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Abstract (177 words) 19 

Understanding speech requires mapping fleeting and often ambiguous soundwaves to meaning. 20 

While humans are known to exploit their capacity to contextualize to facilitate this process, how 21 

internal knowledge is deployed on-line remains an open question. Here, we present a model that 22 

extracts multiple levels of information from continuous speech online. The model applies linguistic 23 

and nonlinguistic knowledge to speech processing, by periodically generating top-down predictions 24 

and incorporating bottom-up incoming evidence in a nested temporal hierarchy. We show that a 25 

nonlinguistic context level provides semantic predictions informed by sensory inputs, which are 26 

crucial for disambiguating among multiple meanings of the same word. The explicit knowledge 27 

hierarchy of the model enables a more holistic account of the neurophysiological responses to 28 

speech compared to using lexical predictions generated by a neural-network language model (GPT-29 

2). We also show that hierarchical predictions reduce peripheral processing via minimizing 30 

uncertainty and prediction error. With this proof-of-concept model we demonstrate that the 31 

deployment of hierarchical predictions is a possible strategy for the brain to dynamically utilize 32 

structured knowledge and make sense of the speech input.      33 

Introduction 34 

Understanding speech is a non-trivial feat. To extract information from ever-changing acoustic 35 

signals, our brains must simultaneously “compress and recode linguistic input as rapidly as possible” 36 

for multiple representation levels (1), while also keeping information in memory as we incrementally 37 

build up the meaning of an utterance (2). No computational framework to date has captured the 38 

transformation from continuous acoustic signal to abstract meaning: most speech processing models 39 

focus on either the lower-level recognition from acoustic to lexicon (3-7), or the higher-level 40 

linguistic manipulations without taking into account the constraint of elapsing time (8-13).  41 

In addition to the challenge of fleeting time, speech signals are often ambiguous. However, humans 42 

exhibit extraordinary flexibility in making sense of ambiguous speech. We constantly make 43 

inferences based on our internal linguistic (e.g. syllabic composition of a word) and nonlinguistic 44 

prior knowledge (e.g. speaker identity, semantic context) that are learned from our personal 45 

experience. The influence of internal (prior) knowledge on speech perception takes place at all 46 

processing levels, e.g. filling the gap of possibly obscured acoustic details (14-16), or interpreting a 47 

sentence containing semantically ambiguous words (17, 18). Understanding how internal knowledge 48 

is integrated with external input on the fly is key to deciphering speech processing in the brain, and 49 

explaining the flexibility in human speech comprehension. 50 
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With the development of powerful neural networks (19-21), it is now possible for a model to 51 

implicitly learn structured linguistic knowledge from an immense amount of written text, and apply 52 

such knowledge in language tasks such as coherent text generation. Despite their remarkable 53 

achievements in specific language tasks, these models are very resource-demanding and often make 54 

egregious errors showing that their performance is not rooted in human-like understanding of the 55 

language content (22, 23). Especially if trained and evaluated on tasks involving predicting the next 56 

input (20, 21), e.g. a word, it is virtually impossible for such models to capture the abstract 57 

processing necessary for human language comprehension extending beyond linguistic forms and 58 

across cognitive domains (24, 25). A key aspect of speech understanding consists of applying 59 

structured internal knowledge to extract relevant information from the input signal. How and what 60 

internal knowledge is deployed depends on the listener’s behavioral goal, which can range from 61 

“understanding the message intended by the speaker” during a conversation to simply “predicting 62 

the next word” during an experimental task. A language model exploiting built-in linguistic as well as 63 

nonlinguistic knowledge, and driven by a behavioral goal, may hence be more powerful and 64 

polyvalent than one based on recognition and short-range prediction.       65 

Here, we propose a computational framework in which the use of linguistic and nonlinguistic 66 

contextual knowledge allows the incremental extraction of multi-level information from the 67 

continuous speech signal. The model achieves single-sentence understanding by assigning 68 

appropriate values to semantic roles and making reasonable judgements about the nonlinguistic 69 

context in which the sentence takes place. Such a process relies on a probabilistic generative model 70 

that uses its linguistic and nonlinguistic knowledge to incrementally compose sentences. The 71 

generative model has a top context level that determines 2nd-level semantic roles, which are 72 

translated into a 3rd-level lemma sequences via linearized syntax rules. Each lemma produces a 73 

sequence of continuous, bottom-level spectro-temporal patterns via two intermediate hierarchies, 74 

integrating a syllable model (26) that was adapted from a biophysically plausible model of birdsong 75 

recognition (27, 28). Importantly, context and semantic states are maintained throughout the 76 

sentence but interact at the lemma rate, allowing the inverse model to modify previous estimates of 77 

these states with incoming evidence. During model inversion, top-down and bottom-up messages 78 

alternate at timescales of corresponding hierarchies, providing a possible solution to the “now-or-79 

never” bottleneck (1) that is also consistent with the predictive coding hypothesis of perception (29-80 

31).   81 

With a small scope of knowledge adapted from stimuli in MacGregor et al. (32), the model can 82 

extract contexts and semantic roles from ongoing speech signals and resolve semantic ambiguity 83 
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using new information; its beliefs about context and semantic roles, in turn, dynamically influence 84 

message passing in lower levels. The linguistically informed model structure allows for hierarchy-85 

specific computational metrics that provide a more interpretable and holistic explanation of neural 86 

speech responses than using next-word prediction statistics generated by GPT-2 (20), a large-scale 87 

natural language model. In addition, we show that the prediction-update mechanism offers the 88 

flexibility to balance between amount of processing and inference accuracy through the control of 89 

weighting for bottom-up sensory cues versus top-down predictions.  90 

This proof-of-concept model demonstrates a possible computational scheme of speech processing in 91 

the brain in which top-down prediction serves as a key computational mechanism for information 92 

exchange between hierarchies, driven by the goal of comprehension. Furthermore, correlations 93 

between model-derived metrics and neural responses may provide insights into the functional roles 94 

of various neuronal signals during speech perception. 95 

  96 
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Results 97 

A deep hierarchical model of speech comprehension       98 

We developed a model of speech processing based on the idea that the goal of the listener is to 99 

understand the message conveyed by an utterance. Appropriate understanding entails retrieving 100 

useful information from the utterance and optimally mapping it to the listener’s knowledge of the 101 

world, not restricted to linguistic representations (Fig 1A). Our model of the listener’s internal 102 

knowledge therefore consists of two parts that are both implemented as probabilistic generative 103 

models. The first part exemplifies knowledge about the world by defining events and properties 104 

constrained by specific nonlinguistic, situational contexts. For example, under the context of a tennis 105 

game, the listener knows (that the speaker knows) about special winning serves, about runs to 106 

return a ball etc. The serve or the run may be the central role in an event of winning a game, or 107 

described as having a certain property (e.g.: being surprising). Under the different context of a poker 108 

game, the listener knows some cards in the deck that can also be part of an event or entail some 109 

property. The second part of the model converts these events or properties into linguistic forms by 110 

choosing between a number of possible lemmas in an appropriate order, e.g. the special winning 111 

serve can be expressed as a single word “ace” early in the sentence, and finally into spoken 112 

utterances in the form of spectro-temporal sound patterns via a deep temporal hierarchy (Fig 1B). 113 

These two parts are hierarchically linked via semantics and syntax. The inversion of this generative 114 

“world knowledge” model fulfills the mapping from the sound patterns to abstract semantic roles 115 

and contexts by estimating the probability of every possible value (state) of each element (factor) in 116 

the knowledge hierarchy (Fig 1A), thus providing the listener with the means to understand the 117 

utterance produced by the speaker.  118 

In all, the model includes five levels, each consisting of several factors (represented in rectangles in 119 

Fig 1A) which have multiple possible values (states) listed in Table 1 except for the acoustic factor, 120 

which is a real-valued vector representing the signal amplitude of six acoustic channels. Probabilistic 121 

mappings and transition probabilities between the values of the discrete factors in Table 1 are 122 

defined in Methods and Appendix. The final output of the generative model (i.e. the input to the 123 

perception model) is the continuous spectro-temporal pattern of the speech signal sampled at 1000 124 

Hz and divided into six frequency channels (see Methods). Lengths of stimuli are fixed: each 125 

sentence consists of 4 lemmas, each lemma of 3 syllables, and each syllable of 8 spectral vectors. 126 

Every spectral vector is deployed into 25ms of time-varying continuous signal, thus each syllable 127 

effectively has a duration of 200ms (33).   128 
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Fig 1. A generative model of speech and its inversion. A. Schematic of the generative model. Left: 

information conveyed in a speech signal is roughly separated into six hierarchies. To generate speech (solid 

downward arrow), the model first assigns values to semantic roles according to the contextual knowledge 

and determines a (linear) syntactic structure from the type of the message it’s expressing. Together, 

semantics and syntax generate an ordered sequence of lemma units. Each lemma unit generates a 

sequence of syllables, which in turn generates a sequence of spectral vectors. Each spectral vector unit is 

then deployed as a continuous acoustic signal of 25 ms. Inference corresponds to the inversion of the 

generative process (dashed upward arrow). The model is divided into three parts that were implemented 

with different algorithms (see Methods). Right: cartoon (www.publicdomainpictures.net) illustrating how a 

sequence of syllables ‘/læmp-poʊst/’ (lamppost) is generated from a traffic scene context. In describing a 

traffic accident, the speaker tries to convey its mental image of the scene consisting of an agent (the car), a 

patient (the lamppost) and the relation (the action of hitting) from the agent to the patient. With English 

vocabulary and grammar, it chooses one lemma corresponding to each element in the accident, and 

outputs (speaks) these lemmas in a specific order according to the syntactic rules. Each lemma is then 

expressed as a specific sequence of syllables. Importantly, the same lemma can be the result of different 

combinations of abstract information and syntactic rules. For example, in the sentence “The ball hits the 

floor”, the word “hits” implies a different action than a car hitting a cyclist, whereas in “His songs are top 

hits” the relative position of the word implies an entity, not an action. B. Temporal scheduling of 

hierarchical message passing during speech perception. The generative model is inverted by alternating 
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top-down prediction (prior, green downward arrows) and bottom-up update (blue upward arrows). A 

supraordinate level initiates a sequence of evidence accumulation in its subordinate level and receives a 

state update at the end of such sequence. It then makes a transition and sends an updated prediction to the 

subordinate level and initiates another sequence of evidence accumulation. Such a process is repeatedly 

performed until the end of the sentence. Note that for the lemma and lower levels, states are generated 

anew each time when the supraordinate level makes a transition, i.e. no horizontal arrows between sending 

up an update and receiving a new prior. For the top two levels, however, states are maintained throughout 

the sequence (red horizontal arrows) or make transitions according to a set of rules (syntax). 

