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Abstract
In phylogenomics, incongruences between gene trees, resulting from both artifactual and biological reasons, can de
crease the signal-to-noise ratio and complicate species tree inference. The amount of data handled today in classical 
phylogenomic analyses precludes manual error detection and removal. However, a simple and efficient way to auto
mate the identification of outliers from a collection of gene trees is still missing. Here, we present PhylteR, a method 
that allows rapid and accurate detection of outlier sequences in phylogenomic datasets, i.e. species from individual 
gene trees that do not follow the general trend. PhylteR relies on DISTATIS, an extension of multidimensional scaling 
to 3 dimensions to compare multiple distance matrices at once. In PhylteR, these distance matrices extracted from 
individual gene phylogenies represent evolutionary distances between species according to each gene. On simulated 
datasets, we show that PhylteR identifies outliers with more sensitivity and precision than a comparable existing 
method. We also show that PhylteR is not sensitive to ILS-induced incongruences, which is a desirable feature. On 
a biological dataset of 14,463 genes for 53 species previously assembled for Carnivora phylogenomics, we show (i) 
that PhylteR identifies as outliers sequences that can be considered as such by other means, and (ii) that the removal 
of these sequences improves the concordance between the gene trees and the species tree. Thanks to the generation 
of numerous graphical outputs, PhylteR also allows for the rapid and easy visual characterization of the dataset 
at hand, thus aiding in the precise identification of errors. PhylteR is distributed as an R package on CRAN and as 
containerized versions (docker and singularity).
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M
ethods Introduction

Supermatrix, supertree, and coalescent-based approaches 
are commonly used in phylogenomics to obtain a species 
tree from a collection of genes. These methods are similar 
in their first steps: for a list of taxa of interest, a large 
collection of single-copy orthologous gene sequences is 
retrieved and a multiple sequence alignment (MSA) is 
computed for each cluster of orthologous genes (see von 
Haeseler 2012 for a comparison of these approaches). 
The methods then differ by the strategy employed. 
In the supermatrix approach, MSAs are concatenated 
into a supermatrix that is used to build a phylogeny, 
generally with Maximum Likelihood (ML) or Bayesian 
methods (such as IQ-TREE, Minh, Schmidt, et al. 2020; or 

Phylobayes, Lartillot et al. 2013). In the supertree and 
coalescent-based approaches, individual gene trees are 
built from individual MSAs, and a species tree is obtained 
by combining them all, e.g. with MRP (Baum 1992; Ragan 
1992; Ronquist 1996), MP-EST (Liu et al. 2010), or ASTRAL 
(Zhang et al. 2018) to only cite a few.

Regardless of the method employed, errors in the indi
vidual gene MSAs and errors in the individual gene trees 
(leading to incongruences with the species tree) can nega
tively impact the quality (accuracy) of the reconstructed 
species tree (Philippe et al. 2017).

For MSAs, various filtering methods have been developed, 
categorized into two groups: methods that entirely remove 
sites (columns) or sequences (rows) from the alignment 
(trimAl, Capella-Gutiérrez et al. 2009; BMGE, Criscuolo and 
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Gribaldo 2010), and methods that are more picky and allow 
identifying and filtering (or masking) small segments in the 
alignments (Divvier, Ali et al. 2019; HmmCleaner Di Franco 
et al. 2019; TAPER, Zhang et al. 2021). The latter group of 
methods was shown to be a better choice for alignment fil
tering, leading to better gene tree topologies (closer to the 
species tree) and more consistent terminal branch lengths 
in gene trees (Ranwez and Chantret 2020).

For a collection of gene trees, filtering methods also ex
ist, and the categorization into two groups of strategies still 
holds. In the first group are methods that prune rogue 
taxa, i.e. taxa that are unstable among gene trees 
(RogueNaRok, Aberer et al. 2013), and methods that elim
inate orthologous gene families whose history is uncorre
lated with the others. In the second group are more 
picky methods that identify and filter out only some spe
cies in some genes trees (i.e. Phylo-MCOA, de Vienne et 
al. 2012; or TreeShrink, Mai and Mirarab 2018). Just like 
for the alignment filtering methods seen above, picky ap
proaches are thought to provide the best compromise be
tween removing sequences with conflicting phylogenetic 
signals and keeping the maximum information content.

Filtering (sometimes called trimming) MSAs is now 
done routinely in phylogenomic pipelines, with methods 
that can be applied automatically to large datasets (see 
above). But just because we apply a filter at the MSA level 
doesn’t mean we shouldn’t filter gene trees also. Some of 
the reasons that lead to incongruences between gene trees 
and the species tree (and among gene trees), i.e. gene tree- 
building errors, undetected paralogy, horizontal gene 
transfer (HGT), and Incomplete Lineage Sorting (ILS), 
may not be detectable at the MSA stage. For filtering indi
vidual gene trees, reference methods do not exist yet 
(Philippe et al. 2017). Indeed, identifying species in gene 
trees whose position is not concordant with their position 
in the other gene trees (referred to as outliers in de Vienne 
et al. 2012 and hereafter) is still commonly done by eye 
(when it is done), which is highly questionable in terms 
of efficacy, objectivity, and reproducibility.

Here we present PhylteR, a new phylogenomics filtering 
method that can accurately and rapidly identify outliers in 
a collection of gene trees. Unlike Phylo-MCOA (de Vienne 
et al. 2012), from which it is largely inspired, it is an iterative 
process where obvious outliers are removed first, leaving 
space for better identification of more subtle ones, and lead
ing in fine to a finer identification of outliers. Unlike 
TreeShrink (Mai and Mirarab 2018), it is not based solely 
on the diameter of unrooted gene trees and is thus more ac
curate when outliers are not associated with long branches 
(e.g. topological incongruences). Also, PhylteR relies on the 
multivariate analysis method DISTATIS (Abdi et al. 2005, 
2012), which is specifically designed to compare distance ma
trices, unlike Multiple Co-inertia Analysis (MCOA, Chessel 
and Hanafi 1996) used in Phylo-MCOA (de Vienne et al. 
2012), and is thus more appropriate for the problem at hand.

