percentages, these three metrics will be375

normalized by the mean of observed irradiation and by the installed PV power when they376

correspond respectively to irradiation forecasts and PV generation forecasts.377

The Forecasting Skill (FS) will be also provided in this work. The FS refers to the378

relative RMSE improvement of a specific method compared to a benchmark forecast (Eq.379

(22)). The day-ahead persistence of the clear sky index (see Section 3) will be the reference380

forecast in this work. Even if the FS will give exactly the same information as the RMSE381

for our case study. The FS, given by382

FS = 1− RMSE(method)

RMSE(kt∗Persistence)
, (22)

could be used in comparison studies. Fig. 2 to 4 give a graphical overview of the MBE,383

RMSE and MAE for the 31 considered PV forecasts. Table 4, which gives the error metrics384

that quantify the forecast quality, is given at the end of the paper. One can see that the385

persistence based forecasts experience the worst RMSE and MAE. Most of the forecasts386

based on the ECMWF model outperform the ones derived from the NCEP model. It is also387

worth noting that the PAR and NN post-processing methods, which set up a minimization of388

the square error between observations and forecasts, decrease the RMSE of the raw NWPs.389

However, they also tend to increase the MAE. As a consequence, a ranking based on the390

MAE will result in a totally different classification than a ranking based on the RMSE as is391

commonly done with the FS.392
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Figure 2: Mean Bias Error (MBE) of the PV production forecasts.
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Figure 3: Root Mean Square Error (RMSE) of the PV production forecasts.
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Figure 4: Mean Absolute Error (MAE) of the PV production forecasts.

5.2. Forecast Value393

The IRENA recently released a report that defines an Electricity Storage Valuation394

Framework (ESVF) (IRENA, 2020). This global approach is designed for a large set of395

end-users such as policy makers, project developers, energy operators, etc. Indeed, both396

monetisable and non-monetisable benefits are included in the ESVF. This work will only397

focus on the fourth step of the ESVF dedicated to the simulation of storage operation and398

to the evaluation of the revenues (i.e. monetisable benefits).399
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The objective here is to determine the benefits on revenues of the addition to the PV400

plant of an ESS operated with improved forecasts. Several approaches are proposed in the401

literature. For instance, the Levelized Cost of Storage (LCOS) evaluates the cost of the402

energy supply by an ESS to a grid (Pawel, 2014). However, the LCOS does not give a direct403

quantification of the economic gain provided by the forecast to the owner. In this work, the404

added value will rely on the difference of revenues of the system with and without ESS as405

proposed by Fathima and Palanisamy (2015) or Bridier et al. (2016). For our case study,406

the revenue of reference R0, is the cash flow generated by the PV farm without storage and407

consequently without need of forecast. In the Australian context, such a PV farm is a semi-408

scheduled plant that sells its production at the spot price. We will assume a very optimistic409

revenue of reference R0 considering that the whole energy produced by the PV plant will be410

sold. Considering a simulation of the PV farm without storage using the solar irradiation411

measurements and the spot prices of 2017, R0 is 201,629 AUD/year for an installed power412

of 1 MW. As the scale of the revenue is difficult to interpret, we propose to assess the value413

of the forecasts with the economic gain. This rate, expressed in percent (Eq. 23) is the414

relative difference between the revenue of reference R0 and the revenue of the system with415

the ESS R, which is the objective function of the optimization problem detailed in Eq. 10416

(see Section 4). The economic gain is proportional to the revenue and has the advantage to417

be easier to interpret and reads as418

gain =
R−R0

R0

× 100. (23)

In addition to the economic gain, we will compute the Net Present Value (NPV) of the419

ESS. The NPV is a useful figure to decide whether or not it is of value to invest in the420

ESS. A negative NPV highlights a bad investment. Whereas, a high value for the NPV421

is indicative of an important pay back on investment. The NPV computation is based on422

the methodology defined in the famous report initially published by the NREL in 1995 and423

released as a book ten years after (Short et al., 2005). Similar to the economic gain, the424

NPV considered in this work relies only on the additional cash flow generated by the ESS425

(i.e. R − R0). Fig. 5 shows the evolution of the NPV for an ESS capacity ranging from426

0 MWh/MWpv to 3 MWh/MWpv and considering the year of investment in the storage.427

Perfect forecasts have been used to schedule the ESS operations and to obtain these results.428

Considering the IRENA prices for the ESS (see Table 2) and the current financial situation429

(Grant Thornton and Clean Energy Pipeline, 2019), the investment in the ESS should be430

suitable from 2025. These results must be handled with care because we consider the energy431

arbitrage as the only source of revenue and the spot price of 2017. However, this point is432

not the aim of this work and here the NPV will be used to evaluate the optimal size of the433

