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Abstract

This paper concerns the numerical simulation of the hydroelastic vibrations of an elastic tank containing

a free surface liquid, around a geometrically nonlinear equilibrium configuration that takes into account the

prestress effect due to the liquid weight. The computational methodology is the following. Firstly, the hydro-

static pressure on the fluid-structure interface is considered as a non-uniform follower force which depends

on the liquid height. Therefore, the prestressed equilibrium at a given free-surface level, called current con-

figuration in the paper, is computed as a geometrically nonlinear problem, in which the height of the liquid

is considered as an evolution parameter. We start from an empty structure, defined as the reference config-

uration, which is progressively filled to reach the level of the chosen configuration. Therefore the calculation

of hydroelastic vibrations of a tank filled with liquid as a function of a emptying rate is straightforward. The

methodology is validated with experimental results extracted from literature.
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1. Introduction

This study deals with a hydroelastic problem, namely the linearized vibrations of elastic structures, filled

with an inviscid incompressible fluid, taking into account the prestress effect due to the fluid weight at the

fluid-structure interface and neglecting the solid weight. Note that the weight effect in structural vibrations

has already been the subject of several analyses (see e.g. [1]). Let us recall that linearized hydroelastic5

vibration analysis is of great interest in the study of liquid rocket launchers control and stability. Generally,

in hydroelastic vibrations, the elasticity of the tank is of prime importance together with the kinetic energy of

the liquid considered as incompressible (the called added mass effect [2, 3]). This means that compressibility

effects of the liquid (its potential energy) as well as the effects of sloshing of the free surface (potential energy

due to gravity and/or surface tension) can be neglected [4]. Of course, the gravity effects are present to define10

the equilibrium static configuration around which the vibrations are studied. Furthermore, those tanks can

be pressurized, and effects of the pressure above the liquid can be significant especially for liquid propelled

launchers. They have been taken into account through classical prestress geometrical terms considering

specific linearization approaches [5, 6]. For general nonlinear fluid-structure interaction in the time domain,

see for instance [7]. According to authors knowledge, the weight of the liquid on the structural vibrations15

has never been taken into account in coupled three-dimensional fluid-structure computations models [8].

This constitutes the first originality of the paper. Nevertheless, it should be mentioned that semi-analytical

approaches exist for the study of pre-deformed membrane in a semi-infinite fluid medium [9] or for rigid

cylindrical tank with an elastic bottom [10].

In addition, for liquid propelled launchers, the evolution of the frequencies as a function of the emptying20

rate is of prime importance. The period of vibration of the liquid structure system being very small com-

pared to the time needed to emptying the tank during the launch, the vibrations of the system are classically

performed for various liquid height which is considered as an evolution parameter. One major interest of the

method presented here is to compute the vibrations considering nonlinear static prestressed state obtained

through a procedure considering the weight of the liquid, depending on its height, from an empty situation25

up to a required filling level. It allows the computation of the hydroelastic vibrations corresponding to the

appropriate liquid height. This constitutes the second originality of the approach.

Usually, the effects of geometric nonlinearities of prestressed type, due to the presence of the liquid (ef-

fects of gravity linked to the hydrostatic pressure which induces a non-uniform following force) are generally30

neglected in fluid-structure vibrations problems. Therefore, it is important to assess these effects on the lin-

earized vibrations analysis around the prestressed state. Studies concerning the estimation of the prestress,

from a nonlinear static evolution problem due internal or external pressure, can be found in [11, 12, 13] and

notably for hydrostatic pressure in [14, 15, 16].

35

Throughout all the paper, in static as in dynamic, it should be noted that the equation in the structure
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and on the fluid-structure interface are considered through an appropriate reciprocal mapping on a reference

configuration, defined as the structure empty structure (in vacuo). This constitutes also an original aspect

of the computational approach.

40

The computational methodology used in this work is based on the finite element method for both the

structure and fluid domains (see e.g.[2]). For FSI problems with external fluid, other numerical approaches

can advantageously be used, such as the immersed methods [17]. To the best authors knowledge, very few

experiments exist in literature to quantify the prestressed effect investigated in this contribution. The com-

putational results presented in this work can still be compared with the experimental results given in [18] in45

order to validate the numerical developments.

The outline of the paper is as follows. Following this introduction, in Section 2, the nonlinear static liquid-

structure computation as function of the liquid height is introduced. In Section 3, the linearized harmonic

hydroelastic problem is developed. In Section 4, the computational methodology is presented. In Section 5,50

comparison and validation with experiments are discussed. Finally, in Section 6 conclusion is given followed

by references.

