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Abstract This paper proposes a data-driven approx-

imate Bayesian computation framework for parameter

estimation and uncertainty quantification of epidemic

models, which incorporates two novelties: (i) the iden-

tification of the initial conditions by using plausible

dynamic states that are compatible with observational

data; (ii) learning of an informative prior distribution

for the model parameters via the cross-entropy method.

The new methodology’s effectiveness is illustrated with

the aid of actual data from the COVID-19 epidemic

in Rio de Janeiro city in Brazil, employing an ordi-

nary differential equation-based model with a gener-

alized SEIR mechanistic structure that includes time-

dependent transmission rate, asymptomatics, and hos-

pitalizations. A minimization problem with two cost

terms (number of hospitalizations and deaths) is for-

mulated, and twelve parameters are identified. The cal-

ibrated model provides a consistent description of the

available data, able to extrapolate forecasts over a few

weeks, making the proposed methodology very appeal-

ing for real-time epidemic modeling.
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1 Introduction

Since the COVID-2019 outbreak became a public in-

formation in January 2020 [79], many researchers have

contributed with a variety of epidemic models to deal

with this epidemic spread. They seek a better under-

standing of the disease’s propagation mechanism and

make short-term forecasts to guide public and private

agents in related decision-making. In this context, mech-

anistic compartmental models with classical structures

such as the SIR (susceptible, infected and removed),

SEIR (susceptible, exposed, infected and removed) [2,

21,75], or their variants with additional compartments

[6,7,36,37,42] has been widely explored in literature.

These models are exciting tools to aid an epidemi-

ologist since they can explain the past and explore fu-

ture scenarios for an epidemic outbreak from qualita-

tive and quantitative points of view. Thus they gener-

ate insight and can support decision-making. Their bal-

ance between simplicity (fast to run simulations) and

complexity (good to represent the phenomenology of

the problem) may be an advantage for situations where

analysis needs to be done in near-real-time (like in an

evolving outbreak).

In this direction, Pacheco et al. [46] analyzed an

SEIR-type model and investigated different scenarios

for Brazil, highlighting the importance of social isola-

tion to avoid a collapse of the hospital infrastructure

(in the early COVID-19 outbreak). In the meantime,

Vyasarayani and Chatterjee [74] studied an SEIR model

with an additional compartment for quarantine, con-
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sidering time delays for latency and an asymptomatic

phase, while Yu et al. [82] and Cai et al. [4] proposed

fractional versions of the SEIR model that capture mem-

ory effects of epidemic dynamics.

At this point, it is essential to emphasize that to

forecast real-world epidemic outbreaks, especially in real-

time, the employed compartmental mechanistic models

must be calibrated and validated with actual and reli-

able data. Often, this identification is a dynamic pro-

cess, with the models being updated whenever new data

becomes available. In addition, uncertainties play a sig-

nificant role in epidemiological models [60,66]. Values

of the model parameters, the model structure, and the

epidemic data are uncertain. Thus, beyond identifying

values for parameters, it is crucial to perform an uncer-

tainty quantification (UQ) study, which can take into

account the variability of the parameters. Probability

theory might be used in this endeavor [8,25,62], and

the Bayesian learning strategy [27,59,68] is convenient

because prior knowledge is updated consistently with

data and UQ occurs automatically. Studies dealing with

these aspects can be seen in the recent literature of com-

putational epidemiology [20,26,31,32,34–36,83].

For instance, He et al. [20] analyzed an SEIR model

with hospitalization and quarantine, using the parti-

cle swarm optimization algorithm (a population-based

stochastic optimization algorithm) to identify the model

parameters from data and considering the stochastic

nature of the infection by introducing a Gaussian white

noise. Using Poisson and binominal processes to incor-

porate uncertainty in case observations within an SEIR

model, Kucharski et al. [31] describe the dynamics of

newly symptomatic cases, reported onsets of new infec-

tions, reported confirmation of cases, and the infection

prevalence on evacuation flights. A different stochas-

tic system is used by Lobato et al. [35], where a set of

stochastic differential equations is employed to describe

the random evolution of time-dependent parameters of

a compartmental model.

On the other hand, Jha et al. [26] employed a set

of partial differential equations governing the spatial-

temporal evolution of susceptible, exposed, infectious,

recovered, and deceased individuals, considering a strat-

egy for model calibration, validation, and UQ based

on Bayesian learning. Within this UQ framework, they

considered additive Gaussian noise to construct the like-

lihood function and assumed log-Normal priors. This

UQ approach for computational epidemiology is very

general and powerful, being considered the standard

methodology to build data-driven mechanistic epidemi-

ological models for use in real-time [32,53]. Variations

of this general methodology are also employed by Li-

botte et al. [34], Lyra et al. [36], Zhang et al. [83] —

among many authors — and the general setting is very

well described in the excellent book by E. Kuhl [32].

Data-driven epidemic modeling via Bayesian learn-

ing has some natural advantages, which stand out: (i)

combines the identification of the model parameters

(model calibration) and quantifies the effects of under-

lying uncertainties (uncertainty quantification) into a

single framework; (ii) allows new data (information) to

be incorporated into the data-driven model in a very

straightforward way, via Bayes theorem. However, some

weaknesses of this framework often cannot be ignored,

such as: (i) the use of sampling techniques like Markov

Chain Monte Carlo, which often translates into a com-

putationally intensive process; (ii) the great sensitivity

of the inference results to the choice of the prior dis-

tribution, which encapsulates a priori knowledge about

the model parameters; (iii) the typical difficulty of infer-

ring the initial conditions of the dynamic model when

information about these parameters is scarce.

The computational cost can be alleviated in several

ways, for example, by exploring parallelization strate-

gies, using surrogate models, or employing approaches

that avoid evaluating the likelihood function (typically

the most expensive step in the Bayesian inference pro-

cess), etc. A technique that tackles this problem by re-

placing the evaluation of the likelihood function with

the calculation of a computationally cheaper error met-

ric is known as Approximate Bayesian Computation

(ABC) [33,38,40,43]. This is a likelihood-free learning

strategy where the prior probability distribution of the

parameters is updated, with the aid of available data,

only comparing the discrepancy between predictions

and observations. Nevertheless, this strategy maintains

a prior sensitivity, making informative priors essential,

and offers no advantage when inferring initial condi-

tions with reduced information.

To construct an informative prior distribution for

the dynamic model parameters, the present work ex-

ploits a non-convex optimization technique known as

the cross-entropy (CE) method [9,16,29]. This itera-

tive optimization technique starts with an initial prob-

ability distribution for the parameters and sequentially

updates it, seeking to minimize a cost function that

measures the discrepancy between model predictions

and data observations, achieving the global optimum

asymptotically. This metaheuristic is an exciting method-

ology to identify parameters in dynamical systems, pri-

marily because of its simplicity and theoretical guaran-

tees of convergence, with excellent results reported in

recent literature [11–13,71,76].

The identification of a reasonable initial condition

from a small set of information can be made from the

knowledge of dynamic states (obtained from the sys-
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tem of differential equations) that are compatible with

observations of variables accessed via surveillance data.

Starting the evolution of the dynamics from a state like

this ensures that all temporal variables present, at the

initial instant, plausible values, which increases the con-

sistency of the simulation of the epidemic outbreak. The

combination of this approach for initial conditions with

a Bayesian inference process for the other parameters of

the epidemiological model can be advantageous in sev-

eral real problems of computational epidemiology, thus

being the object of interest of this paper.

This paper proposes a novel methodology for cali-

brating and uncertainty quantifying a mechanistic epi-

demic model that combines the CE and ABC tech-

niques with a clever strategy for inferring realistic ini-

tial conditions. First, the vector of initial conditions is

estimated by a combination of dynamic states compat-

ible with observations of the epidemic outbreak. The

second step employs the CE method to construct (solv-

ing a non-convex optimization problem) an informative

prior distribution that represents the parametric un-

certainties. Then, it uses ABC to refine (update) the

optimal parameter distributions and propagate the un-

derlying uncertainties through the model. It can infer

realistic initial conditions with a theoretical guarantee

of building an informative a priori distribution. In ad-

dition to calibrating/updating the dynamic model, it

also considers the effects of the parametric uncertain-

ties underlying the problem. To the best of the authors’

knowledge, this formulation of the Bayesian learning

process for epidemiological models combining CE and

ABC has not yet been explored, contributing towards

improving the methodology’s inference capacity and,

thus, to developing a robust framework UQ on mech-

anistic epidemic models. The proposed methodology’s

effectiveness is illustrated with an SEIR-type epidemic

model with seven compartments (susceptible, exposed,

infectious, asymptomatic, hospitalized, recovered, and

deceased) [47], and actual data from the city of Rio de

Janeiro.

The paper is organized as follows. Section 2 de-

picts the mechanistic epidemic model. The proposed

methodology that combines CE with ABC is presented

in section 3. The results are shown in section 4. The

manuscript body is closed with the concluding remarks

in section 5.