ESS, which is around 1.8 MWh/MWpv.434

5.3. Intermediate metrics435

We can define the intermediate metrics used in this work as a combination of quality436

and value without the need of simulating the studied energy system. Thus, they could be437
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Figure 6: Weighted Mean Aboslute Error (wMAE) of the PV production forecasts.

considered as hybrid indices able to link the quality of the forecast with the added value for438

the user through a simple approach.439

The first intermediate metric proposed in this work is derived from the weighted mean440

absolute error (wMAE) defined by Antonanzas et al. (2020), which was designed to choose441

the best solar forecast for market operators. They proposed to weight the absolute error442

observed at each time step with the downward and upward prices corresponding to the prices443

at which the system respectively buys and sells electricity to compensate the deviations from444

the production schedule. In our case, these prices correspond to the spot price (Cgrid), which445

fluctuates at each time step and the wMAE is defined in Eq. 24. Errors of forecast weigh446

heavier when the electricity price is high. Fig. 6 provides an overview of wMAE of the447

considered PV forecasts. Even if slight differences appear, the wMAE tends to behave like448

the MAE for our case study. The wMAE is defined by449

wMAE =
1

N

N∑
i=1

| [X̂fcst(i)−Xobs(i)]× Cgrid(i) | . (24)

Another metric based on the recent work of Perez et al. (2019) will also be studied in this450
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work. This metric is derived from the concept of ”Firm kWh premium” that refers to the451

Levelized Cost of Energy (LCOE) required to firm the power forecasts through storage and452

overbuilding of the PV generation capacity. The lower the LCOE, the better the quality453

of the forecasts. This new metric differs considerably from the previous ones because it454

does not only consider the instantaneous difference between forecasts and observations.455

Indeed, the storage size required to firm the PV generation and consequently the capital456

expense (CAPEX) are highly affected by a succession of large positive or negative errors.457

Furthermore, assumptions on PV costs, storage costs, maintenance and life time have to458

be made. For this work, the case study has already fixed most of these parameters (see459

Tables 2 and 1). In our opinion, a metric based on this approach is worthy of investigation460

because it straddles the space between quality and value of the forecasts. We propose here461

a simplified version the “Firm KWh premium” that only takes into account the CAPEX462

required to firm the forecasts and no loss of energy through the ESS. Indeed, the LCOE is463

highly dependent on the CAPEX and we want to propose a metric easy to compute that464

requires a few assumptions. The formulation of the proposed Firm Power Forecasts (FPF)465

metric, expressed in dollars per installed kilowatts of PV (PVpower), is given by the following466

equation:467

FPF = min{osf}

[
(ESScapa × Ccapa

ess + ESSpower × Cpower
ess + (osf − 1)× PVpower × Cpv)

PVpower

]
,

(25)
where osf is the oversizing factor applied to the actual installed PV power. It is important468

to note that in this work, the oversizing factor is not applied to a PV capacity required to469

produce the yearly energy of the forecasts, like in (Perez et al., 2019), but directly to the470

actual installed PV power. The FPF value results from an easy to solve one-dimensional471

optimization because the objective function is convex and osf is the unique decision param-472

eter (i.e. the unique parameter to vary). For our case study, the optimal value of osf ranges473

from 1.1 to 2.2. These two values correspond respectively to the models kt∗Persistence and474

ECMWF-WBa. For a fixed osf there is a single value of the ESS capacity and power that475

minimizes the FPF. The following equations give a simple way to compute them:476

ESScapa = max(pcse(1), ..., pcse(N)), (26)

pcse(i) =

{∑i
k=1 pcse(k − 1) + err(k) if

∑i
k=1 pcse(k − 1) + err(k) > 0

0 otherwise,
(27)

ESSpower = max(| pcse(2)− pcse(1) |, ..., | pcse(N)− pcse(N − 1) |), (28)

err(i) = X̂fcst(i)− osf ×Xobs(i) for i = 1, 2, ..., N . (29)

pcse can be interpreted as the positive values of the cumulative sum of the forecasting477

errors and, in a sense, it refers to the accumulated energy in the ESS. A negative value of478
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Figure 7: Firm Power Forecast (FPF) of the PV production forecasts.

pcse indicates that we can curtail the production. The error of forecast err is exactly the479

same as in Eq. 21, but in the case of the FPF computation the observed amount of energy480

is multiplied by the oversizing factor osf .481

Fig. 7 gives the FPF for the considered PV forecasts. As it is highly sensitive to482

successions of positive or negative errors, this intermediate metrics gives a totally different483

ranking than the other metrics used in this work. Indeed, the persistence based forecasts484

experience the lowest FPF.485

6. Results486

First of all, it is important to reiterate that the aim of this work is not to rank the487

forecasts between them. Such a goal requires consideration of numerous sites and maybe488

a large variety of applications. The objective here is to show that correlations could exist489

between metrics defined to assess the quality of point forecasts and the added value brought490

by an ESS managed with improved forecasts. This is why we generated many different PV491

forecasts in order to support our results with a significant number of metric/value pairs.492

