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Abstract

Understanding speech requires mapping fleeting and often ambiguous soundwaves to

meaning. While humans are known to exploit their capacity to contextualize to facilitate this

process, how internal knowledge is deployed online remains an open question. Here, we

present a model that extracts multiple levels of information from continuous speech online.

The model applies linguistic and nonlinguistic knowledge to speech processing, by periodi-

cally generating top-down predictions and incorporating bottom-up incoming evidence in a

nested temporal hierarchy. We show that a nonlinguistic context level provides semantic

predictions informed by sensory inputs, which are crucial for disambiguating among multiple

meanings of the same word. The explicit knowledge hierarchy of the model enables a more

holistic account of the neurophysiological responses to speech compared to using lexical

predictions generated by a neural network language model (GPT-2). We also show that

hierarchical predictions reduce peripheral processing via minimizing uncertainty and predic-

tion error. With this proof-of-concept model, we demonstrate that the deployment of hierar-

chical predictions is a possible strategy for the brain to dynamically utilize structured

knowledge and make sense of the speech input.

Introduction

Understanding speech is a nontrivial feat. To extract information from ever-changing acoustic

signals, our brains must simultaneously “compress and recode linguistic input as rapidly as

possible” for multiple representation levels [1], while also keeping information in memory as

we incrementally build up the meaning of an utterance [2]. No computational framework to

date has captured the transformation from continuous acoustic signal to abstract meaning:

Most speech processing models focus on either the lower-level recognition from acoustic to

lexicon [3–7], or the higher-level linguistic manipulations without taking into account the con-

straint of elapsing time [8–13].
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In addition to the challenge of fleeting time, speech signals are often ambiguous. However,

humans exhibit extraordinary flexibility in making sense of ambiguous speech. We constantly

make inferences based on our internal linguistic (e.g., syllabic composition of a word) and

nonlinguistic (e.g., speaker identity, semantic context) prior knowledge that are learned from

our personal experience. The influence of internal (prior) knowledge on speech perception

takes place at all processing levels, e.g., filling the gap of possibly obscured acoustic details [14–

16], or interpreting a sentence containing semantically ambiguous words [17,18]. Understand-

ing how internal knowledge is integrated with external input on the fly is key to deciphering

speech processing in the brain and explaining the flexibility in human speech comprehension.

With the development of powerful neural networks [19–21], it is now possible for a model

to implicitly learn structured linguistic knowledge from an immense amount of written text

and apply such knowledge in language tasks such as coherent text generation. Despite their

remarkable achievements in specific language tasks, these models are very resource-demand-

ing and often make egregious errors showing that their performance is not rooted in human-

like understanding of the language content [22,23]. Especially if trained and evaluated on tasks

involving predicting the next input [20,21], e.g., a word, it is virtually impossible for such mod-

els to capture the abstract processing necessary for human language comprehension extending

beyond linguistic forms and across cognitive domains [24,25]. A key aspect of speech under-

standing consists of applying structured internal knowledge to extract relevant information

from the input signal. How and what internal knowledge is deployed depends on the listener’s

behavioral goal, which can range from “understanding the message intended by the speaker”

during a conversation to simply “predicting the next word” during an experimental task. A

language model exploiting built-in linguistic as well as nonlinguistic knowledge, and driven by

a behavioral goal, may hence be more powerful and polyvalent than one based on recognition

and short-range prediction.

Here, we propose a computational framework in which the use of linguistic and nonlinguis-

tic contextual knowledge allows the incremental extraction of multilevel information from the

continuous speech signal. The model achieves single-sentence understanding by assigning

appropriate values to semantic roles and making reasonable judgements about the nonlinguis-

tic context in which the sentence takes place. Such a process relies on a probabilistic generative

model that uses its linguistic and nonlinguistic knowledge to incrementally compose sen-

tences. The generative model has a top context level that determines second-level semantic

roles, which are translated into a third-level lemma sequence via linearized syntax rules. Each

lemma produces a sequence of continuous, bottom-level spectro-temporal patterns via two

intermediate hierarchies, integrating a syllable model [26] that was adapted from a biophysi-

cally plausible model of birdsong recognition [27,28]. Importantly, context and semantic states

are maintained throughout the sentence but interact at the lemma rate, allowing the inverse

model to modify previous estimates of these states with incoming evidence. During model

inversion, top-down and bottom-up messages alternate at timescales of corresponding hierar-

chies, providing a possible solution to the “now-or-never” bottleneck [1] that is also consistent

with the predictive coding hypothesis of perception [29–31].

With a small scope of knowledge adapted from stimuli in MacGregor and colleagues [32],

the model can extract contexts and semantic roles from ongoing speech signals and resolve

semantic ambiguity using new information; its beliefs about context and semantic roles, in

turn, dynamically influence message passing in lower levels. The linguistically informed model

structure allows for hierarchy-specific computational metrics that provide a more interpretable

and holistic explanation of neural speech responses than using next-word prediction statistics

generated by GPT-2 [20], a large-scale natural language model. In addition, we show that the

prediction–update mechanism offers the flexibility to balance between amount of processing

PLOS BIOLOGY Hierarchical prediction aids online speech comprehension

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002046 March 22, 2023 2 / 37

(ALG), and Medical Research Council

MC_UU_00030/6 (LJM). The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: DEM, dynamic expectation

maximization; KL, Kullback–Leibler; KLD, Kullback–

Leibler divergence; SG, Sentence Gestalt; SVadj,

subject-verb-adjective; SVO, subject-verb-object;

TF, time-frequency.

https://doi.org/10.1371/journal.pbio.3002046


and inference accuracy through the control of weighting for bottom-up sensory cues versus

top-down predictions.

This proof-of-concept model demonstrates a possible computational scheme of speech pro-

cessing in the brain in which top-down prediction serves as a key computational mechanism

for information exchange between hierarchies, driven by the goal of comprehension. Further-

more, correlations between model-derived metrics and neural responses may provide insights

into the functional roles of various neuronal signals during speech perception.

Results

A deep hierarchical model of speech comprehension

We developed a model of speech processing based on the idea that the goal of the listener is to

understand the message conveyed by an utterance. Appropriate understanding entails retriev-

ing useful information from the utterance and optimally mapping it to the listener’s knowledge

of the world, not restricted to linguistic representations (Fig 1A). Our model of the listener’s

internal knowledge, therefore, consists of two parts that are both implemented as probabilistic

generative models. The first part exemplifies knowledge about the world by defining events

and properties constrained by specific nonlinguistic, situational contexts. For example, under

the context of a tennis game, the listener knows (that the speaker knows) about special winning

serves, about runs to return a ball, etc. The serve or the run may be the central role in an event

of winning a game, or described as having a certain property (e.g., being surprising). Under

the different context of a poker game, the listener knows some cards in the deck that can also

be part of an event or entail some property. The second part of the model converts these events

or properties into linguistic forms by choosing between a number of possible lemmas in an

appropriate order, e.g., the special winning serve can be expressed as a single word “ace” early

in the sentence, and, finally, into spoken utterances in the form of spectro-temporal sound pat-

terns via a deep temporal hierarchy (Fig 1B). These two parts are hierarchically linked via

semantics and syntax. The inversion of this generative “world knowledge” model fulfills the

mapping from the sound patterns to abstract semantic roles and contexts by estimating the

probability of every possible value (state) of each element (factor) in the knowledge hierarchy

(Fig 1A), thus providing the listener with the means to understand the utterance produced by

the speaker.

In all, the model includes five levels, each consisting of several factors (represented in rect-

angles in Fig 1A) that have multiple possible values (states) listed in Table 1 except for the

acoustic factor, which is a real-valued vector representing the signal amplitude of six acoustic

channels. Probabilistic mappings and transition probabilities between the values of the discrete

factors in Table 1 are defined in Methods and S1 Appendix. The final output of the generative

model (i.e., the input to the perception model) is the continuous spectro-temporal pattern of

the speech signal sampled at 1,000 Hz and divided into six frequency channels (see Methods).

Lengths of stimuli are fixed: Each sentence consists of 4 lemmas, each lemma of 3 syllables,

and each syllable of 8 spectral vectors. Every spectral vector is deployed into 25 ms of time-

varying continuous signal; thus, each syllable effectively has a duration of 200 ms [33].

Next, we show how this model understands simple sentences and deals with semantic ambi-

guity, and we demonstrate the role of top-down predictions in these processes. We assessed its

performance with different sentence stimuli and parameter settings, namely by varying the

perceptual bias among different contexts and the precision of the continuous module (see

Methods), focusing on (1) the probability distributions that describe the model’s beliefs (or

predictions) about possible states over time and (2) divergence and entropy measures, which

summarize informational changes underlying the evolution of beliefs (see Methods). These
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Fig 1. A generative model of speech and its inversion. (A) Schematic of the generative model. Left: Information conveyed in

a speech signal is roughly separated into six hierarchies. To generate speech (solid downward arrow), the model first assigns

values to semantic roles according to the contextual knowledge and determines a (linear) syntactic structure from the type of the

message it is expressing. Together, semantics and syntax generate an ordered sequence of lemma units. Each lemma unit

generates a sequence of syllables, which, in turn, generates a sequence of spectral vectors. Each spectral vector unit is then

deployed as a continuous acoustic signal of 25 ms. Inference corresponds to the inversion of the generative process (dashed

upward arrow). The model is divided into three parts that were implemented with different algorithms (see Methods). Right:

Cartoon (www.publicdomainpictures.net) illustrating how a sequence of syllables ‘/læmp-poʊst/’ (lamppost) is generated from a

traffic scene context. In describing a traffic accident, the speaker tries to convey its mental image of the scene consisting of an

agent (the car), a patient (the lamppost), and the relation (the action of hitting) from the agent to the patient. With English

vocabulary and grammar, it chooses one lemma corresponding to each element in the accident and outputs (speaks) these

lemmas in a specific order according to the syntactic rules. Each lemma is then expressed as a specific sequence of syllables.

Importantly, the same lemma can be the result of different combinations of abstract information and syntactic rules. For

example, in the sentence “The ball hits the floor”, the word “hits” implies a different action than a car hitting a cyclist, whereas in

“His songs are top hits”, the relative position of the word implies an entity, not an action. (B) Temporal scheduling of

hierarchical message passing during speech perception. The generative model is inverted by alternating top-down prediction

(prior, green downward arrows) and bottom-up update (blue upward arrows). A supraordinate level initiates a sequence of

evidence accumulation in its subordinate level and receives a state update at the end of such sequence. It then makes a transition

and sends an updated prediction to the subordinate level and initiates another sequence of evidence accumulation. Such a

process is repeatedly performed until the end of the sentence. Note that for the lemma and lower levels, states are generated

anew each time when the supraordinate level makes a transition, i.e., no horizontal arrows between sending up an update and

receiving a new prior. For the top two levels, however, states are maintained throughout the sequence (red horizontal arrows) or

make transitions according to a set of rules (syntax).

https://doi.org/10.1371/journal.pbio.3002046.g001
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measures do not depend on the precise fine-tuning of the model parameters and are qualita-

tively evaluated by whether the timing (when certain states are updated) and the outcome

(what the current beliefs are about different states) of the hierarchical inference concurs with

human behavior in the language domain.

Stimuli are adapted from MacGregor and colleagues (2020) [32] and illustrate the use of

internal knowledge to disambiguate speech. All sentence stimuli in the following sections

share the same structure (see Table 2 for a complete list of possible sentences):

One more [MIDDLE WORD] wins [END WORD].

The MIDDLE WORD can have either one or multiple possible meanings, each meaning

pointing to one context of the sentence. The END WORD either resolves the semantic ambi-

guity raised by the middle word or not. A disambiguating end word can also follow an unam-

biguous middle word without affecting its interpretation.

The use of knowledge about the world to interpret speech

We first test how the model processes speech stimuli, with a focus on the timing of the incre-

mental estimation process at the context and semantic levels, where “meaning” is extracted by

assigning values to semantic roles.

