Slim Kallel

Saoussen Cheikhrouhou

Zakaria Maamar

Nawal Guermouche

Mohamed Jmaiel

From Process View Generation to Temporal Consistency Analysis of Inter-Organizational Business Processes

Keywords: Business process, Collaborative processes, View generation, Temporal consistency

Globalization pressure on organizations calls for new approaches to survive and remain competitive. An approach is to promote Inter-Oganizational Business Processes (IOBP) collaboration in which each partner exposes its public know-how without putting at-risk its private know-how nor impeding this collaboration from happening. Public versus private processes are the result of running views over organization's processes. To ensure a successful collaborative BPs, constraints with focus on temporal in this paper need to be satisfied. Organizations could operate in different time zones and have different time requirements. This paper presents an approach for generating process views along with satisfying the combined temporal constraints. Moreover, the paper includes a consistency analysis approach, which provides temporal solutions to some conflicts that could hind collaboration. A system implementing the approach is also discussed in the paper.

Introduction

Inter-organization collaboration is a cornerstone to the success of any organization that wishes to form adhoc partnerships, for example. Collab-oration benefits include combining competencies, tapping into new opportunities, and using resources rationally. Consequently, Inter-Organization Business Processes (IOBP) have a role to play in capturing, streamlining, and automating the collaboration of organizations. Unfortunately, IOBPs are subject to severe functional and structural constraints that arise due to the dynamic ecosystem in which organizations evolve. Indeed, organizations are usually based in separate countries, which means different legislations, policies, regulations, etc. In this paper, we focus on a particular functional constraint, that is temporal defining when a Business Process (BP) should be executed and for how long [START_REF] Clancy | Qualitative simulation as a temporallyextended constraint satisfaction problem[END_REF][START_REF] Kanso | Temporal constraint support for ocl[END_REF].

In addition to temporal concern that becomes acute in the context of IOBP, another concern is how to preserve (or mask) the know-how that is embedded in a process from other partners, although these partners have agreed on collaborating. Indeed, despite the good will that all collaborative partners show, there is a need to ensure that they only "share/expose" what is deemed necessary to the success of the collaboration (i.e., no more and no less). In this context, the concept of view over BP (like view over database) is widely recommended [START_REF] Chebbi | The view-based approach to dynamic inter-organizational workflow cooperation[END_REF][START_REF] Eder | Temporal Consistency of View Based Interorganizational Workflows[END_REF]. For example, an organization can hide critical activities like price calculation without hindering the execution progress of an IOBP.

In association with how to generate views over BPs, ensuring the consistency of temporal constraints over multiple views, which we refer to as public processes, is not straightforward. Indeed, masking some parts of a process or combining other parts could impact the initial temporal constraints that were defined independently of any future collaboration in mind. In fact, there are no guarantees that the initial temporal constraints will remain consistent during collaboration. Differences in time zones could lead into conflicts when a start constraint depends on an end constraint.

In this paper, we present two main contributions; First, we propose an approach enabling each partner of the collaboration to develop views over its own processes (i.e., generating public from private processes). The approach helps organizations "rebadge" the existing temporal constraints in response to the collaboration's needs and requirements. The approach also reduces the risk of generating inconsistent views.

The second contribution consists of proposing an approach for analyzing temporal consistency of IOBP, aiming at satisfying all temporal constraints that are linked to different BPs. The approach enables organizations to detect, early on, any temporal inconsistency that may lead to conflicts (e.g., deadlock due to different time zones and violation due to time overlaps) and later, failure. Our approach, also, suggests solutions to address temporal inconsistencies. After detecting an inconsistency, each partner is invited to review certain of its temporal restrictions like delaying the start time of a process. Consequently, as long as a process meets the defined temporal restrictions, all defined temporal constraints should be satisfied and successful collaboration will happen.

It is worth noting that most existing approaches for temporal consistency analysis [START_REF] Du | Timed compatibility analysis of web service composition: A modular approach based on petri nets[END_REF][START_REF] Eder | Temporal Consistency of View Based Interorganizational Workflows[END_REF][START_REF] Guermouche | Timed Conversational Protocol Based Approach for Web Services Analysis[END_REF] do not consider complex temporal constraints like cardinality (i.e., a task cannot be executed more than n times during a specific duration) and do not provide any solution to address these inconsistencies. Our approach fills in this gap and assists organizations generate views over processes and check temporal constraint consistency at the local (i.e., views) and global (i.e., collaborative IOBPs) levels.

In previous work, [START_REF] Cheikhrouhou | Toward a Time-centric modeling of Business Processes in BPMN 2.0[END_REF][START_REF] Cheikhrouhou | Toward a verification of time-centric business process models[END_REF], we formally specify and verify BPs enriched with temporal constrains. To this end, we mapped process models onto timed automata in preparation for their checking using a model checker [START_REF] Behrmann | A Tutorial on UPPAAL[END_REF]. We proposed a verification process to detect temporal violations and verify generic properties as well as absolute and relative temporal properties. In [START_REF] Cheikhrouhou | Time-aware Automatic Process View Generation[END_REF][START_REF] Cheikhrouhou | On Enabling Time-Aware Consistency of Collaborative Cross-Organisational Business Processes[END_REF], a preliminary version of the consistency approach for view generation and verification is proposed. In this paper, we present the formal definition of collaborative BPs and temporal constraints along with the necessary algorithms for verifying the consistency of these BPs with a real case study.

The rest of this paper is organized as follows. First, a motivating example is introduced in Section 2. Section 3 exhibits the first contribution of the approach, which is time-aware process view generation. Afterwards, Section 4 presents temporal consistency analysis, which helps avoid temporal failures in IOBP. The implementation details and evaluation of the approach are reported in Sections 5 and 6. Existing research works are included in Section ??. Finally, Section 8 concludes the paper.

Case study

We adopt a Web shopping scenario about electronic bookstores such as Amazon [START_REF] Aalst | The P2P Approach to Interorganizational Workflows[END_REF]. When customers order books online, collaboration takes shape between Amazon as a seller, FedEx as a shipper, and a bank as a financial institution. Using the collaboration diagram of the well-know standard Business Process Model and Notation (BPMN) [START_REF] Omg | Business Process Model and Notation (BPMN)[END_REF], Figure 1 captures the IOBP of this case study with emphasis on the process that each stakeholder is change of. Dashed lines between activities (e.g., send order and receive order) depict message exchange.