In this section are presented graphical views of the results (i.e. scatter plots). Interested493

readers can refer to Table 4 in the appendix to get the all the corresponding numerical494

results.495

Fig. 8 plots the gain as a function of the MBE (a), the MAE (b) and the RMSE (c),496

which are currently the three main metrics used to assess the quality of a solar forecast.497

First, compared to the PV farm alone, the gain provided by the storage managed with day-498

ahead forecasts ranges from around 25% to more than 55% for the perfect forecast. Thus, an499

improvement of the forecast can significantly improve the revenue of such a system. Second,500

we arbitrarily grouped the forecasts by family (i.e. same color and shape for persistence,501

ECMWF and NCEP based forecasts). Thus, one can easily observe that the relationships502

between the selected metrics and the economical gain strongly depend on the type of model503

used to derive the solar forecasts. Finally, the persistence based forecasts, commonly used as504

a benchmark, give an identical and even slightly better gain than the worst forecasts derived505

from the NCEP model. However, the forecast skill based on the RMSE (see Table 4) shows506

a clear improvement of the quality of these forecasts when compared to the persistence.507
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If we focus on Fig. 8(a), we can observe that a positive bias leads globally to a better508

revenue in the same family of forecasts. If we look in detail at the rules of the optimization509

and at the structure of the costs associated to an error of forecast, this result is obvious.510

Indeed, if an outcome higher than the forecast occurs when the storage is full, the algorithm511

curtails the PV production. On the contrary, when the ESS is empty, an outcome lower512

than the forecast is balanced by a purchase from the grid without penalties. Thus a forecast513

that generates a positive bias (i.e. overestimation) leads to less curtailments and results in514

selling more energy. The application of dissuasive penalties would maybe lead to a totally515

different result. The same type of relationship between the MBE and the economic value of516

forecasts has already been observed by Ramahatana and David (2019) for the minimization517

of the costs of a microgrid. Furthermore, very low biases, ranging between -3% and +2%,518

are observed in this study. This relationship would have not been observed for higher biases519

because the possible benefits of a strong overestimation will be compensated by its costs.520

Indeed, an important overestimation of the forecasts results in the impossibility to time-shift521

the energy because the ESS will always be empty. However, for our case study, if the MBE522

seems suitable to rank the improvement in terms of gain inside a family, it is not able to give523

relevant information to compare forecasts originated by different types of model. In Fig.524

8(b), a linear relationship between the MAE and the gain seems to appear for the forecasts525

derived from the ECMWF and NCEP. For these two families of forecasts, an improvement526

of 1 percentage point in MAE results approximately in an increase of 2 percentage points in527

gain. Though, the forecasts based on the persistence are not aligned with this relationship.528

Even if they have clearly worst values of MAE (i.e. at least 5 percentage points more), they529

do not result in strongly lower gains than the NWP based forecasts. The economic gain530

defined in this work is proportional to the expected revenue for the user. As a consequence,531

the linear relationship observed between the MAE and the gain is also valid for the revenue,532

which is the key indicator for the users. Finally, Fig. 8(c), which plots the gain versus the533

RMSE, shows that the predominant error metric used in the academic literature to assess534

the quality of a forecast is unable to provide any relevant information about the added value535

of forecasts in the considered case study. The results observed in Fig. 8 are in tune with536

industry requirements. Indeed, users of solar forecasts commonly ask for provision of the537

MAE. The predominance in the academic literature of the RMSE (Blaga et al., 2019) and538

by consequence of the the forecast skill based on the RMSE to compare and to rank solar539

forecasts should be questioned. Given the results of this case study, we assume that a better540

value is likely reached when all the quality metrics of a forecast (i.e. MBE, MAE and RMSE)541

are improved simultaneously.542

In order to go further, Fig. 9 gives the gain as a function of the two intermediate543

metrics proposed in this work. The wMAE shows a similar behavior as the MAE. Except544

for the persistence based forecasts, the gain is almost proportional to the wMAE. With a545

lower slope and a best alignment of the points, the wMAE is even better to discriminate546

two forecasts that present close values of wMAE. This result agrees with the approach547

proposed by Richardson (Richardson, 2000) that defines a cost-loss function based on the548

cost associated to the consequences of a forecast error. Indeed, the linearity observed between549

the gain and the MAE and also with the wMAE highlights the underlying structure of the550
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Figure 8: Relationship between economical gain of the ESS managed with day-ahead PV forecasts and error
metrics defined into the classical evaluation framework used to assess the quality of the forecasts.

costs associated to an error of forecast. In this specific case study, the cost of a forecast error551

is almost proportional to the level of this error. And more exactly, weighting the error of552

forecasts with the spot price offers an interesting approximation of the cost caused by these553

errors. Finally, the FPF metric, that rewards forecasts with a low level of serial correlation554

of their errors, does not show any clear relationships with the economical gain. This measure555

of the forecasting error, initially designed to minimize the LCOE of a firm power generation,556

seems to not be suitable to study the possibilities offered by the energy arbitrage market.557