Consider the following two sentences, A: “One more ace wins the tennis.” and B: “One

more ace wins the game.” Both sentences contain the ambiguous word “ace”, which can be

associated with a special serve in tennis or a special card in a poker game. The final word in the

first sentence disambiguates “ace” to mean a special serve because “the tennis” can only be gen-

erated from a tennis game context, which applies to the whole sentence including the preced-

ing “ace”. In the second sentence, however, the ambiguity remains unresolved; the game can

still refer to a tennis or a poker game. In the latter case, the interpretation of the word “ace”

will depend on the listener’s preference. Unless specified otherwise, we introduce a prior pref-

erence for the poker context to reflect the preference of the general population [32].

The word “ace” introduces ambiguity because it points to two possible states for agent
(“tennis serve” or “card A”), each of which points to a separate state for context (“tennis game”

Table 1. Factors and their possible values (states) in the model hierarchy.

Hierarchy Factor Value (State)

Context Context tennis game, poker game, night out, car racing game

Sentence type event, property

Semantic and

Syntax

Agent

(semantic)

card A, winning serve, run, card j, neckband, score, buzz, null

Patient

(semantic)

tennis game, poker game, racing game, evening, null

Relation

(semantic)

win, ruin, be

Modifier

(semantic)

sufficient, unexpected, not pretty, not fair, high volume, high frequency

Syntax attribute, subject, verb, object, adjective

Lemma Lemma one more, that, ace, sprint, joker, tie, noise, wins, ruined, is, the tennis, the

poker, the game, the evening, enough, surprising, ugly, unfair, loud, sharp

Where in lemma 1–3

Syllable Syllable* /eis/, /te/, /nis/, . . . total of 32 including the silence syllable

Where in

syllable

1–8

*Note that these symbols are illustrative and not following IPA.

https://doi.org/10.1371/journal.pbio.3002046.t001
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or “poker game”; Table 2, ambiguous and disambiguating words in bold). Fig 2A and 2B show

the evolution of the model’s beliefs about context and semantic factors for the two sentences.

The ambiguity is reflected in the posterior estimates of agent and context between the offset of

“ace” and the sentence ending word, where the model assigned nonzero probabilities to “card

A” and “serve” as the agent, and “poker game” and “tennis game” as the context, and near-zero

probabilities for other states (Fig 2A). Probabilities for poker-relevant states were higher

(darker colors) due to the contextual preference. The verb “wins” did not change the model’s

estimation for the agent or the context but clarified the sentence type to be “event” and the

patient to be nonempty, again with a preference towards poker. After the model heard “the

tennis” (Fig 2A), it immediately resolved its beliefs of the agent, the patient, and the context to

the opposite of its prior preference. When the sentence ended with “the game” (Fig 2B), the

model followed its preference with enhanced beliefs as a result of the entropy reduction

entailed by belief updating, but not as clearly resolved as with “the tennis” (see next section).

The results in Fig 2A and 2B demonstrate how prior knowledge and preferences can

dynamically influence the extraction of semantic roles and contexts from the speech signal.

This influence is not only reflected in the perception of semantically ambiguous words, but

also in the details of message passing that give rise to its estimates. Fig 2C contrasts the infer-

ence processes between sentence [ACE-TENNIS] and sentence [ACE-GAME] in Fig 2A and

2B using their derived information metrics ([ACE-TENNIS] relative to [ACE-GAME]), focus-

ing on the context, the agent, and the patient factors that were most relevant for the set condi-

tions. Fig 2D compares the same metrics between sentences [ACE-TENNIS] and

[SPRINT-TENNIS]. These contrasts were based on similar comparisons in the M/EEG study

of MacGregor and colleagues [32], where the authors identified two relevant findings. First,

they showed an effect of ambiguity on the magnitude of MEG sensor-space response activa-

tions shortly after the word offset (increased activation for “ace” compared to “sprint”), which

could be interpreted as reflecting increased uncertainty. Secondly, they showed a (marginally

significant) effect of resolving ambiguity (increase in the difference of activation between “the

tennis” after “ace” versus after “sprint” compared to between “the game” after “ace” versus

after “sprint”), which could be interpreted as reflecting increased surprisal. Respectively, these

two effects were qualitatively captured by a difference in model-derived entropy (Fig 2D, left)

and Kullback–Leibler (KL) divergence (Fig 2C and 2D, right) in response to the sentence con-

trasts. However, a difference in entropy between two conditions is often associated with a

Table 2. All possible sentences in the model.

Attribute Subject Verb Object or Adjective Context

One more/That ace wins the game/the poker poker game

the game/the tennis tennis game

is surprising/enough poker or tennis game

sprint wins the game/the tennis tennis game

is surprising/enough tennis game

joker wins the game/the poker poker game

is surprising/enough poker game

tie ruined the evening night party/racing game

the game racing game

is ugly night party

unfair racing game

noise ruined the evening/the game night party/racing game

is loud/sharp night party/racing game

https://doi.org/10.1371/journal.pbio.3002046.t002
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Fig 2. Semantic- and context-level model response to different sentence inputs. For all simulations, relative prior for context was set at the default of

1.5:1:1:1 for the four possibilities {‘poker game’, ‘tennis game’, ‘night party’, ‘racing game’}. (A) Top panel: acoustic spectrogram of input sentence A:

“One more ace wins the tennis”. Vertical grey lines mark the offset of each lemma, at which point updates were sent from the lemma level to semantic

and context. Lower panels: estimation of posterior probabilities for the semantic (agent, patient, relation, modifier) and context states as the sentence

unfolds. Possible values of each factor are labelled on the y-axis. Blue scale blocks indicate the probability distribution for each factor, dark blue—p = 1,

white—p = 0. The updating process is nearly instantaneous, and the main body of the nth block (epoch corresponding to one lemma) is filled with the

estimates after the (n-1)th update. The first input “one more” was not informative. The estimated distributions were slightly changed before and after

the offset of “one more” because the model still performed gradient descent to minimize free energy (see Methods). After hearing “ace”, distributions

PLOS BIOLOGY Hierarchical prediction aids online speech comprehension
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difference in divergence but in the opposite direction, with magnitudes varying across hierar-

chies and across factors within the same hierarchy. Thus, both semantic ambiguity and its res-

olution likely involve a complex combination of computational processes of different types

and hierarchies. Such a complexity is in line with the finding of MacGregor and colleagues

[32] that the two sensor-space phenomena were localized to different but overlapping sources.

Further dissociation between different computation processes should involve correlating

model-derived information metrics, importantly at different hierarchical levels and factors,

with source-, time-, and frequency-specific responses (see Discussion).

While the direction of prior preference (e.g., poker over tennis) influences both the infor-

mation passing and the perceptual outcome (the state with highest posterior probability) as

shown in Fig 2, the degree of prior preference also has a subtle influence on message passing

during the inference process. With the same perceptual outcome (S1A and S1D Fig, either side

of bias = 1), the amount of information maintained between belief updates as quantified by

entropy, and the magnitude information change induced by an update as quantified by the KL

divergence, both vary quantitatively with the model’s prior preference (S1B, S1C, S1E and S1F

Fig). Thus, model-derived information metrics provide a means to relate the variability of

neurophysiological responses to the perceptual preferences of individual subjects.

Semantic prediction influences low-level message passing

The deployment of hierarchical prediction implies that high-level (semantic, syntax, and con-
text) state estimates also dynamically influence the top-down predictions (priors) as well as the

bottom-up updates at lower (lemma, syllable, and acoustic) levels. Fig 3A and 3B, respectively,

show top-down priors and posterior estimates at lemma and syllable levels with the same

parameters as Fig 2A. The predictions reflect both prior knowledge and the updated estimates

of superordinate levels, in agreement with recent neurophysiological evidence that high-level

(word) predictions constrain low-level (phoneme) predictions [34]. Posterior estimations of

both levels immediately converged onto the correct states after receiving the disambiguating

input, for example, the second syllable in the last lemma.

For the sentence input “One more ace wins the poker”, the model makes the identical

semantic-to-lemma predictions as in Fig 3A (top panel), and nearly identical lemma-to-sylla-

ble predictions except for the final syllable, which was informed by the preceding syllable /po/

for the context and the agent converged to either “poker game” or “tennis game” for context, and ‘card A’ or ‘serve’ for agent. Within these possibilities,

probabilities for the poker context and the ‘card A’ agent were higher, reflecting the prior preference. Probabilities of “tennis” or “poker” as patient also

increased. Type, relation, and modifier remain the same as in the previous epoch. After hearing ‘wins’, possibilities for type converged to ‘event’, and

those for relation converged to ‘win’. Probabilities for ‘tennis’ and ‘poker’ for patient further increased, with a strong bias for “poker”, while the

probability of a ‘null’ patient decreased to zero. In the last epoch, the model received a disambiguating phrase ‘the tennis’, and all factors are resolved to

the correct state with a probability close to 1. (B) Acoustic input and probability estimation for the sentence “One more ace wins the game”. The

distributions are the same as in A before the last update. In the last epoch, the model receives an input, ‘the game’, that does not resolve the semantic

and contextual ambiguity. As a result, distributions were further biased towards values corresponding to the ‘poker game’ context. (C) Entropy and

Divergence derived from the sentence “One more ace wins the tennis” relative to the sentence “One more ace wins the game”. The two vertical

dashed lines mark the offset of the sentence middle word “ace” and the ending word, respectively. As the two sentences only differ in the ending word,

both metrics differ only at sentence offset. Compared to “the game”, which does not completely resolve the ambiguity introduced by ‘ace’”, ‘the tennis’

results in lower entropy in “context” (top left panel), indicating greater certainty about the estimate. The zero differences in entropy for agent and

patient indicate that the model tends to believe in its bias for these two factors when the sentence ends with “the game”. “The tennis” also gives rise to

higher divergence (right panels) at sentence offset. (D) Results from the sentence “One more ace wins the tennis” relative to “One more sprint wins

the tennis”. At its offset, the ambiguous word “ace” introduces higher entropy for all three factors compared to “sprint”, reflecting greater uncertainty

about the hidden states. Uncertainty dominates divergence, which is indexed by a corresponding negative difference here. At sentence offset, entropy

differences between the two sentences became minimal because the model has resolved hidden states of all hierarchies. The positive difference in

divergence at the offset reflects the higher surprisal for “the tennis” when it follows “ace” compared to “sprint”. Model input in Fig 2A and 2B top panels

can be found in data files ace_tenn.mat and ace_game.mat, respectively. Simulated data supporting result figures can be found in files

ace_tennis_context1_5.mat (Fig 2A, 2C, and 2D), ace_game_context1_5.mat (Fig 2B and 2C), and sprint_tennis_context1_5.mat (Fig 2D).

https://doi.org/10.1371/journal.pbio.3002046.g002
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in “the poker” (data available at https://osf.io/qvghf/, in ace_poker_context1_5.mat). Fig 3C

shows the entropy and divergence derived from the posterior estimates of sentence [ACE-T-

ENNIS] relative to [ACE-POKER] for the lemma and syllable level, focusing on the final

lemma. Although the amplitudes of the differences are smaller than those at the semantic and

the context level (Fig 2), their presence indicates that lower-level processes likely also contrib-

ute to the observed differences in neurophysiological response to semantically expected versus

unexpected speech inputs, corroborating the finding that the neural encoding of phonological

and acoustic information of a word input is modulated by its semantic similarity to its preced-

ing sentential context [34]. The influence of semantic prediction on lower-level message pass-

ing can also be reflected in the processing of the same word embedded in different sentences,

Prediction : Lemma

Prediction : Sylb

more

A
Estimation : Lemma

Estimation : Sylb

B [ACE-TENNIS] - [ACE-POKER]