2 SEIR(+AHD) epidemic model

2.1 Modeling of the contagion process

The compartmental model employed in this work to de-

scribe a COVID-19 outbreak in Rio de Janeiro city is

schematically illustrated in Figure 1, where the popu-

lation is segmented into seven disjoint compartments:

susceptible (S); exposed (E); infectious (I); asymptomatic

(A); hospitalized (H); recovered (R); deceased (D). This

model is dubbed here as the SEIR(+AHD) model.

In this dynamic contagion model, the infection spreads

via direct contact between a susceptible and an infected

(infectious, asymptomatic, or hospitalized) individual.

For simplicity, it is assumed that infectious and asymp-

tomatic individuals are equally likely to transmit the

disease to a susceptible person, while this risk is re-

duced in hospitalized individuals. The latency period

between a person becoming infected, starting to have

symptoms, and transmitting the disease, is taken into

account by the presence of an exposed compartment,

which counts those individuals who, despite carrying

the pathogen, still do not show symptoms nor can infect

other people. Among the infected, some individuals are

asymptomatic; only a fraction display symptoms after

incubation; they are dubbed infectious. Asymptomatic

individuals can recover or die (a rare event). On the

other hand, infectious individuals, in addition to recov-

ery and death, may result in hospitalization. Hospital-

ized people reduce their probability of dying from the

disease, but they can still have this outcome or recover.

The recovered compartment is just an accumulator re-

ceiving individuals from various groups but does not

directly interfere with the dynamics. This model was

proposed by Pavack et al. [47], who were inspired by the

age-structured model presented in [36], and its variant

which considers ICU admissions presented in [45].

The population in each of the compartments at time

t is measured by the following state variables: suscep-

tible S(t); exposed E(t); infectious I(t); asymptomatic

A(t); hospitalized H(t); recovered R(t); and deceased

D(t). Variable N = N(t) represents the alive popula-

tion size at time t. This contagion model has the fol-

lowing parameters: initial alive population N0 (num-

ber of individuals); transmission rate β (days−1); la-

tent rate α (days−1); fraction of symptomatic fE (non-

dimensional); recovery rate γ (days−1); hospitalization

rate ρ (days−1); death rate δ (days−1); asymptomatic

mortality-factor κA (non-dimensional); hospitalization

mortality-factor κH (non-dimensional); and hospital-

ization infectivity-factor εH (non-dimensional).

The deterministic non-autonomous dynamical sys-

tem associated to this compartmental model (see [47]



4 Americo Cunha Jr et al.

S
β

E

(1− fE)α

A

κAδ

D

γ

R

fEα

I

δ

γ

ρ

H
γκHδ

Fig. 1 Schematic representation of the SEIR(+AHD) compartmental model considering latency period, asymptomatic indi-
viduals, hospitalizations, and deaths. This model is used here to describe the COVID-19 dynamics.

for details) is written as

Ṡ = −β(t)S (I +A+ εH H)/N ,

Ė = β(t)S (I +A+ εH H)/N − αE ,
İ = fE αE − (γ + ρ+ δ) I ,

Ṙ = γ (I +A+H) ,

Ȧ = (1− fE)αE − (κA δ + γ)A ,

Ḣ = ρ I − (γ + κH δ)H ,

Ḋ = δ (I + κAA+ κH H) ,

Ṅ = −Ḋ ,

(1)

where the corresponding initial conditions are given

by u(0) = (S0, E0, I0, A0, H0, R0, D0, N0). Obviously,

if convenient, the size of this system can be reduced by

one unit if the last equation is replaced by the algebraic

constraint N = N0+D0−D, which represents the total

population evolution over time.

2.2 Time dependence of the transmission rate

As the disease spreads, the parameter β might change,

and this temporal dependence can be taken into ac-

count through the following expression (taken from [72]):

β(t) = β0 +
(β∞ − β0)

2

(
1 + tanh

(
η

(t− tβ)

2

))
, (2)

where β0 is the initial value of β, β∞ the final value, the

adaptation time η defines how fast β reaches β∞, and

tβ is the transition time (when t = tβ then β = (β0 +

β∞)/2). This model allows β to smoothly vary between

two distinct levels of disease transmission (from lower to

higher, or vice versa), a situation typically encountered

in the COVID-19 contagion dynamics [18,72].

2.3 Associated dynamic system

The dynamic state of the epidemic system (1) at time

t can be represented, in a compact way, by the time-

dependent vector

u(t) = (S,E, I, A,H,R,D,N) , (3)

while the model parameters may be lumped into the

parameter vector

x = (β0, α, fE , γ, ρ, δ, κA, κH , εH , β∞, η, tβ) , (4)

so that the dynamic model can be written as

u̇(t) = F (t, u(t), x) , (5)

where the map (t, u(t), x) 7→ F (t, u(t), x) ∈ R8 rep-

resents the nonlinear evolution law defined by the right

hand side of the dynamical system in (1).

2.4 Applicability and limitations

The system of differential equations defined in (1) gives

rise to a predictive computational model to describe the

dynamics of COVID-19 contagion in a context where

tracking the number of hospitalizations is essential.

Such a model can help study possible epidemiologi-

cal scenarios and may lead to qualitative and quantita-

tive insights into the epidemic dynamics. Such informa-

tion can help guide decision-makers in managing their

local health system. For instance, the model can check
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whether there is a risk of overloading the hospitals in a

particular city. Also, they could estimate when they will

suffer the most significant demand. From a more qual-

itative perspective, the model can assess the impact on

hospitalizations of different strategies to mitigate (or

even suppress) the epidemic.

But like any computational model, it is subject to

limitations, and its use outside the proper context can

lead to entirely erroneous predictions [69]. Since it is

a deterministic compartmental model, obtained as a

mean-field approximation in the thermodynamic limit,

it is only applicable in regions where the population

density can be modeled as a continuous function, a sit-

uation typically valid in urban centers of large cities.

As it is a model derived from the SEIR family, it as-

sumes a population with a homogeneous contact struc-

ture, which does not correspond to the reality of prac-

tically anywhere. Therefore, one must care about the

potential effects of population heterogeneity.

Other unmodeled effects that may be significant are

related to social behavior change due to the course of

the epidemic (e.g. risk perception, change in the pat-

tern of social iterations, mask use, etc.) [78], reinfec-

tions [51], etc. These can be included in the model, but

this is not the goal of the present paper.

3 Uncertainty quantification framework

3.1 Quantities of interest

Among all the quantitative information that can be es-

timated with the epidemic model in (1), this paper is

particularly interested in two time-dependent quanti-

ties, the number of hospitalizations, and the total num-

ber of deaths, i.e., the quantities of interest (QoIs) here

are the time series H(t) and D(t).

None of these time series, individually or together,

correspond to the response of the dynamic model itself.

The model response is given by the parametric curve

t 7→ u(t), so that the above time series correspond to a

derived quantity t 7→ (H(t), D(t)), extracted from u(t)

through a projection.

On the theoretical plane, t 7→ (H(t), D(t)) is defined

over a continuous-time domain and, consequently, is an

infinite-dimensional object. However, for computational

purposes, it is necessary to discretize both time-series

so that, in practice, the dynamic model returns finite-

dimensional representations of them. Once the com-

putational representation of each time series material-

izes itself in the form of an n-dimensional numerical

sequence, one might think that the model’s discrete re-

sponse is given by the quantities of interest vector

y = [H(t1), · · · , H(tn), D(t1), · · · , D(tn)] , (6)

where t1, · · · , tn are the time-instants underlying the

temporal discretization. If other observables become the

quantities of interest, the vector y can be modified

straightforwardly. Just as if observables defined in dif-

ferent temporal grids are needed.

3.2 Abstraction of the epidemic model

In an abstract perspective, the computational model

can be represented by an equation of form

y =M(x) , (7)

which indicates that the vector y is obtained from the

vector of parameters x through a mapping M, which

represents the discretized version of the dynamic model

that is coded in the computer. Therefore, whenever con-

venient, the notation y(x) is adopted.

Furthermore, if is necessary to distinguish the com-

ponents of y that are related to H(t) from those asso-

ciated with D(t), the following partition is adopted

y(x) = [yH(x) yD(x)] . (8)

In a case where there are K quantities of interest,

the response vector is written

y(x) = [y1(x) · · · yK(x)] . (9)

This abstract representation helps to simplify the

formulation of the uncertainty quantification framework

presented in sequence.

3.3 Data from the epidemic surveillance system

Epidemiological surveillance data, represented in this

paper by the vector quantity y data, can be used to

monitor and understand (in real-time or a posterior)

the course of an epidemic through direct observation,

or in conjunction with computational models that can

be calibrated and validated against them.