Looking in detail at the numerical results summarized in Table 4, we can see that forecasts558

without post-processing give the best economical gains for both ECMWF and NCEP. Indeed,559

the selected post-treatment methods minimize the RMSE (PAR and NN) or the MBE (WB).560

But in return, they deteriorate the MAE. For the specific case study of this work, a good561

post-processing should have reduced the MAE. A last point is also worth noting. The post-562

processing of the PV forecasts leads in almost all the cases to slightly better results for563

both quality metrics (i.e. MBE, RMSE and MAE) and value (i.e. economic gain) than the564

post-processing of the raw GHI provided by the two considered NWPs.565

Regarding the influence of the decomposition model, one can easily note that the BRL566

model has better results than the Erbs model for all the metrics used to assess the quality567

of the forecasts. Consequently, the use of the BRL model also leads to better a economical568

gain. The accuracy of the decomposition model is an important factor to take into account.569

However, for the case study of this work, compared to the choice of the NWP and of the570

post-processing method, the influence of the decomposition model is of lower-ranking.571

7. Conclusion572

This work proposes to highlight relationships between metrics used to assess the quality573

of deterministic forecasts and the added value of these forecasts for the users. A specific574

case study based on an imaginary PV farm coupled with an ESS aiming to maximise the575

revenues using the energy arbitrage opportunities has been used. The deterministic solar576

forecast feeds an optimisation model that generates the charge/discharge profile of the ESS577

one day-ahead. Even if this case study is inspired by real systems, all the results are obtained578

by simulating an imaginary system.579
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Figure 9: Relationship between economical gain of the ESS managed with day-ahead PV forecasts and the
intermediate metrics.

The evaluation framework currently in use by most of the academic researchers of the580

domain has been used to assess the quality of the forecasts. Here, we used the main ones581

(i.e. MBE, MAE, RMSE and the forecast skill based on the RMSE) to evaluate quality of582

our solar forecasts. In addition, we propose to study two intermediate metrics, the weighted583

MAE (wMAE) and the Firm Power Forecasts (FPF), which are easy to compute, which584

require few assumptions about the system and which do not need simulation of the system.585

These intermediate metrics are initially designed to evaluate the value of forecasts under586

specific conditions.587

The results of this work highlight that the metrics based on the Mean Absolute Error588

(MAE and wMAE) exhibit an almost linear relationship with the economical gain of the589

forecasts provided by the two tested NWP models. It is shown that an improvement in590

quality measured by the MAE and wMAE metrics results in an increase of the economical591

gain. Conversely, the persistence based forecasts do not show the same tendency and lead to592

poor gain. Furthermore, for the specific case studied in this work, the metrics based on the593

Root Mean Square Error (RMSE), such as the forecast skill widely used by the academic594

community, are less efficient to assess the gain provided by an improvement of the forecast595

quality. This results stress that is it important to consider more than one metric to relevantly596

assess the quality of a forecast.597

In order to validate and to expand the study of the relationships between the metrics598

designed to assess the quality of solar forecasts and the associated gain for the user, this kind599

of study should be done on cases based on real systems and also on other types of systems and600

usages of the forecasts. For instance, ancillary services markets are an important additional601

source of revenue for solar plants equipped with ESS.602
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9. Appendices607

Appendix A PAR Post-processing608

In the development of MOS equations based on RPR (rolling periodic regression), past609

measurements (GHI or PV power) and archived NWP model forecast (NCEP or ECMWF)610

are used with a multivariate regression model to determine the best output minimizing611

the sum of squared residuals. The regression coefficients (Φh) are estimated by the most612

common estimator using both experimental and observed data. A classical formalism using613

the Moore–Penrose pseudo-inverse matrix (Penrose, 1956) is used and generates Φh for614

particular predictand according to the time horizon (h). This estimator is theoretically615

unbiased and consistent if the errors have finite variance and are uncorrelated with the616

regressors. Considering the time step (30min) and the 72h max forecast horizon, the RPR617

model is equivalent to 144 AR models (equivalent to the periodic autoregressive model PAR618

in (Franses and Paap, 1994; Voyant et al., 2018): one model for each h. In the case of619

GHI predictions (the approach is equivalent for the PV power) and considering the (1× 4)-620

dimensional vector of explanatory variables X (GHINWP for the NWP output concerning the621

GHI, GHICS for the clear sky model, θz for the solar zenith angle and N̂ for the nebulosity622

predicted by the NWP):623

X = [ĜHINWP(t+ h),GHICS(t+ h), sin(θz(t+ h), N̂(t+ h)]. (A.1)

And the (1× 5)-dimensional column vector Φh:624

Φh = [φ1h, φ2h, φ3hφ4h, φ5h]T . (A.2)