Fig 3. Influence of semantic state estimates on the prediction and updating of lemma and syllable states. (A) Semantic-to-lemma and lemma-to-syllable

predictions (prior expectations) for the simulation in Fig 2A. Vertical lines indicate offsets of each lemma input. In lemmas 1–3, syllable predictions (lower panel)

are nearly certain after the first syllable because there was a one-to-one correspondence between the lemma and the first syllable. In lemma 4 (“the tennis”), the

opposite is true because all possible lemmas start with the syllable “the”, diverging at the second syllable. Lemma predictions (top panel) depend on the current

estimates at the superordinate level and the contextual bias, e.g., the prediction for the last lemma is highest for “the poker”, and lowest for “the tennis”. (B) Estimation

of posterior probabilities for lemma and syllable states for the simulation in Fig 2A. The model quickly recognizes each syllable (lower panel). The estimation for

lemma states (upper panel) appears to lag for the duration of one syllable, because the lemma level receives a nearly instantaneous update at the offset of every syllable,

and the grid between the ith and (i+1)th updates is filled with the estimated distribution of the ith update. For example, the estimation for the first lemma started with a

1:1 prior expectation between “one more” and “that”, then converged to “one more” after hearing the first syllable “one”. The estimate was not changed until the offset

of “ace”, the first syllable of the second lemma. This is only due to our graphical representation and does not affect the immediate update from lemma to semantics. (C)

Upper panels: entropy derived from sentence [ACE-TENNIS] relative to sentence [ACE-POKER] for the lemma and the syllable levels in the proximity of the

final lemma. Vertical dotted lines mark the onset of each syllable of the final lemma, either /the-te-nis/ or /the-po-ker/. A slightly higher syllable entropy after the onset

of the second syllable for “the tennis” indicates the model took longer, i.e., more gradient descent steps, to converge to the less expected input /te/. Lower panels: the

difference between the divergence in response to the two sentences. A higher lemma divergence at the onset of the third syllable (the offset of the second syllable) for

the lemma “the tennis” reflects that “tennis” is less expected than “poker” due to the preference at the context level. Simulated data plotted in Fig 3A and 3B can be

found in ace_tennis_context1_5.mat. Additional simulation data in Fig 3C can be found in ace_poker_context1_5.mat.

https://doi.org/10.1371/journal.pbio.3002046.g003
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e.g., “the tennis” in the sentence [ACE-TENNIS] versus [SPRINT-TENNIS] (S2 Fig). Unlike

the semantic and context levels, however, the difference between “ace” and “sprint” at the

acoustic and phonological levels was not reflected in the low-level message passing (S2C Fig).

Interpreting neural speech response requires lexical prediction and beyond

Information metrics derived from our model suggest that the sensor-space effects observed in

MacGregor and colleagues [32] mainly reflect the message passing in semantic- and context-

level processing (Fig 2), rather than in the lemma (word) level (Figs 3 and S2). Meanwhile, sev-

eral recent studies have successfully used word or phoneme prediction statistics derived from

the output of natural language models to explain variabilities in neural response to the seman-

tic aspects of linguistic stimuli [35–38]. In doing so, the surprisal evoked by the received input

given the preceding sentential context, and less often the entropy of the prediction for the

upcoming input, are used directly or indirectly (in conjunction with additional regressors and

regression models) as proxies of semantic knowledge to identify the neuronal dynamics under-

lying semantic processing. To understand the extent to which the output of a language model

trained on next-word prediction can directly explain semantic- and context-level effects on

neurophysiological speech responses, we reanalyzed the neurophysiological data of MacGregor

and colleagues [32] using both explicit semantic properties as in the original study and next-

word prediction statistics from GPT-2 [20] (see Methods).

We first explored whether GPT-2 predictions captured the semantic ambiguity and disam-

biguation in the stimuli. We adopt the terminology of MacGregor and colleagues [32], refer-

ring to the sentence-middle word as “Target” and the sentence-ending word as “Resolution”

(Table 3). Fig 4A shows the distributions of prediction entropy after the ambiguous (blue) ver-

sus unambiguous (orange) target word. A one-way ANOVA indicates no significant difference

between entropy in the two Target word types (mean entropy: ambiguous = 4.734, unambigu-

ous = 4.658; p = 0.59). Fig 4B shows the distributions of surprisal after receiving the resolving

(blue) versus unresolving (orange) Resolution word, either following an ambiguous (left

panel) or unambiguous (right panel) Target. A two-way ANOVA showed that, although the

surprisal values of resolving words are significantly higher than those of unresolving words

regardless of Target ambiguity (mean surprisal: resolving = 7.741, unresolving = 5.937;

p< 0.001), there was no difference of surprisal depending on the preceding ambiguity of the

Target word (mean surprisal: prior ambiguity = 6.955, no prior ambiguity = 6.724; p = 0.74),

nor on the interaction between resolution and ambiguity (p = 0.68). Thus, similar to the mod-

el’s lemma-level prediction metrics (S2C Fig), GPT-2 entropy does not reflect the semantic

ambiguity of Target words, neither does the evoked surprisal capture the long-distance inter-

action between Target and Resolution.

We next compared how variabilities of semantic information and GPT-2 predictions corre-

late with neurophysiological responses. In particular, we tested the effects of semantic proper-

ties (conceptual replication of MacGregor and colleagues [32]) and GPT-2 prediction statistics

on the MEG response during two time windows around the Target offset and the Resolution

Table 3. Example sentence input to the MEG subject and GPT-2.

Lead in Target Bridge Resolve Unresolve

The man knew that one more ace might be enough to win the tennis game

The woman hoped that one more ace might be enough to win the tennis game

The man knew that one more sprint might be enough to win the tennis game

The woman hoped that one more sprint might be enough to win the tennis game

https://doi.org/10.1371/journal.pbio.3002046.t003
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Fig 4. Effects of semantic properties and GPT-2 prediction statistics in MEG response to speech. (A) Distributions of Target entropy for ambiguous and

unambiguous Targets in all 58 sentences. (B) Distributions of the surprisal values for Resolve (blue) and Unresolve (orange) Resolution words, following

Ambiguous (left) or Unambiguous (right) Target words. (C) Statistical test results for the effect of semantic ambiguity (left column) and GPT-2 prediction

entropy (right column) on MEG combined gradiometer data around the time of Target offset. Top row: sensor-time maps for significance level (−log10(pc))
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offset. As in the original M/EEG study, we focused on combined gradiometer pairs, which

demonstrated the most robust effects, and two analysis time windows around the Target offset

and Resolution offset, respectively.

For the Target time window, we split the MEG response into two groups according to the

property of the Target word pair: (1) The GPT-2 entropy of the ambiguous Target is larger than

that of its unambiguous counterpart; and (2) The GPT-2 entropy of the ambiguous Target is

smaller than that of its unambiguous counterpart. S3A Fig shows the distribution of entropy dif-

ferences between ambiguous and unambiguous Target word pairs (ambiguous minus unambig-

uous). Ambiguous Target words with difference>0 (i.e., in group 1, 29 pairs in total) and

unambiguous Targets with difference<0 (i.e., in group 2, 29 pairs in total) contribute to the

high-entropy group, and the rest contribute to the low-entropy group. Such splitting ensures

that the pair of Target words in the same sentence set is always separated into two conditions,

thus controlling possible confounds of the preceding sentential context. Using a data-driven

algorithm (see Methods), we identified sensor-time clusters that showed a significant effect

(two-tailed paired Student t test, p< 0.05, same in the following results) of semantic ambiguity

by contrasting responses to ambiguous Target versus unambiguous Target words (Fig 4C, left

column). We also identified clusters showing an effect of GPT-2 entropy by contrasting

responses to Target words with high versus low entropies (Fig 4C, right column). Sensor-time

statistical maps (Fig 4D, top row) as well as topographic plots over time (Fig 4D, bottom row)

indicate that these two effects are likely distributed differently both in space and time. The

absence of a significant correlation (Pearson’s correlation r = −0.04, p = 0.66) between the sen-

sor-wise effect sizes of the two contrasts (S4A Fig) also suggests that semantic ambiguity and

GPT-2 prediction entropy may account for different spatial aspects of the MEG responses.

Interestingly, the positive effect of GPT-2 entropy arose before the word offset, whereas the pos-

itive effect of semantic ambiguity was only apparent after the word offset (Fig 4C, top row).

For the Resolution time point, responses to only the Resolve sentence ending were split into

two groups in a similar fashion as for Target: (1) The GPT-2 surprisal following the ambiguous

Target was larger than the same word following the unambiguous Target; and (2) The GPT-2

surprisal following the ambiguous Target was smaller than the same word following the unam-

biguous Target. Thirty-six out of the 58 sentences were labeled as being in group 1, 22 in

group 2 (S3B Fig). The contrast between Resolution words following ambiguous versus unam-

biguous Target words revealed an effect of ambiguity of the previous context distributed

among right temporal–parietal and midfrontal areas spanning several time windows before

and after the word offset (Fig 4D, left column). The contrast between Resolution words with

high versus low surprisal revealed an effect of GPT-2 prediction surprisal with a different spa-

tial distribution and restricted to −250 to 250 ms (Fig 4D, right column). Similar to the Target

effects, the effect sizes of ambiguity and surprisal at Resolution offset were not correlated

(r = 0.001, p = 0.99; S4B Fig) across sensor locations.

These results demonstrate that both GPT-2 word-prediction statistics and high-level

semantic properties contribute to the variability in neural speech responses, but their effects

of sensor clusters showing the corresponding effect (see Methods for details of the calculation). Note that, here, both negative and positive effects are shown.

Bottom rows: topological distributions of the corresponding effects averaged over four 250 ms time windows spanning from −0.2 to 0.8 s relative to the

Target offset. Asterisks denote sensor clusters that showed a prevalent positive effect of ambiguity within the time window. (D) Statistical test results for the

effect of semantic ambiguity in the preceding context (left column) and GPT-2 prediction surprisal (right column) on MEG combined gradiometer data

around the time of Resolution offset. Top row: sensor-time maps for significance level of sensor clusters. Bottom rows: Topological distributions of the

corresponding effects averaged over six 250 ms time windows, spanning from −0.5 to 1 s relative to the Resolution offset. Summary data plotted in Fig 4A

and 4B can be found in GPT_overall_stats.mat. Data for Fig 4C can be found in stat_Target_Ambiguity_new.mat and stat_Target_Entropy_new.mat. Data

for Fig 4D can be found in stat_Res_Ambiguity_new.mat and stat_Res_Surprise_new.mat.

https://doi.org/10.1371/journal.pbio.3002046.g004
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exhibit different spatio-temporal distributions. Given that predictions from the GPT-2 output

cannot directly capture the semantic properties we investigate here (Fig 4A and 4B), the

approach of interpreting the neural response to speech (and more generally, language) solely

based on such predictions learned from word sequence statistics overlooks important aspects

of the dynamics underlying higher-level language processing. Our model, on the other hand,

explicitly depicts multiple levels of linguistic and nonlinguistic processes under the same

computational principles. Thus, it points to a more interpretable and holistic approach to char-

acterizing the functional network underlying speech comprehension. A quantitative mapping

between model and neural responses requires a nontrivial expansion of the model and is

beyond the scope of the current study (see Discussion).

Top-down prediction reduces processing effort

The model works by iteratively calculating the discrepancy between top-down predictions

(expectation of the input) and bottom-up input at each hierarchical level, and by using such a

discrepancy to modify the state estimates of superordinate levels. This does not mean the

model needs to make the best prediction for the next input as in Fig 3A: Hierarchical predic-

tions are a necessary computational mechanism in relaying information for making better

inferences, even if the actual input deviates from the predicted one. To examine how the pre-

diction content may influence the inference process, we ran the model using the same input as

Figs 2A and 3B, “One more ace wins the tennis”, but simulating the extreme case of uninfor-

mative (uniform distribution across all possibilities) top-down predictions. We found that the

predictive content influenced both the model time course and final estimate.