From a collaborative prespective, there is a need to specify relative and/or absolute temporal constraints so that competitive products and/or services are offered [START_REF] Cheikhrouhou | Toward a verification of time-centric business process models[END_REF]. Some constraints are presented below:

• Duration: ship products activity takes between 12 and 48 hours.

• Cardinality: a customer can try at most 3 payments in a period of 15 minutes.

• Unavailability: the seller does not handle orders between 22:00 -05:00.

• Dependency: confirm order activity should finish no later than 5 hours and no earlier than 4 hours after receive order.

• Start/End: receive shipment details activity has to start no later than 16:00 and ship products activity must start its execution at 20:00.

Each process in an IOBP can be verified to ensure its temporal consistency [START_REF] Cheikhrouhou | Toward a verification of time-centric business process models[END_REF]. This verification is critical; it enables to identify potential temporal violations and hence, avoid conflicts and even failures. For instance, meeting deadlines is necessary for an organization like Amazon since it offers a variety of shipping rates depending on the delivery mode (rush versus regular).

View generation over time-constrained processes

The use of views over BPs is largely recommended by the BPM research community [START_REF] Eder | Temporal Conformance of Federated Choreographies[END_REF][START_REF] Eder | Temporal Consistency of View Based Interorganizational Workflows[END_REF][START_REF] Makni | Negotiating Deadline Constraints in Inter-organizational Logistic Systems: A Healthcare Case Study[END_REF] and other communities as well [START_REF] Maamar | On tracking personalized web services using views[END_REF][START_REF] Maamar | Views in composite web services[END_REF]. For instance, views preserve privacy when engaging in inter-organization collaboration and help target specific parts of a process. A process could be associated with different views that vary according to the collaboration's objectives for instance, permanent versus temporary and planned versus (adhoc) unplanned. Considering temporal constraints during view generation is tedious and error prone [START_REF] Eder | Temporal Consistency of View Based Interorganizational Workflows[END_REF]. The outcome of this generation could exclude certain constraints that are deemed necessary for a complete consistency of all constraints, for Abstraction makes some parts of a BP invisible to external partners. These parts are deemed not relevant to the collaboration and/or are sensitive. Let us consider our Web shopping scenario by assuming that the shipper 's process view is built upon a private process depicted in Figure 2(a). The shipper does not want to reveal certain details about inspecting preshipment . As a result, export handling and security check activities are masked (Figure 2(b)). A new temporal constraint (i.e., Finish-to-Start Temporal dependency) is added to the process.

Aggregation consists of grouping activities. For instance, a logisticsservices provider does not care about purchase order activity. In contrast, all shipment activities are of paramount importance. Ship products activity could aggregate prepare shipment, export handling, security check, and shipment activities with respect to a private shipping process depicted in Figure 2(a). Figure 2(c) shows the resulting process view after aggregation. A duration constraint is automatically added to ship products activity.

Impact of abstraction and aggregation on temporal constraints

We particularly focus on how to "revisit" the temporal constraints of a private process while generating process views. By revisiting, we mean dropping, adding, and/or merging certain temporal constraints with respect to the below 2 cases:

• Abstraction case: To capture the temporal constraints of a set of abstracted activities, we propose Finish-to-Start dependency constraint. It specifies a temporal dependency between the remaining non-abstracting activities by defining the time lags between the finish and start of two directly or indirectly succeeding activities. So, that, the time span between them is restricted.

For illustration, let us consider the shipper 's private process depicted in Figure 2(a). Figure 2(b) illustrates the result of abstracting export handling and security check by adding Finish-to-Start dependency between prepare shipment and ship activities.

The generated Finish-to-Start dependency adds the necessary delay ([M inD,M axD]) to the process view so, that, the abstracted activities finish their execution without compromising the execution of other activities.

• Aggregation case: To capture the temporal constraints of a set of aggregated activities, we define Duration constraint of the generated aggregated activity (ship products activity in Figure 2(c)).

This constraint is identified by minimum (M inD) and maximum (M axD) durations for the whole hidden activities. Indeed, the goal is to restrict the time span between the directly or undirectly succeeding activities and between the remaining non-aggregated activities.

For illustration, let us consider again the shipper 's private business process depicted in Figure 2(a). Figure 2(c) illustrates the result of aggregating prepare shipment and export handling and security check and ship activities.

Our objective is to define techniques (algorithms) that would propagate the temporal constraints of activities that need to be hidden either by abstraction or by aggregation.This mainly relies on defining a set of Start-to-Finish dependencies in case of abstraction and recalculating the Duration constraint of the aggregating activity in case of aggregation.

We note that we can not apply the abstraction and aggregation algorithms on some temporal constrains. For instance, let us assume a temporal dependency between two activities, out of which one is hidden by abstraction or aggregation. Here, we cannot consider this temporal constraint, since the duration value of this constraint cannot be considered in hidden activities.

Abstraction and aggregation execution

Formally, we represent a process model as a graph whose leaves are activities and internal nodes are either events or gateways. A Process P is a tuple (N,E,τ ,γ), where:

• N is a set of nodes;

• E ⊆ N * N is a set of edges;

• τ : N→ Γ is a function that maps a node onto either an activity, event (i.e., Start Event(SE) and End Event(EE)), and gateways (i.e., sequence(SEQ), parallel(PAR), inclusive(INCL) and exclusive(EXCL))); and

• γ is a set of temporal constraint labels. We note that γ Rel (N i) (resp. γ Abs (N i)) is the relative (resp. absolute) temporal constraint over a node N i . Temporal constraints could have an impact on process models by raising, for instance deadlocks due to inconsistencies between nested constraints.