Table 1. Factors and their possible values (states) in the model hierarchy 129 

Hierarchy Factor Value (State) 

Context Context tennis game, poker game, night out, car racing game 

 Sentence type event, property 

Semantic 

& Syntax 

Agent (semantic) card a, winning serve, run, card j, neckband, score, buzz, null 

 Patient (semantic) tennis game, poker game, racing game, evening, null 

 Relation (semantic) win, ruin, be 

 Modifier (semantic) sufficient, unexpected, not pretty, not fair, high volume, high 

frequency 

 Syntax attribute, subject, verb, object, adjective 

Lemma Lemma one more, that, ace, sprint, joker, tie, noise, wins, ruined, is, the tennis, 

the poker, the game, the evening, enough, surprising, ugly, unfair, 

loud, sharp 

 Where in lemma 1-3 

Syllable Syllable* /eis/, /te/, /nis/, … total of 32 including the silence syllable 

 Where in syllable 1-8 

*Note that these symbols are illustrative and not following IPA. 130 

Next, we show how this model understands simple sentences and deals with semantic ambiguity, 131 

and we demonstrate the role of top-down predictions in these processes. We assessed its 132 

performance with different sentence stimuli and parameter settings, namely by varying the 133 

perceptual bias among different contexts and the precision of the continuous module (see 134 

Methods), focusing on: 1) the probability distributions that describe the model’s beliefs (or 135 

predictions) about possible states over time, and 2) divergence and entropy measures, which 136 

summarize informational changes underlying the evolution of beliefs (see Methods). These 137 

measures do not depend on the precise fine tuning of the model parameters, and are qualitatively 138 

evaluated by whether the timing (when certain states are updated) and the outcome (what the 139 
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current beliefs are about different states) of the hierarchical inference concurs with human behavior 140 

in the language domain. 141 

Stimuli are adapted from MacGregor et al. (2020) (32) and illustrate the use of internal knowledge to 142 

disambiguate speech. All sentence stimuli in the following sections share the same structure (see 143 

Table 2 for a complete list of possible sentences):  144 

One more [MIDDLE WORD] wins [END WORD]. 145 

The MIDDLE WORD can have either one or multiple possible meanings, each meaning pointing to 146 

one context of the sentence. The END WORD either resolves the semantic ambiguity raised by the 147 

middle word or not. A disambiguating end word can also follow an unambiguous middle word 148 

without affecting its interpretation. 149 

Table 2. All possible sentences in the model 150 

Attribute Subject Verb Object/Adjective Context 

One more/that 

ace 
wins 

the game/the poker poker game 

the game/the tennis tennis game 

is surprising/enough poker or tennis game 

sprint 
wins the game/the tennis tennis game 

is surprising/enough tennis game 

joker 
wins the game/the poker poker game 

is surprising/enough poker game 

tie 

ruined 
the evening night party/racing game 

the game racing game 

is 
ugly night party 

unfair racing game 

noise 
ruined the evening/the game night party/racing game 

is loud/sharp night party/racing game 

The use of knowledge about the world to interpret speech  151 

We first test how the model processes speech stimuli, with a focus on the timing of the incremental 152 

estimation process at the context and semantic levels, where “meaning” is extracted by assigning 153 

values to semantic roles.  154 

Consider the following two sentences, A: “One more ace wins the tennis.” and B: “One more ace 155 

wins the game.” Both sentences contain the ambiguous word “ace”, which can be associated with a 156 

special serve in tennis or a special card in a poker game. The final word in the first sentence 157 
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disambiguates “ace” to mean a special serve because “the tennis” can only be generated from a 158 

tennis game context, which applies to the whole sentence including the preceding “ace”. In the 159 

second sentence, however, the ambiguity remains unresolved; the game can still refer to a tennis      160 

or a poker game. In the latter case, the interpretation of the word “ace” will depend on the listener’s 161 

preference. Unless specified otherwise, we introduce a prior preference for the poker context to 162 

reflect the preference of the general population (32). 163 

The word “ace” introduces ambiguity because it points to two possible states for agent (“tennis 164 

serve” or “card A”), each of which points to a separate state for context (“tennis game” or “poker 165 

game”, Table 2, ambiguous and disambiguating words in red). Figs 2A and 2B show the evolution of 166 

the model’s beliefs about context and semantic factors for the two sentences. The ambiguity is 167 

reflected in the posterior estimates of agent and context between the offset of “ace” and the 168 

sentence ending word, where the model assigned nonzero probabilities to “card A” and “serve” as 169 

the agent, and “poker game” and “tennis game” as the context, and near-zero probabilities for other 170 

states (Fig 2A). Probabilities for poker-relevant states were higher (darker colors) due to the 171 

contextual preference. The verb “wins” did not change the model’s estimation for the agent or the 172 

context, but clarified the sentence type to be “event” and the patient to be nonempty, again with a 173 

preference towards poker. After the model heard “the tennis” (Fig 2A), it immediately resolved its 174 

beliefs of the agent, the patient and the context to the opposite of its prior preference. When the 175 

sentence ended with “the game”, (Fig 2B), the model followed its preference with enhanced beliefs 176 

as a result of the entropy reduction entailed by belief updating, but not as clearly resolved as with 177 

“the tennis” (see next section). 178 
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Fig 2. Semantic- and context-level model response to different sentence inputs. For all simulations, 

relative prior for context was set at the default of 1.5:1:1:1 for the four possibilities {‘poker game’, ‘tennis 

game’, ‘night party’, ‘racing game’}. A. Top panel: acoustic spectrogram of input sentence A: “one more ace 

wins the tennis”. Vertical grey lines mark the offset of each lemma, at which point updates were sent from 

the lemma level to semantic and context. Lower panels: estimation of posterior probabilities for the 

semantic (agent, patient, relation, modifier) and context states as the sentence unfolds. Possible values of 

each factor are labelled on the y axis. Blue scale blocks indicate the probability distribution for each factor, 

dark blue—p=1, white—p=0. The updating process is nearly instantaneous, and the main body of the nth 

block (epoch corresponding to one lemma) is filled with the estimates after the (n-1)th update.  The first 

input “one more” was not informative. The estimated distributions were slightly changed before and after 
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the offset of “one more” because the model still performed gradient descent to minimize free energy. After 

hearing “ace”, distributions for the context and the agent converged to either “poker game” or “tennis 

game” for context, and ‘card A’ or ‘serve’ for agent. Within these possibilities, probabilities for the poker 

context and the ‘card A’ agent were higher, reflecting the prior preference. Probabilities of “tennis” or 

“poker” as patient also increased. Type, relation, and modifier remain the same as in the previous epoch. 

After hearing ‘wins’, possibilities for type converged to ‘event’, and those for relation converged to ‘win’. 

Probabilities for ‘tennis’ and ‘poker’ for patient further increased, with a strong bias for “poker”, while the 

probability of a ‘null’ patient decreased to zero. In the last epoch, the model received a disambiguating 

phrase ‘the tennis’, and all factors are resolved to the correct state with a probability close to 1. B. Acoustic 

input and probability estimation for the sentence “one more ace wins the game”. The distributions are the 

same as in A before the last update. In the last epoch, the model receives an input, ‘the game’, that does 

not resolve the semantic and contextual ambiguity. As a result, distributions were further biased towards 

values corresponding to the ‘poker game’ context. C. Entropy and Divergence derived from the sentence 

“one more ace wins the tennis” relative to the sentence “one more ace wins the game”. The two vertical 

dashed lines mark the offset of the sentence middle word “ace” and the ending word, respectively. As the 

two sentences only differ in the ending word, both metrics differ only at sentence offset. Compared to “the 

game”, which does not completely resolve the ambiguity introduced by ‘ace’”, ‘the tennis’ results in lower 

entropy in “context” (top left panel), indicating greater certainty about the estimate. The zero differences in 

entropy for agent and patient indicate that the model tends to believe in its bias for these two factors. “The 

tennis” also gives rise to higher divergence (right panels) at sentence offset. D. Results from the sentence 

“one more ace wins the tennis” relative to  “one more sprint wins the tennis”. At its offset, the ambiguous 

word “ace” introduces higher entropy for all three factors compared to “sprint”, reflecting greater 

uncertainty about the hidden states. Uncertainty dominates divergence, which is indexed by  a 

corresponding negative difference here. At sentence offset, entropy differences between the two sentences 

became minimal because the model has resolved hidden states of all hierarchies. The positive difference in 

divergence at the offset reflects the higher surprisal for “the tennis” when it follows “ace” compared to 

“sprint”. 

The results in Fig 2A and 2B demonstrate how prior knowledge and preferences can dynamically 179 

influence the extraction of semantic roles and contexts from the speech signal. This influence is not 180 

only reflected in the perception of semantically ambiguous words, but also in the details of message 181 

passing that give rise to its estimates. Fig 2C contrasts the inference processes between sentence 182 

[ACE-TENNIS] and sentence [ACE-GAME] in Fig 2A and 2B using their derived information metrics 183 

([ACE-TENNIS] relative to [ACE-GAME]), focusing on the context, the agent, and the patient factors 184 

that were most relevant for the set conditions. Fig 2D compares the same metrics between 185 

sentences [ACE-TENNIS] and [SPRINT-TENNIS]. These contrasts were based on similar comparisons in 186 

the M/EEG study of MacGregor et al. (32), where the authors identified two relevant findings. First, 187 

they showed an effect of ambiguity on the magnitude of MEG sensor-space response activations 188 
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shortly after the word offset (increased activation for “ace” compared to “sprint”), which could be 189 

interpreted as reflecting increased uncertainty. Secondly, they showed a (marginally significant) 190 

effect of resolving ambiguity (increase in the difference of activation between “the tennis” after 191 

“ace” vs. after “sprint” compared to between “the game” after “ace” vs. after “sprint”), which could 192 

be interpreted as reflecting increased surprisal. Respectively, these two effects were qualitatively 193 

captured by a difference in model-derived entropy (Fig 2D, left) and Kullback-Leibler (KL) divergence 194 

(Fig 2C and 2D, right) in response to the sentence contrasts. However, a difference in entropy 195 

between two conditions is often associated with a difference in divergence but in the opposite 196 

direction, with magnitudes varying across hierarchies and across factors within the same hierarchy. 197 

Thus, both semantic ambiguity and its resolution likely involve a complex combination of 198 

computational processes of different types and hierarchies. Such a complexity is in line with the 199 

finding of MacGregor et al. (32) that the two sensor-space phenomena were localized to different 200 

but overlapping sources. Further dissociation between different computation processes should 201 

involve correlating model-derived information metrics, importantly at different hierarchical levels 202 

and factors, with source-, time- and frequency-specific responses (see Discussion). 203 

While the direction of prior preference (e.g. poker over tennis) influences both the information 204 

passing and the perceptual outcome (the state with highest posterior probability) as shown in Fig 2, 205 

the degree of prior preference also has a subtle influence on message passing during the inference 206 

process. With the same perceptual outcome, (S1 Fig A and D, either side of bias=1), the amount of 207 

information maintained between belief updates as quantified by entropy, and the magnitude 208 

information change induced by an update as quantified by the KL divergence, both vary 209 

quantitatively with the model’s prior preference (S1 Fig B-C, E-F). Thus, model-derived information 210 

metrics provide a means to relate the variability of neurophysiological responses to the perceptual 211 

preferences of individual subjects.  212 

Semantic prediction influences low-level message passing 213 

The deployment of hierarchical prediction implies that high-level (semantic, syntax and context) 214 

state estimates also dynamically influence the top-down predictions (priors) as well as the bottom-215 

up updates at lower (lemma, syllable and acoustic) levels. Figs 3A and 3B respectively show top-216 

down priors and posterior estimates at lemma and syllable levels with the same parameters as Fig 217 

2A. The predictions reflect both prior knowledge and the updated estimates of superordinate levels, 218 

in agreement with recent neurophysiological evidence that high-level (word) predictions constrain 219 

low-level (phoneme) predictions (34). Posterior estimations of both levels immediately converged 220 
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onto the correct states after receiving the disambiguating input, for example the second syllable in 221 

the last lemma.  222 

 

Fig 3. Influence of semantic state estimates on the prediction and updating of lemma and syllable states. 