Compared to the condition of informative top-down predictions (Fig 3B), when top-down

predictions were uninformative, the model still made correct inferences about every input, but

with a slight delay for syllables (Fig 5A). Fig 5B contrasts the entropy and cumulative diver-

gence during the inference process between the two conditions. Unsurprisingly, informative

predictions lead to reduced entropy (maintenance of possible items) and divergence (magni-

tude of updates after the integration of new evidence), both contributing to fewer steps of gra-

dient descent at each point of belief updating, hence less computation effort in terms of

processing time and energy cost [39].

So far, we have simulated the model with the ideal scenario of arbitrarily high precisions

(see Methods) at the continuous level. In general, a high precision implies that fine details of

the input are utilized to evaluate the mapping between the input signal and the generative

model, analogous to a perfect periphery that preserves the best possible spectro-temporal

information from the acoustic input. It has been suggested that top-down predictions may be

especially important under challenging situations, e.g., impaired auditory periphery [40]. We

tested the model with a broad range of precisions to assess how precision affects online speech

processing. In particular, we lowered both the precision for the continuous state as well as for

comparing the input with predicted activity in the six frequency channels (see Methods),

which is analogous to lesioning the local computation supported by lateral connections and

the cross-level information carried by bottom-up connections, respectively [28,41]. Within a

considerable degree of degradation, the model performance is qualitatively the same as the

intact model, in that it correctly infers the states of all factors, but a strong difference arises in

the time it takes to converge, especially in the case of uninformative top-down predictions

(S5A and S5B Fig, precision = exp(6) versus exp(16) in the intact condition). Fig 6 shows the

comparison of informative versus uninformative predictions similar to Fig 5, but with much

lower peripheral precisions (exp(0)). Syllable identification was delayed in both cases when

compared to their intact-periphery counterparts (Fig 6A versus Fig 3B, Fig 6B versus Fig 5A),
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and the delay was more pronounced with uninformative predictions. This dramatic delay with

uninformative prediction is accompanied by higher entropy (Fig 6C, upper panels) as well as

divergence (Fig 6C, lower panels). However, an increase in effort during syllable recognition

may be important to avoid inaccurate recognition: In Fig 6A, although the model saved pro-

cessing time by relying on its prior knowledge, it did so at the cost of incorrectly identifying

the final lemma as “the poker”. The trade-off between processing and accuracy has been well

documented in the decision-making literature [42] and neuroeconomics [43], which reveals

that humans flexibly adapt their strategy in challenging scenarios where high accuracy and low

effort cannot be achieved simultaneously. Our results suggest that such trade-off can be

manipulated via adjusting one’s reliance on top-down prediction versus bottom-up sensory

information, an ability widely involved in perceptual processes including inferencing others’

Fig 5. Influence of top-down predictions on syllable and lemma inference under high peripheral precision. All results

are simulated with the sentence “One more ace wins the tennis”. With uninformative predictions, model responses at the

semantic and context levels are nearly identical to Fig 2A because the model reached the same, almost-certain lemma

estimates at the time of semantic updating (at each lemma offset). Therefore we omit the higher-level results here and in Fig

6. (A) Estimation of posterior probabilities when top-down predictions are set to uniform distributions for all possible

states. Compared to Fig 4B, there is a slight delay for the convergence of every syllable indicated by the small vertical bars,

each corresponding to one spectral vector, in more than one possible state. The inference for lemma states is not

significantly changed: Once the model is certain about the first (or the second in the case of the last lemma) syllable, it can

quickly converge to the correct lemma using its internal knowledge. (B) Upper panels: entropy calculated from lemma

and syllable states. With uninformative top-down prediction (red), the entropy of syllable states was raised for a short

duration (approximately 1–2 spectral vectors) more often than with informative (blue) prediction (eight times throughout

the sentence versus once at the sentence onset). The difference is less obvious at the lemma level except during the very first

syllable and the /the/ syllable in the last lemma. Lower panels: cumulative KL divergence for the two factors. Overall, the

cumulative divergence is smaller when informative prediction is available (blue). Simulated data supporting the figures can

be found in ace_tennis_context1_5_NNP.mat (Fig 5A and 5B) and ace_tennis_context1_5 (Fig 5B).

https://doi.org/10.1371/journal.pbio.3002046.g005
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intention [44] and likely lacking in certain neuropsychological disorders such as those induc-

ing hallucinations (low sensory precision but high prediction precision) and autism spectral

disorder (extraordinarily high sensory precision) [45]. Nevertheless, the effort–accuracy trade-

off is also limited by the capacity of the sensory periphery: At extremely low precisions, the

model’s syllable recognition breaks down without the guidance of informative top-down pre-

diction (S5C and S5D Fig, precision = exp(−4)).

Overall, the model demonstrates that hierarchical prediction, whether highly informative

about the next input or not, can serve as a key computational mechanism for robustly extract-

ing structured information from ongoing speech and that informative predictions are desirable

when processing effort needs to be minimized and in time-constrained situations (e.g., turn-

taking). With an impaired periphery, greater effort is required to obtain accurate perception.

Discussion

The idea that our brains adaptively entertain internal models and that this facilitates language

comprehension underlies much current research in speech (language) perception.

Fig 6. Influence of prediction with lowered peripheral precision. The input sentence, as in Figs 3B and 5A, was “One more ace wins the tennis”. Precision

was set to p = exp(0), whereas in the intact model (Figs 4B and 5A), p = exp(16). (A and B) State estimation with and without informative prior. (C and D)

Entropy and divergence in the two conditions. (A) With informative prediction, the result is similar to that in Fig 2A, except that (1) for the last lemma input,

the model relied on the prediction, biased towards “the poker”, and made the wrong inference; and (2) for the starting syllable in each lemma, the model took

several spectral vectors to converge as indicated by the lighter blue bars. (B) Without prediction, the model took longer to infer each syllable compared to A,

but the inference was correct. (C) Upper panels: entropy with informative (blue) or uninformative (red) top-down prediction for lemma and syllable

estimates. Without informative prediction, the uncertainty increased at the onset of every syllable instead of only for the syllable with multiple possible

candidates (e.g., the syllable after “the” in the last lemma) and also reached higher magnitude as well as longer duration compared to the informative condition.

Lower panels: cumulative divergence in the two conditions. The divergence for syllable states was lower with informative prediction, but not for lemma.

However, the summed divergence of the two levels is slightly higher with uninformative prediction. Simulated data supporting Fig 6A and 6B can be found in

ace_tennis_context1_5_P_pre_0_8.mat and ace_tennis_context1_5_NNP_pre_0_8.mat, respectively. Both simulations were used to plot Fig 6C.

https://doi.org/10.1371/journal.pbio.3002046.g006
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Nevertheless, how internal knowledge is deployed in time, in relation to the timing of continu-

ous speech unfolding, is an open question and may be key to achieve the form-meaning dis-

tinction in neural network language models [23,24]. Here, we attempt to establish a

foundational framework that dynamically exploits general knowledge in speech comprehen-

sion to bridge this gap. We implement the listener’s internal knowledge as a probabilistic gen-

erative model that consists of a nonlinguistic general knowledge (cognitive) model and

multiple temporally organized hierarchies encoding linguistic and acoustic knowledge. Speech

perception, modeled as the inversion of this generative model, involves interleaved top-down

and bottom-up message passing in solving the computational challenge of extracting meaning

from ongoing, continuous speech. We show that the model makes plausible inference of hier-

archical information from semantically ambiguous speech stimuli and demonstrate the influ-

ence of prior knowledge on the inference process, which is reflected in the neural response to

speech stimuli but not in next-word prediction statistics of a deep neural network language

model (GPT-2) [20]. We also show that hierarchical predictions can be exploited to reduce

processing effort. The model tries to mimic human language comprehension by jointly imple-

menting incrementality and prediction [46], and could potentially be expanded towards a

comprehensive model of natural language understanding, and guide the interpretation of

neurophysiological phenomena in realistic listening scenarios.

Language comprehension as semantic role assignment

Although we emphasize that speech (language) comprehension is driven by high-level behav-

ioral goals, to achieve comprehension, the appropriate assignment of semantic roles is crucial

for (re)constructing the message conveyed in the utterance, e.g., the “mental image” in Fig 1A.

Semantic roles can be viewed as an interface between linguistic and nonlinguistic representa-

tions, the latter being a fundamental, domain-general format of our internal abstraction of the

world [24,25] that is shown to both behaviorally and neurophysiologically influence language

comprehension [47,48]. The process of semantic role assignment is central in psycholinguistic

process theories [46,49–51], yet seldom reflected explicitly in existing computational models of

language. A major challenge for modeling semantic role assignment during language process-

ing is in combining meaning extraction with compositionality: Words that carry semantic

contents are presented in an order dictated by compositional rules; thus, the extraction of per-

sisting meanings must take place dynamically alongside the decomposition. These two aspects

have only been addressed separately in some existing models, e.g., topic models [9,52] fulfill

(lexical) semantic processing but ignore the word order. On the other hand, the Discovery of

Relation by Analogy model [11,53] learns the time-based binding rules that decompose words

and phrases into hierarchical structures but does not have explicit representations of semantic

knowledge.

A recent model of linguistic communication [12] did incorporate abstract nonlinguistic

(geometric) knowledge and compositionality but lacked the incremental nature of the mean-

ing-building process in humans [2]. The generative model encoded several templates of com-

plete sentences and a set of geometric properties. By applying nonlinguistic knowledge under

the goal of resolving object properties, the model generated sentences by picking the most

probable sentence format and filling specific positions with the most helpful descriptive words.

The inverse model thus comprehends a word sequence by inferring the sentence format and

capturing keywords at the corresponding positions. This template-matching strategy realized a

form of meaning-structure conjunction. However, it constrains the model comprehender to

update its estimate of the sentence at the sentence offset instead of on the fly during the

sentence.
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Our model achieves human-like speech (language) comprehension in that it applies syntactic

rules to dynamically update values assigned to semantic roles with each incoming lemma. It

does not rely on a direct representation of sentences but incrementally builds up its understand-

ing of an utterance through incorporating new evidence into current beliefs of semantic roles.

We share this notion with the Sentence Gestalt (SG) model of language comprehension, which

achieves dynamic thematic role assignment from lexical inputs using a neural network trained

on linguistic stimuli produced by a probabilistic generative model [13,54]. The function of situ-

ation and thematic roles in this generative model are homologous to that of the context (situa-

tion) and semantic (thematic) factors of our model. However, while the SG model extracts

thematic information from lexical input, a central feature of our model is to deploy all the hier-

archies from the online processing of continuous speech to language comprehension. The varia-

tional Bayesian approach and the gradient-based algorithms we used here have two particular

advantages. First, they allow us to explicitly model the interactions within and between mean-

ingful computational hierarchies, and second, they can account for dynamics of neuronal activi-

ties such as local field potentials [39,55]. We therefore believe our model is better suited to our

goal of explaining language processing within a potentially unifying account of neuronal mes-

sage passing, rather than in terms of neural-like network activations (see next section).

The behavioral (nonlinguistic) goal of language comprehension is implemented minimally

in the current model as the task of inferring a simple context (situation) level, which represents

the basic “world knowledge” necessary for resolving semantic ambiguity. To implement cogni-

tively more elaborate language tasks, the context level in the model would need to include

additional elements that likely involve multiple decision hierarchies [56]. Yet, while a model

can include an arbitrary number of hierarchies, there is not an infinity of corresponding spe-

cialized brain regions. Computational hierarchies, especially those of higher cognitive func-

tions that can expand to an infinite depth, are therefore likely embodied by information

exchanges among a limited number of functionally specialized regions, through reciprocal

interactions that can theoretically implement unlimited hierarchical structures using only two

abstract chunking levels [57,58]. These information exchanges reflect the probabilistic map-

pings in the comprehender’s internal model, as shown in Figs 2 and 3, and play an important

role for linking the model’s computational principles to neurophysiological data of speech

information processing in the human brain.