The RPR model is equivalent to:625

ĜHI(t+ h) = X × Φh. for h = 1 : 144. (A.3)

Rather than operate the training step 1 time for the 144 parameters, a rolling analysis of626

a time series model is often used to assess the model’s stability over time. When analyzing627

meteorological time series data using a statistical model, a key assumption (which is not628

really proved) is that the parameters of the model are constant over time. In this study, we629

propose a parameter estimate over a rolling or moving window of a fixed size through the630

sample (1 year and operated each day) (Numan, 2016; Yuan and Vanrolleghem, 1999). If631

the parameters change at some point during the sample, then the rolling estimates should632

capture this instability and improve the predicor performance. Note that this methodology633

is possibe due to the low resources required for the use of linear model, more than 50,000634

parameters estimated (365× 144) in less than 5 seconds with a basic laptop.635

To post-process the PV production, slight changes are operate in the inputs. Instead of636

the GHI, we used the PV production forecasts derived from the NWPs. In the same way,637

instead of the GHICS, we used a PV production under clear sky condition derived from the638

clear sky irradiances (global, diffuse and direct) provided by the McClear model (Lefèvre639

et al., 2013) and available for free on the SoDa website (Atmosphere Monitoring Service,640
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2020). As for the forecasts, the transposition models of Hay and Davies (1980) with an641

albedo of 0.2 has been used to compute the tilted irradiance.642

Appendix B NN Post-processing643

Artificial Neural Networks (ANNs or simply NNs) are data driven approaches capable644

of performing a non-linear mapping between sets of input and output variables. The most645

popular form of neural network is the so-called multilayer perceptron (MLP) structure (see646

(Bishop, 1995) for details). The MLP structure consists of an input layer, one or several647

hidden layers and an output layer. The input layer gathers the model’s input vector x while648

the output layer yields the model’s output y. Fig. 10 represents a one hidden layer MLP.649

The hidden layer is characterized by several non-linear functions (or hidden neurons).650

The non-linear function (also called activation function) is usually the tangent hyperbolic651

function f(x) = ex−e−x

ex+e−x . Therefore, a neural network with d inputs, h hidden neurons and a652

single linear output unit defines a non-linear parameterized mapping from an input vector653

x to an output y given by the following relationship:654

y = y(x,w) =
h∑

j=0

(
wjf

( d∑
i=0

wjixi

))
. (B.1)

The NN parameters, denoted by the parameter vector w = {wj, wji}, govern the non-linear655

mapping.656

The NN parameters w are estimated during a phase called the training or learning phase.657

During this phase, the NN is trained using a dataset (called training set) of N input and658

output examples. The second phase, called the generalization phase, consists of evaluating659

the ability of the NN to generalize, that is to say, to give correct outputs when it is confronted660

with examples that were not seen during the training phase. Notice that these examples are661

part of a data set called test set.662

As mentioned above, NNs have the appealing capability to recognize patterns in data.663

Indeed, NNs are able to approximate any continuous function at an arbitrary accuracy,664

provided the number of hidden neurons is sufficient. However, it is necessary to match665

the complexity of the NN to the problem being solved. The complexity determines the666

generalization capability (measured by the test error) of the model since a NN that is too667

complex will give poor predictions. In the NN community, this problem is called overfitting.668

Several techniques like pruning or Bayesian regularization (Bishop, 1995) can be employed669

to control the NN complexity. In this work, we used the Bayesian Technique in order to670

control the NN complexity and therefore the generalization capability of the model (Bishop,671

1995).672

In the present work, an NN is designed to derive the bias correction function. More673

precisely, the NN output (i.e. the modeled bias BiasC) is related to the predicted clear sky674

index and the solar zenith angle SZA. For instance, the MOS-corrected ECWMF forecasts675

denoted here ECMWFc are then obtained by subtracting the modeled bias from the original676

23



Figure 10: Sketch of a MLP with d inputs and h hidden units, in our case, d=2 (clear sky index and
cos(SZA). The output y is the modeled bias correction.

raw ECMWF forecasts ECMWFo:677

ECMWFc = ECMWFo −BiasC. (B.2)
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Forecasting
model

Decomp.
model

MBE
(%)

RMSE
(%)

MAE
(%)

FS
(%)

wMAE
(AUD/kWpv)

FPF
(AUD/kWpv)