2. Nonlinear static liquid-structure computation as function of the liquid height

For general studies on theoretical and computational nonlinear structural mechanics, see references [19,

20, 21, 22, 23].55

2.1. Definition of the parameterized prestressed configuration

The structure is supposed to be nonlinear elastic isotropic and relevant of Saint-Venant Kirchhoff con-

stitutive relations (i.e. large displacements and small strain assumption). We define as the prestressed

configuration, the stresses in the structure containing the liquid given in the called current configuration Ω′
s

such that ∂Ωs = Σ′
i ∪ Σ′

u ∪ Σ′
e where Σ′

i is the fluid-structure interface, Σ′
u is the surface with prescribed60

displacements and Σ′
e is the surface of application of external load (see Fig. 1). Let (ex, ey, ez) be the or-

thogonal unit vectors which define the Cartesian coordinates system. Concerning the liquid with horizontal

free-surface under constant gravity force g = −gez, the equations are relevant of the classical hydrostatic

equation due to gravity. We do not consider here surface tension of the free surface. Thus, the prestressed

state in the structure is only due to the weight of liquid seen as non-uniform follower forces [24, 25] as shown65

in Fig 1. The liquid pressure on the interface only depends on the wetted interface position for a given

configuration.

In practice, this problem will be solved progressively by filling the tank from an empty state until the

prestressed configuration. Thus, the problem is treated as a parameterized problem depending on the fluid

height denoted by l.70
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Figure 1: Various filling liquid levels in an elastic tank considering an evolution of the liquid height l.

2.2. Definition of the reference configuration

It is important to note (see [15]) that we will consider as the reference configuration, the empty structure,

at equilibrium, at rest in a Galilean frame of reference. More precisely, this means that the current structural

configuration, with the fluid structure interface, will be treated through an appropriate reciprocal mapping

on this reference configuration as seen in Fig 2.75

Figure 2: Reciprocal mapping of the liquid-structure interface from the current configuration on the reference configuration.

2.3. Computation of the prestressed state as a function of the liquid height

The structural displacement field is denoted by us = usex+vsey+wsez in a Cartesian coordinate system.

Thus, the current position x′ = x′ex + y′ey + z′ez is defined by:

x′ = x+ us (1)

where x = xex + yey + zez is the reference position of a material point in the structure on its reference80

configuration Ωs bounded by ∂Ωs = Σi ∪ Σu ∪ Σe, which are respectively, the interface, the surface with
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prescribed displacement and the distributed load surfaces mapped on the reference configuration. It should

be noted that the nonlinear static problem is expressed only in terms of structural displacement. The static

pressure, which depends on the structural displacement, is defined on the current fluid-structure interface Σ′
i,

considered on a structural material point such that:85

ps(l;us) =







0 if z′ ≥ l

−ρfg(z
′ − l) if z′ < l

(2)

where z′ = (x+ us) · ez.

Let the transformation gradient and the Green-Lagrange strain operator, with respect to the reference

position x be defined as:

F (us) = I +Gradus (3)

E(us) =
1

2
(FT(us)F (us)− I) (4)

The determinant of the transformation gradient is denoted by J as:

J(us) = det(F (us)) (5)

For sake of brevity, the structural body forces are neglected. The given force depends upon the liquid height

l as seen in Eq. (2). We will consider here the structure as clamped on Σu. The structural mechanical

equations are given on the reference configuration Ωs, considering F = F (us), E = E(us) and J = J(us),

such that:

−Div(FS) = 0 in Ωs (6)

D : E = S in Ωs (7)

FSn = JF−Tpsn on Σi (8)

us = 0 in Σu (9)

where Eq. (6) is the balance of linear momentum, Eq. (7) is the Saint-Venant Kirchhoff constitutive relation,

which links the second Piola-Kirchhoff stress S, consequently S = S(us), where D is a constant fourth order90

tensor of elasticity in which the notation “:” correspond to the trace operator, Eq. (8) is the equilibrium

of follower forces surface traction and Eq. (9) correspond to a fixed displacement boundary condition. We

recall that the pressure ps depends of the unknown function us and of the given data only (i.e. the height l).