We consider a private process as a graph P pr (N pr , E pr , τ pr , γ pr) where γ pr is the set of duration temporal constraints. The abstraction/aggregation results in a process graph-view P v (N v , E v , τ v , γ v), where the set of temporal constraints γ v is defined by the set of duration and Finish-to-Start temporal dependency constraints between two nodes. These nodes correspond to the begin (i.e., source activity src) and the end (i.e., destination activity dst) of the abstraction or aggregation process.

Algorithm 1 implements abstraction and consists of two parts. The first part (lines 5-38) consists of finding the source and destination activities, which are the edges of the generated Finish-to-Start temporal dependencies. The source activities srcSet corresponds to the activities, which precede the aggregated activities and the destination activities desSet corresponds the activities that follow the the aggregated activities. Identifying these sets of activities depends on the position of the src and dst activities (i.e., the activity is the first or last activity in a sequence, or in gateways). The second part (lines 39-46) consists of calculating the maximum MaxD and minimum MinD values of Finish-to-Start temporal dependency using M axDuration and M inDuration algorithms1 .

Algorithm 1 Abstraction algorithm

1: function ABSTRACTION(Ppr, src, dst, γv) 2:

Input Ppr(Npr, Epr, τpr, γpr), src, dst

3:

Output γv /*temporal constraints set of the private process*/

4:

local srcSet, dstSet, M inD, M axD

5:

srcSet ← ϕ

6:

if τpr(parent(src, Ppr)) = SEQ then /*src is in a sequence*/

7:

for all ActivityA i ∈ preActivity(src, Ppr) such that parent(src, Ppr) = parent(A i , Ppr) do 8:

srcSet ← A i 9:
end for 10:

end if 11: if srcSet = ϕ then /*

22:

dstSet ← ϕ

23:

if τpr(parent(dst, Ppr)) = SEQ then /*dst is in a sequence*/

24:

for all ActivityA i ∈ postActivity(dst, Ppr) such that parent(dst, Ppr) = parent(A i , Ppr) do

25:

dstSet ← A i

26:

end for

27:

end if 28:

if dstSet = ϕ then /*

39:

for all N oeudA i ∈ srcSet do

40:

for all N oeudA j ∈ dstSet do 41:

M inD ← M inDuration(Ai, End, Aj, Start, Ppr) 42: M axD ← M axDuration(Ai, End, Aj, Start, Ppr) 43: if M inD ≥ 0 and M inD ≥ 0 then Add constraint(γv, T D(F S, A i , A j , M inD, M axD))

44:

end if

45:

end for

46:

end for

47: end function

Case study: We consider again the Web shopping scenario with focus on the shipper part. Figure 3(a) exhibits the private shipping process enriched with temporal constraints. While collaborating with the seller, the shipper abstracts some activities related to pre-shipment inspection such as export handling and security check activities. The shipper prefers to aggregate all activities related to good shipment (i.e., prepare shipment, export handling, security check, and ship) in a unique aggregating activity called ship products. We now focus on the propagation of the absolute temporal constraint Must start at 20:00, to prepare shipment activity. Since this is a start con-straint associated with a first activity in the portion of the process to aggregate, its absolute temporal constraint is migrated to the aggregating activity, here ship products Hence, this is how the shipper process view is generated for the Web shopping scenario.

Temporal consistency analysis

In this section, we present a timed graph-based approach for verifying the temporal consistency of collaborative processes. We remind that that we focus only on the verification of the consistency of synchronous processes against timed constraints. The analysis permits to detect, early on, any inconsistency that may impede the collaboration success. Recommended solutions to these inconsistencies are also put forward like how to review certain temporal restrictions over private processes. We begin by presenting a timed graph's formalism in term of handling the different temporal constraints, and then how the consistency of temporal BPs happens.

Temporal business process modelling with timed graphs

We represent a temporal BP with a timed graph like in [START_REF] Eder | Time Constraints in Workflow Systems[END_REF][START_REF] Eder | Temporal Consistency of View Based Interorganizational Workflows[END_REF]. A graph's nodes correspond to activities and edges to dependencies between activities. Table 1 represents a node with its duration, eps (i.e., earliest-possible-start) value, and lae (i.e., latest-allowed-end) value for both best and worst cases. Best case means executing the shortest path related to a process, and worst case means executing the longest path. Time is considered as a discrete value expressed in some basic units like hours (h), minutes (m), etc.

Handling durations and deadlines of activities

Each activity A in a timed graph has a duration d that is assumed to be deterministic and noted as A.d. This duration can be calculated based on the designer experience. He can estimate the activity duration: He can select the average, the maximum or the minimum value. The duration can also be calculated based on the execution traces using business process mining approaches [START_REF] Aleem | Business process mining approaches: A relative comparison[END_REF][START_REF] Van Der Aalst | Business process mining: An industrial application[END_REF].

Furthermore, the timed graph of a Process (P) enables the specification of its Deadline denoted as (D P). It is the maximum time that is allowed for execution. A timed graph of P is a time window (i.e., interval) in which each activity of P must be performed with respect to certain temporal constraints. Given A, this time window is delimited by earliest-possible-start A.eps and latest-allowed-end A.lae. Both eps and lae are calculated for best and worst cases as per Table 1.

On the one hand, the value of the earliest-possible-start for the first activity or activities of a process is set to 0. Then, the same values for the remaining activities are calculated in a forward pass by adding the eps-value of the predecessor to the activity duration. For instance, if A is a predecessor of B, B.eps = A.eps + A.d. If A has multiple predecessors (connected through an ANDjoin), then the maximum of eps value of the predecessors of A is considered.

On the other hand, the latest-allowed-end values are calculated in a backward pass. The latest-allowed-end value of the last activity or activities is set to the assigned process deadline. The length of the longest path may be used as a deadline if no deadline is assigned explicitly. The latest-allowedend value of A is computed by subtracting the same value of its successor B, i.e., A.lae = B.lae -B.d. If A has multiple successors (connected through an ANDsplit), then the minimum of latest-allowed-end values of successors of A is considered.

Inspired by the work of Eder et al. [START_REF] Eder | Temporal Modeling of Workflows with Conditional Execution Paths[END_REF] on the construction of temporal graphs, Table 2 gives further details on how to consider exclusive and parallel gateways in temporal graphs.