We tested PhylteR on two types of datasets: simulated da
tasets where outliers were known, and a biological dataset 
comprising 14,463 genes for up to 53 species previously 

used for Carnivora phylogenomics (Allio et al. 2021). For 
the simulated datasets, horizontal gene transfers (HGTs) 
were simulated and recorded, and sequences affected by 
these HGTs were considered as outliers. The simulations 
also included various degrees of ILS, a phenomenon where 
within-species polymorphism lasts longer than the time be
tween two successive speciations (Scornavacca and Galtier 
2016), leading to incongruences between gene and species 
trees and among gene trees. The importance of this phenom
enon as a source of incongruence in phylogenomic datasets is 
not clear, but because recent coalescence-based methods are 
able to handle ILS-induced signals explicitly (e.g. ASTRAL, 
Zhang et al. 2018), it seemed pertinent to evaluate whether 
PhylteR was (or not) sensitive to it. In the empirical dataset, 
outliers were of course unknown but “properties” associated 
with gene sequences could be gathered (see Shen et al. 2016
for a list of such properties), so that enrichment of sequences 
having some of these properties in the list of outliers could be 
quantified. Finally, we looked at the effect of PhylteR on the 
overall concordance between the gene trees and the species 
tree after filtering. We compared the results with those ob
tained with TreeShrink (Mai and Mirarab 2018), the only 
other tool to our knowledge with a similar objective that 
could reasonably be applied to such a large dataset.

We show that PhylteR correctly identifies species in gene 
trees whose phylogenetic placement is not in accordance 
with its placement in other gene trees, and that this holds 
even in the presence of incongruence among gene trees 
due to ILS. We also provide strong evidence that the auto
matic removal of outliers with PhylteR improves the con
cordance between gene trees and the species tree in 
greater proportions than TreeShrink (Mai and Mirarab 2018).

We hope that PhylteR could become the standard that 
was lacking (Philippe et al. 2017) for cleaning datasets be
fore species tree reconstruction in phylogenomic pipelines.

Materials and Methods
Description of the PhylteR Method
The PhylteR method, in its entirety, is depicted in Fig. 1. It 
starts with K distance matrices obtained from K genes by 
computing pairwise distances (sum of branch lengths) be
tween species in each gene tree. All the matrices are given 
the same dimensionality by filling missing data (if any) 
with the mean value across matrices and are then normal
ized by dividing each matrix by either its median or its 
mean value (default is median). The normalization by me
dian prevents genes from fast- and slow-evolving ortholo
gous genes to be erroneously considered as outliers, and 
appears as a better choice than a normalization by the 
mean as it is less affected by outlier values.

From the K matrices obtained, an incremental process 
starts consisting of three main steps detailed in the next 
sections: (i) comparison of the matrices with the 
DISTATIS method (Abdi et al. 2005, 2012), (ii) detection 
of outliers sequences, and (iii) evaluation of the impact 
of removing these outliers on the overall concordance be
tween the matrices. Note that we refer to outlier sequence 
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as a single gene for a single species (one sequence in one 
alignment, or one tip in one gene tree) that does not follow 
the general trend (i.e. other alignments or gene trees), 

while outlier gene refers to a complete alignment (or a 
complete gene tree) that does not agree with the other 
alignments (or gene trees).

Fig. 1. Principle of the PhylteR method for identifying outliers in phylogenomic datasets. The method relies on DISTATIS (gray block), an ex
tension of multidimensional scaling to three dimensions. See text for the detail of the different steps.
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These steps are repeated until no more outlier se
quences are detected, or until the removal of the identified 
outlier sequences does not increase the concordance be
tween the matrices more than a certain amount specified 
by the user. Before finishing the optimization, PhylteR per
forms a last action consisting of checking whether some 
outlier genes still exist despite the removal of outlier se
quences already performed. These outlier genes corres
pond to single-copy orthologous genes for which the 
lack of correlation with others is not due to a few outlier 
sequences but are globally not following the trend. If out
lier genes are discarded there, the optimization restarts as 
it may have unblocked the detection of other outliers.

Comparison of Individual Gene Matrices With DISTATIS
DISTATIS is a multivariate method designed to evaluate 
the concordance between K distance matrices (K ortholo
gous genes) measured on the same N species. The principle 
of DISTATIS is depicted in Fig. 1 (gray box). The first step of 
DISTATIS consists of computing a matrix of RV coefficients 
(Robert and Escoufier 1976) that measures the similarities 
between the species pairwise distances present in each ma
trix. This can be seen as an extension of the correlation ma
trix (used in principal component analysis) that, instead of 
measuring the links between a set of variables, evaluates 
the relationships between a set of tables (gene distance 
matrices here). In the second step, a compromise distance 
matrix is built as the average of the K distance matrices 
weighted by the first eigenvector of the matrix of RV coef
ficients. The compromise represents the best consensus 
between the K distance matrices, as the weights used in 
the averaging procedure take into account the similarities 
between them (i.e. more similar distance matrices would 
have more weights in the definition of the compromise). 
In the third step, the compromise matrix is submitted to 
an eigen decomposition procedure so that species can 
be represented in a low-dimensional multivariate space. 
In this compromise space, species are positioned so that 
their distances (computed in few dimensions, see after) re
present the best approximations of the original distances 
contained in the compromise matrix. We used a broken 
stick model (Barton and David 1956) to estimate the num
ber of dimensions (axes) of the compromise space, as this 
simple method was shown to give a good approximation 
of the correct dimensionality of the data with another 
multivariate approach (Jackson 1993). Then, each individ
ual pairwise distance matrix is projected on the comprom
ise space. This allows us to obtain a representation of 
species associated with each gene family. In other words, 
the compromise identifies the dissimilarities between spe
cies that are common for all genes whereas the projections 
of individual distance matrices allow depiction of the pe
culiarities of each sequence. Finally, we compute the dis
tances, in the compromise space, between the position 
of a species given by all genes (the compromise) and its 
position associated with a particular gene family (using 
the projection procedure) and filled a gene x species 

2-Way Reference matrix (2WR matrix, see Fig. 1) with these 
values.