In this work, the data used are related to the records

of hospitalizations and deaths due to COVID-19 in the

city of Rio de Janeiro city, from Jan 01, 2020, until

Dec 31, 2020. The choice of data from this period,

rather than more recent observations, is motivated by

the fact that this was one of the critical moments of the

COVID-19 pandemic in the city of Rio de Janeiro, with

high pressure in both health and funeral systems. These
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Fig. 2 Surveillance data of COVID-19 outbreaks in Rio de
Janeiro city between Jan 01, 2020, until Dec 31, 2020 [49]. The
number of hospitalized individuals and new deaths appears
at the top and the total number of deaths at the bottom.

data, shown in Figure 2, are cataloged and made avail-

able by local health authorities [49], being anonymous

for ethical reasons and patient privacy.

For the sake of compatibility with the structure of

y(x), the data vector y data which lumps hospitaliza-

tions and total deaths (or simply deaths) time series is

partitioned as follows

y data = [yHdata y
D
data] . (10)

A combination between these data and the epidemic

model predictions is done in the uncertainty quantifi-

cation framework presented below.

3.4 Quantification of the discrepancy between the

mathematical model and available data

The comparison between data and predictions can be

done by means of the following discrepancy (error esti-

mation) function

J (x) = ω
||yHdata − yH(x)||2

||yHdata||2
+

(1− ω)
||yDdata − yD(x)||2

||yDdata||2
,

(11)

where ω ∈ [0, 1] is a weight parameter which controls

how the hospitalization/deaths data contributes to this

discrepancy function. For ω = 0, only death data are

taken into account. Conversely, for ω = 1 only hospital-

ization data matter. Between these extremes the error

metric considers a balance between the two data sets.

If ω = 0.5 they have the same weight. It is worth men-

tioning that we could identify ω together with the other

model parameters, including it in vector x, possibility

not explored in this paper.

In the case where K quantities of interest are avail-

able in the form of data, partitioned as

y data = [y1
data · · · yKdata] , (12)

so that the model response reads as in Eq.(9), and the

discrepancy function is written as

J (x) =

K∑
k=1

ωk
||ykdata − yk(x)||2
||ykdata||2

,
(13)

with the weights defining a convex combination, i.e.,

ω1 + · · ·+ ωK = 1 . (14)

3.5 Baseline calibration of model parameters via the

Cross-Entropy (CE) method for optimization

The process of calibrating the computational model

against the available data requires that the discrepancy

function defined by Eq.(11) (or by Eq.(13)) be mini-

mized by an optimal choice of parameters, a task that

is mathematically formulated as the following optimiza-

tion problem

x ? = arg min
x ∈ X

J (x) , (15)

where the set of admissible parameters is defined by

X = { x | xmin � x � xmax } , (16)
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where xmax and xmin represent, respectively, upper

and lower bound vectors for the model parameters, and

the generalized inequality � is understood to hold for

each component of the vectors.

In general, the optimization problem defined by (15)

is nonconvex, so the use of gradient-based techniques

may not be effective in capturing the parameter con-

figuration that best fits the model to the data. Due to

the nonconvexity, the solution obtained may be a local

optimum (perhaps quite distinct from the global opti-

mum). To avoid this type of situation, the present work

tackles this optimization problem with the aid of the

cross-entropy method [16,54,56], a simplistic gradient-

free iterative procedure for global optimization that has

guarantees of convergence in certain typical situations

[55,56]. This method has been successfully used in re-

cent literature for the identification of parameters in

nonlinear computational models [11–13,71,76].

The fundamental idea of the cross-entropy method

is to transform the optimization problem, defined by

(15), into a rare event estimation problem. In this way,

a sequence of approximations to the global optimum

is constructed with the aid of an importance sampling

process, where the probability of sampling the rare event

(global optimum) grows over time [55,56].

The CE algorithm consists of two phases:

– Sampling – where the objective function domain is

sampled according to a certain distribution to ex-

plore the feasible region;

– Learning – where the distribution parameters are

updated, with the aid of a set of elite samples. The

goal is to shrink the distribution simultaneously as

it is translated towards the global optimum.

To mathematically analyze the behavior of this algo-

rithm, let Γ ? = J(x ?) be the global minimum sought,

and X a randomized version of x, with probability dis-

tribution characterized by the probability density func-

tion (PDF) p(·,v), i.e., X ∼ p(·,v), for a parameter

vector v = (µ,σ), with mean vector µ and standard

deviation vector σ.

Since Γ ? is the global optimal value of J , there are

few points x in the domain X that produce a value

Γ = J (x) very close to Γ ?. In this way,

P {J (x) ≤ Γ} ≈ 0 for Γ ≈ Γ ? , (17)

which states that J (x) ≤ Γ is a rare event for Γ ≈ Γ ?.

The solution to this rare event estimation problem

involves sampling the domain X with Nce samples –

drawn according the distribution p(·,v), evaluate the

objective function at the samples Xk, and then con-

struct of a sequence of estimators (Γ̂`, v̂`) such that

Γ̂`
a.s.−−−→ Γ ? and p (x, v̂`)

a.s.−−−→ δ (x− x ?) , (18)

where the parameter vector v = (µ,σ) is updated by

solving the following nonlinear program

v̂` = arg max
v

∑
k ∈ E`

1
{
J (Xk) ≤ Γ̂`

}
ln p (Xk; v) ,

(19)

being 1 {·} the indicator function, and E` an elite sam-

ple set, defined by a fixed percentage of the samples

Xk that produced the values closest to the global op-

timum. Among the values associated with the elite set,

the largest one defines the estimator Γ̂`.

The above sequence is optimal in the sense that

the importance sampling process tries to minimize the

Kullback-Leibler divergence (also known as the cross-

entropy function) between the sampling distribution

p (·; v) and a Dirac delta function centered on the global

optimum [55,56].

For sake of numerical implementation, p (·, v) is as-

sumed as a truncated Gaussian distribution with bounds

defined in a conservative way (assuming broad intervals

for the random variables supports). Distributions from

the exponential family, like truncated Gaussian, allow

the nonlinear program from Eq.(19) to be solved ana-

lytically [55,56], so that the low-order statistics in the

parameters vector v = (µ,σ) are updated by simply

calculating the sample mean and sample standard de-

viation from the elite sample set E`.
From a theoretical point of view, the process de-

scribed above is guaranteed to converge to the global

optimum [55,56]. However, in practical terms, the dis-

tribution may degenerate before it gets close enough to

this optimum point [29,56]. To avoid this situation, the

following smoothing scheme is employed

µ̂` := a µ̂` + (1− a) µ̂`−1 , (20)

σ̂` := b` σ̂t + (1− b`) σ̂`−1 , (21)

b` = b− b
(

1− 1

`

)q
, (22)

for a set of smooth parameters such that 0 < a ≤ 1,

0.8 ≤ b ≤ 0.99 and 5 ≤ q ≤ 10 [29,56], with the estima-

tions at iterations ` and ` − 1 obtained by solving the

Eq.(19) analytically.

The convergence of the sampling process is con-

trolled by the test

||σ` − σ`−1||w ≤ 1 , (23)

where the weighted root-mean-square norm of the dif-

ference vector x− y ∈ RN is defined as

||x− y||w =

√√√√ 1

N

N∑
j=1

(wj (xj − yj)) 2
, (24)



8 Americo Cunha Jr et al.

for the error weights

wj =
1

atolj + 0.5 |xj + yj | rtol
, (25)

with atolj and rtol denoting absolute and relative

tolerances, respectively. Due to the normalization pro-

vided by the weights of Eq.(25), a weighted norm of the

order of 1 in (23) can be considered small. This type of

convergence test, frequently used in the best differential

equation solvers [22,58], provides robust error control.

An overview of the cross-entropy method can be

seen in Figure 3. More details about the CE implemen-

tation can be seen in Algorithm 1, section 3.7, and in

the references [9,55,56].

3.6 Model update and uncertainty quantification

through Approximate Bayesian Computation (ABC)

The update of the model calibration process involves a

Bayesian inference scheme [27,53,67], where the data

set y data and a prior distribution for the parameters

π(X ) are combined with the aid of a likelihood func-

tion π(y data | X ) to estimate a posterior parameter

distribution π(X | y data ) through Bayes’ theorem

π(X | y data ) ∝ π(y data | X ) π(X ) , (26)

which combines prior information and available data in

an optimal way [67,68].

For inference purposes in this setting, the approx-

imate Bayesian computation (ABC) scheme proposed

by Toni et al. [70] is employed. A likelihood function

form is not assumed, so the usual hypothesis of addi-

tive independent Gaussian noise is unnecessary. Alter-

natively, the model prediction and the epidemic data

are directly compared with the aid of a discrepancy

function J (x) — such as those defined by Eq.(11) or

Eq.(13) — to measure the representation quality of the

drawn model. Monte Carlo simulation [10,29], employ-

ing an acceptance-rejection sampling strategy, is used

in the inference process, in a way that a sample Xk

drawn from the prior distribution π(X) is accepted only

if |J (Xk)| < tol, where tol is a (problem-dependent)

tolerance prescribed by the user. Once the discrepancy

function of Eq.(11) is defined as a kind of relative error,

it is not necessary to employ two tolerances to control

the convergence of the ABC process, as done in the

case of CE. But for other definitions of J (x) this kind

of convergence criterion may be helpful.