Economical gain (%)
2016 2020 2025 2030

Perfect - 0 0 0 100 0 0 55,6 55,8 56,0 56,3
Persistence - -0,06 40,2 26,1 -3,3 29,55 7,39 26,5 26,6 26,8 27,0
Persistence kt Erbs 0,57 38,8 25 0 28,37 7,29 26,9 27,2 27,4 27,6
Persistence kt BRL 2,07 39 25,4 0 28,9 7,11 27,2 27,3 27,5 27,8
NCEP Erbs 0,78 29,5 17,9 24 19,88 12,3 32,0 32,1 32,3 32,5
NCEP BRL 1,96 29,2 17,8 25,1 19,57 12,42 33,0 33,1 33,3 33,5
NCEP BRb Erbs 0,06 29,4 17,9 24,3 19,97 12,08 31,3 31,4 31,6 31,8
NCEP BRb BRL 1,08 29 17,7 25,6 19,42 12,16 32,5 32,6 32,8 33,0
NCEP Bra Erbs -0,05 29,3 18 24,5 20,1 12,03 31,1 31,2 31,4 31,6
NCEP Bra BRL 0,03 28,8 17,9 26,1 19,89 11,78 31,2 31,3 31,5 31,7
NCEP PARb Erbs -2,57 25,4 17,4 34,7 20,22 12,2 30,8 30,9 31,1 31,3
NCEP PARb BRL -1,01 25,1 17,1 35,6 19,53 12,47 33,3 33,5 33,7 33,9
NCEP PARa Erbs -0,9 24,7 18,3 36,4 20,97 11,77 31,1 31,2 31,4 31,6
NCEP PARa BRL -0,9 24,5 18,2 37,1 20,77 11,61 31,3 31,5 31,6 31,9
NCEP NNb Erbs -2,59 25,9 18,5 33,3 21,71 10,63 28,0 28,1 28,3 28,5
NCEP NNb BRL -0,86 25,5 18,2 34,4 21,03 11,48 30,6 30,7 30,9 31,1
NCEP Nna Erbs -1,86 25,8 19,9 33,6 23,67 11,9 26,1 26,2 26,4 26,6
NCEP Nna BRL -1,83 25,5 19,7 34,5 23,48 11,77 26,3 26,4 26,6 26,8
ECMWF Erbs -0,71 23,9 14,4 38,6 16,19 8,25 35,7 35,9 36,1 36,4
ECMWF BRL 0,82 23,6 14 39,5 15,46 8,23 38,1 38,2 38,5 38,7
ECMWF BRb Erbs -0,96 23,8 14,4 38,6 16,15 8,29 35,7 35,9 36,1 36,4
ECMWF BRb BRL 0,54 23,6 14,1 39,5 15,47 8,26 37,9 38,0 38,3 38,5
ECMWF Bra Erbs 0 23,9 14,5 38,6 16,26 8,68 36,7 36,9 37,1 37,3
ECMWF Bra BRL 0,17 23,5 14,2 39,7 15,68 8,03 37,3 37,5 37,7 38,0
ECMWF PARb Erbs -2,28 23,4 15,4 39,9 17,67 7,56 33,1 33,3 33,4 33,7
ECMWF PARb BRL -0,84 22,9 14,9 41,3 16,74 7,75 35,9 36,1 36,3 36,5
ECMWF PARa Erbs -0,8 22,8 16,1 41,3 18,16 9,04 33,9 34,0 34,2 34,5
ECMWF PARa BRL -0,74 22,5 15,8 42,2 17,92 8,68 34,5 34,6 34,8 35,1
ECMWF NNb Erbs -2,81 23,2 15,7 40,2 18,03 7,35 32,4 32,5 32,7 32,9
ECMWF NNb BRL -1,27 22,7 15,1 41,7 17,05 7,41 35,3 35,5 35,7 36,0
ECMWF Nna Erbs -1,44 23 16,4 40,9 18,83 8,54 32,7 32,9 33,1 33,3
ECMWF Nna BRL -1,45 22,7 16,1 41,8 18,37 8,38 33,6 33,8 34,0 34,2

Table 4: Forecast quality metrics, intermediate metrics and values of the PV forecasts

References678

Abdulla, K., de Hoog, J., Muenzel, V., Suits, F., Steer, K., Wirth, A., Halgamuge, S., 2018. Optimal679

Operation of Energy Storage Systems Considering Forecasts and Battery Degradation. IEEE Transactions680

on Smart Grid 9, 2086–2096.681

AEMC, 2015. Bidding in Good Faith, Finale Rule Determination.682

AEMO Markets, 2018. Guide to generators exemptions and classification of generating units.683

AEMO System Capability, 2016. Pre-Dispatch, System Operating Procedure.684

Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de Pison, F., Antonanzas-Torres, F., 2016.685

Review of photovoltaic power forecasting. Solar Energy 136, 78–111.686

Antonanzas, J., Perpinan-Lamigueiro, O., Urraca, R., Antonanzas-Torres, F., 2020. Influence of electricity687

market structures on deterministic solar forecasting verification. Solar Energy , S0038092X20303923.688

Atmosphere Monitoring Service, 2020. SoDa (Solar radiation Data),CAMS McClear service for estimat-689

ing irradiation under clear-sky. http://www.soda-pro.com/web-services/radiation/cams-mcclear.690