Let Cu be the admissible space of regular displacement field:

Cu = {v ”regular enougth”, such that v = 0 in Σu} (10)

Let introduce a virtual displacement field δu in Cu. The static nonlinear problem consists in finding the

displacement field us in Cu such that:

δWint(us, δu)− δWext(l;us, δu) = 0, ∀ δu ∈ Cu (11)
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where δWint and δWext are respectively the internal and external virtual works defined as:

δWint(us, δu) =

∫

Ωs

δE(us, δu) : S(us)dΩ (12)

δWext(us, δu) =

∫

Σi

−ps(l;us) J(us)F
−T(us)n · δu dΣ (13)

where the term δE is the virtual Green-Lagrange matrix defined as follows:

δE(us, δu) =
1

2

(

δFT(δu)F (us) + FT(us)δF (δu)
)

(14)

with

δF (δu) = Gradδu (15)

The resolution of the problem Eq. (11) is based on the finite element approach. It should be noted that, for95

computational and software facilities, the computation of the static response of the structure, for each level

of liquid, is carried out on the reference configuration defined in Section 2.2. A finite element discretization

of the 3D domain Ωh
s and its boundaries ∂Ωh

s = Σh
i ∪Σh

u∪Σh
e is now considered (see Fig. 1 for the continuous

representation on the current configuration). The discretized displacement field and its virtual form are

denoted uh
s and δuh such that:100

uh
s = Nuus and δuh = Nuδu (16)

where Nu is a known shape function matrix, us is a unknown nodal vector and δu is the associated virtual

nodal displacement. Considering Eq. (11), the discretized problem consists in finding u such that:

fint(us)− fext(l;us) = 0 (17)

where fint and fext are respectively the internal and external finite element forces defined as:

δWint(u
h
s , δu

h) = δuTfint(us) (18)

δWext(u
h
s , δu

h) = δuTfext(us) (19)

The resolution of this nonlinear problem can be done considering a Newton-Raphson type algorithm. The

geometrical, the material and the follower forces tangent stiffness matrices, respectively denoted by Kg, Km

and Kf defined as:

∂fint
∂us

= Kg +Km and
∂fext
∂us

= Kf (20)

Those operators are needed in the Newton-Raphson loop to obtain a quadratic convergence rate of the

nonlinear solution. We will see in the following that Km and Kg are also useful to take into account the

prestressed effect on the linearized hydroelastic vibrations of the fluid-structure system. If the structure

is completely free (i.e. no prescribed displacement), the tangent stiffness matrices should be adapted (e.g.

through a pseudo-inverse analysis) to the singularity involved with respect to the rigid body motions.105
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3. Linearized harmonic hydroelastic problem

3.1. Liquid-structure assumption of the linearized hydroelastic problem

Let assume linearized vibrations of the fluid-structure system around a known equilibrium state (defined as

the prestressed state which depends on the fluid height). The circular frequency is denoted by ω. Regarding

the liquid, it is assumed to be inviscid, homogeneous and incompressible. Thus, those small motions are110

irrotational. Of course, for large amplitude nonlinear vibrations, this irrotational assumption would be not

relevant but this case is out of the scope of this article. Nevertheless for moderate nonlinear vibrations, not

considered here, the hypotheses of irrotationality could be maintained. Consequently, the equations of the

fluid can be expressed through a scalar field namely the pressure field or the displacement potential field.

We suppose that during those linearized vibrations, the potential energy of the free-surface, due to gravity115

and to surface tension, are negligeable with respect to the kinetic energy of the fluid and to the potential

and kinetic energies of the structure. The consequent is that, for the fluid dynamic equation, the free-surface

condition is expressed as a zero pressure condition (or zero potential of displacement condition). Let us recall

that the gravity effect, on the fluid structure interface, has been of course taken into account for the static

equilibrium and in the parameterized evolution of the static prestressed computations.120

3.2. Linearized equations in the structure

The structural part of the system is supposed to be excited by a harmonic distributed load denoted by

f . The response of the prestressed system is defined by knowing the dynamic structural displacement u,

knowing the static displacement us which is the results of the previous static nonlinear problems. Thus, the

total displacement denoted by utot is defined as:

utot = us + u (21)

The structure perturbation u is supposed to be small compared to the characteristic length of the structure

ts (e.g. the tank thickness) such that:
|| u ||L2

ts
<< 1 (22)

The current harmonic configuration is thus supposed to be the same configuration of the prestressed one (i.e.

called the current configuration from the static problem). We take a Taylor series expansion of the virtual

works, in which we retain up to the first order term in u written as follows:

δWacc(utot, δu) = 0 − ω2m(u, δu) (23)