A. Semantic-to-lemma and lemma-to-syllable predictions (prior expectations) for the simulation in Fig 2A. 

Vertical lines indicate offsets of each lemma input. In lemmas 1-3, syllable predictions (lower panel) are 

nearly certain after the first syllable because there was a one-to-one correspondence between the lemma 

and the first syllable. In lemma 4 (“the tennis”), the opposite is true because all possible lemmas start with 

the syllable “the”, diverging at the second syllable. Lemma predictions (top panel) depend on the current 

estimates at the superordinate level and the contextual bias, e.g. the prediction for the last lemma is 

highest for “the poker”, and lowest for “the tennis”. B. Estimation of posterior probabilities for lemma and 

syllable states for the simulation in Fig 2A. The model quickly recognizes each syllable (lower panel). The 

estimation for lemma states (upper panel) appears to lag for the duration of one syllable, because the 

lemma level receives a nearly instantaneous update at the offset of every syllable, and the grid between the 

ith and (i+1)th updates is filled with the estimated distribution of the ith update. For example, the estimation 

for the first lemma started with a 1:1 prior expectation between “one more” and “that”, then converged to 

“one more” after hearing the first syllable “one”. The estimate was not changed until the offset of “ace”, the 

first syllable of the second lemma. This is only due to our graphical representation and does not affect the 

update from lemma to semantics. C. Upper panels: entropy derived from sentence [ACE-TENNIS] relative 

to sentence [ACE-POKER] for the lemma and the syllable levels in the proximity of the final lemma. 

Vertical dotted lines mark the onset of each syllable of the final lemma, either /the-te-nis/ or /the-po-ker/. A 

slightly higher syllable entropy after the onset of the second syllable for “the tennis” indicates the model 

took longer, i.e. more gradient descent steps, to converge to the less expected input /te/. Lower panels: the 
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difference between the divergence in response to the two sentences. A higher lemma divergence at the 

onset of the third syllable (the offset of the second syllable) for the lemma “the tennis” reflects that 

“tennis” is less expected than “poker” due to the preference at the context level. 

 223 

For the sentence input “one more ace wins the poker”, the model makes the identical semantic-to-224 

lemma predictions as in Fig 3A (top panel), and nearly identical lemma-to-syllable predictions except 225 

for the final syllable, which was informed by the preceding syllable /po/ in “the poker” (not shown). 226 

Fig 3C shows the entropy and divergence derived from the posterior estimates of sentence [ACE-227 

TENNIS] relative to [ACE-POKER] for the lemma and syllable level, focusing on the final lemma. 228 

Although the amplitudes of the differences are smaller than those at the semantic and the context 229 

level (Fig 2), their presence indicates that lower-level processes likely also contribute to the 230 

observed differences in neurophysiological response to semantically expected vs. unexpected 231 

speech inputs, corroborating the finding that the neural encoding of phonological and acoustic 232 

information of a word input is modulated by its semantic similarity to its preceding sentential 233 

context (34). The influence of semantic prediction on lower-level message passing can also be 234 

reflected in the processing of the same word embedded in different sentences, e.g. “the tennis” in 235 

the sentence [ACE-TENNIS] vs. [SPRINT-TENNIS] (S2 Fig). Unlike the semantic and context levels, 236 

however, the difference between “ace” and “sprint” at the acoustic and phonological levels was not 237 

reflected in the low-level message passing (S2 Fig C). 238 

Interpreting neural speech response requires lexical prediction and 239 

beyond 240 

Information metrics derived from our model suggest that the sensor-space effects observed in 241 

MacGregor et al. (32) mainly reflect the message passing in semantic- and context-level processing 242 

(Fig 2), rather than in the lemma (word) level (Fig 3, S2 Fig). Meanwhile, several recent studies have 243 

successfully used word or phoneme prediction statistics derived from the output of natural language 244 

models to explain variabilities in neural response to the semantic aspects of linguistic stimuli (35-38). 245 

In doing so, the surprisal evoked by the received input given the preceding sentential context, and 246 

less often the entropy of the prediction for the upcoming input, are used directly or indirectly (in 247 

conjunction with additional regressors and regression models) as proxies of semantic knowledge to 248 

identify the neuronal dynamics underlying semantic processing. To understand the extent to which 249 

the output of a language model trained on next-word prediction can directly explain semantic- and 250 

context-level effects on neurophysiological speech responses, we reanalyzed the neurophysiological 251 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.04.01.486694doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486694
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

data of MacGregor et al. (32) using both explicit semantic properties as in the original study and 252 

next-word prediction statistics from GPT-2 (20) (see Methods). 253 

We first explored whether GPT-2 predictions captured the semantic ambiguity and disambiguation 254 

in the stimuli. We adopt the terminology of MacGregor et al. (32), referring to the sentence-middle 255 

word as “Target” and the sentence-ending word as “Resolution” (Table 3). Fig 4A shows the 256 

distributions of prediction entropy after the ambiguous (blue) vs. unambiguous (orange) target 257 

word. A one-way ANOVA indicates no significant difference between entropy in the two Target word 258 

types (mean entropy: ambiguous = 4.734, unambiguous = 4.658; p=0.59). Fig 4B shows the 259 

distributions of surprisal after receiving the resolving (blue) vs. unresolving (orange) Resolution 260 

word, either following an ambiguous (left panel) or unambiguous (right panel) Target. A two-way 261 

ANOVA showed that, although the surprisal values of resolving words are significantly higher than 262 

those of unresolving words regardless of Target ambiguity (mean surprisal: resolving = 7.741, 263 

unresolving = 5.937; p<0.001), there was no difference of surprisal depending on the preceding 264 

ambiguity of the Target word (mean surprisal: prior ambiguity = 6.955, no prior ambiguity = 6.724; p 265 

= 0.74), nor on the interaction between resolution and ambiguity (p = 0.68). Thus, similar to the 266 

model’s lemma-level prediction metrics (S2 Fig C), GPT-2 entropy does not reflect the semantic 267 

ambiguity of Target words, neither does the evoked surprisal capture the long-distance interaction 268 

between Target and Resolution.  269 

Table 3. Example sentence input to the MEG subject and GPT-2 270 

Lead in Target Bridge Resolve Unresolve 

The man knew that one more ace might be enough to win the tennis game 

The woman hoped that one more ace might be enough to win the tennis game 

The man knew that one more sprint might be enough to win the tennis game 

The woman hoped that one more sprint might be enough to win the tennis game 

We next compared how variabilities of semantic information and GPT-2 predictions correlate with 271 

neurophysiological responses. In particular, we tested the effects of semantic properties (conceptual 272 

replication of MacGregor et al. (32)) and GPT-2 prediction statistics on the MEG response during two 273 

time windows around the Target offset and the Resolution offset. As in the original M/EEG study, we 274 

focused on combined gradiometer pairs, which demonstrated the most robust effects, and two 275 

analysis time windows around the Target offset and Resolution offset respectively.  276 

 277 
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Fig 4. Effects of semantic properties and GPT-2 prediction statistics in MEG response to speech. A. 

Distributions of Target entropy for ambiguous and unambiguous Targets in all 58 sentences. B. Distributions 

of the surprisal values for Resolve (blue) and Unresolve (orange) Resolution words, following Ambiguous 

(left) or Unambiguous (right) Target words. C. Statistical test results for the effect of semantic ambiguity 

(left column) and GPT-2 prediction entropy (right column) on MEG combined gradiometer data around 

the time of Target offset. Top row: sensor-time maps for significance level (-log10(pc)) of sensor clusters 

showing the corresponding effect (see Methods for details of the calculation). Note that here both negative 

and positive effects are shown. Bottom rows: topological distributions of the corresponding effects 

averaged over four 250ms time windows spanning from -0.2 to 0.8s relative to the Target offset. Asterisks 
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denote sensor clusters that showed a prevalent positive effect of ambiguity within the time window. D. 

Statistical test results for the effect of semantic ambiguity in the preceding context (left column) and GPT-

2 prediction surprisal (right column) on MEG combined gradiometer data around the time of Resolution 

offset. Top row: sensor-time maps for significance level of sensor clusters. Bottom rows: Topological 

distributions of the corresponding effects averaged over six 250ms time windows, spanning from -0.5 to 1s 

relative to the Resolution offset. 