The good practice of this technique dictates that all

known information about the model parameters should

be encapsulated into a prior distribution π(X), to ob-

tain an informative inference process.

Typically, the iterative process of the CE method

provides a lot of information about the parameters, so

it is beneficial to take advantage of this knowledge to

build the prior. Therefore, the methodology proposed in

this paper adopts as prior distribution, for the ABC in-

ference step, the truncated Gaussian distribution with

support bounds xmin, and xmax, central tendency µ,

and dispersion information σ that comes from the last

iteration of CE algorithm, i.e.,

π(X ) ∼ T N (µ, diag(σ),xmin,xmax) . (27)

It is important to note that although this prior dis-

tribution is defined in the same (broad) region where

the initial truncated Gaussian of the CE method was

defined, it is much more informative. Despite the sup-

port limits being kept invariant, the central tendency

encapsulated in the mean µ, and the dispersion defined

by the standard deviation σ are updated by the CE

iteration several times, obtaining a substantial gain of

information in this process.

Conceptually, the posterior distribution for the com-

putational model parameters π(X | y data ) is obtained

from the samples accepted in the acceptance/rejection

process, through some technique of statistical inference.

Armed with this probabilistic distribution, in theory

any statistical information about the model parameters

can be obtained, as well as the intrinsic uncertainty of

the parameters can be propagated to the response of

the dynamic system. In practice, this distribution is

not always inferred, and it is very common that only

partial statistical characterizations (e.g. low-order mo-

ments) are calculated, or that the accepted samples

are used directly in the uncertainty propagation pro-

cess that follows the definition of the distribution of

the model input.

It should be noted at this point that the calibra-

tion process described above concerns only the coeffi-

cients of the system of differential equations that de-

fine the epidemiological model. The initial conditions

of the dynamics were not considered. They are inferred

by a heuristic process, guided by intuition about the

behavior of nonlinear systems, which is described in

section 4.2.

An overview of the ABC can be seen in Figure 4.

Further details are available in Algorithm 1 from sec-

tion 3.7, and in the references [33,38,40,43].

3.7 The novel metaheuristic CE-ABC framework for

model calibration and uncertainty quantification

The combination of CE and ABC gives rise to a novel

algorithm for epidemic model calibration and UQ. A
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Sampling

Learning

v0 = (µ0,σ0) draw
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X1,X2, · · · ,XNce objective

function

J (X1), J (X2), · · · , J (XNce
)
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ε`update

estimators

µ`,σ`

v` = (µ`,σ`)

global

optimum

Fig. 3 Schematic representation of the two-phases CE algorithm: (i) sampling – where the domain is sampled according to a
given distribution to explore the feasible region, and (ii) learning – where the distribution parameters are updated with the
aid of an elite set, to improve the optimum estimation.

prior

draw

samples

Acceptance / Rejection

available data

+

computational model

+

discrepancy test

accepted

samples

posterior

Fig. 4 Schematic representation of the ABC algorithm. An a priori distribution is used to generate samples that are selected,
if a discrepancy function is small, in an acceptance/rejection process, to generate a posterior distribution.

schematic representation of this new UQ framework,

called here CE-ABC, can be seen in Figure 5, where the

available data (from epidemic surveillance system) and

the computational model — defined by Eq.(1) — are

combined to evaluate the discrepancy function J (X)

— defined by Eq.(11).

First, a truncated Gaussian distribution, defined with

aid of conservative (board) bounds and informative val-

ues for central tendency, is used by CE method to sam-

ple the domain and obtain a first informative estimation

for the model parameters values. After the convergence

of this iterative process, the updated truncated Gaus-

sian is used to define a prior distribution to be used

in the ABC algorithm. Then the ABC combine this

informative prior distribution with data, using a dis-

crepancy function, to obtain a posterior distribution of

the model parameters. The accepted samples from the

Monte Carlo sampling, which define the posterior, are

also used to draw credible envelopes. Other statistical

information (e.g. low-order moments, MAP, etc) may

be obtained in the same way. The computational recipe

for the CE-ABC procedure is shown in Algorithm 1.

3.8 Remarks about the CE-ABC algorithm

The novel CE-ABC framework presented here is based

on two general statistical methods which have already

been applied to several complex problems [40,56,65,70].

The resulting algorithm inherits two interesting proper-

ties from these methods: (i) from CE, the guarantee of

convergence to the global optimum in typical situations;

and (ii) from ABC, the likelihood shape independence

and relative computational efficiency, when compared

to approaches that require a direct assessment of the

likelihood function. Such a mixture of good properties

generates a robust framework for stochastic simulations
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discrepancy function

+

surveillance data

epidemic model

truncated Gaussian

CE

updated Gaussian updated Gaussian

ABC

input distribution

Monte Carlo

output distribution credible band
correlation

MAP

other statistics

Fig. 5 Schematic representation of the CE-ABC framework for estimating parameters and uncertainty quantification in mech-
anistic epidemic models. First, starting from a truncated Gaussian distribution, an estimate for the model parameters is
obtained with the cross-entropy (CE) method. Then, the estimation of the parameters is refined through an inference process
employing approximate Bayesian computation (ABC), which also propagates the uncertainties through an acceptance-rejection
Monte Carlo simulation to obtain, in the end, a statistical characterization of the model output uncertainty.

involving epidemic models, which are typically difficult

to calibrate and have a limited predictability horizon,

requiring quantification of uncertainties for any mini-

mally reliable forecast.

Although the good theoretical properties of the CE-

ABC framework are observed in the numerical stud-

ies developed by the authors with the epidemic model

employed in this paper, its use in conjunction with

other types of computational models (e.g. computa-

tional mechanics) requires a more comprehensive the-

oretical analysis. Such a formal analysis for a broad

class of models is beyond the scope of this work and

the present journal, but it would be a fascinating work

on applied mathematics, which the authors leave as a

suggestion for future work.

Due to the generality of CE and ABC methods, but

in a context where a rigorous mathematical analysis to

ensure algorithm functionality for a broad class of com-

putational models is missing, the authors consider that

the proposed CE-ABC framework is a metaheuristic1

for model calibration and UQ.

Despite the CE-ABC algorithm’s excellent conver-

gence properties, it is impossible to make an accurate

inference if “bad” values (physically/biologically incon-

sistent or very discrepant with reality) are assigned to

the model’s nominal parameters, initial conditions, and

bounds. Defining the bounds and nominal values for

the parameters and initial conditions is an important

task that must be done carefully. It is necessary to have

biological intuition (in parallel to the importance of

physical intuition when in the context of computational

physics). The analyst’s experience with the problem of

interest is essential; it is a kind of expert knowledge that

must be embedded into the priors distributions. Be-

sides, exploratory tests with the computational model

1 A technique for efficiently solving a computational prob-
lem (approximately) that is generally suboptimal in some
sense for practical use.
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Algorithm 1 CE-ABC is a metaheuristic that combines CE and ABC for parameters estimation and uncertainty

quantification in mechanistic epidemic models. It receives as input the computational model M, the discrepancy

function J , the sampling distributions bounds xmin and xmax, the number of CE samples Nce, the elite sample

set size NE` , the number of ABC samples Nabc, an absolute and a relative tolerance for CE atol and rtol, a

tolerance for ABC tol, and an upper bound for CE iterations maxiter. The algorithm returns the best parameter

estimate obtained by both CE and ABC, and the samples accepted during the ABC iteration process.

1: procedure CE-ABC(M, J , xmin, xmax, Nce, NE` , Nabc, atol, rtol, tol, maxiter)
Require: xmin � xmax
Require: Nce > 0
Require: Nabc > 0
Require: NE` > 0 and NE` < Nce

Require: atol ≥ 0
Require: rtol > 0
Require: tol > 0
Require: maxiter > 0

//- - - - - CE step - - - - -//
2: ` := 0
3: µ := (xmax + xmin)/2
4: σ := (xmax − xmin)/

√
12

5: Draw X ∼ T N (µ, diag(σ),xmin,xmax) // total of Nce samples
6: while ||σ` − σ`−1||w > 1 and ` < maxiter do

7: ` := `+ 1
8: Evaluate Yk =M(Xk) for k = 1 : Nce
9: Evaluate J (Xk) for k = 1 : Nce

10: Define elite sample set E`
11: Update µ and σ using NE` samples from E`
12: end while

//- - - - - ABC step - - - - -//
13: Jmin =∞
14: Xbest = NaN

15: Ybest = NaN

16: Define prior π(X) = T N (µ, diag(σ),xmin,xmax)
17: Draw X ∼ π(X) // total of Nabc samples
18: for k = 1 : Nabc do
19: Evaluate Yk =M(Xk)
20: Evaluate J (Xk)
21: if J (Xk) < tol then
22: Accept Xk

23: Save Xk and Yk
24: if J (Xk) < Jmin then
25: Xbest := Xk

26: Ybest := Yk
27: Jmin := J (Xk)
28: end if

29: else
30: Reject Xk

31: end if

32: end for
33: Return (X,Y )ceopt , (X,Y )abcbest , and (X,Y )abcsaved
34: end procedure

and information from previous works may be precious

to discover a suitable interval of values.