δWint(utot, δu) = δWint(us, δu) + kt(us;u, δu) (24)

δWext(h;utot, δu) = δWext(l;us, δu)
︸ ︷︷ ︸

static

− c(us; p, δu) + f(δu)
︸ ︷︷ ︸

dynamic

(25)

where the term p corresponds to the dynamic pressure perturbations of the fluid at the fluid-structure interface

such that:125

ptot = ps + p (26)
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The terms involved in the linearized virtual acceleration and external works can be expressed on the reference

configuration knowing the static displacement as follows:

m(u, δu) =

∫

Ωs

ρsu · δu dΩ (27)

f(δu) =

∫

Σe

f · δu dΣ (28)

c(us; p, δu) =

∫

Σi

pJ(us)F
−T(us)n · δu dΣ (29)

where m is the virtual work induced by the inertia of the structure, f is the external fluctuation load and

c is the coupling operator between the fluctuation of pressure and the virtual displacement. The virtual

potential work from the tangent stiffness is defined as the sum of the geometrical and the material stiffness

contributions. Then, the expression of the geometrical and material virtual stiffness works km and kg are

given as:

km(us;u, δu) =

∫

Ωs

δE(us, δu) : D : [ε(u) + γ(us,u)] dΩ (30)

kg(us;u, δu) =

∫

Ωs

γ(u, δu) : D : S(us) dΩ (31)

kt = km + kg (32)

where the operators ε and γ, such that γ(u,v) = γ(v,u), depend on the gradient defined for given displace-

ment fields u and v as follows:

ε(u) =
1

2
[GradTu+Gradu] (33)

γ(u,v) =
1

2
[GradTuGradv +GradTvGradu] (34)

Finally, the linearized harmonic problem consists in finding ud ∈ Cu, knowing us such that:

kt(us;u, δu)− c(us; p, δu)− ω2m(u, δu) = f(δu), ∀ δu ∈ Cu (35)

It can be seen that the operators km and kg are symmetric in u and δu. For the same reasons indicated

in the previous section, the variational formulation of the local equations of the structure is posed on the

reference configuration (see Section 2.2). That is why the coupled term representing the virtual work done

by the dynamic pressure fluctuation p on the virtual normal displacement is written here not on the cur-

rent configuration e.g. the structure filled with a liquid with free surface at height l, but on the reference130

configuration.

3.3. Linearized liquid equations

We are interested in the linearized vibrations of the liquid part. Since the liquid is irrotational, the

displacement uf is derived from a potential displacement ϕ with respect to the liquid configuration at rest

Ω′

f (the static liquid configuration) as:135

uf = gradϕ (36)

8



The relations in the fluid domain involving the fluctuation of dynamic pressure p and the fluid motion such

that are given as:

divuf = 0 in Ω′

f (37)

gradp− ω2ρfuf = 0 in Ω′

f (38)

uf · n
′ = u · n′ in Σ′

f (39)

where the Eq. (37) is due to the incompressibility condition of the fluid motion, Eq. (38) correspond to

the linear Euler equations and Eq. (39) corresponds to the normal displacement continuity between the

normal fluid displacement field uf · n
′ and the normal solid displacement field u · n′ on the liquid-structure

interface denoted by Σ′

i, in which n′ denotes the external unit normal with respect to the solid. Considering

the previous equations and the boundary conditions, expressed in term of potential displacement field ϕ as140

follows:







∆ϕ = 0 in Ω′

f

gradϕ · n′ = u · n′ in Σ′

i

ϕ = 0 in Γ′

(40a)

(40b)

(40c)

Eq. (40) involves only the geometry and shows that ϕ is a linear function of uf and that consequently, “the

kinetic energy” of the incompressible liquid:

Ekin =
1

2

∫

Ω′

f

ρf | ∇ϕ |2 dΩ

(

e.g.
1

2

∫

Ω′

f

ρf | uf |
2 dΩ

)

, (41)

is a quadratic form of uf such that the discretized form is the classical added mass matrix operator [2, 3].