. Handling temporal dependencies of activities

We discuss how temporal dependencies between activities are specified in a timed graph. Let consider start-to-Finish temporal dependency TD(SF,A i , A j , M inD, M axD) is defined as: MinD≤ e(A j) -s(A i) ≤ MaxD, where e(A j) means the end time of A j and s(A i) means the start time of A i . Based on this definition, this inequality in the timed graph (i.e., e(A j) -s(A i) ≤ M axD) is done by assigning a new value to A j .lae such as A j .lae = A i .eps + M axD. This means that a backward pass is performed. Let us now consider the second inequality (i.e., M inD ≤ e(A j) -s(A i)). We compute the duration of activities separating A i from A j , for instance, A k . In the case of a sequence flow, the computation consists of adding to the duration of activities separating A i from A j a delay of Duration D delay = M inD -j k=i D k , where D k is the duration of A k . This delay refers to one or more activities that we call simulated activities. It is up to the designer to choose the appropriate position of simulated activities if many possibilities exist.

Case study:

. Handling absolute temporal constraints of activities

We explain how absolute temporal constraints are handled in a timed graph at design time by establishing well-defined temporal dependencies between a process's activities. We substitute each pair of absolute constraints with an appropriate temporal dependency.

Let us consider two temporal constraints: A i must start its execution at 05:00 (i.e., (AbsT C(A i , S, AT , 5))), while the successive A j must start at 08:00 (i.e., (AbsT C(A j , S, AT , 8))). Our consistency analysis approach considers the absolute temporal constraint of A i as a reference to specify that exactly 3hours should separate the respective start times of A i and A j . Hence, this pair of absolute constraints can be considered as a temporal dependency TD(SS,A i , A j , 3, 3). Subsequently, the resulting temporal dependency is already discussed in Section 4.1.2.

Case study: Consider the absolute temporal constraints of the shipper process involved in the Web shopping collaboration. The corresponding timed graph is depicted in Figure 5.

Let us further analyze the two absolute temporal constraints: Receive Shipment Details (RSD) must start no later than 16:00 (i.e., (AbsTC (RSD, S,NLT,16))), while a successive activity, namely Ship Products (SP) must start at 20:00 (i.e., (AbsT C(SP, S, AT , 20))). Hence, this pair of absolute constraints can be considered as a temporal dependency TD(SS,RSD, SP, 4, -) (where "-" stands for "not specified"). In other words, this temporal dependency is equivalent to the following inequality (i.e., 4 ≤ s(SP) -s(RSD)). Considering this latter Start-to-Start temporal dependency amounts to the following Start-to-Finish temporal dependency TD(SF,RSD, SP, 34, -) with 34 = 4 + 30 and 30 is the duration of SP . Subsequently, the consideration of the resulting Finish-to-Start temporal dependency results in addiding a simulated activity, namely F1 of duration 2 = 34 -2 -30 as per Figure 5.

After handling the different temporal constraints using timed graph, we present in the next section how we analyse the consistency of the temporal BPs.

Consistency analysis of business processes

Consider an IOBP, with all its involved processes P i , P j , and P k enriched with temporal constraints. The consistency analysis verifies the temporal consistency of IOBP and recommends a solution, if necessary, by modifying the starting time windows of the relevant processes. Our approach consists of two successive steps (i) Consistency analysis of pairwise processes and (ii) Consistency analysis of multiple processes participating in the IOBP.

The first step targets direct communication links between processes, only. For instance, given direct communications between P j and P i on the one hand, and between P k and P i , on the other hand, the first step computes the starting times of P j and P k related to the starting time of P i . In such a way, we have not yet considered the communication between P j and P k referred to as indirect communication link. It is insufficient to be restricted to direct communications between processes when analyzing the consistency of more than a couple of processes [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF].

The second step explores both direct and indirect communication links between the involved timed processes while computing their respective starting times in order to ensure consistent IOBP. In other words, assuming at least one communication between P j and P k , additional calculations must be performed in order to adjust the starting time of P j and P k related to the starting time of P i .

Consistency analysis of pairwise processes

To check if two processes are consistent, we examine if the execution intervals of communicating activities overlap [START_REF] Eder | Temporal Consistency of View Based Interorganizational Workflows[END_REF].

P i and P j are two collaborative processes, which exchange at least one message. In other words, there is at least one activity, A i belonging to P i and A j belonging to P j with A i and A j are corresponding activities (denoted A i ↔ A j). Once the timed graphs of both processes are established, we deduce the valid execution intervals of their activities, especially, A i .[A i .eps, A i .lae] and A j .[A j .eps, A j .lae]. We recall that A i .eps (resp. A i .lae) denotes the earliest possible start (resp. the latest allowed end) of A i .

According to Eder et al. [START_REF] Eder | Temporal Consistency of View Based Interorganizational Workflows[END_REF], ensuring that both P i and P j are consistent, means that the execution intervals of all corresponding activities, for instance A i and A j overlap.

Consider now the clock C i , which is reset at the start time of process P i . With reference to C i , P j should start executing on a time lag x ∈ P j /C i . P j /C i denotes the interval delimiting the starting time of P j according to C i (i.e., according to the starting time of P i) while considering only direct communications between P i and P j (with abstraction of additional communications with other processes if they exist). This time lag will shift the execution window of the corresponding activity, say A j to A j .[A j .eps + x, A j .lae + x]. The condition of consistency consists of ensuring that:

[A j .eps + x, A j .lae + x] [A i .eps, A i .lae] ̸ = ∅ (1)
Let x ∈ P j /C i be the set of solutions satisfying the consistency condition (Eq.1).

P j /C i = [min ji , max ji] = [A i .eps -A j .lae, A i .lae -A j .eps] ̸ = ∅ (2.a) ∅ (2.b)
If the intervals of the communicating activities, A i and A j overlap, then they are consistent (Eq. 2.a). Otherwise, they are not (Eq. 2.b).

Conversely, if we reset C j at the starting time of P j .