The results obtained with the CE-ABC framework

also strongly depend on the tolerances atol, rtol, and

tol, chosen by the user. There are no canonical val-

ues for these parameters that are valid for all types of

inference; good values are problem-dependent. In this

way, the analyst’s experience and intuition are crucial in

defining these values and a little numerical experimen-

tation with the computational model. In the numerical

experiments repeated in the session 4 these tolerances

are defined as being atol = 0.001, rtol = 0.05, and

tol = 0.1.

Once again, it is worth emphasizing the observa-

tions made in section 2.4 about the limitations and ap-

plicability of the model. No matter how robust the cal-

ibration and uncertainty propagation algorithm is, how

good is the choice of model parameters and bounds. If

the model does not describe the reality in a minimally

reliable way, terribly wrong (or in the limit nonsense)
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Table 1 Plausible nominal values and bounds for the param-
eters of the SEIR(+AHD) epidemic model.

Unit Nominal Min Max Refs

β or β0 1/day 1/7 1/14 1/2 [39,80]
α 1/day 1/5 1/10 1/2 [5,39]
fE — 0.8 0.7 0.9 [3,39,44]
γ 1/day 1/14 1/21 1/7 [39,84]
ρ 1/day 1/700 1/2100 1/100 [39,77,84]
δ 1/day 1/14000 1/21000 1/100 [63]
κA — 0.0010 0.0005 0.0050 —
κH — 0.05 0.01 0.10 [19,39,80]
εH — 0.2 0.1 0.5 —
β∞ 1/day 1/7 1/14 1/2 [72]
η 1/day 5 0 10 [72]
τβ day 60 0 120 [49]

predictions will emerge from the simulations. Choos-

ing a suitable model is a primary exercise and of great

importance in this type of analysis.

4 Results and discussion

This section presents several numerical experiments con-

ducted with the SEIR(+AHD) epidemic model and the

proposed CE-ABC algorithm. The plausible nominal

values used in the integration of the dynamics of a vir-

gin population for COVID-19 infections are presented

in Table 1, which also shows numerical bounds (upper

and lower) that are used to delineate the feasible do-

main limits in the CE method. The plausible values

from Table 1 correspond to a COVID-19 outbreak in a

virgin population to the disease, such as those observed

worldwide in 2020. They were determined by informa-

tion from the literature [3,5,19,39,44,49,63,72,77,80,

84] or numerical experimentation.

Numerical experiments with these parameters are

not focused on being very reliable reproductions of the

COVID-19 outbreaks in 2020. They only aim to have

the main characteristics of the epidemic dynamics so

that they offer a good test for the methodology pro-

posed in this paper.

The objective is to show that the CE-ABC frame-

work is a powerful tool for data-driven epidemic mod-

eling and can be used, together with a suitable epi-

demic model, in near real-time to predict the course

of an epidemic outbreak of an emerging disease (such

as COVID-19) in a time horizon compatible with the

limits of predictability of the underlying dynamics.

4.1 Dynamic evolution of a fully susceptible

population subjected to an initial infection

The first analysis presented here concerns the situation

of a population virgin to COVID-19 infections, where

the disease is introduced into the community by a single

individual externally exposed to the viral agent that

causes the disease.

This is a hypothetical case (possibly unrealistic ), as

it does not consider any measures to mitigate or sup-

press the outbreak during its occurrence. However, its

study may be essential to delineate a possible baseline

behavior related to a potential epidemic of COVID-19,

providing projections of a worst-case scenario and some

intuition about the free evolution of the disease.

In this scenario, a constant value for β = β0 is con-

sidered, as well as an initial population N0 = 5.5× 106

(compatible with the city of Rio de Janeiro, Brazil), a

single exposed individual E0 = 1, and all other initial

conditions are set to zero, except the suscetibles, which

is set as the difference between N0 and all other vari-

ables. The time-step for simulation is equal to 1 day.

The model parameters values are defined in the third

column of Table 1.

The dynamic evolution of the SEIR(+AHD) model,

for a temporal interval of 2 years, can be seen in Fig-

ure 6, which shows the corresponding time series in lin-

ear (top) and logarithmic (bottom) scales. In the bot-

tom part, it is possible o better observe the trends of

time series in which the maximum values are small com-

pared to the initial size of the population.

Despite community transmission starting in the first

moments of the dynamics, due to the transmission struc-

ture of this type of model, an outbreak only takes on

notable proportions after 200 days of disease circulation

in the population. In other words, it may take more

than six months after the start of transmission of the

disease within this population for the outbreak to be

noted by the major public.

However, after the outbreak became noticeable, a

wave of contagion by COVID-19 quickly emerged, char-

acterized by a rapid increase in exposed compartments,

concomitant with a decrease at the same rate in the

susceptible population. Most recover directly, while a

small portion dies without medical care. The other part

of those infected are hospitalized, most of them recover,

and a small amount dies.

The peak of infections occurs around 350 days after

the insertion of the first exposed case in the population,

almost a year after the disease arrives in the commu-

nity. There were about 700 thousand people with active

disease (exposed, infectious and asymptomatic) in the

community during the peak, almost 13% of the initial
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Fig. 6 Dynamic response of the SEIR(+AHD) epidemic
model in a scenario of a totally susceptible population, with
a single individual exposed. Time series in linear scale are
shown at the top and in logarithmic scale at the bottom,
which allows displaying better the curves in which maximum
values are small compared to the initial population value.

population. The susceptible corresponded to close to

20% of the people after two years, while the recovered

account for almost 80% of the people.

The reader can better appreciate the evolution of

the number of hospitalizations and new deaths per day

in Figure 7 (top), as well as their respective cumula-

tive values throughout the epidemic outbreak (bottom).

The peaks of hospitalizations and deaths occur a few

days after the peak of infections, involving more than

6000 people under medical care and around 100 deaths.

At the end of the two-year window, almost 48,000 peo-

ple were hospitalized at some point, and another 10,000

people died from complications inherent to the disease.

Throughout the outbreak, the variation in popula-

tion size is slight compared to its initial size (10 thou-

sand is a small number compared to 5.5 million, around
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Fig. 7 Dynamic response of the two QoIs for the
SEIR(+AHD) epidemic model in a scenario of a totally sus-
ceptible population, with a single individual exposed. Time
series for the number of hospitalized (upper brown curve) and
new deaths (lower black curve) are shown at the top, while
the corresponding cumulative numbers can be seen at the
bottom.

0.2%) but highly significant in demographic terms. This

hypothetical outbreak is responsible for losing approx-

imately 10 thousand lives in about 300 days. This value

would correspond to something around 15% of all deaths

that occurred in the city of Rio de Janeiro in 20192.

But note that, in this case, such an unusual amount of

deaths is due to a single disease.

4.2 Determination of a dynamically consistent initial

state for the epidemic model calibration

Typically, in the process of calibrating a dynamic model

with the aid of data, the bottleneck is identifying the

2 Demographic data for the city of Rio de Janeiro can are
available at https://transparencia.registrocivil.org.br.
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initial conditions since, often, the initial state of the sys-

tem of interest is partially (or even totally) unknown.

This is the case when dealing with compartmentalized

epidemic systems in the form of an SEIR model or its

variants. Observations on the infected compartment are

usually available (subject to delay and underreporting),

but data from recovered rarely (and even when they

are, they are often unreliable). However, for the prac-

tical impossibility of measuring them, the susceptible

and exposed practically are never known directly. Other

possible compartments can also be challenging to mea-

sure in practice [17,32].

In this scenario, the determination of initial condi-

tions (or part of its components) is usually done via

direct inference from the data [14,15,30,41] or by in-

direct means, with plausible assumptions or educated

estimates about the actual values [6,46]. But while the

latter approach is highly subject to epistemic errors,

the former may suffer from identifiability issues. Thus,

novel methodologies to identify initial conditions of epi-

demiological systems are welcome.

By the existence and uniqueness theorem for ODEs

[1,23,48,64,73], the dynamical system defined by (1)

and a given initial condition has only one dynamic state

for each instant of time. Once the value of one of the

components is fixed (e.g. hospitalizations) for a par-

ticular moment, only one combination of values in the

other compartments produces a dynamic state compat-

ible with the fixed value. For this reason, it is practically

impossible to infer a consistent initial condition from

assumptions or ansatz to values (especially in an ac-

tual setting where surveillance data are imperfect rep-

resentations of the dynamics of interest, and there are

compartments for which data are not available).