Let us take the variational formulation of Eqs. (40) in the current configuration of the fluid:

∫

Ω′

f

gradϕ · gradδϕ dΩ′ +

∫

Σ′

i

u · n′ δϕ dΣ′ = 0 ∀δϕ ∈ Cϕ (42)

where Cϕ the space of regular functions define on Ω′

f verifying Eq. (40c). It should be noted that the term

expressed in Σ′
i, will be written, through the reciprocal mapping, on the reference configuration, defined in

Section 2.2, such that:
∫

Σ′

i

δϕn′ · u dΣ′ =

∫

Σi

δϕ J(us)F
-T(us)n · u dΣ (43)

For sake of brevity, we will use the same notations for the unknown fields u and ϕ defined either on Ω′

f and

Σ′
i or Ωf and Σi. Finally, the problem expressed in term of the variable ϕ (instead of p) and u, can be written

as follows:

h(δϕ, ϕ) + c(us; δϕ,u) = 0, ∀δϕ ∈ Cϕ (44)

9



where the operator h correspond to the virtual work of the fluid kinetic energy and c corresponds to the

liquid -structure coupling operator:

h(ϕ, δϕ) =

∫

Ω′

f

gradϕ · gradδϕ dΩ′ (45)

c(us; δϕ,u) =

∫

Σi

δϕJ(us)F
−T(us)n · u dΣ (46)

It should be noted that the discretization of the two terms of the variational formulation will be carried145

through two different aspects. The first contribution which involves only the displacement potential of the

liquid will be done on this prestressed static configuration, around which we study the dynamic fluctuation.

The second contribution, i.e. the coupled term, will be discretized on the reference configuration through

a reciprocal mapping method. This is not an issue due to the fact that the construction of the operator is

based on the known static displacement at the interface. The prestressed static configuration of the fluid can150

be done: (i) through a computation of a pre-deformed fluid mesh or (ii) considering a re-meshing of the fluid

domain. The coupling term here gives a relation between the structural acceleration at the interface and the

virtual potential of displacement.

3.4. Finite element discretization of the coupled problem155

The potential of fluid displacement and the fluctuation of pressure are linked considering Eq. (36) and

Eq. (38) such that:

p = ω2ρfϕ (47)

Consequently, the linearized structural virtual equation is written as:

kt(us;u, δu)− ω2ρfc(us;ϕ, δu)− ω2m(u, δu) = f(δu), ∀ δu ∈ Cu (48)

As done in Section 2, let introduce the finite element discretization of the fields uh and ϕh and their respective

virtual fields. The discretized structural equation of Eq. (48) is given as:

Ktu− ω2Mu− ω2ρfCϕ = f (49)

Concerning the discretization of Eq. (44), the volumic term h(ϕ, δϕ) is discretized using the finite element160

discretization of Ω′h
f . On the other hand, the second term of Eq. (44) which is the liquid-structure cou-

pling term is discretized on the reference configuration (let us recall that the chosen configuration has been

previously defined in Fig. 2 with no prestressed effect) using Eq. (46) :

Hϕ+CTu = 0 (50)

10



All the discretized operator are given as follows:

kt(u
h
s ; δu

h,uh) ⇒ δuTKt(us)u (51)

m(δuh,uh) ⇒ δuTMu (52)

c(uh
s ; δu

h, ϕh) ⇒ δuTC(us)u (53)

f(δuh) ⇒ δuTf (54)

h(δϕh, ϕh) ⇒ δϕTHϕ (55)

c(uh
s ; δϕ

h,uh) ⇒ δϕTC(us)u (56)

Taking into account the free-surface prescribed mandatory equation (40c), and for sake of simplification,

using the same notations for C and H, the coupled matrix system, resulting from Eq. (49) and Eq. (50)

writes:







Kt O

O O



− ω2




M ρfC

ρfC
T −ρfH












u

ϕ



 =




f

0



 (57)

or equivalently

Ktu− ω2(M+ ρfMa)u = f with Ma = CH−1CT (58)

Solving Eq. (58), we deduced directly ϕ and the discretized pressure p as follows:

ϕ = −H−1CTu and p = ω2ρfϕ (59)

in which Kt is symmetric and H, initially of kernel of dimension 1, is invertible using Eq. (40c), therefore the165

added mass matrix Ma is a full, symmetric positive definite matrix, involving only structural fluid-structure

interface degrees of freedom. In a practical situation, the matrix H−1 is never computed directly.