Accessed: 2020-03-27.691

Aurecon Group, 2020. Hornsdale Power Reserve Year 2 Technical and Market Impact Case Study. Technical692

Report. Aurecon Group.693

25



Berrada, A., Loudiyi, K., 2016. Operation, sizing, and economic evaluation of storage for solar and wind694

power plants. Renewable and Sustainable Energy Reviews 59, 1117–1129.695

Bertrand, C., Vanderveken, G., Journée, M., 2015. Evaluation of decomposition models of various complexity696

to estimate the direct solar irradiance over Belgium. Renewable Energy 74, 618–626.697

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press, Inc., USA.698

Blaga, R., Sabadus, A., Stefu, N., Dughir, C., Paulescu, M., Badescu, V., 2019. A current perspective on the699

accuracy of incoming solar energy forecasting. Progress in Energy and Combustion Science 70, 119–144.700

Blanc, P., Wald, L., 2010. On the intraday resampling of time-integrated values of solar radiation, in: 10th701

EMS Annual Meeting (European Meteorological Society), Zurich, Switzerland.702

Bridier, L., Hernández-Torres, D., David, M., Lauret, P., 2016. A heuristic approach for optimal sizing of703

ESS coupled with intermittent renewable sources systems. Renewable Energy 91, 155–165.704

Choi, S., Min, S., 2018. Optimal scheduling and operation of the ess for prosumer market environment in705

grid-connected industrial complex. IEEE Transactions on Industry Applications 54, 1949–1957.706

Coimbra, C.F., Kleissl, J., Marquez, R., 2013. Overview of Solar-Forecasting Methods and a Metric for707

Accuracy Evaluation, in: Solar Energy Forecasting and Resource Assessment. Elsevier, pp. 171–194.708

Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N., 2013. Review of solar irradiance forecasting709

methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews 27,710

65–76.711

Erbs, D., Klein, S., Duffie, J., 1982. Estimation of the diffuse radiation fraction for hourly, daily and712

monthly-average global radiation. Solar Energy 28, 293–302.713

Espinar, B., Wald, L., Blanc, P., Hoyer-Klick, C., Schroedter Homscheidt, M., Wanderer, T., 2011.714

Project ENDORSE - Excerpt of the report on the harmonization and qualification of meteorological715

data:Procedures for quality check of meteorological data. Research Report D3.2. Mines ParisTech.716

Faraji, J., Abazari, A., Babaei, M., Muyeen, S.M., Benbouzid, M., 2020. Day-ahead optimization of prosumer717

considering battery depreciation and weather prediction for renewable energy sources. Applied Sciences718

10.719

Fathima, H., Palanisamy, K., 2015. Optimized Sizing, Selection, and Economic Analysis of Battery Energy720

Storage for Grid-Connected Wind-PV Hybrid System. Modelling and Simulation in Engineering 2015,721

1–16.722

Finkel, A., Moses, K., Munro, C., Effeney, T., O’Kane, M., 2017. Independent Review into the Future723

Security of the National Electricity Market - Blueprint for the Future. Technical Report. Department of724

the Environment and Energy. Type: dataset.725

Franses, P.H., Paap, R., 1994. Model selection in periodic autoregressions†. Oxford Bulletin of Economics and726

Statistics 56, 421–439. https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0084.1994.727

tb00018.x.728

Grant Thornton and Clean Energy Pipeline, 2019. Renewable energy discount rate survey results - 2018.729

Technical Report. Grant Thornton.730

Gueymard, C.A., 2009. Direct and indirect uncertainties in the prediction of tilted irradiance for solar731

engineering applications. Solar Energy 83, 432–444.732

Hay, J.E., Davies, J., 1980. Calculations of the solar radiation incident on an inclined surface, in: roceedings733

of First Canadian Solar Radiation Data Workshop, Canada. pp. 59–72.734

Hofmann, M., Seckmeyer, G., 2017. Influence of Various Irradiance Models and Their Combination on735

Simulation Results of Photovoltaic Systems. Energies 10, 1495.736

Holmgren, W.F., Hansen, C.W., Mikofski, M.A., 2018. pvlib python: a python package for modeling solar737

energy systems. Journal of Open Source Software 3, 884.738

Iliadis, Petros, Domalis, Stefanos, Nesiadis, Athanasios, Atsonios, Konstantinos, Chapaloglou, Spyridon,739

Nikolopoulos, Nikos, Grammelis, Panagiotis, 2019. Advanced energy management system based on pv740

and load forecasting for load smoothing and optimized peak shaving of islanded power systems. E3S Web741

Conf. 113, 03001.742

IRENA, 2017. Electricity storage and renewables: Costs and markets to 2030. International Renewable743

Energy Agency, Abu Dhabi, UE.744

26



IRENA, 2019. Renewable Power Generation Costs in 2018. International Renewable Energy Agency, Abu745