Detection of Outlier Sequences From DISTATIS Results
From the 2WR matrix (see Fig. 1), we apply the method of 
Hubert and Vandervieren (2008) to detect all values that 
are outliers, at the right of the univariate distribution of va
lues. This method is an adjustment of the Tukey method 
(the classical boxplot) adapted to skewed distribution. In 
brief all values above

Q3 + ke3MCIQR (1) 

are considered outliers. Q3 is the 3rd quartile of the distri
bution, IQR is its interquartile range and MC is the med
couple of the distribution (Brys et al. 2004), a measure of 
skewness bounded between −1 (left skewed) and +1 (right 
skewed). The k value is chosen by the user (default is 3) and 
controls how stringent the detection of gene outliers is. 
Small values of k lead to more gene outliers being detected. 
The detection of gene outliers is performed after normal
ization of the 2WR matrix, achieved by dividing each row 
(the default) or each column by its median. This normal
ization leads to an exaggeration of outlier values, easing 
their identification.

Detection of Outlier Genes
When no more outlier sequences are found in the 2WR 
matrix, PhylteR checks whether some genes are still uncor
related to others. These outlier genes are detected by find
ing outlier values in the weight array (α1, α2, …, αK, see 
Fig. 1). The outlier detection method used is the same as 
for the outlier sequences of the 2WR matrix (Equation 1) 
but its stringency can be tuned independently (with 
parameter k2 in place of parameter k in Equation 1, de
faulting to k2 = k = 3).

Exit Criteria of the PhylteR Iterative Process
PhylteR is an iterative process (see Fig. 1) with two exit 
points. The first one is straightforward: if no more outlier 
sequences are detected in the 2WR matrix, and if no 
more outlier genes exist (see above), then the process 
stops. The second one is based on the gain (Δq) achieved 
by removing outlier sequences (i.e. the change in q, the 
quality of the compromise). If this gain is below a certain 
threshold (10−5 by default), and if no more outlier genes 
exist, then the process stops.

Evaluation of the PhylteR Method
Datasets
We used three types of datasets to evaluate PhylteR and 
compare it with TreeShrink: a simple dataset used for illus
trative purpose only, a collection of simulated examples 
obtained with the program SimPhy (Mallo et al. 2016), 
and a large Carnivora phylogenomic dataset with 53 spe
cies (Allio et al. 2021). These datasets are described below.
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Simulated Dataset for Illustrative Purpose. We generated a 
small collection of gene trees in order to illustrate the dif
ferent steps of the PhylteR process. A single phylogenetic 
tree with 20 species was randomly generated with function 
rtree() from package ape v5.6.2 (Paradis and Schliep 2019). 
This tree was duplicated 25 times to mimic 25 orthologous 
gene families. To add variance to branch lengths, a value 
sampled in a normal distribution with mean 0 and stand
ard deviation 0.15 was added to each branch length of each 
tree (if the resulting branch length was negative its abso
lute value was taken). Ten outliers were then generated 
by randomly sampling 10 times a species in a gene tree 
and moving it to another random location.

Simulated Datasets. We simulated collections of gene trees 
with known outliers in order to evaluate PhylteR and com
pare it with TreeSkrink. We used SimPhy (Mallo et al. 2016), 
a program that can simulate the evolution of gene families 
(and thus gene trees) given a species tree under various evo
lutionary processes including HGT but also ILS. We used, as a 
species tree, the 53-taxa Carnivora tree of Allio et al. (2021), 
the same as for the biological dataset (next point). To be us
able in SimPhy, we transformed the tree to ultrametric with 
function chronos in ape (Paradis and Schliep 2019) and we 
rescaled the branch lengths so that the root-to-tip distance 
reflected (roughly) the number of generations, i.e. 8,899,579 
generations in this case. This value was obtained by dividing 
the age of the root of the tree (74 millions years old, [Kumar 
and Subramanian 2002]) with a rough estimate of the gen
eration time in Carnivora (8.315 yr if taking the median of 
the generation times of the species studied in van de Kerk 
et al. 2013).
For each replicate (100 each time), collections of 500 gene 
trees were simulated by setting the rate of HGT to 1e-8, 
the tree-wide substitution rate to 2.2e-9, and varying the 
level of ILS by changing the population size: 10 (NO-ILS), 
100,000 (LOW-ILS), 200,000 (MODERATE-ILS), 500,000 
(HIGH-ILS; the detailed commands used for Simphy are gi
ven as supplementary method, Supplementary Material
online). Then, from the 500 trees obtained, only 100 
were retained, randomly sampled among those where at 
most one HGT occurred (to allow unequivocal identifica
tion of outliers), and for which the transfer (if any) chan
ged the topology of the gene tree. The whole process 
was repeated three times, varying the maximum number 
of outliers allowed per gene, between 1, 10, and 53 (theor
etical max). This allowed exploring the impact of the num
ber of outliers per gene (linked here to the age of the HGT) 
on the capacity to correctly identify outliers, i.e. the species 
that were changing position relative to the species tree be
cause of HGT. For ILS, it was not possible to identify pre
cisely what species should be considered outliers or not. 
We could only look at the impact of ILS on the mean topo
logical distance between the collection of gene trees and 
the species tree (mean RF distance between 3 for NO-ILS 
and more than 20 for HIGH-ILS, see supplementary fig. 
S1, Supplementary Material online) and evaluate whether 

this had an impact or not on the precision and sensibility 
of our method.