P i /C j = [min ij , max ij] = [-max ji , -min ji] if P j /C i ̸ = ∅ (3) ∅ otherwise.
S the output of the first step applied on a set of processes P i , P j , and P k , is the start time bounds of each pairwise communicating processes, communication between P l and P m as follows:

∀{l, m} ⊂ {i, j, k}, P l /Cm is computed. This step is considered to be successfully iff : ∀{l, m} ⊂ {i, j, k}, P l/Cm ̸ = ∅ and not completed successfully, otherwise.

Consistency analysis of multiple processes

This second step is mandatory and proceeds with recalculating the interval resulting from the previous step. This step proposes solutions for inconsistencies by tacking into account all communicating processes. This step provides temporal constraints on the start time of all communicating processes. The IOBP is successfully carried out (i.e., the processes are consistent) if each involved process satisfies the defined start time constraint.

Our consistency analysis approach maintains the relationships between temporal intervals using constraint propagation techniques of Allen et al. [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF]. In an IOBP, we deduce implicit temporal relations beyond those resulting from direct communications between P j and P i . We argue that the communication between P j and P k has an impact on the time intervals of both P j /C i and P k /C i .

The transitivity behavior of the temporal relationships helps deduce a new interval P j ′ /C i from P j /C k and P k /C i . P j ′ /C i denotes the interval delimiting the starting time of P j related to the start of P i (related to C i) while considering indirect communication links between P i and P j (precisely, the communiaction between P j and P k on the one hand and between P k and P i on the other hand). Given P j /C k = [min jk , max jk] and

P k /C i = [min ki , max ki], P j ′ /C i is calculated as follows: P j ′ /C i = [min jk + min ki , max jk + max ki].
The latter interval may appear ambiguous to deduce, but is quite simple. Let P j/C k = [min jk , max jk] indicates the interval delimiting the starting times of P j related to the starting time of P k . In addition, the time of P k is in turn constrained by the starting time of

P i (P k /C i = [min ki , max ki]).
As a result, we introduce P j IOBP /C i to denote the resulting interval delimiting the starting time of P j regarding the starting time of P i (related to C i) while considering both direct and indirect communication links. This interval is obtained from the intersection of both intervals P j/C i (the interval that considers direct communication links) and P j ′ /C i (the interval that considers indirect communication links) between processes P j and P i (Eq. 4).

P j IOBP /C i = P j /C i P j ′ /C i (4)
Let assume that P i , P j , and P k are subject to the previous step. The output of this step is the starting time bounds of each P l regarding another P m while considering both direct and indirect communication links between P i , P j , and P k as follows :

∀{l, m} ⊂ {i, j, k}, P l IOBP /Cm is computed. This step is considered to be completed successfully iff: ∀{l, m} ⊂ {i, j, k}, P l IOBP /Cm ̸ = ∅ and not completed successfully, otherwise.

Consistency categories of inter-organizational business processes

In a collaborative IOBP, the diversity of temporal constraints impacting the involved processes can have an impact on their collaboration. Based on the results of the two steps of the consistency analysis approach, we assess the consistency status of the processes using the following categories: full consistency under restrictions, partial consistency, and full inconsistency.

Full consistency under restrictions means that there exist some restrictions on the starting times of the IOBP's participating processes while these latter can collaborate in accordance to the overall temporal constraints; i.e., they succeed to exchange messages and, hence, the two steps are completed successfully. Consider an IOBP, with all its involved processes P i , P j , and P k .

Partial consistency is assigned to a set of processes that can partially collaborate correctly. Indeed, some interactions of processes fail while others succeed. This partial consistency is due to the following cases:

• The first step is not completed successfully but it exists at least two involved processes which are consistent if we consider only their direct communication links in isolation.

• The first step is completed successfully. Nevertheless, the second step is not, which means that if considering only direct communication between processes in isolation (without considering indirect communication links), all processes can ensure pairwise communications. But, if we consider all communications, it exists at least a couple of processes among the set of involved processes that are not consistent (i.e., can not communicate while respecting all temporal constraints of the IOBP).

Full inconsistency concerns processes in which all their interactions fail, i.e., the first step is not completed successfully. More precisely, there is not any couple of processes among the set of involved processes which are consistent if we consider only their direct communication links.

Case study: Let us consider the timed graphs of the shipper (P Ship), seller (P Sel), and customer (P Cust) processes of the Web shopping scenario. We are interested in corresponding activities, namely those that are sender or receiver of the same message e.g., Send Order (SO) of customer and Receive Order (RO) of seller (denoted (SO ↔ RO)) or activities Notify Customer (NC) of shipper and Receive Shipment Notification (RSN) of customer (denoted (N C ↔ RSN)). To check the temporal consistency of two corresponding activities there should not be any temporal interval in which both activities can execute. Let us apply the first step of the consistency analysis approach to the pairwise communicating processes of the motivating example.

• P Ship ↔ P Sel : For example, P Ship /C Sel = [4, 28] interval limits the starting time of P Ship to no earlier than 4 hours and no later than 28 hours after the starting time of P Sel . Assume then that P Sel begins at time point 0 (related to a global clock that is never reset). If we suppose that P Ship begins after 26 hours after the starting time of P Sel , namely at time point 26 relating to the global clock. Since 26 ∈ [4, 28], the two processes succeed all their communications and hence, are consistent. Based on these latter starting times, we have RSD.[0 + 26, 5 + 26] = [START_REF] Van Der Aalst | Business process mining: An industrial application[END_REF]31] (receive shipment details) and SSD. [START_REF] Cheikhrouhou | Toward a verification of time-centric business process models[END_REF]28] (send shipment details). It is clear that [START_REF] Van Der Aalst | Business process mining: An industrial application[END_REF]31] [9, 28] ̸ = ∅. Nevertheless, if P Ship begins only 2 hours after the starting time of P Sell , namely at time point 2 relating to the global clock, we obtain RSD.[0 + 2, 5 + 2] = [START_REF] Aleem | Business process mining approaches: A relative comparison[END_REF][START_REF] Cheikhrouhou | Toward a Time-centric modeling of Business Processes in BPMN 2.0[END_REF] and SSD. [START_REF] Cheikhrouhou | Toward a verification of time-centric business process models[END_REF]28]. It is clear that [START_REF] Aleem | Business process mining approaches: A relative comparison[END_REF][START_REF] Cheikhrouhou | Toward a Time-centric modeling of Business Processes in BPMN 2.0[END_REF] [9, 28] = ∅ so the given processes fail all their communications. This is due to the fact that 2 / ∈ P Ship /C Sel = [START_REF] Behrmann | A Tutorial on UPPAAL[END_REF]28]. The first step is considered to be completed successfully since ∀{l, m} ⊂ {Ship, Sel, Cust}, P l /Cm ̸ = ∅ (Eq. 3).