For the Target time window, we split the MEG response into two groups according to the property of 278 

the Target word pair: 1. The GPT-2 entropy of the ambiguous Target is larger than that of its 279 

unambiguous counterpart, and 2. The GPT-2 entropy of the ambiguous Target is smaller than that of 280 

its unambiguous counterpart. S3 Fig A shows the distribution of entropy differences between 281 

ambiguous and unambiguous Target word pairs (ambiguous minus unambiguous). Ambiguous Target 282 

words with difference > 0 (i.e. in group 1, 29 pairs in total) and unambiguous Targets with difference 283 

<0 (i.e. in group 2, 29 pairs in total) contribute to the high-entropy group, and the rest contribute to 284 

the low-entropy group. Such splitting ensures that the pair of Target words in the same sentence set 285 

is always separated into two conditions, thus controlling possible confounds of the preceding 286 

sentential context. Using a data-driven algorithm (see Methods), we identified sensor-time clusters 287 

that showed a significant effect (two-tailed paired student’s t-test, p<0.05, same in the following 288 

results) of semantic ambiguity by contrasting responses to ambiguous Target vs. unambiguous 289 

Target words, (Fig. 4C, left column). We also identified clusters showing an effect of GPT-2 entropy 290 

by contrasting responses to Target words with high vs. low entropies (Fig. 4C, right column). Sensor-291 

time statistical maps (Fig 4D, top row) as well as topographic plots over time (Fig 4D, bottom row) 292 

indicate that these two effects are likely distributed differently both in space and time. The absence 293 

of a significant correlation (Pearson’s correlation r=-0.04, p=0.66) between the sensor-wise effect 294 

sizes of the two contrasts (S4 Fig A) also suggests that semantic ambiguity and GPT-2 prediction 295 

entropy may account for different spatial aspects of the MEG responses. Interestingly, the positive 296 

effect of GPT-2 entropy arose before the word offset, whereas the positive effect of semantic 297 

ambiguity was only apparent after the word offset (Fig 4C, top row). 298 

For the Resolution timepoint, responses to only the Resolve sentence ending were split into two 299 

groups in a similar fashion as for Target: 1. The GPT-2 surprisal following the ambiguous Target was 300 

larger than the same word following the unambiguous Target , and 2. The GPT-2 surprisal following 301 

the ambiguous Target was smaller than the same word following the unambiguous Target. Thirty-six 302 

out of the 58 sentences were labeled as being in group 1, 22 in group 2 (S3 Fig B). The contrast 303 

between Resolution words following ambiguous vs. unambiguous Target words revealed an effect of 304 

ambiguity of the previous context distributed among right temporal-parietal and midfrontal areas 305 
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spanning several time windows before and after the word offset (Fig. 4D, left column). The contrast 306 

between Resolution words with high vs. low surprisal revealed an effect of GPT-2 prediction surprisal 307 

with a different spatial distribution, and restricted to -250 to 250ms (Fig. 4D, right column). Similar 308 

to the Target effects, the effect sizes of ambiguity and surprisal at Resolution offset were not 309 

correlated (r=0.001, p=0.99, S4 Fig B) across sensor locations. 310 

These results demonstrate that both GPT-2 word-prediction statistics and high-level semantic 311 

properties contribute to the variability in neural speech responses, but their effects exhibit different 312 

spatio-temporal distributions. Given that predictions from the GPT-2 output cannot directly capture 313 

the semantic properties we investigate here (Fig 4A, B), the approach of interpreting the neural 314 

response to speech (and more generally language) solely based on such predictions learned from 315 

word sequence statistics overlooks important aspects of the dynamics underlying higher-level 316 

language processing. Our model, on the other hand, explicitly depicts multiple levels of linguistic and 317 

nonlinguistic processes under the same computational principles. Thus, it points to a more 318 

interpretable and holistic approach to characterizing the functional network underlying speech 319 

comprehension.  A quantitative mapping between model and neural responses requires a nontrivial 320 

expansion of the model and is beyond the scope of the current study (see Discussion). 321 

Top-down prediction reduces processing effort 322 

The model works by iteratively calculating the discrepancy between top-down predictions 323 

(expectation of the input) and bottom-up input at each hierarchical level, and using such a 324 

discrepancy to modify the state estimates of superordinate levels. This does not mean the model 325 

needs to make the best prediction for the next input as in Fig 3A: hierarchical predictions are a 326 

necessary computational mechanism in relaying information for making better inferences, even if 327 

the actual input deviates from the predicted one. To examine how the prediction content may 328 

influence the inference process, we ran the model using the same input as Fig 2A and 3B, “one more 329 

ace wins the tennis”, but simulating the extreme case of uninformative (uniform distribution across 330 

all possibilities) top-down predictions. We found that the predictive content influenced both the 331 

model time course and final estimate.  332 

Compared to the condition of informative top-down predictions (Fig 3B), when top-down predictions 333 

were uninformative, the model still made correct inferences about every input, but with a slight 334 

delay for syllables (Fig 5A). Fig 5B contrasts the entropy and cumulative divergence during the 335 

inference process between the two conditions. Unsurprisingly, informative predictions lead to 336 

reduced entropy (maintenance of possible items) and divergence (magnitude of updates after the 337 
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integration of new evidence), both contributing to fewer steps of gradient descent at each point of 338 

belief updating, hence less computation effort in terms of processing time and energy cost (39).  339 

 

Fig 5. Influence of top-down predictions on syllable and lemma inference under high peripheral precision. 

All results are simulated with the sentence “One more ace wins the tennis”. With uninformative predictions,  

model responses at the semantic and context levels are nearly identical to Fig 2A because the model 

reached the same, almost-certain lemma estimates at the time of semantic updating (at each lemma 

offset). Therefore we omit the higher-level results here and in Fig 6. A. Estimation of posterior probabilities 

when top-down predictions are set to uniform distributions for all possible states. Compared to Fig 4B, 

there is a slight delay for the convergence of every syllable indicated by the small vertical bars, each 

corresponding to one spectral vector, in more than one possible state. The inference for lemma states is not 

significantly changed: once the model is certain about the first (or the second in the case of the last lemma) 

syllable, it can quickly converge to the correct lemma using its internal knowledge. B. Upper panels: 

entropy calculated from lemma and syllable states. With uninformative top-down prediction (red), the 

entropy of syllable states was raised for a short duration (~1-2 spectral vectors) more often than with 

informative (blue) prediction (eight times throughout the sentence versus once at the sentence onset). The 

difference is less obvious at the lemma level except during the very first syllable and the /the/ syllable in the 

last lemma. Lower panels: cumulative KL divergence for the two factors. Overall, the cumulative 

divergence is smaller when informative prediction is available (blue). 
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So far, we have simulated the model with the ideal scenario of arbitrarily high precisions (see 340 

Methods) at the continuous level. In general, a high precision implies that fine details of the input 341 

are utilized to evaluate the mapping between the input signal and the generative model, analogous 342 

to a perfect periphery that preserves the best possible spectro-temporal information from the 343 

acoustic input. It has been suggested that top-down predictions may be especially important under 344 

challenging situations, e.g. impaired auditory periphery (40). We tested the model with a broad 345 

range of precisions to assess how precision affects online speech processing. In particular, we 346 

lowered both the precision for the continuous state as well as for comparing the input with 347 

predicted activity in the six frequency channels (see Methods), which is analogous to lesioning the 348 

local computation supported by lateral connections and the cross-level information carried by 349 

bottom-up connections, respectively (28, 41). Within a considerable degree of degradation, the 350 

model performance is qualitatively the same as the intact model, in that it correctly infers the states 351 

of all factors, but a strong difference arises in the time it takes to converge, especially in the case of 352 

uninformative top-down predictions (S5 Fig A and B, precision=exp(6) vs. exp(16) in the intact 353 

condition). Fig 6 shows the comparison of informative vs. uninformative predictions similar to Fig 5, 354 

but with much lower peripheral precisions (exp(0)). Syllable identification was delayed in both cases 355 

when compared to their intact-periphery counterparts (Fig 6A vs. 4B, 6B vs. 5A), and the delay was 356 

more pronounced with uninformative predictions. This dramatic delay with uninformative prediction 357 

is accompanied by higher entropy (Fig 6C, upper panels) as well as divergence (Fig 6C, lower panels). 358 

However, an increase in effort during syllable recognition may be important to avoid inaccurate 359 

recognition: in Fig 6A, although the model saved processing time by relying on its prior knowledge, it 360 

did so at the cost of incorrectly identifying the final lemma as “the poker”. The tradeoff between 361 

processing and accuracy has been well-documented in the decision-making literature (42) and 362 

neuroeconomics (43), which reveals that humans flexibly adapt their strategy in challenging 363 

scenarios where high accuracy and low effort cannot be achieved simultaneously. Our results 364 

suggest that such tradeoff can be manipulated via adjusting one’s reliance on top-down prediction 365 

vs. bottom-up sensory information, an ability widely involved in perceptual processes including 366 

inferencing others’ intention (44) and likely lacking in certain neuropsychological disorders such as 367 

those inducing hallucinations (low sensory precision but high prediction precision) and autism 368 

spectral disorder (extraordinarily high sensory precision) (45). Nevertheless, the effort-accuracy 369 

tradeoff is also limited by the capacity of the sensory periphery: at extremely low precisions, the 370 

model’s syllable recognition breaks down without the guidance of informative top-down prediction 371 

(S5 Fig C and D, precision = exp(-4)).  372 
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Fig 6. Influence of prediction with lowered peripheral precision. The input sentence, as in Fig 4B and 5A 

was “One more ace wins the tennis”. Precision was set to p=exp(0), whereas in the intact model (Fig 4B and 

5A) p=exp(16). A and B: state estimation with and without informative prior. C and D: entropy and 

divergence in the two conditions. A. With informative prediction, the result is similar to that in Fig. 2A, 

except that 1) for the last lemma input, the model relied on the prediction, biased towards “the poker”, and 

made the wrong inference, and 2) for the starting syllable in each lemma, the model took several spectral 

vectors to converge as indicated by the colored bars. B. Without prediction, the model took longer to infer 

each syllable compared to A, but the inference was correct. C. Upper panels: entropy with informative 

(blue) or uninformative (red) top-down prediction for lemma and syllable estimates. Without informative 

prediction, the uncertainty increased at the onset of every syllable instead of only for the syllable with 

multiple possible candidates (e.g. the syllable after “the” in the last lemma), and also reached higher 

magnitude as well as longer duration compared to the informative condition. Lower panels: cumulative 

divergence in the two conditions. The divergence for syllable states was lower with informative prediction, 

but not for lemma. However, the summed divergence of the two levels is slightly higher with uninformative 

prediction. 