Understanding neural information transfer through divergence and

entropy

Brains process internal and external information with high efficiency. Two types of informa-

tion theoretic metrics have been of particular interest in establishing the connection between

abstract information and biophysical signals to probe the brain’s information processing

capacity: surprisal (related to, but distinct from, divergence) and entropy. Efforts in associating

neurophysiological responses to surprisal for next-word expectation, either based on cloze

probability tests [32,59–61] or the probabilistic distribution estimated by computational mod-

els [35–38,62–64], largely credit Levy’s influential work on expectation-based comprehension

[10]. Levy proposed a formal relationship between incremental comprehension effort and the

Kullback–Leibler divergence (KLD) of syntactic structure inference before and after receiving

a word input W, and proved that the KLD reduced to the surprisal of W given the previous

word string when conditioned on a constant extra-sentential context that constrains compre-

hension. Although these studies robustly found neurophysiological correlates of word sur-

prisal, focusing on this aggregated measure without explicitly modeling probabilistic

representations above the word level may not be enough to tease out the influence of high-
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level factors on language processing as was shown in Figs 3, 4, and S2 [62]. High-level pro-

cesses presumably explain conflicting findings across studies on evoked response [65] and

underlying neuronal circuits [32,36,61] of word surprisal, because different experimental para-

digms likely tap into different language processing modes, making word surprisal too coarse a

measure. Here, we demonstrate the possibility to explicitly model information transduction

above lexical processing and use KLD as a universal metric to quantify information transfer, in

line with some predictive coding hypothesis that propose KLD to be driving the prediction

error signal transmitted between cortical hierarchies [55,66].

Regarding entropy, the measure of information in a system [67] that represents the uncer-

tainty in linguistic stimuli, it has drawn less interest compared to surprisal metrics

[32,36,68,69]. There is no consensus on how information is maintained between two instanta-

neous belief updates, and entropy may be valuable in investigating the representation of infor-

mation in the brain. Intuitively, higher entropy implies greater effort (more possibilities to be

maintained), and less precise estimates thus weaker top-down prediction influence, but it is

unclear what neural activities can underpin such effects. Noninvasive whole-brain imaging

may inform us when and where the effort takes place, given that entropy and divergence can

be properly dissociated [36], whereas the biophysical implementation, e.g., neuronal firing pat-

terns, may only be revealed by invasive methods.

By showing that information passing across different processing levels contribute in a com-

plementary manner to the variability of the neurophysiological response to speech (Fig 4), our

model supports the neural processing of language as hierarchically organized information

passing among brain areas. Both KLD and entropy, as well as bottom-up prediction errors and

top-down priors that can be decomposed from KLD [70], are suitable metrics for such an

investigation. Although no definitive conclusion has been drawn on the anatomical circuits

involved in high-level (semantic and beyond) message passing during speech perception, a

converging view is that the extraction of different hierarchical representations is distributed in

networks that perform multiple subprocesses in parallel [71–74]. Recent temporally and spa-

tially resolved neuroimaging studies suggest that neural oscillations are a good candidate

mechanism for timed information transmission in these subprocesses [66,75–77]. The discrete

portion of our model, or in theory any model with explicit structural and timing information

[11,53], can provide a template for organizing distributed oscillatory activities into functional

hierarchies through correlating latency- and frequency-specific neuronal dynamics with

model-derived information metrics. In general, sensory inputs sampled by fast (gamma) oscil-

lation are parsed into higher-level information as phase alignments of slow (theta, delta) oscil-

lations [26,75,78–81], which are found to be modulated by level-specific speech information

[32,36,61] and top-down coordination of mid-range (alpha, beta) oscillations [77,78,82–86].

One promising avenue that exploits both model-derived computational metrics and neural

oscillations to disentangle neural information transfer is via a forward model that explains the

neurophysiological signal as a result of input-modulated changes in direction-specific connec-

tion strengths between specific neural sources (brain areas), i.e., effective connectivity [87,88].

Through hypothesis testing of specific brain areas and their connectivity patterns relevant for

language processing, direction (top-down or bottom-up) of information transfer can be distin-

guished by frequency band-specific induced activities [89], and the functional hierarchy as

well as the computational roles of different connections may be mapped by regressing their

modulation gain with model-derived information metrics.

The proposed approach is fundamentally different from a purely data-driven one that iden-

tifies neural response patterns correlated with pooled activities from hidden layers of a neural

network trained on specific tasks of next-input predictions such as in [62–64]. The brain inter-

acts with the external stimuli, whether linguistic or not, in a structured fashion that is likely
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reused across different domains [44,58]. Thus, a clear computational interpretation of brain

activity patterns requires an explicit representation of such structures that is lacking in most

neural network models.

Future development towards natural language understanding

In this work, we provide a basic model that integrates linguistic and nonlinguistic world

knowledge in speech perception. Though the current work focuses on resolving ambiguity in

semantic role assignment within a reduced language and world model, the framework of a

hierarchical generative model is suitable for capturing various features of human language pro-

cessing. For example, additional branches can be “plugged-in” onto specific levels of the cur-

rent generative model to enable multimodal speech processing. One possible case is to

generate continuous lip movement from each syllable [90,91], in parallel with the syllable-to-

acoustic generation. The inverse (comprehension) model is then equipped to deal with audio-

visual speech input and can thus potentially simulate known effects including using one

modality to disambiguate the other (e.g., a high-precision visual processing to mitigate noisy

auditory input), or processing conflicting bimodal inputs (e.g., relying more on the modality

that has higher precision) [91]. The additional branch can also be attached to the context level

to generate a sequence of events, such as a car speeds up and hits a streetlight, to allow the

inverse model to make inference about the shared context from both linguistic (speech) and

nonlinguistic inputs.

Another important feature of language processing is learning, which is also necessary for

upscaling the model to reflect the wealth of linguistic and nonlinguistic knowledge mastered

by a real listener. Language learning can be conceptualized as consisting of two complemen-

tary components: (1) learning the structure of the generative model, including the possible

states of different factors and syntactic rules; (2) learning the parameters of the generative

model, including priors, likelihoods, and precisions, which are fixed in the current model.

Although it is nontrivial to extend the current model to include either type of learning, they

could be achieved within the framework of probabilistic generative models. For the first type, a

plausible algorithm of statistical parameter learning of structured contextual and semantic

knowledge is the one proposed for the “topic” model of semantic representation [9,52]. Grif-

fiths and colleagues [9] also pointed to a possible way to integrate complex syntax and seman-

tic generative models by replacing one component in a syntax model [92] with such a topic

model. This would allow the syntax model to determine an appropriate semantic component

for the current time point and the semantic model to generate a corresponding word, which is

consistent with the way semantic and syntax factors interact in our current model. More

recently, Beck and colleagues [93] showed that a formal equivalence of the topic model can be

implemented via a probabilistic (neural) population code, providing a plausible path to a neu-

ral implementation of the model. The second type of learning can be viewed by updating the

relevant parameters within a fixed structure learned from a structure-learning model. Such an

updating algorithm has been implemented within the dynamic expectation maximization

(DEM) framework that we currently use [94]. To exploit the algorithm, the current generative

model needs to be modified to include a relevant task and associated rewards (both external

and internal), so that the model can actively adjust its parameters to optimize rewards. This

way, top-down predictions can evolve from naïve (e.g., uniform prior as we simulated in

Results) to specific.

Overall, this model adopts a different and complementary perspective from the rapidly

developing world of large-scale natural language models [19–21] in that it puts upfront the

gross biological factors that motivate language in the first place [95–98], rather than those that
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seek to match human performance via selected measurements in specific tasks. Recent inter-

esting endeavors in merging these two perspectives focus on adding more “neural features”,

such as longer memory span and domain-general knowledge beyond language, to improve

natural language models [24,25]. While this strategy is useful from the viewpoint of artificial

language processing, it stays relatively removed from the specific biological substrates of lan-

guage and hence sheds little light on how human language emerged and evolved under evolu-

tionary pressure. Here, we propose a computational framework to address more directly these

fundamental questions by explicitly including nonlinguistic components in the model archi-

tecture and using hierarchical (as opposed to aggregated) prediction as a general computa-

tional strategy. Although here we focus on a passive listener, a comprehensive model of

human language understanding should also consider interactive aspects of language, i.e., lan-

guage production and multiperson communication [12] where language serves as a medium

to achieve shared goals [24,99–102].

Methods

Model for speech comprehension

We model speech perception by inverting a generative model of speech that is able to generate

semantically meaningful sentences to express possible facts about the world. Since our main

goal is to illustrate the cognitive aspect of speech comprehension, we use the model to simulate

a semantic disambiguation task similar to MacGregor and colleagues [32]. The task assesses

the semantic ambiguity early in a sentence, which is disambiguated later in the sentence on

half of the trials. Speech inputs to the model were synthesized short sentences adapted from

MacGregor and colleagues [32].

In the next section, we describe the speech stimuli, present the generative model, and briefly

describe the approximate inversion of the generative model as well as the two information the-

oretic measures that could be related to measurable brain activity.

1. Speech stimuli

In the original design of MacGregor and colleagues, 80 sentence sets were constructed to

test the subjects’ neural response to semantic ambiguity and disambiguation. Each set consists

of four sentences in which two sentence MIDDLE WORDS crossed with two sentence final

words. From the two sentence middle words, one was semantically ambiguous, and from the

two sentence final words, one disambiguated the ambiguous middle word, and the other did

not resolve the ambiguity. For example:

The man knew that one more ACE might be enough to win the tennis.

The woman hoped that one more SPRINT might be enough to win the game.

The middle word was either semantically ambiguous (“ace” can be a special serve in a tennis

game, or a poker card) or not (“sprint” only has one meaning of fast running); the two ending

words either resolved the ambiguity of the middle word (“tennis” resolves “ace” to mean the

special serve, not the poker card) or not (“game” can refer to either poker or tennis game). We

chose this set as part of input stimuli to the model but reduced the sentences to essential com-

ponents for simplicity:

One more ACE/SPRINT wins the tennis/game.

The four sentences point to a minimum of two possible contexts, i.e., the nonlinguistic

backgrounds where they might be generated: All combinations can result from a “tennis

game” context, and the ACE-game combination can additionally result from a “poker game”

context. Importantly, in our model, the context is directly related to the interpretation of the

word “ace”.
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To balance the number of plausible sentences for each context, we added another possible

mid-sentence word “joker”, which unambiguously refers to a poker card in the model’s knowl-

edge. We also introduced another possible sentence structure to add syntactic variability

within the same contexts:

One more ACE/SPRINT is surprising/enough.

The two syntactic structures correspond to two different types of a sentence: The “win” sen-

tences describe an event, whereas the “is” sentences describe a property of the subject.

We chose a total of two sentence sets from the original design. The other set (shortened ver-

sion) is:

That TIE/NOISE ruined the game/evening.

In these sentences, the subject “tie” can either mean a piece of cloth to wear around the

neck (“neckband” in the model) or equal scores in a game. The ending word “game” resolves it

to the latter meaning, whereas “evening” does not disambiguate between the two meanings.

Similar to set 1, we added the possibility of property-type sentences. Table 2 lists all possible

sentences and their corresponding contexts within the model’s knowledge (ambiguous and

resolving words are highlighted).

The input to the model consisted of acoustic spectrograms that were created using the Praat

[103] speech synthesizer with British accent, male speaker 1.

In this work, we are not focusing on timing or parsing aspects, rather on how information

is incorporated into the inference process in an incremental manner and how the model’s esti-

mates about a preceding word can be revised upon new evidence during speech processing.

Therefore, we chose the syllable as the interface unit between continuous and symbolic repre-

sentations and fixed the length of the input to simplify the model construction (see details in

Generative model). Each sentence consists of four lemma items (single words or two-word

phrases), and each lemma consists of three syllables. All syllables were normalized in length by

reducing the acoustic signal to 200 samples.