To avoid the above difficulties, a three-step proce-

dure to determine a suitable set of initial conditions

that is compatible with the observed data is proposed:

1. Given a reference value for hospitalizations Href ,

the dynamics of a population virgin to the disease

(such as presented in section 4.1) is used to deter-

mine the time instant for which H(t) is closest to

Href . The corresponding dynamic state is recorded;

2. Analogously, given a reference value for deathsDref ,

the dynamic state corresponding to the shortest dis-

tance betweenD(t) andDref is obtained and recorded;

3. Finally, a dynamic state corresponding to a weighted

average between the two states determined above is

calculated and assumed to be a dynamically consis-

tent initial condition.

When using the dynamics of a population totally

susceptible to the disease to identify a dynamic state

close to the reference values for H (or for D), the pro-
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Fig. 8 Dynamic response of the SEIR(+AHD) epidemic
model in a scenario of a totally susceptible population, with
a single individual exposed. Two states (for different times)
are highlighted, corresponding to prescribed values of H and
D. The initial condition of subsequent simulations is defined
by a convex combination of these two dynamic states. The
colors of the curves follow the same scheme as in Figure 6.

cedure guarantees that this state is “dynamically con-

sistent”, as it is a solution to the initial value problem

associated with the epidemic model. Although, in gen-

eral, such a state does not exactly satisfy the reference

value, by the continuous dependence of the solutions

on the initial conditions, one can guarantee that such a

dynamic state is “sufficiently close” to the state associ-
ated with the exact value of the reference. By making a

convex combination of initial conditions obtained this

way, we still have a dynamic state close to all the refer-

ence values. In this way, the procedure described above

can generate an initial condition that is “dynamically

consistent” with the available data. The procedure is

naturally generalized if there are reference values for

other compartments.

To illustrate of the methodology, the reader can ob-

serve Figure 8, which shows two distinct dynamic states

obtained from the data on hospitalizations and deaths

together with the time series on a semi-logarithmic scale,

corresponding to the response of a virgin population to

the disease with a single exposed individual. The convex

combination of these two dynamic states, considering

the same weights used in Eq.(11), is used as an initial

condition in the numerical experiments presented in the

following sections.
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4.3 Calibration and validation of the SEIR(+AHD)

epidemic model and its descriptive capacity

In this section the proposed CE-ABC framework is used

to calibrate and quantify the parametric uncertainties

inherent to the SEIR(+AHD) dynamic model. To this

end, the following hyperparameters are adopted in the

CE-ABC algorithm: discrepancy function weight ω =

0.75 for hospitalizations (and thus, 1 − ω = 0.25 for

deaths); CE samplesNce = 100; CE elite sample set size

NE` = 10% of Nce; CE absolute tolerance atol = 0.001;

CE relative tolerance rtol = 0.05; CE mean value

smoothing parameter a = 0.7; CE variance dynamic

smoothing parameters b = 0.8 and q = 5; CE maximum

number of iterations maxiter = 150; ABC samples

Nabc = 2000; ABC tolerance tol = 0.1. The bounds

for the model parameters are adopted according to the

values shown in Table 1.

The data considered here for the training of the dy-

namic model include the records of hospitalizations and

total deaths in the city of Rio de Janeiro between May

1 and 31, 2020. The statistical validation process of the

calibrated model uses the data corresponding to the

following month, between June 1 and 30, 2020. Data

for April 2020 are ignored because they are unreliable

since the city’s epidemiological surveillance system was

still adapting to the new reality at the beginning of the

pandemic.

The results regarding the calibration, quantification

of uncertainties, and validation of the SEIR(+AHD)

model with the aid of the CE-ABC algorithm can be

seen in Table 2 and Figures 9 and 10.

Table 2 shows the values calculated by the CE-

ABC algorithm for the parameters of the SEIR(+AHD)

model, showing the estimates obtained by the CE op-

timizer in the third column; the respective standard

deviation values in the fourth column; the best sam-

ple of the ABC simulation in the fifth column; and the

standard deviation values of the posterior distributions

obtained by ABC in the sixth column. The two sets

of parameters identified present very close values, and

the ABC result is a kind of refinement of the estimate

obtained by the CE.

Regarding the posterior joint distribution of the model

parameters, the reader finds this information in Fig-

ure 9, which presents the histograms and scatter plots

for each of the model parameters (estimated with the

samples accepted by the ABC simulation). Scatter plots

give information about the correlation between the pa-

rameters. In this figure, the order of the parameters is

the same as shown in Table 2.

In Figure 10 the reader can see the time series of

hospitalizations (left) and total deaths (right) for the

Table 2 Parameters identified for SEIR(+AHD) epidemic
model via CE-ABC framework, and the respective standard
deviation values.

CE CE ABC ABC
Unit Optimal std dev Best std dev

β0 1/day 0.12 0.02 0.13 0.02
α 1/day 0.20 0.07 0.27 0.06
fE — 0.81 0.03 0.84 0.03
γ 1/day 0.13 0.01 0.12 0.01
ρ 1/day 0.0006 0.0001 0.0005 0.0001
δ 1/day 0.0021 0.0004 0.0015 0.0004
κA — 0.0026 0.0008 0.0027 0.0008
κH — 0.0563 0.0130 0.0575 0.0128
εH — 0.25 0.07 0.33 0.07
β∞ 1/day 0.31 0.06 0.43 0.06
η 1/day 5.8 1.9 6.2 1.8
τβ day 146 7 153 7

Fig. 9 Histograms and scatter plots of the SEIR(+AHD) epi-
demic model, estimated with the samples accepted by the
ABC simulations. The order of the parameters is the same as
shown in Table 2.

city of Rio de Janeiro in a time window that covers

the months of May and June 2020. Time trajectories,

accepted by the ABC simulations (87% of the 2000 to-

tal)3, are displayed as thin solid lines in light gray; the

trajectory that corresponds to the optimal set of pa-

rameters obtained by the CE optimizer is displayed as

a dash-dotted line; the best sample trajectory obtained

by the ABC simulation (the one with the smallest er-

ror) is indicated as a dashed line; while the median

calculated with the samples accepted in the ABC sim-

ulation is indicated as a thick solid line. In addition, a

95% credibility envelope is displayed in the form of a

filled region above the ABC samples. Training data are

3 This high acceptance rate, which may seem very high at
first glance, is due to the informative prior obtained by CE.
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displayed as magenta circles, while validation data are

shown as cyan asterisks.

The comparison between the CE-ABC time series

and the training data shows that, in this scenario, the

dynamic model can reproduce well the epidemic out-

break experienced by the city of Rio de Janeiro in May

2020. For both time series, the curve corresponding to

the optimal set of parameters identified by the CE op-

timizer, the best scenario simulated by ABC, and the

median calculated with the cases accepted in the ABC

simulation provide good descriptions of the epidemic

data trend. Furthermore, the training data fit is robust

once it includes the 95% credibility interval obtained

by ABC accepted samples, covering most of data fluc-

tuations.

In terms of validation, by comparing the predictions

(extrapolations) made by the dynamic model and fu-

ture data (not used in the calibration), one can note

that the dynamic model captures the trend of the out-

break. It takes over the data due to a 95% credibility

band around the calculated evolution curves. Strictly

speaking, the forecasts are reasonably accurate for the

first seven days of extrapolation, starting to shift from

the simulated curves from this point onwards. In what

follows, hospitalizations are slightly underestimated by

the ABC median by approximately 25%, while the me-

dian overestimates total deaths up to a limit of around

10%.

In light of the minimal horizon of predictability that

epidemic systems present4, these predictions can be con-

sidered very good, as they provide accurate values in the

short term (one week) and bring some reasonable in-

formation in the medium term (one month). Although

10-25% uncertainty in forecasting the number of hos-

pital beds/expected deaths is not highly accurate for

an immediate sizing of hospitals or funeral units, it is

still informative in indicating to decision makers the

correct order of magnitude for these outcomes. For in-

stance, knowing a month in advance, in the course of

an epidemic, that a few hundred (not thousands, or

vice-versa) of hospital beds/burials will be required per

day can be crucial information to prevent a hospital

or cemetery from collapsing. Added to this is that the

model can be recalibrated weekly (or daily), updating

the short/medium forecasts whenever new data become

available.

4 In an epidemic where people are aware of what is happen-
ing, there is a feedback between the rate of infection and peo-
ple’s social behavior. Being aware of the severity of the out-
break beforehand can help reduce its intensity or vice versa.
The great difficulty in modeling such feedback is one of the
factors (perhaps the main one) that limits the predictability
horizon of epidemic models.

It is also worth mentioning that, in addition to mak-

ing predictions about the QoIs for which epidemic data

are available, a well-calibrated mechanistic model can

provide information on latent quantities (for which data

are not available), such as the number of susceptible,

exposed, asymptomatic, etc. In this sense, to illustrate

this possibility, the reader is invited to observe Fig-

ure 11, which presents the evolution of the time se-

ries associated with eight dynamics state coordinates

of the epidemic model in a time window that includes

the months of May and June 2020, considering the best

estimate of the ABC simulation for the model parame-

ters.