4. Computation methodology

The aim is to compute the linearized hydroelastic vibrations of an elastic tank prestressed by a liquid170

weight for various given liquid free-surface height li ∈ [lmin, lmax]. At first, for each values li, static nonlinear

solutions u
(i)
s = us(li) and the associated tangent stiffness matrix K

(i)
t = Kt(li) are then computed step

by step from lmin to lmax (see Section 2), which is an originality of the approach. We recall here that the

discretized matrices are computed on the previously defined reference configuration in Section 2.2. Those

tangent stiffness operators K
(i)
t are stored and will be used for the calculation of the prestressed hydroelastic175

vibrations for various levels of liquid presented in Eq. (58). As mentioned in the previous section, the added

mass matrix Ma will never be constructed directly. Eq. (58) shows that the coupled eigenvalue hydroelastic

problem is expressed only in terms of structural field unknown u (the potential of displacement and the

pressure are then calculated on a straightforward manner by Eq. (59)), for a given level. The solution of Eq.

11



(58) can be searched using an appropriate basis of the structural admissible structural space Cu. Therefore,180

we can choose as a possible basis of Cu the eigenvectors of the prestressed structure without taking into

account liquid inertia:

[K
(i)
t − ω2M]u = 0 (60)

The first N eigenvectors denoted by u
(i)
α = uα(li), normalized by the mass (i.e. u

(i)T
α Mu

(i)
α = 1), and

associated with the eigenvalues denoted by ω
2(i)
α , generate a basis denoted by B

(i)
u defined as:

B(i)
u =

{

u(i)
α

}

α=1...m
(61)

A remark has to be addressed at this point concerning the positivity of the tangent stiffness operator. For

the practical application, we suppose that the action of the liquid weight in the structure tends to stiffen the

system. Thus, we do not consider here the dynamic buckling, which can be the case for immersed structures.185

In the following, the vector of the basis B
(i)
u will called the prestressed dry modes. Of course question of

truncation and related validations will be addressed later in the numerical application. Let us stress here that

the computation of the added mass matrix no longer necessitates the direct inverse of a matrix. We proceed

by considering known matrices H(i) = H(li) and C(i) = C(li) associated with the various liquid height. For

each dry modes u
(i)
α , the computation of the liquid response in terms of displacement potential field can be190

obtained by solving the linear system of equation:

H(i)ϕ(i)
α = −C(i)Tu(i)

α (62)

An approximation of u(li) = u(i) denoted by u
(i)
approx is constructed as a linear combination of the truncated

basis u
(i)
α :

u(i)
approx ≃

m∑

α=1

q(i)α u(i)
α = B(i)

u q(i) with B(i)
u =








...
...

u
(i)
1 . . . u

(i)
m

...
...








and q =








q
(i)
1

...

q
(i)
m








(63)

Then, we consider an approximation of the displacement potential ϕ(li) = ϕ(i) denoted by ϕ
(i)
approx as a

linear combination of the computed ϕα(li) = ϕ
(i)
α as:195

ϕ(i)
approx =

m∑

α

q(i)α ϕ(i)
α = B(i)

ϕ q(i) with B(i)
ϕ =








...
...

ϕ
(i)
1 . . . ϕ

(i)
m

...
...








(64)

Considering the left hand side of Eq. (49), and a left multiplication by B(i)T
u , the reduced hydroelastic

problem projected of the prestressed dry modes is written as:

B(i)T
u K

(i)
t B(i)

u
︸ ︷︷ ︸

K(i)
r

q(i) − ρfω
2 B(i)T

u C(i)B(i)
ϕ

︸ ︷︷ ︸

M(i)
ar

q(i) − ω2 B(i)T
u M(i)B(i)

u
︸ ︷︷ ︸

Mr = I

q(i) = 0 (65)
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where the matrices K(i)
r and M(i)

ar are respectively the reduced tangent stiffness and added mass matrices

which are (N ×N) matrices defined as:

K(i)
r =








. . .

ω
2(i)
α

. . .








and M(i)
ar =








...

. . . m
(i)
αβ . . .
...








(66)

where the reduced stiffness and mass matrices are diagonal matrices and the terms of the reduced added

mass matrix are defined as:

m
(i)
αβ = uT(i)

α C(i)ϕ
(i)
β = −uT(i)

α C(i)H−1(i)CT(i)u
(i)
β (67)

Of course, the resulting reduced added mass matrix is symmetric positive definite.200

The eigenvalue analysis of the reduced hydroelastic problem writes:

[K(i)
r − ω2(M(i)

ar + I)]q = 0 (68)

and gives the hydroelastic eigenmodes of the liquid structure problem.