Carnivora Dataset (CD). We used the raw sequence files (be
fore alignment and filtering) from a previously assembled 
phylogenomic dataset comprising 14,463 genes for 53 species 
aimed at resolving the phylogeny of the order Carnivora (Allio 
et al. 2021). This dataset was obtained by extracting single- 
copy protein-coding orthologous genes from the genomes 
of 52 carnivore species, plus the Malayan pangolin (Manis ja
vanica) used as outgroup, following the orthology delineation 
strategy of the OrthoMaM database (Scornavacca et al. 2019). 
These raw sequence files were aligned and filtered using the 
OMM_MACSE pipeline (Ranwez et al. 2021), which com
bines (i) translated nucleotide sequence alignment at the 
amino acid level with MAFFT (Katoh and Standley 2013), 
(ii) nucleotide alignment refinement (based on amino acid 
alignment) with MACSE v2 (Ranwez et al. 2018) to handle fra
meshifts and nonhomologous sequences (Ranwez et al. 
2018), and (iii) masking of ambiguously aligned and dubious 
parts of sequences with HMMcleaner (Di Franco et al. 2019). 
In the original study (Allio et al. 2021), this Carnivora dataset 
was successfully filtered using an early version of PhylteR al
lowing the removal of outlier sequences and genes generating 
abnormally long branches. Therefore, it was a good candidate 
dataset to test the completely redesigned and improved ver
sion of PhylteR presented here.

Evaluation of the Accuracy of PhylteR Outlier Detection and 
Comparison With TreeShrink
We evaluated PhylteR’s ability to detect outliers that are 
either correct (when it is possible to test it, with simulated 
datasets) or meaningful according to the biological infor
mation we can gather from the dataset at hand.

We used the first simulated dataset for illustration pur
poses only. For the other simulated datasets, i.e. for each le
vel of ILS, for different maximum numbers of outlier species 
per gene (1, 10, and 53), and for each one of the 100 repli
cates, we ran PhylteR with default parameters and we 
counted the number of True Positives (TP, outliers that 
were simulated and that are retrieved), False Positives (FP, 
outliers that were not simulated but are identified) and 
False Negative (FN, outliers that were simulated but are 
not retrieved). From those, we computed the mean preci
sion (TP/[TP + FP]) and recall (or sensitivity, TP/[TP +  
FN]) of the outlier identification of PhylteR. An estimate 
of the expected precision and recall when the same numbers 
of outliers were randomly sampled was also computed. To 
evaluate the impact of ILS-induced incongruences between 
gene trees on the ability of PhylteR to correctly identify out
liers, precision, and recall were computed and compared be
tween the four levels of ILS simulated (NO-ILS, LOW-ILS, 
MODERATE-ILS, and HIGH-ILS). Finally, for comparison pur
poses we performed the same analyses using TreeShrink v1.3.9 
(Mai and Mirarab 2018) in place of PhylteR with default para
meters for detecting outliers.

For the Carnivora dataset, we have no access to the true 
outliers. It is thus impossible to compute precision and 
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recall on this empirical dataset as done on the simulated 
ones. Instead, we can compute “features” associated with 
each gene sequence for each species (sequence hereafter), 
that are, a priori, associated with errors or with a lack of sig
nal in phylogenomic datasets. We can then evaluate 
whether the outliers detected by PhylteR are enriched in ex
treme values for these features, as compared with randomly 
selected sequences or with outliers identified with 
TreeShrink. The list of features and the reason for their 
choice is listed below.

Sequence Length. Long sequences were shown to carry 
more phylogenetic signal than shorter ones (Salichos and 
Rokas 2013; Shen et al. 2016). To explore the possible en
richment of outliers in short sequences, we computed the 
length (in bp) of each sequence in each gene MSA, and ex
plored its distribution in outliers.

Duplication Score. When a sequence in a gene tree is not 
orthologous to the others but is a paralog, its localization 
in the gene tree is likely to be incorrect. To have an insight 
into the level of “paralogousness” of each sequence in the 
Carnivora dataset, we compared the Carnivora species 
tree published by Allio et al. (2021) with each one of 
the 14,463 gene trees using the reconciliation program 
ALEml_undated (Szöllősi et al. 2015). This tool allows infer
ring the duplications, losses, and transfers experienced by a 
gene by comparing its history (the gene tree) with that of 
the species (the species tree). Here we inferred only duplica
tions and losses (transfer rate was forced to be 0), we forced 
the origination of each gene at the root of the species tree 
(parameter O_R = 10,000) and we used default values for all 
other parameters. We then computed the number of 
duplications inferred from the root to each tip of each 
gene tree and normalized this value by the number of nodes 
encountered. This value represents the normalized number 
of duplications experienced by each sequence, whose distri
bution in outliers could be evaluated.

Hidden Paralogy, the KRAB Zinc Finger Protein Family 
Case. The KRAB Zinc Finger (KZNF) super-family is active
ly duplicating in vertebrates with hundreds of paralogs per 
genome (Huntley et al. 2006; Liu et al. 2014). Thus, the 
orthologous relationships between these proteins are ex
pected to be hard to retrieve and the reconstructed ortho
logous gene families are likely to contain hidden-paralogs. 
If an outlier detection method is indeed able to remove 
hidden paralogs, we should see an enrichment of KZNF 
genes in the list of outliers.

Synteny. Synteny (in our sense) is the link between two genes 
occurring consecutively on a genome, i.e. without any other 
gene (in the dataset) located between them. One gene 
then has 2 synteny linkages. A synteny break occurs when 2 
genes are consecutive in one species but their orthologs in an
other species are not. The direction of transcription (coding 
strand) is considered, i.e. if it has changed it is considered as 
a break even if the genes appear in the same order. One 
gene, compared to its ortholog in another species, may 