(RSD ↔ SSD) : RSD.[0 + x, 5 + x] SSD.[9, 28] ̸ = ∅ then x ∈ P Ship /C Sel = [4, 28] • P Cust ↔ P Sel : (SO ↔ RO) : SO.[0 + x, 37 + x] RO.[0, 2] ̸ = ∅ then x ∈ [-37, 2] (ROC ↔ CO) : ROC.[2 + x, 39 + x] CO.[2, 5] ̸ = ∅ then x ∈ [-37, 3] (SB ↔ RB) : RB.[4 + x, 42 + x] SB.[13, 32] ̸ = ∅ then x ∈ [-
Provided with the starting time intervals resulting from the first step of our consistency analysis approach, namely, P Ship /C Sel = [4, 28], P Cust /C Sel = [-29, 2], and P Ship /C Cust = [-30, 14], let us now perform the second step on the given example of Figure 5. Let us analyze the consistency of the involved process after applying the second step for the same starting time points presented above (suppose that P Sel and P Ship start at time point 0 and 26 respectively). Given P IOBP Cust /C Sel = [-10, 2], the execution time window of the activity Receive Shipment Notification (RSN) balance between RSN.[0, 38] (for the start time -10) and RSN. [START_REF] Eder | Temporal Modeling of Workflows with Conditional Execution Paths[END_REF]50] (for the start time 2) and there is no eventual overlap with NC.[60, 66] (for the starting time 26). Hence, we conclude that P Ship and P Cust are not consistent and, thus the IOBP is not consistent anymore. If we now consider the intervals resulting from the second step, the proposed consistency analysis approach ensures that it exists starting time points leading to a consistent IOBP. For instance, P Sel starts at time point 0, P Ship starts at time point 4, and P Cust starts at time point -10 (it means that this latter starts execution 10 hours before P Sel starts) relating to a global clock. Indeed:

• P Ship ↔ P Sel :
(RSD ↔ SSD) : RSD. The consistency analysis approach is considered to be completed successfully. We can conclude that the shipper, seller, and customer processes of the case study are fully consistent under restrictions.

Implementation

We discuss the system implementing the approach for automatically generating public views of BPs by taking into consideration temporal constraints. Furthermore, the proposed system achieves the consistency of IOBP. Our system is implemented as an Eclipse plug-in for specifying and verifying time-aware IOBP (Figure 6). The plug-in offers a complete environment for managing the whole life cycle of BPs: Modeling BPs with their temporal constraints We built an extension on top of the Eclipse BPMN2 Modeler2 . It is based on EMF, which is a modeling framework that provides code generation facility for building tools and applications based on data models. We extended the meta-model of BPMN to support the proposed concepts required for specifying a business process enriched with temporal constraints.

Formally verifying each timed process Before automatically generating the public view, we avoid the conflict between temporal constraints by verifying generic and user-defined properties of a process. This verification consists of transforming business process enriched with temporal constraints into timed automata based on model-driven engineering.

This transformation is implemented using Atlas Transformation Language (ATL) as a model-to-model transformation language. The generated timed automata is verified against a set of properties using the model checker UPPAAL [START_REF] Behrmann | A Tutorial on UPPAAL[END_REF].

Generating public views After loading a private BP into the system, the designer can select the portion(s) that would be subject to abstraction and/or aggregation (Figure 7). These portions are linked to source and target activities. The necessary algorithms run in the background recalculating and revising the temporal constraints from private process to the resulting process view. Verifying the consistency of an IOBP To deal with temporal consistency analysis in IOBP, each participating process is mapped onto a timed graph. Generated timed graphs are inputs for modules implementing the steps of the consistency analysis. Our system allows checking the temporal consistency of the involved processes while gathering for solutions to resolve the temporal inconsistencies.

The resulted timed graph considers all the specified temporal constraints such as absolute and relative constraints, which is one of the main contributions of our approach. As a result, the XML file (Figure 8) depicts an excerpt of the generated XML file, which shows the timed graph model details of Receive Bill activity of the Customer process. Consequently, this XML file will serve, in turn, as input for the consistency analysis module. Finally, Figure 9 depicts the resulting window, which assigns a consistency class for the inter-organisational process, followed by a solution to cope with temporal inconsistencies, whether there exists.

Evaluation

This section presents the evaluation of the proposed approach and the developed Eclipse plug-in for automatically generating the public view and the analysis of the consistency of IOBP.

First, we present how we collect data used for our experimental evaluation. Second, we propose three research questions to be investigated to evaluate our proposed approach and the implemented Eclipse plug-in.

Data Collection

We invited 2 post-doc researchers and 4 students (2 PhD and 2 master students) to manually apply our proposed approach. These researchers/students have different knowledge levels of the concepts used in our approach. Table 3 resumes these levels. These researchers/students are invited to perform two experimentations. In the first experimentation, they are asked to manually execute the algorithms that correspond to the generation of public views from private ones and the consistency analysis of the Web shopping processes.

We compared the time spent by these students for manually and automatically (i.e., by our Eclipse plug-in) generating public views and analyzing the consistency of IOBP. In Table 4, the first column shows the name of the process. The second column presents the average time spent by the six researchers, and the third one presents the execution time of the automatically generation of the public view. Table 5 presents the time spent during the manually and the automatic analysis of the consistency of the involved processes. In the second experimentation, the same researchers/students are asked to apply the generation view algorithms on other three real-life processes. We note that they are not familiarized with these processes. Table 6 presents the main characteristics of these processes in terms of the number of activities and the number of temporal constraints. We note that all these processes are well structured.