Overall, the model demonstrates that hierarchical prediction, whether highly informative about the 373 

next input or not, can serve as a key computational mechanism for robustly extracting structured 374 

information from ongoing speech, and that informative predictions are desirable when processing 375 

effort needs to be minimized, and in time constrained situations (e.g. turn-taking). With an impaired 376 

periphery, greater effort is required to obtain accurate perception.  377 

  378 
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Discussion 379 

The idea that our brains adaptively entertain internal models and that this facilitates language 380 

comprehension underlies much current research in speech (language) perception. Nevertheless, 381 

how internal knowledge is deployed in time, in relation to the timing of continuous speech 382 

unfolding, is an open question, and may be key to achieve the form-meaning distinction in neural-383 

network language models (23, 24). Here, we attempt to establish a foundational framework that 384 

dynamically exploits general knowledge in speech comprehension to bridge this gap. We implement 385 

the listener’s internal knowledge as a probabilistic generative model that consists of a non-linguistic 386 

general knowledge (cognitive) model and multiple temporally organized hierarchies encoding 387 

linguistic and acoustic knowledge. Speech perception, modeled as the inversion of this generative 388 

model, involves interleaved top-down and bottom-up message passing in solving the computational 389 

challenge of extracting meaning from ongoing, continuous speech. We show that the model makes 390 

plausible inference of hierarchical information from semantically ambiguous speech stimuli and 391 

demonstrate the influence of prior knowledge on the inference process, which is reflected in the 392 

neural response to speech stimuli but not in next-word prediction statistics of a deep neural-393 

network language model (GPT-2) (20). We also show that hierarchical predictions can be exploited to 394 

reduce processing effort. The model tries to mimic human language comprehension by jointly 395 

implementing incrementality and prediction (46), and could potentially be expanded towards a 396 

comprehensive model of natural language understanding, and guide the interpretation of 397 

neurophysiological phenomena in realistic listening scenarios. 398 

Language comprehension as semantic role assignment 399 

Although we emphasize that speech (language) comprehension is driven by high-level behavioral 400 

goals, to achieve comprehension the appropriate assignment of semantic roles is crucial for 401 

(re)constructing the message conveyed in the utterance, e.g. the “mental image” in Fig 1A. Semantic 402 

roles can be viewed as an interface between linguistic and nonlinguistic representations, the latter 403 

being a fundamental, domain-general format of our internal abstraction of the world (24, 25) that is 404 

shown to both behaviorally and neurophysiologically influence language comprehension (47, 48). 405 

The process of semantic role assignment is central in psycholinguistic process theories (46, 49-51), 406 

yet seldom reflected explicitly in existing computational models of language. A major challenge for 407 

modeling semantic role assignment during language processing is in combining meaning extraction 408 

with compositionality: words that carry semantic contents are presented in an order dictated by 409 

compositional rules, thus the extraction of persisting meanings must take place dynamically 410 
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alongside the decomposition. These two aspects have only been addressed separately in some 411 

existing models, e.g. topic models (9, 52) fulfill (lexical) semantic processing but ignore the word 412 

order. On the other hand, the Discovery of Relation by Analogy model (11, 53) learns the time-based 413 

binding rules that decompose words and phrases into hierarchical structures, but does not have 414 

explicit representations of semantic knowledge.  415 

A recent model of linguistic communication (12) did incorporate abstract nonlinguistic (geometric) 416 

knowledge and compositionality, but lacked the incremental nature of the meaning-building process 417 

in humans (2). The generative model encoded several templates of complete sentences and a set of 418 

geometric properties. By applying nonlinguistic knowledge under the goal of resolving object 419 

properties, the model generated sentences by picking the most probable sentence format and filling 420 

specific positions with the most helpful descriptive words. The inverse model thus comprehends a 421 

word sequence by inferring the sentence format and capturing keywords at the corresponding 422 

positions. This template-matching strategy realized a form of meaning-structure conjunction. 423 

However, it constrains the model comprehender to update its estimate of the sentence at the 424 

sentence offset instead of on the fly during the sentence. 425 

Our model achieves human-like speech (language) comprehension in that it applies syntactic rules to 426 

dynamically update values assigned to semantic roles with each incoming lemma. It does not rely on 427 

a direct representation of sentences, but incrementally builds up its understanding of an utterance 428 

through incorporating new evidence into current beliefs of semantic roles. We share this notion with 429 

the Sentence Gestalt (SG) model of language comprehension, which achieves dynamic thematic role 430 

assignment from lexical inputs using a neural network trained on linguistic stimuli produced by a 431 

probabilistic generative model (13, 54). The function of situation and thematic roles in this 432 

generative model are homologous to that of the context (situation) and semantic (thematic) factors 433 

of our model. However, while  the SG model extracts thematic information from lexical input, a 434 

central  feature of our model is to deploy all the hierarchies from the online processing of continuous 435 

speech to language comprehension. The variational Bayesian approach and the gradient-based 436 

algorithms we used here have two particular advantages. First, it allow us to explicitly model the 437 

interactions within and between meaningful computational hierarchies, and second, they can 438 

account for dynamics of neuronal activities such as local field potentials (39, 55). We therefore 439 

believe our model is better suited to our goal of explaining language processing within a potentially 440 

unifying account of neuronal message passing, rather than in terms of neural-like network 441 

activations (see next section).  442 
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The behavioral (nonlinguistic) goal of language comprehension is implemented minimally in the 443 

current model as the task of inferring a simple context (situation) level, which represents the basic 444 

“world knowledge” necessary for resolving semantic ambiguity. To implement cognitively more 445 

elaborate language tasks, the context level in the model would need to include additional elements 446 

that likely involve multiple decision hierarchies (56). Yet, while a model can include an arbitrary 447 

number of hierarchies, there is not an infinity of corresponding specialized brain regions. 448 

Computational hierarchies, especially those of higher cognitive functions that can expand to an 449 

infinite depth, are therefore likely embodied by information exchanges among a limited number of 450 

functionally specialized regions, through reciprocal interactions that can theoretically implement 451 

unlimited hierarchical structures using only two abstract chunking levels (57, 58). These information 452 

exchanges reflect the probabilistic mappings in the comprehender’s internal model, as shown in Figs 453 

2 and 3, and play an important role for linking the model’s computational principles to 454 

neurophysiological data of speech information processing in the human brain. 455 

Understanding neural information transfer through divergence and 456 

entropy 457 

Brains process internal and external information with high efficiency. Two types of information 458 

theoretic metrics have been of particular interest in establishing the connection between abstract 459 

information and biophysical signals to probe the brain’s information processing capacity: surprisal 460 

(related to, but distinct from divergence) and entropy. Efforts in associating neurophysiological 461 

responses to surprisal for next-word expectation, either based on cloze probability tests (32, 59-61) 462 

or the probabilistic distribution estimated by computational models (35-37, 62-65), largely credit 463 

Levy’s influential work on expectation-based comprehension (10). Levy proposed a formal 464 

relationship between incremental comprehension effort and the Kullback-Leibler divergence (KLD) 465 

of syntactic structure inference before and after receiving a word input W, and proved that the KLD 466 

reduced to the surprisal of W given the previous word string when conditioned on a constant extra-467 

sentential context that constrains comprehension. Although these studies robustly found 468 

neurophysiological correlates of word surprisal, focusing on this aggregated measure without 469 

explicitly modeling probabilistic representations above the word level may not be enough to tease 470 

out the influence of high-level factors on language processing  as was shown in Figs 3, 4 and S2 (62). 471 

High-level processes presumably explain conflicting findings across studies on evoked response (66) 472 

and underlying neuronal circuits (32, 36, 61) of word surprisal, because different experimental 473 

paradigms likely tap into different language processing modes, making word surprisal too coarse a 474 

measure. Here, we demonstrate the possibility to explicitly model information transduction above 475 
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lexical processing and use KLD as a universal metric to quantify information transfer, in line with 476 

some predictive coding hypothesis that propose KLD to be driving the prediction error signal 477 

transmitted between cortical hierarchies (55, 67).  478 

Regarding entropy, the measure of information in a system (68) that represents the uncertainty in 479 

linguistic stimuli, it has drawn less interest compared to surprisal metrics (32, 36, 69, 70). There is no 480 

consensus on how information is maintained between two instantaneous belief updates, and 481 

entropy may be valuable in investigating the representation of information in the brain. Intuitively, 482 

higher entropy implies greater effort (more possibilities to be maintained), and less precise 483 

estimates thus weaker top-down prediction influence, but it is unclear what neural activities can 484 

underpin such effects. Noninvasive whole-brain imaging may inform us when and where the effort 485 

takes place given that entropy and divergence can be properly dissociated (36), whereas the 486 

biophysical implementation, e.g. neuronal firing patterns, may only be revealed by invasive 487 

methods. 488 

By showing that information passing across different processing levels contribute in a 489 

complementary manner to the variability of the neurophysiological response to speech (Fig 4), our 490 

model supports the neural processing of language as hierarchically organized information passing 491 

among brain areas. Both KLD and entropy, as well as bottom-up prediction errors and top-down 492 

priors that can be decomposed from KLD (71), are suitable metrics for such an investigation. 493 

Although no definitive conclusion has been drawn on the anatomical circuits involved in high-level 494 

(semantic and beyond) message passing during speech perception, a converging view is that the 495 

extraction of different hierarchical representations is distributed in networks that perform multiple 496 

subprocesses in parallel (72-75). Recent temporally and spatially resolved neuroimaging studies 497 

suggest that neural oscillations are a good candidate mechanism for timed information transmission 498 

in these subprocesses (67, 76-78). The discrete portion of our model, or in theory any model with 499 

explicit structural and timing information (11, 53), can provide a template for organizing distributed 500 

oscillatory activities into functional hierarchies through correlating latency- and frequency-specific 501 

neuronal dynamics with model-derived information metrics. In general, sensory inputs sampled by 502 

fast (gamma) oscillation are parsed into higher-level information as phase alignments of slow (theta, 503 

delta) oscillations (26, 76, 79-82), which are found to be modulated by level-specific speech 504 

information (32, 36, 61) and top-down coordination of mid-range (alpha, beta) oscillations (78, 79, 505 

83-87). One promising avenue that exploits both model-derived computational metrics and neural 506 

oscillations to disentangle neural information transfer is via a forward model that explains the 507 

neurophysiological signal as a result of input-modulated changes in direction-specific connection 508 
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strengths between specific neural sources (brain areas), i.e. effective connectivity (88, 89). Through 509 

hypothesis testing of specific brain areas and their connectivity patterns relevant for language 510 

processing, direction (top-down or bottom-up) of information transfer can be distinguished by 511 

frequency band-specific induced activities (90), and the functional hierarchy as well as the 512 

computational roles of different connections may be mapped by regressing their modulation gain 513 

with model-derived information metrics.  514 

The proposed approach is fundamentally different from a purely data-driven one that identifies 515 

neural response patterns correlated with pooled activities from hidden layers of a neural network 516 

trained on specific tasks of next-input predictions such as in (62, 64, 65). The brain interacts with the 517 

external stimuli, whether linguistic or not, in a structured fashion that is likely reused across 518 

different domains (44, 58). Thus, a clear computational interpretation of brain activity patterns 519 

requires an explicit representation of such structures that is lacking in most neural network models.  520 

Future development towards natural language understanding 521 

In this work, we provide a basic model that integrates linguistic and nonlinguistic world knowledge in 522 

speech perception. Though the current work focuses on resolving ambiguity in semantic role 523 

assignment within a reduced language and world model, the framework of a hierarchical generative 524 

model is suitable for capturing various features of human language processing. For example, 525 

additional branches can be “plugged-in” onto specific levels of the current generative model to 526 

enable multi-modal speech processing. One possible case is to generate continuous lip movement 527 

from each syllable (91, 92), in parallel with the syllable-to-acoustic generation. The inverse 528 

(comprehension) model is then equipped to deal with audiovisual speech input, and can thus 529 

potentially simulate known effects including using one modality to disambiguate the other (e.g. a 530 

high-precision visual processing to mitigate noisy auditory input), or processing conflicting bimodal 531 

inputs (e.g. relying more on the modality that has higher precision)(92). The additional branch can 532 

also be attached to the context level to generate a sequence of events, such as a car speeds up and 533 

hits a streetlight, to allow the inverse model to make inference about the shared context from both 534 

linguistic (speech) and nonlinguistic inputs.  535 

Another important feature of language processing is learning, which is also necessary for upscaling 536 

the model to reflect the wealth of linguistic and nonlinguistic knowledge mastered by a real listener. 537 