then be associated with 0, 1, or 2 breaks. We call genes asso
ciated with 2 breaks syntenic outliers. We test if outliers found 
by PhylteR are more often syntenic outliers than randomly 
sampled genes. Our rationale behind this question is that syn
teny breaks are due to genomic rearrangements (inversions, 
duplications, translocations, …), but can occur in the data, 
and in much larger proportion, for many artifactual reasons: 
annotation errors, assembly errors, or orthology assessment 
errors. These different sources of errors are expected to lead 
to phylogenetic placement errors for the species carrying 
the affected genes. We thus formulate the hypothesis that 
outlier genes may be more often associated with synteny 
breaks than randomly sampled genes. To evaluate this, we fo
cused on 14 Carnivora genomes (supplementary table S1, 
Supplementary Material online) that we compared in a pair
wise manner. For each pair, we compared the list of syntenic 
outliers with the list of outliers retrieved by each outlier meth
od tested, and we computed the P-value associated with the 
observed size of the intersection under the hypothesis that 
the two sets of outliers are independent.
In order to compare the distributions of values for the dif
ferent features listed above between outlier detection 
methods, we needed lists of outliers of comparable size. 
The number of outliers retrieved with default parameters 
being very different with the two methods using default 
parameters (7,183 with PhylteR vs. 19,643 with 
TreeShrink, see Table 1), we created two collections of out
liers, a small and a large one (Table 1). For the small collec
tion, we selected a value for the parameter q in TreeShrink 
in order to get a number of outliers as close as possible to 
the number of outliers obtained with PhylteR default para
meters. This was achieved for q = 0.012, leading to 7,032 out
liers. For the large collection, we selected a value of the k (and 
k = k2) parameter in PhylteR leading to a number of outliers as 
close as possible to the number of outliers detected with 
TreeShrink default parameters. This was achieved for k =  
1.55, leading to 20,157 outliers. Parameters used and number 
of outliers in each collection and with each outlier detection 
method are presented in Table 1.

Evaluation of the Impact of Outlier Sequences Removal on 
Species Tree Support
It is expected that a tool that accurately removes outliers 
in phylogenomic datasets should increase the concord
ance between the gene trees and the species tree. To evalu
ate this and compare PhylteR with randomly sampled 
sequences and with TreeShrink-identified outliers, we 

Table 1 Collections of outliers used to evaluate PhylteR and compare it 
to TreeShrink

Collections PhylteR TreeShrink Random

Parameters # outliers Parameters # outliers # outliers

Small default 7,183 q = 0.012 7,032 7,183
Large k = k2 = 1.55 20,157 default 19,643 20,157

The small collection is obtained by tuning the TreeShrink parameters in order to 
obtain roughly the same number of outliers as with the default parameters of 
PhylteR. The large collection is obtained in the opposite way.
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computed the gene concordance factor (gCF, Minh, Hahn, 
et al. 2020) as implemented in IQ-TREE version 2.1.3 (Minh, 
Schmidt, et al. 2020) for every branch in the Carnivora spe
cies tree (obtained from Allio et al. 2021). For each branch 
of the species tree, this factor indicates the percentage of 
gene trees in which this branch is found (among gene trees 
where this can be computed, or “decisive” trees, see Minh, 
Hahn, et al. 2020). gCF was computed according to either 
the original gene trees (gCFinit), or to a list of gene trees ob
tained after pruning outliers (4 sets of gene trees corre
sponding to the four list of outliers in Table 1).

In order to see the effect of outliers removal on the con
cordance factor, we computed the difference (ΔgCF) be
tween gCFinit and every other gCF, separating the small 
and the large collections of outliers. Positive values of 
ΔgCF indicate that a branch is more supported after filter
ing than before. Comparing ΔgCF between PhylteR and 
TreeShrink gives an indication of whether, for the same to
tal number of outliers removed, PhylteR performs better 
than TreeShrink at identifying sequences with conflicting 
phylogenetic signals and increasing the concordance be
tween the species tree and the gene trees.

Results
Illustration of the General Principle of PhylteR
The different steps of the PhylteR process (Fig. 1) are illu
strated on a simple example dataset comprising 25 genes 
for 20 species, with 10 outliers. The main steps are as follows. 
Individual gene trees are transformed into individual gene 
matrices that are then combined into a unique compromise 
matrix obtained after weighting each matrix by its concord
ance with the others: matrices that are poorly correlated 
with the others have less weight in the creation of the com
promise (supplementary fig. S3A-E, Supplementary Material
online). This matrix is then projected onto a space on which 
individual matrices are projected as well (Fig. 2A and 
supplementary fig. S3F, Supplementary Material online). 
By computing the distance of each species in each ortholo
gous gene to its reference position in this projection, the 
2WR is obtained (Fig. 2B and supplementary fig. S3G, 
Supplementary Material online). It is from this matrix that 
outlier sequences can be identified and removed.

PhylteR Performs Well on Simulated Examples and is 
Robust to ILS-induced Incongruences
To evaluate the precision and sensitivity of PhylteR, we 
used it on four simulated datasets with increasing levels 
of ILS (NO-ILS, LOW-ILS, MODERATE-ILS, and HIGH-ILS). 
We also computed precision and recall on the same data
sets using another method, TreeShrink (Mai and Mirarab 
2018). Finally, we computed the expected precision and 
sensitivity if the same number of sequences identified as 
outliers by PhylteR and TreeShrink were randomly selected 
from all sequences.

The outliers that we considered were single species whose 
position was moved to a new location in some gene trees 

Fig. 2. Two objects of the PhylteR process. a) The compromise matrix is 
projected into a multidimensional space (the 2 first axes only are repre
sented here). This gives the reference position of each species relative to 
each other (blue badges with species names on them). Individual gene 
matrices are projected on the same space (small dots) and the distance 
between each gene in each species to its reference position is repre
sented by a line. The red line and the red arrow identify species t3 in 
gene 5. This projection is transformed into a 2D matrix b) by computing 
the distance between each species in each gene to its reference position 
(i.e. the length of each line in a). The gene × species matrix obtained, 
which we refer to as the2WR is used to detect outliers like the one in
dicated by thered arrow, corresponding to the red arrow in a.
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because of HGTs. For this type of outliers, we observe that 
PhylteR performs well, with precision and recall being 
close to their maximum value 1 (Fig. 3). On the other 
hand, TreeShrink performs badly, identifying few correct 
outliers (leading to a mean precision close to 0), but still 
detecting a large collection of FP (leading to a low 
sensitivity). When increasing the maximum number of 
outlier species in each gene tree to 10 (supplementary 
fig. S2A, Supplementary Material online) or to 53 
(supplementary fig. S2B, Supplementary Material online), 
we observe that both the precision and sensitivity of 
PhylteR slightly decrease while the ones of TreeShrink in
crease, but the difference between both remains in the 
clear advantage of PhylteR (in this specific setting).