Specifically, in Praat, we first synthesized full words and then separated out syllables using

the TextGrid function. A 6-by-200 time-frequency (TF) matrix was created for each unique

syllable by averaging its spectro-temporal pattern into 6 log-spaced frequency channels

(roughly spanning from 150 Hz to 5 kHz) and 200 time bins in the same fashion as in Hovsep-

yan and colleagues [26]. Each sentence input to the model was then assembled by concatenat-

ing these TF matrices in the appropriate order. Since we fixed the number of syllables in each

word (Ns = 3), words consisting of fewer syllables were padded with “silence” syllables, i.e., all-

zero matrices. During simulation, input was provided online in that 6-by-1 vectors from the

padded TF matrix representing the full sentence were presented to the model one after

another, at the rate of 1,000 Hz. In effect, all syllables were normalized to the same duration of

200 ms. The same TF matrices were used for the construction of the generative model as

speech templates (see section 2c for details).

2. Generative model

The generative model goes from a nonlinguistic, abstract representation of a message

defined in terms of semantic roles to a linearized linguistic sentence and its corresponding

sound spectrogram. The main idea of the model is that listeners have knowledge about the

world that explains how an utterance may be generated to express a message from a speaker.

In this miniature world, the modeled listener knows about a number of contexts, the scenar-

ios under which a message is generated (to distinguish them from names given to representa-

tion levels in the model, we will use italic to refer to factors at each level; see below). Each

message can either be of an “event” type that describes an action within the context, or of a

“property” type that expresses a characteristic of an entity that exists in the context. Context
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and type are nonlinguistic representations maintained throughout the message but make con-

tact with linguistic entities via semantics and syntax, which jointly determine an ordered

sequence of lemma that then generates the acoustic signal of an utterance that evolves over

time.

As in the real world, connections from context to semantics and semantics to lemma are

not one-to-one, and ambiguity arises, for example, when two semantic items can be expressed

as the same lemma. In this case, the model can output exactly the same utterance for two dif-

ferent messages. When the model encounters such an ambiguous sentence during inference, it

will make its best guess based on its knowledge when ambiguity is present (see Model inver-

sion). For illustrative purposes, we only consider a minimum number of alternatives, sufficient

to create ambiguity, e.g., the word “ace” only has two possible meanings in the model. Also,

while the model generates a finite set of possible sentences, they are obtained in a composi-

tional fashion; they are not spelled out explicitly anywhere in the model and must be incre-

mentally constructed according to the listener’s knowledge.

Specifically, the generative model (Fig 1A) is organized in three hierarchically related sub-

models that differ in their temporal organization, with each submodel providing empirical pri-

ors to the subordinate submodel, which then evolves in time according to its discrete or

continuous dynamics for a fixed duration (as detailed below). Overall, this organization results

in six hierarchically related levels of information carried by a speech utterance, from high to

low (L1-L6) we refer to them as context, semantics and syntax, lemma, syllable, acoustic, and

the continuous signal represented by TF patterns that stands for the speech output signal.

Each level in the model consists of one or more factors representing the quantities of inter-

est (e.g., context, lemma, syllable . . .), illustrated as rectangles in Fig 1A. We use the term

“states” or hidden states to refer to the values that a factor can take (e.g., in the model the factor

context can be in one of four states {‘poker game’, ‘tennis game’, ‘night party’, ‘racing game’}.

For a complete list of factors and their possible states of context to lemma levels, see Table 1).

As an example, to generate a sentence to describe an event under a “tennis game” context,
the model picks “tennis serve” as the agent, “tennis game” as the patient, and “win” as their

relationship. When the syntactic rule indicates that the current semantic role to be expressed

should be the agent, the model selects the lemma “ace”, which is then sequentially decomposed

into three syllables /eis/, /silence/, /silence/. Each syllable corresponds to eight 6-by-1 spectral

vectors that are deployed in time over a period of 25 ms each. The generative model therefore

generates the output of continuous TF patterns as a sequence of “chunks” of 25 ms.

We next describe in detail the three submodels:

a. Discrete nonnested: context to lemma via semantic (dependency) and syntax (linearization)

The context level consists of two independent factors: the context c and the sentence type
Ty. Together, they determine the probability distribution of four semantic roles: the agent sA,

the relation sR, the patient sP, and the modifier sM. An important assumption of the model is

that states of context, type, and semantic roles are maintained throughout the sentence as if

they had memory. These semantic roles generate a sequence of lemmas in the subordinate

level, whose order is determined by the syntax, itself determined by the sentence type. This

generative model for the first to the nth lemma is ( s! denotes the collection of all semantic fac-

tors s!¼ fsA; sR; sP; sMgÞ:

pðw1; � � � ;wn; syn1; � � � ; synn; s!; c;TyÞ

¼ pðw1jsyn1; s!Þ � � � pðwnjsynn; s!Þpð s!jc;TyÞpðcÞpðsyn1; � � � ; synnjTyÞpðTyÞ ð1Þ

PLOS BIOLOGY Hierarchical prediction aids online speech comprehension

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002046 March 22, 2023 22 / 37

https://doi.org/10.1371/journal.pbio.3002046


Here, p(c) is the prior distribution for the context. The prior probability for the sentence

type p(Ty) was fixed to be equal between “property” and “event”.

The terms pð s!jc;TyÞ and pðsyn1; � � � ; synnjTyÞ can be further expanded as:

pð s!jc;TyÞ ¼ pðsAjcÞpðsRjc;TyÞpðsPjc;TyÞpðsMjc;TyÞ ð2Þ

pðsyn1; � � � ; synnjTyÞ ¼ pðsyn1jTyÞ � � � pðsynnjTyÞ ð3Þ

When Ty = ‘event’, the sentence consists of an agent, a patient, a relation between the agent
and the patient, and a null (empty) modifier. When Ty = ‘property’, the sentence consists of an

agent, a modifier that describes the agent, a relation that links the agent and the modifier, and a

null patient.
To translate the static context, type, and semantic states into ordered lemma sequences, we

constructed a minimal (linear) syntax model consistent with English grammar. We constrain

all possible sentences to have four syntactic elements syn1-syn4; values are {‘attribute’, ‘subject’,

‘verb’, ‘object’, ‘adjective’}. The probability of synn is dependent solely on Ty.

The syntactic element syni is active during the ith epoch, and each possible value of the syn-

tax (except ‘attribute’ that directly translates to a lemma item randomly determined within

{‘one more’, ‘that’}) corresponds to one semantic factor (semantic factors in the model include

subject, verb, object, and adjective):

Subject—agent; Verb—relation; Object—patient; Adjective—modifier.
Thus, sentences of the “event” type are always expressed in the form of subject-verb-object

(SVO), and those of the “property” type in the form of subject-verb-adjective (SVadj). In the

ith lemma epoch, the model picks the current semantic factor via the value of syni and finds a

lemma to express the value (state) of this semantic factor, using its internal knowledge of map-

ping between abstract, nonlinguistic concepts to lexical items (summarized in the form of a

dictionary in S2 Appendix, Table 1). Note that the same meaning can be expressed by more

than one possible lemma, and several different meanings can result in the same lemma, caus-

ing ambiguity. The mapping from L2 to L3 can be defined separately for each lemma as

follows:

• The first lemma (w1 the attribute) does not depend on semantics or syntax and the model

would generate “one more” or “that” with equal probability (p = 0.5).

• w2 and w3 are selected according to agent and patient values, respectively, which are them-

selves constrained by context.

• w4 can be either a patient or a modifier depending on Ty.

Prior probabilities of context and type, as well as probabilistic mappings between levels

(Eqs 2–4), are all defined in the form of multidimensional arrays. Detailed expressions and

default values can be found in S1 Appendix.

b. Discrete nested: lemma to spectral

Over time, factors periodically make probabilistic transitions between states (not necessar-

ily different). Different model levels are connected in that during the generative process, dis-

crete hidden (true) states of factors in a superordinate level (Ln) determine the initial state of

one or more factors in the subordinate level (Ln+1). The Ln+1 factors then make a fixed number

of state transitions. When the Ln+1 sequence is finished, Ln makes one state transition and initi-

ates a new sequence at Ln+1. State transitioning of different factors within the same level occurs

at the same rate. We refer to the time between two transitions within each level as one epoch
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of the level. Thus, model hierarchies are temporally organized in that lower levels evolve at

higher rates and are nested within their superordinate levels.

The formal definition of the discrete generative model is shown in Eq 1, where the joint

probability distribution of the mth outcome modality (here generally denoted by om, specified

in following sections) and hidden states (generally denoted by sn) of the nth factor up to a time

point τ is determined by the priors over hidden states at the initial epoch P(sn, 1), the likelihood

mapping from states to outcome P(o|s) over time 1:τ, and the transition probabilities between

hidden states of two consecutive time points P(sn, t|sn, t-1) up to t = τ:

Pðom;1:t; sn;1:tÞ ¼ Pðsn;1Þ
Y

t
Pðom;tjsn;tÞPðsn;tjsn;t� 1Þ ð4Þ

For lower discrete levels, representational units unfold linearly in time, and a sequence of

subordinate units can be entirely embedded within the duration of one superordinate epoch.

Therefore, the corresponding models are implemented in a uniform way: The hidden state

consists of a “what” factor that indicates the value of the representation unit (e.g., the lemma

‘the tennis’) and a “where” factor that points to the location of the outcome (syllable) within

the “what” state (e.g., the second location of ‘tennis’ generates syllable ‘/nis/’). During one

epoch at each level (e.g., the entire duration of the lemma “the tennis”), the value of the “what”

factor remains unchanged with its transition probabilities set to the unit matrix. The “where”

factor transitions from 1 to the length of the “what” factor, which is the number of its subordi-

nate units during one epoch (three syllables per lemma). Together, the “what” and “where”

states at the lemma level generate a sequence of syllables by determining the prior for “what”

and “where” states in each syllable. In the same fashion, each syllable determines the prior for

each spectral vector. Thus, the syllable level goes through 8 epochs, and for each epoch, the

output of the syllable level corresponds to a spectral vector of dimension (1 × 6, number of fre-

quency channels). This single vector determines the prior for the continuous submodel.

Such temporal hierarchy is roughly represented in Fig 1B (downward arrows).

Unlike L1 and L2 states that are maintained throughout the sentence, states of the lemma

level and below are “memoryless”, in that they are generated anew by superordinate states at

the beginning of each epoch. This allows us to simplify the model inversion (see next section)

using a well-established framework that exploits the variational Bayes algorithm for model

inversion [70]. The DEM framework of Friston and colleagues [70] consists of two parts: hid-

den state estimation and action selection. In our model, the listener does not perform any

overt action (the state estimates do not affect state transitioning); therefore, the action selection

part is omitted.