Language learning can be conceptualized as consisting of two complementary components: 1) 538 

learning the structure of the generative model, including the possible states of different factors and 539 

syntactic rules; 2) learning the parameters of the generative model, including priors, likelihoods, and 540 
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precisions, which are fixed in the current model. Although it is nontrivial to extend the current 541 

model to include either type of learning, they could be achieved within the framework of 542 

probabilistic generative models. For the first type, a plausible algorithm of statistical parameter 543 

learning of structured contextual and semantic knowledge is the one proposed for the “topic” model 544 

of semantic representation (9, 52). Griffiths et al. (9) also pointed to a possible way to integrate 545 

complex syntax and semantic generative models by replacing one component in a syntax model (93) 546 

with such a topic model. This would allow the syntax model to determine an appropriate semantic 547 

component for the current timepoint and the semantic model to generate a corresponding word, 548 

which is consistent with the way semantic and syntax factors interact in our current model. More 549 

recently, Beck and colleagues (94) showed that a formal equivalence of the topic model can be 550 

implemented via a probabilistic (neural) population code, providing a plausible path to a neural 551 

implementation of the model. The second type of learning can be viewed by updating the relevant 552 

parameters within a fixed structure learned from a structure-learning model. Such an updating 553 

algorithm has been implemented within the dynamic expectation maximization (DEM) framework 554 

that we currently use (95). To exploit the algorithm, the current generative model needs to be 555 

modified to include a relevant task and associated rewards (both external and internal), so that the 556 

model can actively adjust its parameters to optimize rewards. This way, top-down predictions can 557 

evolve from naïve (e.g. uniform prior as we simulated in Results) to specific.     558 

Overall, this model adopts a different and complementary perspective from the rapidly developing 559 

world of large-scale natural language models (19-21) in that it puts upfront the gross biological 560 

factors that motivate language in the first place (96-99), rather than those that seek to match human 561 

performance via selected measurements in specific tasks. Recent interesting endeavors in merging 562 

these two perspectives focus on adding more “neural features”, such as longer memory span and 563 

domain-general knowledge beyond language, to improve natural language models (24, 25). While 564 

this strategy is useful from the viewpoint of artificial language processing, it stays relatively removed 565 

from the specific biological substrates of language and hence sheds little light on how human 566 

language emerged and evolved under evolutionary pressure. Here, we propose a computational 567 

framework to address more directly these fundamental questions by explicitly including 568 

nonlinguistic components in the model architecture and using hierarchical (as opposed to 569 

aggregated) prediction as a general computational strategy. Although here we focus on a passive 570 

listener, a comprehensive model of human language understanding should also consider interactive 571 

aspects of language, i.e. language production and multi-person communication (12) where language 572 

serves as a medium to achieve shared goals (24, 100-103).   573 
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Methods 574 

Model for speech comprehension 575 

We model speech perception by inverting a generative model of speech that is able to generate 576 

semantically meaningful sentences to express possible facts about the world. Since our main goal is 577 

to illustrate the cognitive aspect of speech comprehension, we use the model to simulate a semantic 578 

disambiguation task similar to MacGregor et al. (32). The task assesses the semantic ambiguity early 579 

in a sentence, which is disambiguated later in the sentence on half of the trials. Speech inputs to the 580 

model were synthesized short sentences adapted from MacGregor et al. (32).   581 

In the next section we describe the speech stimuli, present the generative model, and briefly 582 

describe the approximate inversion of the generative model as well as the two information theoretic 583 

measures that could be related to measurable brain activity. 584 

1. Speech stimuli 585 

In the original design of MacGregor and colleagues, eighty sentence sets were constructed to 586 

test the subjects’ neural response to semantic ambiguity and disambiguation. Each set consists 587 

of four sentences in which two sentence MIDDLE WORDS crossed with two sentence final words. 588 

From the two sentence middle words, one was semantically ambiguous and from the two 589 

sentence final words one disambiguated the ambiguous middle word, and the other did not 590 

resolve the ambiguity. For example: 591 

The man knew that one more ACE might be enough to win the tennis. 592 

The woman hoped that one more SPRINT might be enough to win the game. 593 

The middle word was either semantically ambiguous (“ace” can be a special serve in a tennis 594 

game, or a poker card) or not (“sprint” only has one meaning of fast running); the two ending 595 

words either resolved the ambiguity of the middle word (“tennis” resolves “ace” to mean the 596 

special serve, not the poker card) or not (“game” can refer to either poker or tennis game). We 597 

chose this set as part of input stimuli to the model, but reduced the sentences to essential 598 

components for simplicity:  599 

One more ACE/SPRINT wins the tennis/game. 600 

The four sentences point to a minimum of two possible contexts, i.e. the nonlinguistic 601 

backgrounds where they might be generated: all combinations can result from a “tennis game” 602 
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context, and the ACE-game combination can additionally result from a “poker game” context. 603 

Importantly, in our model the context is directly related to the interpretation of the word “ace”.  604 

To balance the number of plausible sentences for each context, we added another possible mid-605 

sentence word “joker”, which unambiguously refers to a poker card in the model’s knowledge. 606 

We also introduced another possible sentence structure to add syntactic variability within the 607 

same contexts: 608 

One more ACE/SPRINT is surprising/enough. 609 

The two syntactic structures correspond to two different types of a sentence: the “win” 610 

sentences describe an event, whereas the “is” sentences describe a property of the subject. 611 

We chose a total of two sentence sets from the original design. The other set (shortened 612 

version) is:  613 

That TIE/NOISE ruined the game/evening. 614 

In these sentences, the subject “tie” can either mean a piece of cloth to wear around the neck 615 

(“neckband” in the model) or equal scores in a game. The ending word “game” resolves it to the 616 

latter meaning, whereas “evening” does not disambiguate between the two meanings. Similar to 617 

set 1, we added the possibility of property-type sentences. Table 2 lists all possible sentences 618 

and their corresponding contexts within the model’s knowledge (ambiguous and resolving words 619 

are highlighted). 620 

The input to the model consisted of acoustic spectrograms that were created using the Praat 621 

(104) speech synthesizer with British accent, male speaker 1.  622 

In this work we are not focusing on timing or parsing aspects, rather on how information is 623 

incorporated into the inference process in an incremental manner and how the model’s 624 

estimates about a preceding word can be revised upon new evidence during speech processing. 625 

Therefore, we chose the syllable as the interface unit between continuous and symbolic 626 

representations, and fixed the length of the input to simplify the model construction (see details 627 

in Generative model). Each sentence consists of four lemma items (single words or two-word 628 

phrases), and each lemma consists of three syllables. All syllables were normalized in length by 629 

reducing the acoustic signal to 200 samples.  630 

Specifically, in Praat, we first synthesized full words, then separated out syllables using the 631 

TextGrid function. A 6-by-200 time-frequency (TF) matrix was created for each unique syllable by 632 

averaging its spectro-temporal pattern into 6 log-spaced frequency channels (roughly spanning 633 

from 150 Hz to 5 kHz) and 200 time bins in the same fashion as in Hovsepyan et al. (26). Each 634 
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sentence input to the model was then assembled by concatenating these TF matrices in the 635 

appropriate order.  Since we fixed the number of syllables in each word (Ns = 3), words 636 

consisting of fewer syllables were padded with “silence” syllables, i.e. all-zero matrices. During 637 

simulation, input was provided online in that 6-by-1 vectors from the padded TF matrix 638 

representing the full sentence were presented to the model one after another, at the rate of 639 

1000 Hz. In effect, all syllables were normalized to the same duration of 200ms. The same TF 640 

matrices were used for the construction of the generative model as speech templates (see 641 

section 2c for details). 642 

2. Generative model 643 

The generative model goes from a nonlinguistic, abstract representation of a message defined in 644 

terms of semantic roles to a linearized linguistic sentence and its corresponding sound 645 

spectrogram. The main idea of the model is that listeners have knowledge about the world that 646 

explains how an utterance may be generated to express a message from a speaker.  647 

In this miniature world, the modeled listener knows about a number of contexts, the scenarios 648 

under which a message is generated (to distinguish them from names given to representation 649 

levels in the model, we will use italic to refer to factors at each level; see below). Each message 650 

can either be of an “event” type that describes an action within the context, or of a “property” 651 

type that expresses a characteristic of an entity that exists in the context. Context and type are 652 

nonlinguistic representations maintained throughout the message but make contact with 653 

linguistic entities via semantics and syntax, which jointly determine an ordered sequence of 654 

lemma that then generates the acoustic signal of an utterance that evolves over time.  655 

As in the real world, connections from context to semantics and semantics to lemma are not 656 

one-to-one, and ambiguity arises, for example, when two semantic items can be expressed as 657 

the same lemma. In this case the model can output exactly the same utterance for two different 658 

messages. When the model encounters such an ambiguous sentence during inference, it will 659 

make its best guess based on its knowledge when ambiguity is present (see Model inversion). 660 

For illustrative purposes, we only consider a minimum number of alternatives, sufficient to 661 

create ambiguity, e.g. the word “ace” only has two possible meanings in the model. Also, while 662 

the model generates a finite set of possible sentences, they are obtained in a compositional 663 

fashion; they are not spelled out explicitly anywhere in the model, and must be incrementally 664 

constructed according to the listener’s knowledge.   665 

Specifically, the generative model (Figure 1A) is organized in three hierarchically related 666 

submodels that differ in their temporal organization, with each submodel providing empirical 667 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.04.01.486694doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486694
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

priors to the subordinate submodel, which then evolves in time according to its discrete or 668 

continuous dynamics for a fixed duration (as detailed below). Overall, this organization results in 669 

six hierarchically related levels of information carried by a speech utterance, from high to low 670 

(L1-L6) we refer to them as: context, semantics and syntax, lemma, syllable, acoustic, and the 671 

continuous signal represented by time-frequency (TF) patterns that stands for the speech output 672 

signal.  673 

Each level in the model consists of one or more factors representing the quantities of interest 674 

(e.g., context, lemma, syllable …), illustrated as rectangles in Fig 1A. We use the term “states” or 675 

hidden states to refer to the values that a factor can take (e.g. in the model the factor context 676 

can be in one of four states {‘poker game’, ‘tennis game’, ‘night party’, ‘racing game’}. For a 677 

complete list of factors and their possible states of context to lemma levels see Table 1).  678 

As an example, to generate a sentence to describe an event under a “tennis game” context, the 679 

model picks “tennis serve” as the agent, “tennis game” as the patient, and “win” as their 680 

relationship. When the syntactic rule indicates that the current semantic role to be expressed 681 

should be the agent, the model selects the lemma “ace”, which is then sequentially decomposed 682 

into three syllables /eis/, /silence/, /silence/. Each syllable corresponds to eight 6-by-1 spectral 683 

vectors that are deployed in time over a period of 25 ms each. The generative model therefore 684 

generates the output of continuous TF patterns as a sequence of “chunks” of 25 ms.   685 