Of note, the level of ILS has almost no effect on the preci
sion and sensitivity of the PhylteR (and TreeShrink, even 

though a negative effect would be hard to see when starting 
from such low precision and sensitivity values), except when 
reaching very high ILS (bottom-right panels in Fig. 3 and 
supplementary fig. S2A and S2B, Supplementary Material
online). In other words, even when the mean topological dis
tance between the gene trees and the species tree is multi
plied by more than 5, as is the case between the NO-ILS 
and the MODERATE-ILS conditions (supplementary fig. S1, 
Supplementary Material online), the precision and sensitivity 
of PhylteR for detecting the outliers simulated by HGTs do 
not decrease. This suggests that PhylteR does not consider 
species that have changed position in some gene trees due 
to ILS as outliers. This apparent robustness of PhylteR to 
ILS can be seen as a desirable feature, e.g. when using species 
tree reconstruction tools that explicitly handle ILS such as 
ASTRAL (Zhang et al. 2018).

Fig. 3. Comparison of the precision and recall (or sensitivity) of the PhylteR and the TreeShrink outlier detection methods for four conditions of 
ILS.
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Characterization of Outliers Detected With PhylteR 
on the Carnivora Dataset
Outliers in phylogenomic datasets can be of different nature: 
fast or slow evolving genes in some species, leading to re
spectively long or short branches in gene trees, or species 
being placed in aberrant position in some genes because 
of HGT, hidden paralogy, saturated signal, compositional 
bias, long-branch attraction, or other artifactual reasons 
(Schrempf and Szöllősi 2020).

In the set of 14,463 gene trees analysed by PhylteR, two 
sets of outliers (7,183 and 20,157 sequences) were identified 
with PhylteR (with default or tuned parameters, respectively) 
and 7,032 and 19,643 with TreeShrink (with tuned and de
fault parameters respectively, see Table 1). A simple compari
son of the list of outliers of similar sizes revealed that the 
overlap between the two lists of outliers was quite small 
(around 20%, Fig. 4). This corresponds to about 70% of the 
outliers detected by PhylteR being absent from the list of 
outliers detected by TreeShrink, and vice versa. This reveals 
fundamental differences between the 2 approaches.

To better understand what differs between the outliers 
detected by PhylteR and those detected by TreeShrink, we 
compared the distribution values of different features de
scribing these outlier sequences.

First, we observed a significant decrease in sequence length 
in outlier sequences for both PhylteR and TreeShrink as com
pared to randomly sampled sequences (P < 2.2e-16 in both 
cases and for both collections of outliers, Fig. 5A). Sequence 

lengths were higher in PhylteR outliers than in TreeShrink 
outliers for the small collection of outliers (P < 2.2e-16) but 
the opposite was observed for the large collection of outliers 
(P < 3.17e-14). The fact that outliers are enriched in short se
quences is thought to be due to the expected correlation be
tween the size of a sequence and the phylogenetic signal it 
carries. Shorter sequences are more prone to misplacement 
in phylogenetic trees.

Second, we compared the distribution of duplication 
scores in the list of outliers produced by PhylteR and 
TreeShrink (Fig. 5B). We observed a clear difference, for 
both the small and the large collections of outliers between 
PhylteR outliers and random outliers, but also between 
PhylteR outliers and TreeShrink outliers: outliers identified 
by PhylteR are significantly enriched in sequences that dis
play a higher number of duplications as compared to ran
dom or TreeShrink outliers (P < 2.2e-16 for all comparisons).

This result is in accordance with the results obtained on 
simulated datasets: PhylteR is good (and much better than 
TreeShrink) at identifying misplaced species in some gene 
trees, which is indirectly what the duplication score captures.

One illustration of the difference between PhylteR and 
TreeShrink in their ability to capture duplicated sequences 
(and thus probably hidden paralogues) can be given by the 
study of peculiar proteins, such as the Zinc-finger family 
(ZNF). This large family of paralogs first duplicated from 
the gene PRDM9 or PRDM7 in the ancestor of vertebrates 
(Emerson and Thomas 2009). These genes are involved in 
the repression of transposable elements and are still actively 
duplicating. The high number of duplications renders the 
resolution of the orthology relationship in this gene super- 
family very challenging. In the Carnivora dataset, the ZNF 
super-family has been splitted in 168 orthologous gene fam
ilies (Allio et al. 2021). As expected in case of hidden paralogy, 
we see an overrepresentation of the genes belonging to these 
families in the list of outliers, especially in the outliers identi
fied by PhylteR (Fig. 5C). Between 3.79% (for the large set) 
and 7.4% (for the small set) of PhylteR outliers belong to 
the ZNF family, while these values drop to 1.78% and 
1.12%, respectively for TreeShrink outliers, and less than 1% 
for randomly selected sequences (Fig. 5C).

Third, we compared two by two 14 Carnivora species and 
identified syntenic outliers (see material and methods). In al
most all pairwise comparisons, we found that these syntenic 
outliers significantly overlap the outlier sequences detected 
by PhylteR. For example, in the comparison between 
Zalophus californianus and Suricata suricatta (illustrated in 
Fig. 6), out of the 5,123 genes common to both species in 
the dataset, 131 (2.56%) are syntenic outliers (i.e. surrounded 
by 2 breaks). In comparison, out of the 47 outlier sequences 
identified by PhylteR (small list) in either Zalophus california
nus or Suricata suricatta, 38 are syntenic outliers (80.8%), 
which is significantly more than expected by chance 
(P-value = 1.5e-43). With TreeShrink (small list) for the 
same pair of species, only 18.1% (17 out of 94) outlier se
quences are syntenic outliers, which is much less than with 
PhylteR but is still significantly different from what is ex
pected by chance (P-value = 1.36e-10). Similar results were 

Fig. 4. Comparison of the sets of outliers detected by PhylteR (left 
column) and TreeShrink (write column) on the Carnivora dataset. 
The two collections of outliers (small and large) correspond to dif
ferent stringency for the detection of outliers (see Table 1).
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obtained for most of the other pairs of species compared 
(supplementary fig. S4, Supplementary Material online and 
supplementary tables S2 and S3, Supplementary Material
online).