Dhabi, UE.746

IRENA, 2020. Electricity Storage Valuation Framework: Assessing system value and ensuring project747

viability. IRENA, Abu Dhabi, UE. international renewable energy agency edition.748

King, D.L., Gonzalez, S., Galbraith, G.M., Boyson, W.E., 2007. Performance Model for Grid-Connected749

Photovoltaic Inverters. Technical Report SAND2007-5036. Sandia National Laboratories.750

Kraas, B., Schroedter-Homscheidt, M., Pulvermüller, B., Madlener, R., 2011. Economic Assessment of a751

Concentrating Solar Power Forecasting System for Participation in the Spanish Electricity Market. SSRN752

Electronic Journal .753

Lauret, P., Diagne, M., David, M., 2014. A Neural Network Post-processing Approach to Improving NWP754

Solar Radiation Forecasts. Energy Procedia 57, 1044–1052.755

Lauret, P., Lorenz, E., David, M., 2016. Solar Forecasting in a Challenging Insular Context. Atmosphere 7,756

18.757
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Perez, M., Perez, R., Rábago, K.R., Putnam, M., 2019. Overbuilding & curtailment: The cost-effective788

enablers of firm PV generation. Solar Energy 180, 412–422.789

Perez, R., Lorenz, E., Pelland, S., Beauharnois, M., Van Knowe, G., Hemker, K., Heinemann, D., Remund,790

J., Müller, S.C., Traunmüller, W., Steinmauer, G., Pozo, D., Ruiz-Arias, J.A., Lara-Fanego, V., Ramirez-791

Santigosa, L., Gaston-Romero, M., Pomares, L.M., 2013. Comparison of numerical weather prediction792

solar irradiance forecasts in the US, Canada and Europe. Solar Energy 94, 305–326.793

Pousinho, H., Silva, H., Mendes, V., Collares-Pereira, M., Pereira Cabrita, C., 2014. Self-scheduling for794

energy and spinning reserve of wind/csp plants by a milp approach. Energy 78, 524–534.795

27



Ramahatana, F., David, M., 2019. Economic optimization of micro-grid operations by dynamic programming796

with real energy forecast. Journal of Physics: Conference Series 1343, 012067.797

Richardson, D.S., 2000. Skill and relative economic value of the ECMWF ensemble prediction system.798

Quarterly Journal of the Royal Meteorological Society 126, 649–667.799

Ridley, B., Boland, J., Lauret, P., 2010. Modelling of diffuse solar fraction with multiple predictors. Renew-800

able Energy 35, 478–483.801

Riffonneau, Y., Bacha, S., Barruel, F., Ploix, S., 2011. Optimal Power Flow Management for Grid Connected802

PV Systems With Batteries. IEEE Transactions on Sustainable Energy 2, 309–320.803

Sengupta, M., Habte, A., Gueymard, C., Wilbert, S., Renne, D., 2017. Best Practices Handbook for the804

Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition. Technical805

Report NREL/TP-5D00-68886, 1411856. NREL.806

Short, W., Packey, D.J., Holt, T., 2005. A manual for the economic evaluation of energy efficiency and807

renewable energy technologies. University Press of the Pacific, Honolulu, Hawaii. repr. from the 1995 ed808

edition. OCLC: 636197534.809

Sobri, S., Koohi-Kamali, S., Rahim, N.A., 2018. Solar photovoltaic generation forecasting methods: A810

review. Energy Conversion and Management 156, 459–497.811

Voyant, C., Gooijer], J.G.D., Notton, G., 2018. Periodic autoregressive forecasting of global solar irradiation812

without knowledge-based model implementation. Solar Energy 174, 121 – 129.813

Wittmann, M., Breitkreuz, H., Schroedter-Homscheidt, M., Eck, M., 2008. Case Studies on the Use of Solar814

Irradiance Forecast for Optimized Operation Strategies of Solar Thermal Power Plants. IEEE Journal of815

Selected Topics in Applied Earth Observations and Remote Sensing 1, 18–27.816

Wouters, C., Fraga, E.S., James, A.M., 2015. An energy integrated, multi-microgrid, MILP (mixed-integer817

linear programming) approach for residential distributed energy system planning – A South Australian818

case-study. Energy 85, 30–44.819

Yang, D., 2019. Standard of reference in operational day-ahead deterministic solar forecasting. Journal of820

Renewable and Sustainable Energy 11, 053702.821

Yang, D., Alessandrini, S., Antonanzas, J., Antonanzas-Torres, F., Badescu, V., Beyer, H.G., Blaga, R.,822

Boland, J., Bright, J.M., Coimbra, C.F., David, M., Frimane, , Gueymard, C.A., Hong, T., Kay, M.J.,823

Killinger, S., Kleissl, J., Lauret, P., Lorenz, E., van der Meer, D., Paulescu, M., Perez, R., Perpiñán-824
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