We next describe in detail the three submodels: 686 

a. Discrete non-nested: context to lemma via semantic (dependency) and syntax (linearization) 687 

The context level consists of two independent factors: the context c and the sentence type 688 

Ty. Together, they determine the probability distribution of four semantic roles: the agent 689 

sA, the relation sR, the patient sP, and the modifier sM. An important assumption of the model 690 

is that states of context, type and semantic roles are maintained throughout the sentence as 691 

if they had      memory. These semantic roles generate a sequence of lemmas in the 692 

subordinate level, whose order is determined by the syntax, itself determined by the 693 

sentence type. This generative model for the first to the nth lemma is ( 𝑠 denotes the 694 

collection of all semantic factors 𝑠 = {𝑠𝐴, 𝑠𝑅 , 𝑠𝑃 , 𝑠𝑀}: 695 

𝑝(𝑤1, ⋯ , 𝑤𝑛, 𝑠𝑦𝑛1, ⋯ , 𝑠𝑦𝑛𝑛, 𝑠, 𝑐, 𝑇𝑦) = 696 

𝑝(𝑤1|𝑠𝑦𝑛1, 𝑠) ⋯ 𝑝(𝑤𝑛|𝑠𝑦𝑛𝑛, 𝑠)𝑝(𝑠|𝑐, 𝑇𝑦)𝑝(𝑐)𝑝(𝑠𝑦𝑛1, ⋯ , 𝑠𝑦𝑛𝑛|𝑇𝑦)𝑝(𝑇𝑦) (1) 697 

Here, p(c) is the prior distribution for the context. The prior probability for the sentence type 698 

p(Ty) was fixed to be equal between “property” and “event”.  699 
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The terms 𝑝(𝑠|𝑐, 𝑇𝑦) and 𝑝(𝑠𝑦𝑛1, ⋯ , 𝑠𝑦𝑛𝑛|𝑇𝑦) can be further expanded as: 700 

𝑝(𝑠|𝑐, 𝑇𝑦) = 𝑝(𝑠𝐴|𝑐)𝑝(𝑠𝑅|𝑐, 𝑇𝑦)𝑝(𝑠𝑃|𝑐, 𝑇𝑦)𝑝(𝑠𝑀|𝑐, 𝑇𝑦) (2) 701 

𝑝(𝑠𝑦𝑛1, ⋯ , 𝑠𝑦𝑛𝑛|𝑇𝑦) = 𝑝(𝑠𝑦𝑛1|𝑇𝑦) ⋯ 𝑝(𝑠𝑦𝑛𝑛|𝑇𝑦) (3) 702 

When Ty=’event’, the sentence consists of an agent, a patient, a relation between the agent 703 

and the patient, and a null (empty) modifier.  When Ty=’property’, the sentence consists of 704 

an agent, a modifier that describes the agent, a relation that links the agent and the 705 

modifier, and a null patient.   706 

To translate the static context, type and semantic states into ordered lemma sequences, we 707 

constructed a minimal (linear) syntax model consistent with English grammar. We constrain 708 

all possible sentences to have four syntactic elements syn1-syn4, values are {‘attribute’, 709 

‘subject’, ‘verb’, ‘object’, ‘adjective’}. The probability of synn is dependent solely on Ty. 710 

The syntactic element syni is active during the ith epoch, and each possible value of the 711 

syntax (except ‘attribute’ that directly translates to a lemma item randomly determined 712 

within {‘one more’, ‘that’}) corresponds to one semantic factor (semantic factors in the 713 

model include subject, verb, object and adjective): 714 

Subject—agent ; Verb—relation ; Object—patient ; Adjective—modifier 715 

Thus, sentences of the “event” type are always expressed in the form of subject-verb-object 716 

(SVO), and those of the “property” type in the form of subject-verb-adjective (SVadj). In the 717 

ith lemma epoch, the model picks the current semantic factor via the value of syni and finds a 718 

lemma to express the value (state) of this semantic factor, using its internal knowledge of 719 

mapping between abstract, nonlinguistic concepts to lexical items (summarized in the form 720 

of a dictionary in Appendix I). Note that the same meaning can be expressed by more than 721 

one possible lemma, and several different meanings can result in the same lemma, causing 722 

ambiguity. The mapping from L2 to L3 can be defined separately for each lemma as follows:   723 

● The first lemma (w1 the attribute) does not depend on semantics or syntax and the 724 

model would generate “one more” or “that” with equal probability (p=0.5).  725 

● w2 and w3 are selected according to agent and patient values, respectively, which 726 

are themselves constrained by context.  727 

● w4 can be either a patient or a modifier depending on Ty.  728 
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Prior probabilities of context and type, as well as probabilistic mappings between levels 729 

(eq.2-4), are all defined in the form of multidimensional arrays. Detailed expressions and 730 

default values can be found in Appendix II.   731 

b. Discrete nested: lemma to spectral 732 

Over time, factors periodically make probabilistic transitions between states (not necessarily 733 

different). Different model levels are connected in that during the generative process, 734 

discrete hidden (true) states of factors in a superordinate level (Ln) determine the initial 735 

state of one or more factors in the subordinate level (Ln+1). The Ln+1 factors then make a fixed 736 

number of state transitions. When the Ln+1 sequence is finished, Ln makes one state 737 

transition and initiates a new sequence at Ln+1. State transitioning of different factors within 738 

the same level occurs at the same rate. We refer to the time between two transitions within 739 

each level as one epoch of the level. Thus, model hierarchies are temporally organized in 740 

that lower levels evolve at higher rates and are nested within their superordinate levels.  741 

The formal definition of the discrete generative model is shown in eq.1, where the joint 742 

probability distribution of the mth outcome modality (here generally denoted by om, specified 743 

in following sections) and hidden states (generally denoted by sn) of the nth factor up to a 744 

time point τ, is determined by the priors over hidden states at the initial epoch P(sn, 1), the 745 

likelihood mapping from states to outcome P(o|s) over time 1:τ, and the transition 746 

probabilities between hidden states of two consecutive time points P(sn, t|sn, t-1) up to t=τ: 747 

𝑃(𝑜𝑚,1:τ, 𝑠𝑛,1:τ) = 𝑃(𝑠𝑛,1) ∏ 𝑃(𝑜𝑚,τ|𝑠𝑛,τ)𝑃(𝑠𝑛,τ|𝑠𝑛,τ−1)

τ

(4) 748 

For lower discrete levels, representational units unfold linearly in time, and a sequence of 749 

subordinate units can be entirely embedded within the duration of one superordinate 750 

epoch. Therefore, the corresponding models are implemented in a uniform way: the hidden 751 

state consists of a “what” factor that indicates the value of the representation unit (e.g. the 752 

lemma ‘the tennis’), and a “where” factor that points to the location of the outcome 753 

(syllable) within the “what” state (e.g. the 2nd location of ‘tennis’ generates syllable ‘/nis/’). 754 

During one epoch at each level (e.g. the entire duration of the lemma “the tennis”), the 755 

value of the “what” factor remains unchanged with its transition probabilities set to the unit 756 

matrix. The “where” factor transitions from 1 to the length of the “what” factor, which is the 757 

number of its subordinate units during one epoch (three syllables per lemma). Together, the 758 

“what” and “where” states at the lemma level generate a sequence of syllables by 759 

determining the prior for “what” and “where” states in each syllable. In the same fashion, 760 
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each syllable determines the prior for each spectral vector. Thus, the syllable level goes 761 

through 8 epochs, and for each epoch the output of the syllable level corresponds to a 762 

spectral vector of dimension (1 x 6, number of frequency channels). This single vector 763 

determines the prior for the continuous submodel.   764 

Such temporal hierarchy is roughly represented in Figure 1B (downward arrows).  765 

Unlike L1 and L2 states that are maintained throughout the sentence, states of the lemma 766 

level and below are “memoryless”, in that they are generated anew by superordinate states 767 

at the beginning of each epoch. This allows us to simplify the model inversion (see next 768 

section) using a well-established framework that exploits the variational Bayes algorithm for 769 

model inversion (71). The dynamic expectation maximization (DEM) framework of Friston et 770 

al. (71) consists of two parts: hidden state estimation and action selection. In our model, the 771 

listener does not perform any overt action (the state estimates do not affect state 772 

transitioning), therefore the action selection part is omitted.  773 

Using the notation of Eq.1, parameters of the generative model are defined in the form of 774 

multidimensional arrays:  775 

Probabilistic mapping from hidden states to outcomes: 776 

𝑃(𝑜𝑚,τ|𝑠1,τ, … , 𝑠𝑁,τ) = 𝐶𝑎𝑡(𝐴𝑚) (5) 777 

Probabilistic transition among hidden states: 778 

𝑃(𝑠𝑛,τ+1|𝑠𝑛,τ) = 𝐶𝑎𝑡(𝐵𝑛,τ) (6) 779 

Prior beliefs about the initial hidden states:  780 

𝑃(𝑠𝑛,1) = 𝐶𝑎𝑡(𝐷𝑛) (7) 781 

For each level we define A, B, D matrices according to the above description of hierarchical 782 

“what” and “where” factors: 783 

● Probability mappings (matrix A) from a superordinate “what” to a subordinate 784 

“what” states are deterministic, e.g. p(sylb=’/one/’|lemma=’one more’, where=1)=1, 785 

and no mapping is needed for “where” states;  786 

● Transition matrices (B) for “what” factors are all identity matrices, indicating that 787 

the hidden state does not change within single epochs of the superordinate level;  788 

● Transition matrices for “where” factors are off-diagonal identity matrices, allowing 789 

transition from one position to the next; 790 
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● Initial states (D) for “what” factors are set by the superordinate level, and always 791 

start at position 1 for “where” factors. 792 

c. Continuous: acoustic to output  793 

The addition of an acoustic level between the syllable and the continuous levels is based on 794 

a recent biophysically plausible model of syllable recognition, Precoss (26). In that model 795 

syllables were encoded with continuous variables and represented, as is the case here, by an 796 

ordered sequence of 8 spectral vectors (each vector having six components corresponding 797 

to six frequency channels).  In the current model we only implemented the bottom level of 798 

the Precoss model (see also (28)), which deploys spectral vectors into continuous temporal 799 

patterns. Specifically, the outcome of the syllable level sets the prior over the hidden cause, 800 

a spectral vector I that drives the continuous model. It represents a chunk of the time-801 

frequency pattern determined by the “what” and “where” states of the syllable level sω and 802 

sγ respectively:   803 

𝐼𝑓 = ∑ ∑ 𝑠𝜔

8

𝛾=1

𝑁𝑠𝑦𝑙

𝜔=1

𝑠𝛾𝑉𝑓𝜔𝛾 + 𝜖𝐼 (8) 804 

𝑉𝑓ωγ = 𝐺𝑓(𝑇𝐹ωγ) − 𝑊𝑓 tanh(𝑇𝐹ωγ) (9) 805 

The noise terms εI is random Gaussian fluctuation. TFωγ stands for the average of the 6x200 806 