Using the notation of Eq 4, parameters of the generative model are defined in the form of

multidimensional arrays:

Probabilistic mapping from hidden states to outcomes:

Pðom;tjs1;t; . . . ; sN;tÞ ¼ CatðAmÞ ð5Þ

Probabilistic transition among hidden states:

Pðsn;tþ1jsn;tÞ ¼ CatðBn;tÞ ð6Þ

Prior beliefs about the initial hidden states:

Pðsn;1Þ ¼ CatðDnÞ ð7Þ

For each level, we define A, B, D matrices according to the above description of hierarchical

“what” and “where” factors:
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• Probability mappings (matrix A) from a superordinate “what” to a subordinate “what” states

are deterministic, e.g., p(sylb = ‘/one/’|lemma = ‘one more’, where = 1) = 1, and no mapping

is needed for “where” states;

• Transition matrices (B) for “what” factors are all identity matrices, indicating that the hidden

state does not change within single epochs of the superordinate level;

• Transition matrices for “where” factors are off-diagonal identity matrices, allowing transi-

tion from one position to the next;

• Initial states (D) for “what” factors are set by the superordinate level and always start at posi-

tion 1 for “where” factors.

c. Continuous: acoustic to output

The addition of an acoustic level between the syllable and the continuous levels is based on

a recent biophysically plausible model of syllable recognition, Precoss [26]. In that model sylla-

bles were encoded with continuous variables and represented, as is the case here, by an ordered

sequence of 8 spectral vectors (each vector having 6 components corresponding to 6 frequency

channels). In the current model, we only implemented the bottom level of the Precoss model

(see also [28]), which deploys spectral vectors into continuous temporal patterns. Specifically,

the outcome of the syllable level sets the prior over the hidden cause, a spectral vector I that

drives the continuous model. It represents a chunk of the TF pattern determined by the “what”

and “where” states of the syllable level sω and sγ, respectively:

If ¼
XNsyl

o¼1

X8

g¼1

sosgVfog þ �
I ð8Þ

Vfog ¼ Gf ðTFogÞ � Wf tanhðTFogÞ ð9Þ

The noise terms ε0 is random Gaussian fluctuation. TFωγ stands for the average of the

6 × 200 TF matrix of syllable ω in the γth window of 25 ms. G and W are 6 × 6 connectivity

matrices that ensure the spectral vector I determines a global attractor of the Hopfield network

that sets the dynamics of the 6 frequency channels. Values of G, W, and a scalar rate constant

κ in Eqs 9 and 10 are the same as in Precoss:

dx
dt
¼ k � GxþW tanh xþ I½ � þ �x ð10Þ

The continuous state of x determines the final output of the generative model v, which is

compared to the speech input during model inversion. As x, v is a 6 × 1 vector:

v ¼ xþ �v ð11Þ

The precision of the output signal depends on the magnitude of the random fluctuations in the

model (ε in Eqs 8, 10, and 11). During model inversion, the discrepancy between the input and

the prediction of the generative model, i.e., the prediction error, are weighted by the correspond-

ing precisions and used to update model estimates in generalized coordinates [41]. We manipu-

lated the precisions for continuous state x and activities of frequency channels v to simulate from

intact (HP) to impaired (LP) periphery. The precision for top-down priors from the syllable level,

PI, was kept high for all simulations (see Table 1 for values used in different conditions).

The continuous generative model and its inversion were implemented using the ADEM

routine in the SPM12 software package [104], which integrates a generative process of action.
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Because we focus on passive listening rather than interacting with the external world, this gen-

erative process was set to identical to the generative model and without an action variable. Pre-

cisions for the generative process were the same for all simulations (Table 4).

3. Model inversion

The goal of the modeled listener is to estimate posterior probabilities of all hidden states

given observed evidence p(s|o), which is the speech input to the model, here represented by TF

patterns sampled at 1,000 Hz. This is achieved by the inversion of the above generative model

using the variational Bayesian approximation under the principle of minimizing free energy

[105]. Although this same computational principle is applied throughout all model hierarchies,

the implementation is divided into three parts corresponding to the division of the generative

model. Because the three “submodels” are hierarchically related, we follow and adapt the

approach proposed in [70], which shows how to invert models with hierarchically related com-

ponents through Bayesian model averaging. The variational Bayes approximation for each of

the three submodels is detailed below.

Overall, the scheme results in a nested estimation process (Fig 1B). For a discrete-state level

Ln, probability distributions over possible states within each factor are estimated at discrete

times over multiple inference epochs. Each epoch at level Ln starts as the estimated Ln states

generate predictions for initial states in the subordinate level Ln+1 and ends after a fixed num-

ber of state transitions (epochs) at Ln+1. State estimations for Ln are then updated using the dis-

crepancy between the predicted and observed Ln+1 states. The Ln factors make transitions into

the next epoch immediately following the update, and the same process is repeated with the

updated estimation. Different model hierarchies (from L2 on) are nested in that the observed

Ln+1 states are state estimations integrating information from Ln+2 with the same alternating

prediction–update paradigm, but in a faster timescale. A schematic of such a hierarchical pre-

diction–update process is illustrated in Fig 1B.

Since levels “lemma” to the continuous acoustic output conform to the class of generative

models considered in [70], we use their derived gradient descent equations and implementa-

tion. Levels “context” and “semantic and syntax” do not conform to the same class of discrete

models (due to their memory component and nonnested temporal characteristics); we there-

fore derived the corresponding gradient descent equations based on free energy minimization

for our specific model of the top two levels Eqs 2–4 (see S3 Appendix for the derivation) and

incorporated them into the general framework of DEM [70].

The variational Bayes approximation for each of the three submodels is detailed below.

a. Lemma to context

For all discrete-state levels, the free energy F is generally defined as [105]:

QðsÞ ¼ arg min
QðsÞ

F � PðsjoÞ ð12Þ

F ¼ EQ½ln QðsÞ � ln PðojsÞ � ln PðsÞ� ð13Þ

Table 4. Precisions.

Precision Generative model: HP Generative model: LP Generative process

Px exp(16) exp(6), exp(0), exp(−4) exp(16)

Pv exp(16) exp(6), exp(0), exp(−4) exp(16)

PI exp(8) exp(8) exp(8)

https://doi.org/10.1371/journal.pbio.3002046.t004
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In Eqs 12 and 13, Q(s) denotes the estimated posterior probability of hidden state s, P(o|s)

the likelihood mapping defined in the generative model, and P(s) the prior probability of s.

The variational equations to find the Q(s) that minimizes free energy can be solved via gradi-

ent descent. We limit the number of gradient descent iterations to 16 in each update to reflect

the time constraint in neuronal processes.

Although context/type and semantic/syntax are modeled as two hierarchies, we assign them

the same temporal scheme for the prediction–update process at the rate of lemma units, i.e., they

both generate top-down predictions prior to each new lemma input and fulfill bottom-up updates

at each lemma offset. Therefore, it is convenient to define their inference process in conjunction.

The posterior distribution pðsyn1; � � � ; synn; s!; c;Tyjw1; � � � ;wnÞ is approximated by a fac-

torized one, Qðsyn1Þ � � �QðsynnÞQðs1Þ � � �QðsnsÞQðcÞQðTyÞ, and is parameterized as follows:

QðsyntÞ : synðtÞk ; or CatðsynðtÞÞ; k ¼ 1; � � � ; of possible syntactic elements; t ¼ 1; � � � ; n

QðsaÞ : sðaÞj ; or CatðsðaÞÞ; j ¼ 1; � � � ; of possible states for semantic factor;

a ¼ fA;R;P;Mg

QðcÞ : cm; or CatðcÞ; m ¼ 1; � � � ; of possible states for context factor

QðTyÞ : Tya; or CatðTyÞ; a ¼ 1; � � � ; of possible states for sentence type

Here, the model observation is the probability of the word being wτ given the observed out-

come oτ, p(wτ| oτ), which is gathered from lower-level models described in next sections. We

denote p(wτ| oτ) by a vector Wi
τ, where τ stands for the epoch, and i indexes the word in the

dictionary. At the beginning of the sentence, the model predicts the first lemma input, which

is, by definition, just one of the two possible attributes, ‘one more’ or ‘that’.

pðw1Þ ¼
X

syn1 ; s!;c;Ty

pðw1jsyn1; s!; c;TyÞpðsyn1; s!; c;TyÞ ¼
X

syn1

pðw1jsyn1Þpðsyn1Þ ¼ pðw1jsyn1

¼ attributeÞ ð14Þ

The lower levels then calculate p(w1|o1) and provide an updated Wi
1 that incorporates the

observation made from the first lemma. This is passed to the top levels to update L1 and L2

states. Following this update, the next epoch is initiated with the prediction for w2. Because w2

does not directly depend on lemma inputs before and after itself, we can derive the following

informed prediction of w2 from Eq 2, where prior for L1 and L2 factors are replaced by their

updated posterior estimates:

pðw2Þ ¼
X

syn2 ; s!;c;ST

pðw2jsyn2; s!; c;TyÞpðsyn2; s!; c;Tyjo1Þ

�
X

syn2 ; s!;Ty

pðw2jsyn2; s!Þpðsyn2jTyÞQð1Þð s!ÞQð1ÞðcÞQð1ÞðTyÞ ð15Þ

where we used:

pðsyn2; s!; c;Tyjo1Þ � pðsyn2jTyÞQð s!; c;Tyjo1Þ ¼ pðsyn2jTyÞQð1Þð s!ÞQð1ÞðcÞQð1ÞðTyÞ
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During the second epoch, the model receives input of the second lemma and updates the

estimation of Wi
2. The updated Wi

2 is then exploited to update L1 and L2 states, which, in

turn, provides the prediction for w3. The process is repeated until the end of the sentence.

The updating of L1 and L2 states, i.e., the estimation of their posterior probabilities after

receiving the nth lemma input relies on the minimization of the total free energy F1,2 of the two

levels (L1, L2)

F1;2 �
X

syn1:synn ; s!;c;Ty

Qðsyn1; � � � ; synn; s!; c;TyÞ½lnQðsyn1; � � � ; synn; s!; c;TyÞ

�
X

w1:wn

Qðw1; � � � ;wnÞlnpðw1; � � � ;wn; syn1; � � � ; synn; s!; c;TyÞ� ð16Þ

The expanded expression of F1,2 and derivation of the gradient descent equations can be

found in S3 Appendix.

b. Spectral to lemma

The memoryless property of lower-level (lemma and below) states implies that the observa-

tion from the previous epoch does not directly affect the prediction for the new epoch, only

indirectly through the evidence accumulated at superordinate levels. The framework from

Friston and colleagues [70] is suitable for such construction. It uses the same algorithm of free

energy (inserting Eqs 5–7 to Eqs 12 and 13) minimization for posterior estimation, but this

time, there is conditional independence between factors in the same level. We implemented

this part of the model by adapting the variational Bayesian routine in the DEM toolbox from

the SPM12 software package.

c. Continuous to spectral

To enable the information exchange between the continuous and higher discrete levels that

were not accounted for in [26], we implemented the inversion of the spectral-to-continuous

generative model using the “mixed model” framework in [70]. Essentially, the dynamics of

spectral fluctuation determined by each spectral vector I (Eq 8) is treated as a separate model

of continuous trajectories, and the posterior estimation of I constitutes post hoc model com-

parison that minimizes free energy in the continuous format. For a specific model m repre-

sented by spectral vector Im, the free energy F(t)m can be computed as (adapted from [70]):

FðtÞm ¼ � lnPðomÞ �

Z T

0

LðtÞmdt ð17Þ

LðtÞm ¼ ln PðoðtÞjImÞ � ln PðoðtÞjIÞ ð18Þ

P(om) indicates the likelihood for the mth spectral vector (discrete). P(o(t)|Im) is the likeli-

hood of observing the continuous input o(t) given the mth I vector, and P(o(t)|I) is the aver-

aged likelihood over all possible I vectors. In this way, the model compares the top-down

prediction of I and the estimate derived from the bottom-up evidence of integrated acoustic

input over 25 ms. Detailed explanation of the algorithm can be found in previous studies

[70,106]. The software implementation was also adapted from existing routines in the DEM

toolbox of SPM12 [104].

Information theoretic metrics

Two metrics were derived from the belief updating process just described: the Kullback–Lei-

bler (KL) divergence (Div), which characterizes the discrepancy between the current and
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previous state estimates of a factor, and entropy H, which characterizes the uncertainty of the

current state estimates of the factor. We denote the posterior probability of the ith possible

state of an arbitrary factor at time point τ as qt
i. The divergence and entropy are defined as:

Divt ¼ �
X

i

qti ln qt� 1

i þ
X

i

qti ln qti ð19Þ

Ht ¼ �
X

i

qti ln qti ð20Þ

These two (non-orthogonal) metrics provide a qualitative summary of the model response

that can be linked to neurophysiological signals (see Result and Discussion).