Process1 This process is defined by OMG [START_REF] Mastelic | Predicting resource allocation and costs for business processes in the cloud[END_REF]. It corresponds to an E-mail voting process.

Process2 This process is defined by the France/Orange labs [START_REF] Hachicha | A configurable resource allocation for multi-tenant process development in the cloud[END_REF]. It is a supervision process that handles complaints reported by the clients.

Process3

The process corresponds to oil and gas enterprise that manages and handles various enterprise sectors [START_REF] Rekik | A comprehensive framework for business process outsourcing to the cloud[END_REF]. The degree of complexity of these processes and their temporal constraints are completely different. Table 7 presents the average time spent for creating manually and automatically generating public views from private ones.

Research questions

In this section, we present the research questions to be investigated to evaluate the proposed approach.

• RQ1: What is the performance of our approach and the implemented Eclipse plug-in

The aim of this question is to (a) check the validity of the implementation, (b) verify the correctness of the public views generation algorithm, and (c) measure the performance of our proposed approach by calculating and comparing the time spent for manually creating and automatically generating public views.

During these experiments, we obtained 18 test cases to verify the public views generation algorithm. 9 test cases are applied on Web shopping scenario processes used throughout the paper and 9 other test cases are applied on real-life processes. The processes are distinguished by the number of activities, temporal constraints, and the structure (Table 6). All public views, created manually by the researchers/students, are conforms with the automatically generated ones. Considering this result, we can notice that our plug-in is successfully implemented.

To ensure the verification of the the public views generation, we asked the researchers/students to perform the following actions for all processes used in our experimentations:

1. formally specify the business processes (i.e., private process) an their temporal constraints using our Eclipse plug-in.

2. formally verify the absence of the deadlock and check the deadline of this process using our previous work [START_REF] Cheikhrouhou | Toward a verification of time-centric business process models[END_REF] (briefly presented in Section ??) 3. manually generate the public view 4. formally reverify the absence of deadlock and check deadline of the generated process (process view)

The result of this experimentation, composed by 18 test cases, is that all generated public views are deadlock free (i.e., no conflicts between generated temporal constraints) and the deadline of these processes are respected. Based on such results, we can notice that the generation of public views seems to be correct. As extension of this evaluation, we plan to formally verify the transformation from private to public views based on the work of Makni et al. [START_REF] Makni | Satisfaction and Coherence of Deadline Constraints in Inter-Organizational Workflows[END_REF].

Concerning the performance, we measured the time required to automatically execute the plug-in and manually create public views and analyse the consistency of the IOBP. All the results are shown in Tables 4, 5, and 7. We mention first that the time spent by the researchers/students was absolutely within our expectation by tacking into account their acknowledge levels of IOBP fields. We noticed that the time spent by the researchers/students is proportional to the size of the process and the proposed temporal constraints, while the time needed to automatically execute these processes is almost negligible.

The execution time of the manually created public view generation is heavily higher that the automatically created one.

• RQ2: What is the impact of process characteristics on the generation of public views

The aim of this question is to show that our approach can be applied on real-life and large-sized processes. These processes are distinguished by different number of activities, temporal constraints, and different structures.

Our solution is expected to cover most important cases of an application domain. We considered different domains linked to three real-life processes. The first process corresponds to E-mail voting process. The second one corresponds to supervision process for handling Client com-plaints. The third process corresponds to an internal process of an oil and gas enterprise.

The researchers/students are successfully creating public views even from processes composed by high number of activities and different temporal constraints. Table 7 shows that the time is high due to the khnowledge levels of involved researchers/students, and the complexity of the process which is composed by a high number of activities and temporal constraints.

• RQ3: What is the complexity of the view generation algorithm

The aim of this question is to show the complexity of the algorithm that generates public views over private BP. First, the proposed internal tree data structure (i.e., data structure representing the process model), and the algorithm recursion helps reap significant complexity reduction benefits. Additionally, the aim of merging relative and absolute temporal constraints specification algorithms is to restrict the execution to one tree paths. "N" is the total number of nodes in the tree, so the complexity of the algorithm is O(N).

Related work 8. Conclusion

We presented two main contributions: The first one corresponds to the process view generation while considering temporal constraints. We propose a set of algorithms to derive public process views from private processes through automatic recalculation and propagation of temporal constraints. We take into account two different operations for process view generation: Abstraction and Aggregation.

The second contribution concerns the the temporal consistency analysis in the context of organisational collaborations. We detect, early on, temporal inconsistencies of collaborative processes that may constitute obstacles towards their interaction. Furthermore, to resolve detected inconsistencies, we propose an enactment service, which provides each partner with information about temporal restrictions to respect by its own processes in accordance with all temporal constraints of all the processes involved.

As future work, it would be interesting to support error correction, following the error detection (i.e. the detection of the erroneous path or portion

Figure 1 :

 1 Figure 1: A BPMN-based IOBP with temporal constraints

Figure 2 :

 2 Figure 2: Shipping process after abstraction and aggregation

 Figure 3(b) is the result of apply-ing Algorithm 1 on the given example considering, first, only the duration constraints of the abstracted activities. The resulted shipper process view includes an additional Finish-to-start temporal dependency minimum value M inD= 3 hours and Maximum value M axD= 5 hours.

Figure 3 :

 3 Figure 3: Example of process with temporal constraints

Figure 3 (

 3 c) is the result of aggregation Algorithm. The duration temporal constraint for the aggregating activity ship products is as follows: Duration(ship products,MinD,MaxD) with Minimum value M inD= 12 hours (1+3+8) and Maximum value M axD= 48 hours (3+5+40).

 Case study: We consider again the Web shopping scenario of Figure 1. Figure 4 is the resulting seller 's timed graph while considering only its activities' durations and process deadline (D Sel = 35 hours). The temporal dependency

 case with A as immediate predecessor of B Sequence flow B.eps = A.eps + A.d B.eps = A.eps + A.d And-join B.eps = max (A.eps + A.d) B.eps = max (A.eps + A.d) Or-join B.eps = min (A.eps + A.d) B.eps = max (A.eps + A.d) Backward pass Best case Worst case with A as immediate successor of B Sequence flow B.lae = A.lae -A.d B.lae = A.lae -A.d And-split B.lae = min (A.lae -A.d) B.lae = min (A.lae -A.d) Or-split B.lae = max (A.lae -A.d) B.lae = min (A.lae -A.d) relating Receive Order (RO) and Confirm Order (CO) activities has not, yet, been considered. It is the focus of Section 4.1.2.