Impact of Filtering Outliers on Species Tree Support
The gCF is a measure, for a species tree, of how much each one 
of its branches is supported according to a collection of indi
vidual gene trees. A value of 100% means that 100% of the 
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Fig. 5. Comparison of distribu
tion values between outliers 
detected by PhylteR, by Tree 
Shrink, or randomly sampled, for 
three features associated with 
outlierness in phylogenomic da
tasets. a) Distribution of the 
length (in bp) of the sequence 
outliers identified by each meth
od. A log scale is used for the 
y-axis. b) Distribution of duplica
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of duplications experienced by 
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gene trees for which the comparison could be done (“decisive” 
gene trees in Minh, Hahn, et al. 2020) contain this branch.

Nonrandom outlier removal processes are expected to 
increase gCF scores by discarding sequences representing 
species in gene trees whose position is not in accordance 
with their placement in the other gene trees. We looked 
at the difference in gCF score before and after pruning out
liers (ΔgCF) for each branch of the Carnivora species tree. 
For both PhylteR and TreeShrink, an increase in gene 

concordance was observed. It was higher with PhylteR 
than with TreeShrink, indicating a better identification 
of misplaced species in gene trees for PhylteR. The effect 
was larger when more outliers were removed (Fig. 7, right), 
the gain in gCF reaching more than 6% for some branches 
with PhylteR outliers removal (max 5% for TreeShrink). We 
observed that the gain in concordance was higher for 
branches that initially had a high gCF, and smaller for 
poorly supported nodes (plain dots vs. circles in Fig. 7). 
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Fig. 6. Illustration of the nonsyntenic nature of many outliers identified by PhylteR. We represent the comparison of Zalophus californianus with 
Suricata suricatta genomes, with Zalophus as a reference (arbitrarily, most other pairs of species give similar results). On each circle, a reference 
Zalophus scaffold is represented in dark blue, and all scaffolds for which at least one gene has an ortholog in this scaffold are in light gray. Lines 
between these scaffolds represent couples of genes annotated as orthologous. Red lines highlight gene outliers detected in Suricata suricatta. We 
observe that they are very often “isolated” genes, i.e. syntenic outliers. These genes are thus probably erroneously annotated, erroneously as
sembled, and their orthology is likely erroneous.
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This may be due to an easier identification of outliers on a 
“clean” background (many gene trees supporting the same 
node, leading to high gCF) than on a more noisy one.

Note that gCF, which captures topological differences be
tween the gene trees and the species tree, exhibits a notable 
increase but does not attain its maximum value. This obser
vation might be indicative of some of the incongruences be
tween gene and species trees within the Carnivora dataset to 
be attributed to ILS. These potential ILS-related incon
gruences appear not to be identified as outliers by PhylteR, 
as suggested by the results of our simulations (see above).

Discussion
In phylogenomics, incongruence between gene trees, re
sulting from a myriad of possible technical and analytical 

issues, or from biological processes, is known to lead to er
rors in species tree inference (Philippe et al. 2017). A com
mon practice in phylogenomics thus consists of scanning 
individual gene trees by eye, trying to spot species or group 
of species weirdly placed in gene trees, suspicious long 
branches, apparent groups of paralogues, etc., and discard
ing them before the concatenation of the genes (superma
trix approach) or to the assembly of the gene trees into a 
species tree (supertree and coalescent-based approaches). 
This hard work is not only time-consuming and laborious, 
it is also questionable: what is the objectivity in this prac
tice? Is the eye (and the brain) capable of looking at tens of 
thousands of gene trees at the same time? How reprodu
cible is such a practice? etc.

Here, with PhylteR, we propose a way of analyzing large 
collections of gene trees by using an automatic method 
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that can simultaneously analyse a large collection of dis
tance matrices (retrieved from gene trees), identify the 
common signal between these matrices, and identify ele
ments (outliers) in some of these matrices that are respon
sible for a decrease in concordance. By using a process 
where these outliers are automatically and iteratively re
moved, we propose a new way of efficiently identifying 
them.

Evaluating a method for its capacity to accurately iden
tify errors in phylogenomics datasets is a difficult task. As 
for any inference method, we use simulations. However, 
simulating the processes that result in errors (in our 
case, outliers in phylogenomics data) has no standard so
lution: sources of errors are numerous, and they combine 
with each other through all phylogenomic pipelines, some
times with unpredictable results. So we restricted our
selves to simulating a feature intrinsically detectable by 
PhylteR, that is, changes in the phylogenetic placements 
of some species in some gene trees. Further evaluation 
would involve an independent simulation pipeline, not in
formed by the hypothesis behind the inference method 
(Biller et al. 2016), which is by definition outside the scope 
of the description of the inference method. The simple si
mulations we performed revealed that outliers corre
sponding to misplacement of species in a few gene trees 
were easy to detect with PhylteR but not with 
TreeShrink. However, this is not surprising a posteriori: 
TreeShrink (Mai and Mirarab 2018) is designed to detect 
abnormally long branches in collection of gene trees, while 
we considered here as outliers species that changed pos
ition in some gene trees because of HGTs; these outliers 
are not necessarily associated with longer branches.

A better way to examine the advantages of a method 
over another is to explore biological data. To this end, 
we evaluated PhylteR and compared it with TreeShrink 
by looking at some properties associated with gene se
quences and testing possible enrichment of these proper
ties in the list of detected outliers. We observed an 
enrichment of short sequences, which was anticipated 
(short sequences carry less phylogenetic signal) and con
firmed previous results (Shen et al. 2016).

A notable difference that we observed between PhylteR 
and TreeShrink, confirming the results obtained on the 
simple simulated examples, is the duplication score com
puted here: outliers identified with PhylteR seemed to be 
highly enriched in gene sequences having experienced 
more duplications, according to the reconciliation analysis 
performed. Note, however, that we need to be cautious 
with this measure: being based solely on a topological 
comparison between gene and species trees, it cannot dis
tinguish between true paralogy, and other processes (bio
logical or artefactual) leading to a species in a gene tree to 
have a position that is not concordant with its position in 
the other gene trees. HGT for instance, may lead to high 
duplication scores according to our approach when 
none occurred (even though HGT is thought to be anec
dotal in the Carnivora dataset). Similarly, artefactual rea
sons such as long branch attraction, annotation error or 

alignment error can lead to misplacements of species in 
some gene trees.