5. Comparison and validation with experiments

5.1. Hydroelastic vibrations of a clamped circular plexiglass plate under a column of water

The computation methodology is applied to experiments carried out by M. Chiba [10]. It consists in205

evaluating the linearized hydroelastic vibrations of a thin circulate plate made of plexiglass under a column

of water. The great interest of this example is that it highlights the prestressed effects due to the liquid weight

on the linearized hydroelastic vibrations. The procedure is illustrated in Fig. 3. It consists in (i) computing

the nonlinear static solutions of the elastic structure subjected to the hydrostatic pressure forces and (ii)

establishing the linearized vibrations of the coupled system. The liquid is in contact with the structure upon210

the upper surface of the clamped plate, while the lower surface is free of charge. The liquid height is varying

from lmin = 0 mm to lmax = 250 mm. The solid material parameters needed for the Saint-Venant Kirchhoff

constitutive relations are the Young modulus E = 6.9×109 Pa, the Poisson ratio ν = 0.38 and the solid mass

density ρs = 1.4× 103 kg.m−3. The liquid mass density is ρf = 1.0× 103 kg.m−3.

5.2. Preliminary nonlinear static evolution solution215

The Fig. 4 illustrates the mesh parameterization of the elastic plate to compute the nonlinear static

problem. The computation has been done with quadratic hexahedron elements, which has been chosen in

order to obtain an accurate solution even if the aspect ratio is rather small (e.g. the ratio between the smaller

and the larger edges of an element).

In Fig. 5, the quantity of interest considered is the bottom displacement q at the center of the plate in220

function of the liquid height. At l = 250 mm, the absolute value of the displacement is almost 11 times

13



Figure 3: (a) Computation of the prestressed state of the circular plate due to the liquid weight for various liquid height li and

(b) liquid and structure domains of the linearized hydroelastic vibrations of the prestressed plate.

Figure 4: (a) Parameterized geometry with the thickness t = 0.35 mm, the internal radius Rint = 144 mm; (b) Parameterized

mesh by the numbers nθ and nr, the number of elements in the thickness is fixed as two elements.

higher than the thickness of the structure. Considering this order of magnitude the static solution can be

considered in a nonlinear regime. An “overkill” solution denoted by qref, for a liquid height l = 250 mm, has

been computed considering a large number of degrees of freedom. Then, simulations have been performed to

compare the value of q to the reference as function of the number of elements showing from which the static225

solution can be considered as independent of the mesh. The table 1 contains all mesh parameters described

in Fig. 4.

(nθ,nr) (2, 2) (5, 5) (10, 10) (20, 20) (50, 50)

nelem 40 250 1000 4000 25000

ndof 771 4380 16995 66965 264009

q(l = 0.250mm) −3.12 mm −3.74 mm −3.84 mm −3.86 mm qref = −3.87 mm

100× | q−qref | /qref 19.3% 3.4% 0.77% 0.25% −

Table 1: Results and mesh parametrization.
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Figure 5: (Left) Evolution of the deflection bottom function of the liquid height with a thickness ts = 0.35 mm and (Right)

convergence analysis of the quantity of interest at l = 250 mm in function of the number of structural degrees of freedom.

In [18], the deflection value is not measured nor given explicitly given. At this point of the paper, it

is not possible to known if the results from the computation are in good agreement with the experiment.

Those considerations will be presented later by considering the natural coupled frequencies function of the230

liquid height. In order to conclude about the static computation, at each liquid height, the nodal static

displacement solutions u
(i)
s are known. Thus, the geometrical stiffness matrices K(i)

g , the material stiffness

matrices K(i)
m and the coupling matrices C(i) needed for the hydroelastic problem can be constructed and

stored at those liquid heights. In the sing, we show how to compute the operators H(i) from a liquid mesh

coincident with the solid mesh at the liquid-structure interface.235

5.3. Prestressed hydroelastic vibrations

The computation of the hydroelastic natural frequencies needs to mesh the liquid at equilibrium for each

liquid height. Here, an associated fluid mesh coincident with the current configuration of the structure

is generated as follows. At first, the Fig. 6 illustrates the liquid mesh parameterization that we use to

generate a liquid mesh with an appropriate liquid height. Then, the given liquid mesh is deformed using a240

vector Laplacian equation with a prescribed boundary condition at the liquid structure interface. The risk of

distortion is really low because the liquid mesh deformation near the liquid-structure interface is negligible.