Model-guided MEG data analysis

Next-word prediction statistics from GPT-2 model. We implemented a transformer

pretrained language model, GPT-2 [20] in Google Colab [107], to obtain word prediction sta-

tistics of the sentence stimuli. The model is trained on approximately 40 GB text data and gen-

erates next-word predictions given arbitrary sentence contexts. Inputs to the model were

sentences taken from [32], each sentence consisting of four parts (see Table 3 for an example

set): a lead-in phrase, a target word, a bridge phrase, and a resolution word. For every lead-in

phrase, four variations were played by crossing two different Target words and two different

Resolution words.

Target: either with or without semantic ambiguity (Ambiguous versus Unambiguous).

Resolution: either resolves the semantic ambiguity of the Ambiguous Target, or not

(Resolve versus Unresolve).

For each set of (Target × Resolution) combination, two versions of the lead-in phrase were

available. However, only one of the two lead-ins in each set was used for each subject in the

MEG experiment, i.e., each set of (Target × Resolution) combination was played only once.

Therefore, we averaged the GPT-2 prediction metrics for the two versions. The bridge phrase

was the same within each set, regardless of other parts of the sentence.

The original speech stimuli in [32] contained sentence sets where the Target words were

ambiguous between two phonetically identical but morphologically different words. These sets

were removed for the GPT-2 analysis as well as for the MEG data analysis, resulting in 58 out

of 80 sets.

Probability distributions of the next-word prediction of GPT-2 were obtained for two time

points to calculate the prediction entropy and surprisal, respectively:

1. After Target, i.e., the input to GPT-2 is [lead in] + [target]

We use the entropy H of this prediction as a proxy for the (semantic) ambiguity of the tar-

get word, with the hypothesis that if a word has multiple meanings, different meanings will

predict different next words with similar probabilities, resulting in a flatter distribution com-

pared to the prediction from its unambiguous counterpart. H is calculated as follows, where i
indexes all words in the dictionary:

H ¼ �
X

i

pi ln pi

2. Before Resolution, i.e., the input to GPT-2 is [lead in] + [target] + [bridge]
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We calculate the surprisal S for each resolution word from the prediction probability as fol-

lows, where r is the index for the resolution word in the dictionary:

S ¼ � ln pr

This surprisal is equivalent to the KL divergence of the posterior distribution after the reso-

lution word, because the distribution has collapsed to p = 1 for the received word and 0

elsewhere.

MEG sensor space analysis. The MEEG module in SPM12 [104] was used for the MEG

data preprocessing. Statistical analysis and plotting of the preprocessed results were performed

with the Fieldtrip Toolbox [108]. We first performed the identical preprocessing as MacGregor

and colleagues [32] on head-adjusted raw MEG responses to the 58 selected sentence sets for

all 16 subjects. Briefly, raw recordings were first bandpass filtered between 0.1 and 40 Hz and

then epoched at the offsets of each keyword (Target or Resolution). After baseline correction

and the rejection of bad trials, combined gradiometer (RMS of each of the 102 gradiometer

pairs) responses were cropped into shorter time windows (−0.2 to 0.8 s for the Target offset,

−0.5 to 1s for the Resolution offset) and averaged across trials for each subject. For averaging,

trials were split in the following way that allow for statistical tests for both the GPT-2 predic-

tion metrics and the linguistic metrics of interest, i.e., semantic ambiguity at the Target offset

and resolution at the Resolution offset:

1. Target

Sentences were split into two groups: (1) The GPT-2 entropy for the Ambiguous word was

larger than the entropy for the Unambiguous word (Amb1, Uam1); and (2) The GPT-2

entropy for the Ambiguous word was smaller than for the Unambiguous word (Amb2,

Uam2).

2. Resolution

Sentences containing the Resolve words were split into two groups: (1) The GPT-2 surprisal

of the Resolve word following the Ambiguous target was larger than the Resolve word follow-

ing the Unambiguous target (Res_Amb1, Res_Uam1); and (2) The GPT-2 surprisal of the

Resolve word following the Ambiguous target was smaller than following the Unambiguous

target (Res_Amb2, Res_Uam2).

To assess the effects of linguistic and GPT-2 metrics on the combined gradiometer data, we

constructed the following four contrasts:

1. [Amb1 + Amb2] versus [Uam1 + Uam2]: effect of semantic ambiguity.

2. [Amb1 + Uam2] versus [Amb2 + Uam1]: effect of GPT-2 prediction entropy.

3. [Res_Amb1 + Res_Amb2] versus [Res_Uam1 + Res_Uam2]: effect of preceding ambiguity.

4. [Res_Amb1 + Res_Uam2] versus [Res_Uam1 + Res_Amb2]: effect of GPT-2 prediction

surprisal.

To test for differences between the two conditions within each contrast, we first took the

average of the two averages in each condition within individual subjects, e.g., (Amb1 + Amb2)

/ 2 for the ambiguous condition in contrast 1. This yields one sensor × time response per con-

dition and per subject. We then performed a paired t test across subjects for each sensor and

time point, resulting in a 2D parametric map of the test statistic. Clusters of sensors with ps <

0.05 were identified on this map, each including at least 2 neighboring sensors. The statistical

significance of each cluster was evaluated by comparing the maximum t statistic of the cluster
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to a null distribution generated by randomly permuting the condition labels within each sub-

ject (5,000 times across all 16 subjects). The cluster-level p-value (pc) was the proportion of the

t statistic in the permutation distribution larger than the maximum t statistic of the selected

cluster. None of the clusters identified by the t test survived the permutation test; therefore, we

report the five clusters with the highest t statistics for the positive effect in each contrast. We

also computed Cohen’s d [109] from the grand average (over time and across subjects) of all

the 102 combined gradiometer channel to evaluate the effect size of each contrast at individual

sensor locations.

Supporting information

S1 Fig. Effect of contextual bias ratio on the inference process. (A-C) Metrics derived from

the sentence “One more ace wins the tennis” as function of contextual bias between “poker

game” and “tennis game”. A bias of x implies that the prior probability ratio (the total proba-

bility is always normalized to 1) for context was set to [x 1 1 1] for all 4 possible contexts

{‘poker game’, ‘tennis game’, ‘night party’, ‘racing game’} for x> = 1, and [1 1/x 1 1] for x< 1

to balance the influence of the two irrelevant contexts. (D-F) Same metrics derived from sen-

tence “One more ace wins the game”. (A) Inferred states for the context (blue) and the agent
(red) do not change with contextual bias, i.e., the model always resolved to the correct states.

(B) Sum of entropy across context, agent, and patient at the subject word (“ace”) offset and the

sentence offset. At the offset of “ace” (blue), the entropy is maximum at bias = 1 and symmetric

on both sides. At sentence offset (red), the entropy is overall lower than at the offset of “ace”

and monotonically increases with a small slope, reflecting that the model was more certain

about the state estimations at this point, but keeps a small possibility towards the poker game

that increases with the bias towards the poker context. (C) At the sentence offset, the diver-

gence monotonically increases with bias towards poker reflecting the increasing difference

between the expected context (poker) and the actual one (tennis). (D) Inferred states for con-

text and agent at the end of sentence B as a function of bias. For bias< 1 (preference for ‘ten-

nis’context), the inferred context is “tennis (game)” and inferred agent is “serve”. For bias > =

1, the result corresponds to a preference for the “poker” context. (E) Sum of entropy. For both

time points, the entropy is at maximum when bias = 1. Both curves are symmetrical by

bias = 1. The blue curve is the same as in B because the sentence input up to this point was the

same. (F) Sum of divergence across the same three factors at two critical time points. At the

offset of “ace”, the divergence reached its minimum at bias = 1 as a result of the uniform distri-

bution over “poker” and “tennis” states, which is the least different from the previous time

point. At the sentence offset, the stronger the bias (farther from 1), the smaller the difference

between before and after hearing the final word. However, a notch is seen at bias = 1 due to the

uncertainty (S1E Fig). Summary data supporting the figures can be found in files ace_tenn_-

compare_context.mat (panels A-C) and ace_game_compare_context.mat (panels D-F).

(EPS)

S2 Fig. Message passing in the processing of the same word in different sentences.

Figure specifications are the same as Fig 3. (A) Semantic-to-lemma and lemma-to-syllable

predictions in response to sentence “One more sprint wins the tennis”. The second lemma

“sprint” influences the prediction for the final lemma as well as the corresponding syllables as

compared to Fig 3A. (B) Estimation of posterior probabilities for lemma and syllable states

for the sentence [SRPINT-tennis]. Similar to Fig 3B, the model instantly recognizes each syl-

lable (lower panel). (C) Upper panels: entropy derived from sentence [ACE-TENNIS]

minus sentence [SPRINT-TENNIS] for the lemma and the syllable levels for the entire sen-

tence. Vertical dotted lines mark the onset of each syllable of the final lemma. Entropies for
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both the lemma and the syllable level was higher for [ACE-TENNIS] after the onset of the sec-

ond syllable, reflecting a greater complexity (three possible states compared to two in the sen-

tence [SPRINT-TENNIS]) of the prediction of the final lemma. Lower panels: the difference

between the divergence in response to the two sentences. A positive difference at the onset

of the third syllable (the offset of the second syllable) indicates that the input “the tennis” is less

expected in the sentence [ACE-TENNIS] due to the prior preference for the poker context,

compared to in the sentence [SPRINT-TENNIS] where the context was already resolved to

“poker game” after hearing “sprint”. Simulated data supporting the figures can be found in

sprint_tennis_context1_5.mat and ace_tennis_context1_5.mat.

(EPS)

S3 Fig. (A) Distribution for the difference of GPT-2 prediction entropy calculated from

ambiguous vs. unambiguous Target words. Only the 58 selected sentences were included. (B)

Distribution for the difference of GPT-2 prediction surprisal calculated from the same Resolu-

tion words following ambiguous vs. unambiguous Target. Summary data plotted in the figures

can be found in GPT_word_pair_stats.mat.

(EPS)

S4 Fig. Comparison of effect sizes between semantic and GPT-2 prediction metrics. (A)

Cohen’s d computed from the effect of semantic ambiguity (x-axis) and the effect of GPT-2

prediction entropy (y-axis) at Target offset for each of the 102 combined gradiometers. (B)

Cohen’s d for the effect of preceding ambiguity (x-axis) vs. GPT-2 prediction surprisal (y-axis)

at Resolution offset for each combined gradiometer. Cohen’s d data can be found in cohensd.

mat.

(EPS)

S5 Fig. (A, B) Inference of lemma and syntax states at moderately high precision (exp(6))

with (A) or without (B) informative top-down predictions. The posterior estimates are very

similar to the intact condition (Figs 4B and 5A, respectively) in that the model quickly con-

verged onto the correct states after each update. However, longer delays to convergence can be

observed at the syllable level with prediction, and both lemma and syllable levels without pre-

diction, compared to their intact counterparts. (C, D) Inference of lemma and syntax states

at extremely low precision (exp(−4)) with (C) or without (D) informative top-down predic-

tions. The posterior estimates with informative prediction are qualitatively the same as the

low-precision condition in Fig 6A but with longer delays before convergence. Without any

top-down prediction, the model completely fails at the syllable level, hence cannot make accu-

rate estimates for higher levels. Simulated data supporting the figures can be found in files

ace_tennis_context1_5_P_pre_6_8.mat (panel A), ace_tennis_context1_5_NNP_pre_6_8.mat

(panel B), ace_tennis_context1_5_P_pre_-4_8.mat (panel C), and ace_tennis_con-

text1_5_NNP_pre_-4_8.mat (panel D).

(EPS)

S1 Appendix. Model parameters for lemma generation.

(DOCX)

S2 Appendix. Lemma-semantic mapping in the model’s mental lexicon.

(DOCX)

S3 Appendix. Full expression of free energy and gradient descent algorithm for the top-

level model (L1 and L2).

(DOCX)
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