From a qualitative point of view, this simulation al-

lows the analyst to infer that, in this two-month in-

terval, there is a slight but notable decrease in the

number of susceptible people in the general popula-

tion due to the increase in COVID-19 infections, fol-

lowed by an increase in total recoveries. The number of

symptomatic infected is always more significant than

the number of exposed, greater than the asymptomatic

infected. Quantitatively, it can be seen that these last

three groups have sizes of the same order of magnitude,

which is hundreds of times greater than the number of

hospitalized patients. At the end of this two-month in-

terval, the total number of accumulated deaths reaches

a value comparable to the active infected.

Of course, the accuracy of such information largely

depends on the extent to which the structure of the epi-

demic model provides a reliable representation of epi-

demic dynamics. If it is a good representation, the sim-

ulations should offer great insight; if it is a feeble rep-

resentation, the simulations do not tell anything useful

at the limit. In intermediate cases, where the model

is more or less accurate, useful information can be ob-

tained, but not all the information from the simulations

is reliable. Separating what is helpful from what is not

requires deep knowledge of some basic principles of epi-

demiology.

4.4 Influence of CE-ABC hyperparameters on the

description of the epidemic dynamical system

The CE-ABC framework combines two advanced stochas-

tic simulation techniques, thus inheriting all the control

parameters (a.k.a. hyperparameters) underlying the two

methods. Consequently, the model calibration process

and the propagation of parametric uncertainties de-

pend, nonlinearly, on these hyperparameters. Thus, a

study of how such quantities affect the modeling is de-

sirable and recommendable. The present section of the

manuscript seeks to shed light on this.
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Fig. 10 Time series generated by the CE-ABC algorithm for the number of hospitalized individuals (left) and total deaths
(right) obtained with the SEIR(+AHD) model, which is calibrated with Rio de Janeiro epidemic data from May 2020 and
validated for a temporal window covering the month of June 2020. Here the discrepancy function weight is ω = 0.75, and ABC
acceptance rate is 87%.
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Fig. 11 Dynamic response of the SEIR(+AHD) epidemic
model, in a time window that includes the months of May
and June 2020, considering the best estimate of the ABC
simulation for the model parameters. Here the discrepancy
function weight is ω = 0.75.

Initially, we investigated the effect of the discrep-

ancy function weight parameter ω on the results. For

that, Figure 12 presents the two QoIs calculated by the

SEIR(+AHD) epidemic model, considering five differ-

ent values for the weight: ω ∈ {0, 0.25, 0.5, 0.75, 1}.
By visual inspection, it is possible to see that the

best fits are obtained when ω = 0.25, ω = 0.5 or

ω = 0.75. The first and the last case favor one QoI,

but without totally disregarding the effect of the other,

while the intermediate case balances both. In this set-

ting, deciding which QoI should be given more weight is

a matter of convenience. If the information on hospital-

izations is more important, higher ω values should be

considered. The opposite is true if the primary interest

is to follow the evolution of deaths.

The ω = 0 scenario considers a limiting case, where

the discrepancy function defined by Eq.(11) considers

only the total number of deaths. In contrast, consider-

ing only hospitalizations, the other extreme situation

is counted when ω = 1. These two limit cases have a

terrible fit in the disregarded QoI, and should only be

considered in situations in which only one of the QoI is

of reliable.

Once the value of ω is fixed, the results are also

affected by the choices of xmin, xmax, Nce, NE` , Nabc,

atol, rtol, tol, and maxiter.

The effect of varying the number ABC simulation

samples Nabc can be seen in Figure 13, where results

are presented for Nabc = 100 (top) and Nabc = 1000

(bottom). Note that the number of accepted samples is

directly proportional to the total number of simulated

samples. This variation directly impacts the estimation

of the posterior distribution, with a consequence in the

obtained median and credibility band. Of course, these

estimates are also affected by the tolerance tol, which

improves or worsens the results as it is decreased or

increased. As it is an obvious effect, numerical experi-

ments in this sense are not shown. A tolerance of the

order of 10%, i.e., tol = 0.1, proved to be effective for

the simulations in this paper.

The parameters atol, rtol, and maxiter have an

influence on how much faster the CE optimizer will

stop, with consequent gain/loss of accuracy, followed

by an increase/decrease in the computational cost. The

reader is invited to do numerical experiments with these

parameters to see their effect in practice. In the prelim-
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Fig. 12 Quantities of interest calculated by the SEIR(+AHD) epidemic model with different values of the weight parameter:
ω = 0 (first line); ω = 0.25 (second line); ω = 0.5 (third line); ω = 0.75 (fourth line); ω = 1 (fifth line).
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Fig. 13 Effect of varying the number ABC simulation samples on the QoIs calculations and posterior inference. At the top
Nabc = 100, while at the bottom Nabc = 1000. Here the discrepancy function weight is ω = 0.75 and Nce = 100.

inary numerical studies conducted by the authors, we

observed that there are no great gains in obtaining an

estimate of the optimal parameters with great preci-

sion. Relative tolerance values of the order of 5%, i.e.,

rtol = 0.05, provide a good compromise between ac-

curacy and computational cost.

However, it is interesting to observe the effect of Nce
variation in practice, as shown in Figure 14, which con-

siders different values for CE samples, Nce = 50 (top)

and Nce = 200 (bottom). The number of CE samples

influences the selection of the optimal set of parameters

and the inference process performed by ABC, since the

a priori distribution used by ABC is constructed with

the help of statistics calculated by the CE. It is interest-

ing to note that, unlike ABC, where a greater number of

samples typically leads to a better inference result, this

is not necessarily the case with CE optimization. In the

example shown in Figure 14, the model calibrated with

only 50 samples has better adherence to the data than

the counterpart that uses Nce = 200. A variation in the

size of the elite set NE` can positively or negatively im-

pact accuracy, depending on the case. Prior numerical

experiments help identifying which case of the problem

of interest.

As it is a stochastic algorithm, obviously the results

depend on the value of the statistical seed used. Fig-

ure 15 shows two simulations with the same hyperpa-

rameters, but with slightly different inference results.

Finally, but not least, it is worth mentioning that

the results are strongly influenced by choice of bounds

xmin and xmax. Indeed, in the authors’ experience,

these are the parameters that have the most significant

impact on the quality of results (together with the epi-

demic surveillance data). A bad choice for the parame-

ter bounds can lead to unreliable models for the actual

behavior of the outbreak. Good choices for these param-

eters demand detailed knowledge about the biological
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Fig. 14 Effect of varying the number CE samples on the QoIs calculations and posterior inference. At the top Nce = 50, while
at the bottom Nce = 200. Here the discrepancy function weight is ω = 0.75 and Nabc = 2000.

aspects of the problem. Numerical experimentation can

also be of great help in finding plausible values.

4.5 Predictability limit for the epidemic dynamics

using the CE-ABC and the SEIR(+AHD) model

This section presents a study to delineate the predictabil-

ity limit of the SEIR(+AHD) model as a tool to predict

the dynamics of COVID-19 in the city of Rio de Janeiro

in the year 2020.

To this end, Figures 16 and 17 show the evolution

of the two QoIs, for various training data sets, extrap-

olating forecasts over a 30-day horizon. Training data

are incremented every seven days, including informa-

tion from the last seven days, starting with the period

between May 1 and 7, 2020, and ending with May 1

and July 9, 2020.

For the first three calibrations (calibrations between

the first and third week), the model presents a mod-

est descriptive capacity of the data, with the trend of

the short and mid-term forecasts being quite discrepant

to that observed in the following weeks. However, the

respective credibility intervals encompass the observa-

tions.

As the weeks go by, with more (and better qual-

ity) data feeding into the model (calibrations between

the fourth and seventh week), the description of the

training data improves substantially, as does the predic-

tive ability. In such cases, within a week, the model’s

median predicts the numbers of hospitalizations and

deaths with reasonable accuracy for epidemic estimates.

However, it starts to lose accuracy from the second week

of extrapolation gradually, although it continues to fol-

low, more or less, the trend of the data for 30 days (and

covers them via the credibility band).
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Fig. 15 Effect of the statistical seed on the QoIs calculations. Here the discrepancy function weight is ω = 0.75, Nabc = 2000
and Nce = 200.

The descriptive capacity remains impeccable for the

last three weeks of model calibration (weeks eight to

ten), with good short-term (one week) prediction. How-

ever, it is possible to notice a significant divergence be-

tween predictions and observations after seven days of

extrapolation. Such a loss of predictability is not di-

rectly related to the quantity or quality of the cali-

bration data but rather to a structural change in the

dynamic behavior of the outbreak. In July 2020, the

second wave of contagion began in the city of Rio de

Janeiro [18], drastically changing the trend of evolution

of QoIs. As the infection rate β(t) was modeled to only

contemplate a single change in the infection plateau,

the present model cannot accurately describe the new

wave of infections. One possibility to make the model

regain its predictive capacity would be the inclusion of

a new infection plateau in Eq.(2), as done in [72]. In

general, this strategy can be adopted to address not

just one but several waves of infection. Due to space

limitations, the authors did not include results in this

sense in the manuscript, but it would be interesting to

test this strategy in future work.