Figure 4 :

 4 Figure 4: Timed-graph of the seller business process

Figure 5

 5 shows the timed graphs of the processes in the Web shopping scenario. The SF temporal dependency of the seller process linking RO and CO activities TD(SF,RO,CO,4,5), assigns to CO.lae, a new value, say 5 instead of CO.lae = 21 (Figure4). This temporal dependency leads to appending the simulated activity F2, which adds a delay of 1 hour (i.e., M inD -RO.d -CO.d = 4 -2 -1 = 1) into the corresponding timed graph. Appending F2 requires both a forward pass and a backward pass affecting all nodes of the seller 's timed graph.

Figure 5 :

 5 Figure 5: Timed graphs of shipper, seller and customer processes

 29, 28] (M P ↔ RP) : M P.[7 + x, 45 + x] RP.[15, 35] ̸ = ∅ then x ∈ [-30, 28] Hence, P Cust /C Sel = [-29, 2] (i.e. [-37, 2] [-37, 3] [-29, 28] [-30, 28]) • P Ship ↔ P Cust : (N C ↔ RSN) : N C.[34 + x, 40 + x] RSN.[10, 48] ̸ = ∅ then x ∈ P Ship /C Cust = [-30, 14]

 Sel = P Ship /C Sel P ′ Ship /C Sel -P Ship /C Sel = [4, 28], and -P ′ Ship /C Sel is deduced from P Ship /C Cust = [-30, 14] and P Cust /C Sel = [-29, 2] as follows: P ′ Ship /C Sel = [-59, 16] = [-30 -29, 14 + 2]. Hence, P IOBP Ship /C Sel = [4, 16] = [4, 28] [-59, 16]. • P IOBP Cust /C Sel = P Cust/C Sel P ′ Cust/C Sel -P Cust /C Sel = [-29, 2], and -P ′ Cust/C Sel is deduced from P Cust /C Ship = [-14, 30] (since P Ship /C Cust = [-30, 14]) and P Ship /C Sel = [4, 28] as follows : P ′ Cust/C Sel = [-10, 58] = [-14 + 4, 30 + 28]. Hence, P IOBP Cust /C Sel = [-10, 2] = [-29, 2] [-10, 58]. The intervals P Ship /C Sel = [4, 28] has reduced to P IOBP Ship /C Sel = [4, 16] and P Cust/C Sel = [-29, 2] to P IOBP Cust /C Sel = [-10, 2].

[4 , 9]

 49 SSD.[9, 28] ̸ = ∅ • P Cust ↔ P Sel : (SO ↔ RO :) SO.[-10, 27] RO.[0, 2] ̸ = ∅ (CO ↔ ROC) : ROC.[-8, 29] CO.[2, 5] ̸ = ∅ (SB ↔ RB) : RB.[-6, 32] SB.[13, 32] ̸ = ∅ (M P ↔ RP) : M P.[-3, 35] RP.[15, 35] ̸ = ∅ • P Ship ↔ P Cust : (N C ↔ RSN) : N C.[38, 44] RSN.[0, 38] ̸ = ∅

Figure 6 :

 6 Figure 6: GUI of the implementing Eclipse plug-in

Figure 7 :

 7 Figure 7: GUI of public view generation

Figure 8 :

 8 Figure 8: Excerpt of the resulting Timed Graph of the Customer process

Figure 9 :

 9 Figure 9: The resulting window of the temporal consistency analysis

 src is in (PAR, INCL, EXCL)*/ 12:for all ActivityA i ∈ Npr such that postActivity(A i , Ppr) = postActivity(src, Ppr) do

	13:	srcSet ← A i
	14:	end for
	15:	end if
	16:	
		end if
	19:	

if srcSet = ϕ then /*src is the first activity of the sequence*/ 17: srcSet ← preActivity(src, Ppr) 18: if srcSet = ϕ then /*src is the first activity of the process*/ 20: srcSet ← SE /*the addition of the start Event*/ 21: end if

Table 1 :

 1 Activity node in a timed graph

	Activity Name	Activity Duration
	A	A.d
	Best Case Earliest Possible Start	Best Case Latest Allowed End
	(A.eps.bc)	(A.lae.bc)
	Worst Case Earliest Possible Start Worst Case Latest Allowed End
	(A.eps.wc)	(A.lae.wc)

Table 2 :

 2 Timed graph calculation instructions

Table 3 :

 3 Knowledge levels of involved students

		Post-Doc	PhD	Master
		researchers students students
	Business process and BPMN	+	+	+/-
	Temporal properties	+	+	+/-
	View generation	+	+/-	-
	Temporal consistency	+	+/-	-
	"+" means that the researcher has a good knowledge on this topic.

"+/-" means that the researcher has just basic knowledge on this topic. "-" means that the researcher has not any knowledge on this topic.

Table 4 :

 4 Time spent (in seconds) on the generation of public views

	View Generation Manually Automatically
	Shipper process	1020	1.0
	Seller process	1140	1.1
	Customer process	1020	1.1

Table 5 :

 5 Time spent (in seconds) on the analysis of consistency

	Consistency Manually Automatically
	All processes	1200	1.3

Table 6 :

 6 Characteristics of the processes

		Number of tasks Number of TC
	Process1	8	5
	Process2	9	6
	Process3	13	8

Table 7 :

 7 Time spent (in seconds) on each Web shopping process

	View Generation Manually Automatically
	Process1	900	1.0
	Process2	1020	1.0
	Process3	1200	1.1

The aggregation, MaxDuration, MinDuration, and all other algorithms are available in following technical reports: www.redcad.org/projects/iobp/technicalreport-0419. pdf

https://www.eclipse.org/bpmn2-modeler/

of the process model). In addition, our proposed approach is limited to the specification stage; however, runtime verification has also been a prominent area of research for ensuring correctness of systems.