Considering the liquid mesh domain, the operators H(i) are generated for each liquid height li. The next

step consists in expressing and solving the hydroelastic problem by using the computation methodology pre-

sented in Section 4. Considering the geometry of the circular plate, the modal shapes can be characterized by245

given a couple number (n,m) and a symbol presented in Fig. 7. The number n corresponds to the number of

radial waves and m to the angular waves. Those characterizations can still be used for the modal shape of the

structural part of hydroelastic modes. In Fig. 8, the hydroelastic natural frequencies are given as function

of the liquid height in a frequency range between 0 Hz and 80 Hz. Qualitatively, the graph shows a decrease

and then an increase of the natural hydroelastic frequencies for all the modes, except for the first one (0, 1)250
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Figure 6: (a) Parameterized geometry of the fluid and the solid of thickness ts, the internal radius Rint and the fluid height l;

(b) Parameterized mesh with the numbers nθ and nr.

which have an opposite behavior. The curves are in agreement with the experimental observations presented

in reference [18]. We can see that the natural frequencies of the prestressed dry modes tend to increase the

natural frequencies in function of the liquid height. Conversely, for an elevation of the liquid height, it is well

known that the added mass effect tends to lower the natural hydroelastic frequencies. Therefore, in this exam-

ple, we have a balance between the prestressed state due to the weight of the liquid and the added mass effect.255

Figure 7: Characterization of the six first modal deformed shapes of the elastic bottom.

At first, for an almost empty structure, a decrease of the natural frequencies can be observed, except

for the first mode. At a given height, the natural frequencies reach a minimum value before rising again

due to the prestressed effect. In Fig. 9, sectional views of the non-dimensional displacement potential fields

are represented respectively for the first and second modes. For the second mode, the spatial fluctuation260

of potential remains localized near the liquid-structure wall. On contrary, the spatial fluctuation of fluid

response for the first mode seems to affect the overall fluid domain. Those observations are in agreement
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Figure 8: Evolution of the computed hydroelastic natural frequencies as function of the liquid height.

with the behaviour of the evolution of hydroelastic natural frequencies.

The Fig. 10 shows a quantitative comparison between the experiments and the computed natural frequen-265

cies which are in very good agreements. When the liquid height l is near zero, differences can be observed.

Many uncontrolled parameters can be the sources of those differences : (i) the prestressed effect due to the

plate weight without the liquid could be significant at this stage, (ii) the presence of uncertainties of material

parameters used in the simulation or (iii) the sloshing effect at the free-surface. Nevertheless, once the liquid

height is elevated, a very good agreement between the simulations and the experiments are observed for the270

first and the third modes. Concerning the second mode, the behavior is overall the same even if a small

discrepancy is observed. Numerical results for three particular hydroelastic frequencies are given for various

liquid heights in Table 2. A sharp evolution of frequency between an empty state (l = 0 mm) and a nearly

empty state (l = 1 mm) can be observed for the first mode. This behavior is due to the prestress effect as
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Figure 9: Sectional views of the non-dimensional displacement potential responses for two first modes at various liquid heights.

described in [10].275
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Figure 10: Hydroelastic frequencies as function of the fluid height compared to experimental values extracted from [18].
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(n,m) l = 0 mm l = 1mm l = 25 mm l = 50 mm l = 100 mm l = 150 mm l = 250 mm

(0, 1) 17.5 Hz 27.6 Hz 20.7 Hz 19.4 Hz 18.5 Hz 17.8 Hz 16.6 Hz

(1, 1) 36.6 Hz 34.4 Hz 24.3 Hz 24.0 Hz 25.6 Hz 28.0 Hz 32.6 Hz

(2, 1) 60.2 Hz 46.0 Hz 31.7 Hz 33.1 Hz 38.3 Hz 43.3 Hz 51.2 Hz

Table 2: Evolution of hydroelastic frequencies (n,m) with prestress effect from liquid weight for various liquid heights.

6. Conclusion

In this paper, we have proposed a numerical strategy for the evaluation of hydroelastic vibrations of an

elastic tank containing a free surface liquid, around nonlinear prestressed equilibrium configurations due to

the liquid weight. The main originality of the approach lies in the resolution of the problem by considering

the liquid height as an evolution parameter. The methodology has been validated by comparison of the280

numerical solutions with experimental results from the literature. The computation uses the prestressed

dry modes on a reference configuration. The numerical methodology presented in this paper is valid for

compatible fluid-structure interface meshes. The extension of the methodology for incompatible meshes will

be the purpose of future investigations. This would allow more complex parametric situations (e.g. influence

of ring stiffeners geometry for example). Deeper convergence analyses are under investigations through285

appropriate hydroelastic projection-based reduced order models for arbitrary complex 3D shapes.
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