The above results show that the model’s descriptive

capacity and predictability limit are strongly influenced

by the amount and quality of data used in the calibra-

tion process.

In general, the more data, the greater the predictabil-

ity horizon of the model. It presents an excellent or good

capacity to extrapolate within a horizon of one or two

weeks, with some capacity to predict the trend up to

thirty days (depending on the outbreak’s dynamic be-

havior). The quality of the outbreak’s data also matters,

as it is clear from the first three numerical experiments.

In these cases, hospitalization data do not show the typ-

ical fluctuation of this time series (probably due to un-

derreporting, since at the beginning of May 2020, the

surveillance system in Rio de Janeiro was still adapting

to the pandemic), which affects the model’s fitting.
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Fig. 16 Evolution of the hospitalizations time series, calibrated with different datasets of Rio de Janeiro epidemic, extrapolating
forecasts over a 30-day horizon. Training data are incremented every seven days, including information from the last seven
days, starting with the period between May 1 and 7, 2020, and ending with May 1 and July 9, 2020.
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Fig. 17 Evolution of the total deaths time series, calibrated with different datasets of Rio de Janeiro epidemic, extrapolating
forecasts over a 30-day horizon. Training data are incremented every seven days, including information from the last seven
days, starting with the period between May 1 and 7, 2020, and ending with May 1 and July 9, 2020.
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Insufficient or poor quality data can compromise the

model’s fit, generating unrealistic predictions. However,

structural changes in the dynamic behavior of the epi-

demic (e.g., the emergence of a new wave of contagion)

have an even more pronounced effect in compromis-

ing the predictive capacity of the model. In the periods

preceding such changes, even quality data cannot guar-

antee that the model will extrapolate the data well in

the mid (or even in the short) term.

4.6 Verification of efficiency for the CE-ABC

framework for data-driven epidemic modeling

To conclude the discussion of the results, this section

presents a computational experiment to address the

computational-statistical efficiency of the CE-ABC frame-

work in comparison with a standard ABC approach

(without using CE method to refine the prior).

For this purpose, four test cases are compared in

Figure 18, which shows histograms and scatter plots for

the epidemic model parameters obtained with different

strategies of statistical learning:

1. ABC with a uniform prior;

2. ABC with lognormal prior;

3. ABC with truncated Gaussian prior;

4. CE-ABC with truncated Gaussian prior.

In all these tests, the values adopted for the lim-

its of the distributions (when of limited support) are

shown in Table 1, where the mean values also come

from. The respective standard deviations are defined as

those corresponding to a uniform distribution on the

finite support of this table. The other parameters are

similar to the case discussed in section 4.3, except the

number of samples used in Bayesian inference, which is

Nabc = 100k for the three case that use standard ABC,

and just Nabc = 2k for the novel CE-ABC framework.

For the three cases where only ABC is used, the

acceptance rate is at most a modest 1%, while a sub-

stantial value of 87% is obtained in the case that uses

CE-ABC. These results show the efficiency of the new

CE-ABC approach proposed here concerning the stan-

dard ABC method. It is also clear that the CE-ABC

framework provided a gain in information about the

distribution of parameter values much higher than the

traditional method, with average values reasonably far

from the boundaries. Both characteristics result from

using the CE method to refine the prior, which becomes

much more informative than the distribution used to

sample the domain at the beginning of the optimization

process that identifies the model parameters’ nominal

values.

5 Concluding remarks

5.1 Contributions

This paper proposes a new framework for model cal-

ibration and uncertainty quantification that combines

the cross-entropy (CE) method for optimization with

approximate Bayesian computation (ABC) for statisti-

cal learning. In this approach CE is used to obtain an

initial and informative estimation of the model param-

eters. Then, central tendency and dispersion informa-

tion obtained from CE are used to construct a infor-

mative prior distribution for an inference process that

uses ABC to refine the model calibration and propagate

the underlying uncertainties via acceptance-rejection

Monte Carlo sampling. This framework also employs

a heuristic strategy for identification of the initial con-

ditions by using plausible dynamic states that are com-

patible with observational data.

This combination of well-established algorithms gives

rise to a framework for uncertainty quantification with

several good features. CE and ABC are intuitive and

straightforward algorithms. Their combination gives rise

to a simplistic and robust framework, with few con-

trol parameters of clear interpretation, where no gra-

dient computation is required. In the update step with

ABC, the initial knowledge about the model parame-

ters obtained by CE optimization is incorporated into

the prior distribution and updated with the available

data to produce an informative posterior distribution.

Also, there is no need to assume an additive Gaussian

error. The uncertainty propagation is performed when

the parameters are identified, generating considerable

computational savings. The methodology’s major limi-

tation is its sampling nature, so many simulations might

be needed to achieve convergence. This characteristic is

not a problem for applications using epidemic models

based on differential equations, where each determin-

istic simulation has a low computational cost. But for

other domains (e.g. computational mechanics), where

models may take hours/days to run a single instance,

the CE-ABC framework may not be competitive.

The proposed methodology was tested on an epi-

demic model with an SEIR-type structure that also con-

siders asymptomatic individuals, hospitalizations, deaths,

and time-dependent transmission rate. Actual data from

COVID-19 outbreaks in Rio de Janeiro city were em-

ployed in the model calibration process. The results

were consistent, and the methodology seems promising.

They show that it is possible to perform good calibra-

tions of the epidemic model with the CE-ABC formal-

ism in scenarios that require a descriptive model (to

explain past outbreaks) and those where the objective
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ABC uniform (acceptance < 1% / 100k samples) ABC lognormal (acceptance ~ 1% / 100k samples)

ABC truncated Gaussian (acceptance < 1% / 100k samples) CE-ABC truncated Gaussian (acceptance < 1% / 100k samples)

Fig. 18 Histograms and scatter plots for the model parameters obtained with different statistical learning strategies. ABC
with a uniform prior and 100k samples (top left); ABC with lognormal prior and 100k samples (top right); ABC with truncated
Gaussian prior and 100k samples (bottom left); CE-ABC with truncated Gaussian prior and 2k samples (bottom right).

is to obtain a predictive model (to infer future behav-

ior of epidemics). In scenarios where the epidemic model

structure is a good abstraction of the contagion dynam-

ics, a horizon of good quantitative predictability of up

to two weeks can be achieved using CE-ABC for model

calibration and uncertainty quantification, with a good

capacity for qualitative description of the data trend

for up to one month.

5.2 Future directions

There are some possibilities to continue this research.

One can apply the proposed methodology to other dy-

namical systems, including other COVID-19 models with

different data, or the possibility of contemplating rein-

fection. Another branch that can be explored is related

to model (epistemic) uncertainties. For instance, it can

be very appealing to combine our CE-ABC framework

with methodologies that compensate for deficiencies in

the structure of the mathematical model. For instance,

the random matrix-based nonparametric probabilistic

approach by C. Soize [61]; the universal differential equa-

tions (UDE) for scientific machine learning by Rack-

auckas et al. [50]; or one of the physics-informed neu-

ral networks approached for epidemic modeling avail-

able on the literature [28,52,57,81]. It would also be

exciting and natural to insert the CE-ABC algorithm

proposed here as a calibration/UQ module in the inte-

grated framework for data-driven epidemic models de-

veloped by Zhang et al. [83].

5.3 Disclaimer

A model is always wrong, but some of them are useful.

This idea has a more pronounced meaning in computa-

tional epidemiology than in physics, as the first prin-

ciples of epidemic dynamics are unknown. Although

a mechanistic model such as the SEIR(+AHD) used

here is a (typically very rough) approximation of epi-

demic dynamics, it allows exploring qualitative scenar-

ios (short, medium, and long term) that can provide

great insight into the evolution of the outbreak. Thus,

being an extremely valuable tool for epidemiologists

[24]. Undoubtedly, such an approach is much more ra-

tional and conservative than being guided by the (well-

intentioned or not) opinion of curious people with no

training in the area or the general public (layman by

definition).

However, a final observation is necessary before one

uses an epidemic model to guide decision-making dur-

ing a real-time outbreak. It concerns the interpretation

of results. As epidemiology is a highly interdisciplinary
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area, it is practically impossible for a single professional

to hold all the necessary skills to assess the results of

an epidemic simulation unequivocally and, above all,

understand the consequences of intervention measures

that can be taken. Scientific, ethical, and humanistic as-

pects are equally important in this context and must be

discussed by an interdisciplinary panel of professionals.

In this sense, the authors of this paper strongly recom-

mend that simulations of this nature, especially made

with our model and framework, be evaluated and used

with great caution when making decisions, preferably

being scrutinized by a team of experts.
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