A more direct way of testing the ability of PhylteR to de
tect hidden paralogous sequences was to focus on a specif
ic gene family known to be extremely diverse because of 
multiple duplication events, the KZNF family (Huntley et 
al. 2006; Liu et al. 2014). We observed a clear enrichment 
of sequences belonging to this peculiar family in the list 
of outlier sequences identified by PhylteR, as compared 
to those identified by TreeShrink or randomly sampled. 
This capacity of PhylteR to identify putative paralogs is 
an important feature, as it was shown earlier that non
orthologous sequences in phylogenomic datasets could 
have a drastic impact on results (Philippe et al. 2017), lead
ing for instance to erroneous branching with high support 
in the reconstructed species tree in some cases (Philippe et 
al. 2011).

A final test that we used to validate PhylteR consisted of 
exploring the syntenic nature (and lack thereof) of the se
quences identified as outliers when comparing the species 
in a pairwise manner. We observed that outlier sequences 
were often (much more than expected by chance) syntenic- 
outliers, i.e. sequences associated with a loss of synteny 
when comparing the two genomes. This provides two kinds 
of information: on one side, that the “syntenic outliers” and 
the “phylogenetic outliers” largely overlap, which proves 
with an argument orthogonal to all the previous ones, that 
PhylteR (and TreeShrink to a lesser extent) captures an infor
mation about erroneous annotations; on the other side, it sug
gests that many “syntenic outliers” are due to errors and not to 
biological processes. “Syntenic outliers” are often filtered out 
before performing rearrangement analyses, because their pos
ition is believed to be artefactual (Lucas and Crollius 2017). 
However, sometimes this outlier position is modeled as the re
sult of a biological process (Dalevi and Eriksen 2008). Our ana
lysis supports this artifactual origin in Carnivora, though some 
syntenic outliers might originate from retrotranscription or 
translocations.

ILS is a known source of incongruence among gene trees 
and between gene trees and the species tree. This biological 
process, where ancestral polymorphism is maintained across 
various speciation events, leads to different portions of the 
genomes having different evolutionary histories. With simu
lations we could vary the level of ILS in the datasets and 
evaluate the impact it had on the ability of PhyleR (and 
TreeShrink) to correctly identify outliers. For both methods, 
we saw no effect of increasing the level of ILS on the precision 
and sensitivity values. For TreeShrink, it is hard to conclude 
anything, because the initial values were very low (close to 
0) so any negative effect would have been undetectable. 
For PhylteR however, where precision and sensitivity were 
high, this absence of effect reveals that PhylteR does not 
detect sequences that have experienced ILS as outliers. 
Whether this is positive or negative can be discussed. On 
the one hand, it was shown earlier that ILS-related incon
gruences among gene trees could have a detrimental effect 
on species tree reconstruction with supermatrix approaches 
(Degnan and Rosenberg 2006). On the other hand, 

PhylteR · https://doi.org/10.1093/molbev/msad234 MBE

13

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/11/m
sad234/7330000 by guest on 20 D

ecem
ber 2023



ILS-induced incongruence is a true biological signal that many 
species tree inference methods, namely the coalescence- 
based ones, can now handle (Liu et al. 2010; Zhang et al. 
2018). In this context, getting rid of these incongruences 
may be seen as detrimental, because it removes a meaningful 
signal that can be accommodated by these methods. 
However, the real contribution of ILS to gene tree incon
gruences is something that is rarely measured, but in mam
mals, for instance, it was shown to be rare (Scornavacca 
and Galtier 2016). We can advance two reasons why 
PhylteR is not sensitive to ILS. First, ILS preferentially affects 
short branches of the species tree, i.e. speciation events sepa
rated by a short amount of time, which leads to a limited ef
fect in the pairwise distance matrices manipulated by 
PhylteR. Second, when ILS changes the branching pattern 
of three clades (or species), it is expected that around 50% 
of each alternative topology to the true one is observed across 
all gene trees. When the “compromise” matrix is built in the 
PhylteR pipeline, this signal will thus likely be averaged out.

Here we focused on the identification of outliers in col
lection of gene trees in order to remove them before 
phylogenetic inference with supermatrix, supertree, or 
coalescent-based methods. But other usage of the tool 
we present here can be anticipated. First, because the 
PhylteR method consists of comparing matrices (in this 
case phylogenetic distance matrices), it is easy to imagine 
applying the method without computing gene trees, dir
ectly on matrices extracted from multiple sequence align
ments (MSA), one matrix per gene. In this sense, 
comparing PhylteR with MSA-based filtering tools could 
be a worthwhile follow-up of this work. Second, correctly 
identifying and removing outliers from phylogenomic da
tasets could be of interest beyond species tree reconstruc
tion. For instance, it appears to be crucial when using 
statistical methods based on the ratio of nonsynonymous 
over synonymous substitution rates (dN/dS ratio) to detect 
adaptive molecular evolution (see Yang and Bielawski 2000
for a review), or for correctly inferring ancestral sequences 
(Yang et al. 1995) from sequences of extant species. Finally, 
using a tool like PhylteR is not only useful for cleaning the 
data. The in-depth exploration of the outliers detected and 
the study of the reasons why they were detected as such 
can give important insights into the evolutionary history 
of these sequences, for instance allowing for the identifica
tion of horizontally transferred or duplicated genes.

Conclusion
We created PhylteR, a tool to explore phylogenomics dataset 
and detect outlier gene sequences. Instead of fully removing 
rogue taxa or full outlier gene family, PhylteR precisely iden
tifies what sequences in what gene family should be removed 
to increase concordance between genes. In doing so it accur
ately spots gene sequences with low phylogenetic signal, 
genes with saturated signal leading to long branches, paralo
gous genes, genes associated with synteny breaks, and other 
sequences that are dubious in gene phylogenies for any pos
sible reason.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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