TF matrix of syllable ω in the γth window of 25 ms. G and W are 6x6 connectivity matrices 807 

that ensure the spectral vector I determines a global attractor of the Hopfield network that 808 

sets the dynamics of the 6 frequency channels. Values of G, W and a scalar rate constant κ in 809 

eq. 9-10 are the same as in Precoss: 810 

d𝑥

d𝑡
= κ[−𝐺𝑥 + 𝑊 tanh 𝑥 + 𝐼] + ϵ𝑥 (10) 811 

The continuous state of x determines the final output of the generative model v, which is 812 

compared to the speech input during model inversion. As x, v is a 6x1 vector: 813 

𝑣 = 𝑥 + ϵ𝑣 (11) 814 

The precision of the output signal depends on the magnitude of the random fluctuations in 815 

the model (ε in eq. 8, 10, 11). During model inversion, the discrepancy between the input 816 

and the prediction of the generative model, i.e. the prediction error, are weighted by the 817 

corresponding precisions and used to update model estimates in generalized coordinates 818 

(41). We manipulated the precisions for continuous state x and activities of frequency 819 

channels v to simulate from intact (HP) to impaired (LP) periphery. The precision for top-820 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.04.01.486694doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486694
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

down priors from the syllable level, Ps, was kept high for all simulations (see Table 1 for 821 

values used in different conditions). 822 

The continuous generative model and its inversion were implemented using the ADEM 823 

routine in the SPM12 software package (105), which integrates a generative process of 824 

action. Because we focus on passive listening rather than interacting with the external 825 

world, this generative process was set to identical to the generative model and without an 826 

action variable. Precisions for the generative process were the same for all simulations 827 

(Table 4). 828 

Table 4. Precisions 829 

Precision  Generative model: HP Generative model: LP Generative process 

Px  exp(16) exp(6), exp(0), exp(-4) exp(16) 

Pv  exp(16) exp(6), exp(0), exp(-4) exp(16) 

PI  exp(8) exp(8) exp(8) 

3. Model inversion 830 

The goal of the modeled listener is to estimate posterior probabilities of all hidden states given 831 

observed evidence p(s|o), which is the speech input to the model, here represented by TF 832 

patterns sampled at 1000 Hz. This is achieved by the inversion of the above generative model 833 

using the variational Bayesian approximation under the principle of minimizing free energy 834 

(106). Although this same computational principle is applied throughout all model hierarchies, 835 

the implementation is divided into three parts corresponding to the division of the generative 836 

model. Because the three “submodels” are hierarchically related we follow and adapt the 837 

approach proposed in (71), which shows how to invert models with hierarchically related 838 

components through Bayesian model averaging. The variational Bayes approximation for each of 839 

the three submodels is detailed below.  840 

Overall, the scheme results in a nested estimation process (Figure 1B). For a discrete-state level 841 

Ln, probability distributions over possible states within each factor are estimated at discrete 842 

times over multiple inference epochs. Each epoch at level Ln starts as the estimated Ln states 843 

generate predictions for initial states in the subordinate level Ln+1, and ends after a fixed number 844 

of state transitions (epochs) at Ln+1. State estimations for Ln are then updated using the 845 

discrepancy between the predicted and observed Ln+1 states. The Ln factors make transitions into 846 

the next epoch immediately following the update, and the same process is repeated with the 847 

updated estimation. Different model hierarchies (from L2 on) are nested in that the observed Ln+1 848 

states are state estimations integrating information from Ln+2 with the same alternating 849 
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prediction-update paradigm, but in a faster timescale. A schematic of such a hierarchical 850 

prediction-update process is illustrated in Figure 1B. 851 

Since levels “lemma” to the continuous acoustic output conform to the class of generative 852 

models considered in (71), we use their derived gradient descent equations and 853 

implementation. Levels “context” and “semantic and syntax” do not conform to the same class 854 

of discrete models (due to their memory component and non-nested temporal characteristics); 855 

we therefore derived the corresponding gradient descent equations based on free energy 856 

minimization for our specific model of the top two levels Equations 2-4 (see Appendix III for the 857 

derivation) and incorporated them into the general framework of DEM (71).  858 

The variational Bayes approximation for each of the three submodels is detailed below.  859 

a. Lemma to context 860 

For all discrete-state levels, the free energy F is generally defined as (106):  861 

𝑄(𝑠) = 𝑎𝑟𝑔 min
𝑄(𝑠)

𝐹 ≈ 𝑃(𝑠|𝑜) (12) 862 

𝐹 = 𝐸𝑄[ln 𝑄(𝑠) − ln 𝑃(𝑜|𝑠) − ln 𝑃(𝑠)] (13) 863 

In eq. 12 and 13, Q(s) denotes the estimated posterior probability of hidden state s, P(o|s) 864 

the likelihood mapping defined in the generative model, and P(s) the prior probability of s. 865 

The variational equations to find the Q(s) that minimizes Free energy can be solved via 866 

gradient descent. We limit the number of gradient descent iterations to 16 in each update to 867 

reflect the time constraint in neuronal processes.  868 

Although context/type and semantic/syntax are modeled as two hierarchies, we assign them 869 

the same temporal scheme for the prediction-update process at the rate of lemma units, i.e. 870 

they both generate top-down predictions prior to each new lemma input, and fulfill bottom-871 

up updates at each lemma offset. Therefore, it is convenient to define their inference 872 

process in conjunction. 873 

The posterior distribution 𝑝(𝑠𝑦𝑛1, ⋯ , 𝑠𝑦𝑛𝑛, 𝑠, 𝑐, 𝑆𝑇|𝑤1, ⋯ , 𝑤𝑛) is approximated by a 874 

factorized one, 𝑄(𝑠𝑦𝑛1) ⋯ 𝑄(𝑠𝑦𝑛𝑛)𝑄(𝑠1) ⋯ 𝑄(𝑠𝑛𝑠)𝑄(𝑐)𝑄(𝑆𝑇), and is parameterized as 875 

follows: 876 

𝑄(𝑠𝑦𝑛τ) ∶ 𝑠𝑦𝑛𝑘
(τ)

, or 𝒞𝑎𝑡(𝑠𝑦𝑛(τ)), 𝑘 = 1, ⋯ , # of possible syntactic elements, 𝜏 =  1, ⋯ , 𝑛  877 

𝑄(𝑠α) ∶ 𝑠𝑗
(α)

, or 𝒞𝑎𝑡(𝑠(α)), 𝑗 = 1, ⋯ , # of possible states for semantic factor,   878 

𝛼 =  {𝐴, 𝑅, 𝑃, 𝑀 }  879 
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𝑄(𝑐) ∶ 𝑐𝑚, or 𝒞𝑎𝑡(𝑐), 𝑚 = 1, ⋯ , # of possible states for context factor 880 

𝑄(𝑇𝑦) ∶ 𝑇𝑦𝑎 , or 𝒞𝑎𝑡(𝑇𝑦), 𝑎 = 1, ⋯ , # of possible states for sentence type 881 

Here, the model observation is the probability of the word being wτ given the observed 882 

outcome oτ, p(wτ| oτ), which is gathered from lower-level models described in next sections. 883 

We denote p(wτ| oτ) by a vector Wi
τ , where τ stands for the epoch, and i indexes the word in 884 

the dictionary. At the beginning of the sentence, the model predicts the first lemma input, 885 

which is, by definition, just one of the two possible attributes, ‘one more’ or ‘that’. 886 

𝑝(𝑤1) = ∑ 𝑝(𝑤1|𝑠𝑦𝑛1, 𝑠, 𝑐, 𝑇𝑦)𝑝(𝑠𝑦𝑛1, 𝑠, 𝑐, 𝑇𝑦)

𝑠𝑦𝑛1,𝑠,𝑐,𝑇𝑦

  887 

= ∑ 𝑝(𝑤1|𝑠𝑦𝑛1)𝑝(𝑠𝑦𝑛1)

𝑠𝑦𝑛1

= 𝑝(𝑤1|𝑠𝑦𝑛1 = 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) (14) 888 

The lower levels then calculate p(w1|o1) and provide an updated Wi
1 that incorporates the 889 

observation made from the first lemma. This is passed to the top levels to update L1 and L2 890 

states. Following this update, the next epoch is initiated with the prediction for w2. Because 891 

w2 does not directly depend on lemma inputs before and after itself, we can derive the 892 

following informed prediction of w2 from eq.2, where prior for L1 and L2 factors are replaced 893 

by their updated posterior estimates: 894 

𝑝(𝑤2) = ∑ 𝑝(𝑤2|𝑠𝑦𝑛2, 𝑠, 𝑐, 𝑇𝑦)𝑝(𝑠𝑦𝑛2, 𝑠, 𝑐, 𝑇𝑦|𝑜1)

𝑠𝑦𝑛2,𝑠,𝑐,𝑆𝑇

 895 

≈ ∑ 𝑝(𝑤2|𝑠𝑦𝑛2, 𝑠)𝑝(𝑠𝑦𝑛2|𝑇𝑦)𝑄(1)(𝑠)𝑄(1)(𝑐)𝑄(1)(𝑇𝑦)

𝑠𝑦𝑛2,𝑠,𝑇𝑦

(15) 896 

Where we used: 897 

𝑝(𝑠𝑦𝑛2, 𝑠, 𝑐, 𝑇𝑦|𝑜1) ≈ 𝑝(𝑠𝑦𝑛2|𝑇𝑦)𝑄(𝑠, 𝑐, 𝑇𝑦|𝑜1) 898 

= 𝑝(𝑠𝑦𝑛2|𝑇𝑦)𝑄(1)(𝑠)𝑄(1)(𝑐)𝑄(1)(𝑇𝑦) 899 

During the second epoch, the model receives input of the second lemma and updates the 900 

estimation of Wi
2. The updated Wi

2 is then exploited to update L1 and L2 states, which in turn 901 

provides the prediction for w3. The process is repeated until the end of the sentence. 902 

The updating of L1 and L2 states, i.e. the estimation of their posterior probabilities after 903 

receiving the nth lemma input relies on the minimization of the total free energy F1,2 of the 904 

two levels (L1, L2) 905 
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𝐹1,2 ≡ ∑ 𝑄(𝑠𝑦𝑛1, ⋯ , 𝑠𝑦𝑛𝑛, 𝑠, 𝑐, 𝑇𝑦) [ln 𝑄 (𝑠𝑦𝑛1, ⋯ , 𝑠𝑦𝑛𝑛, 𝑠, 𝑐, 𝑇𝑦)

𝑠𝑦𝑛1:𝑠𝑦𝑛𝑛,𝑠,𝑐,𝑇𝑦

906 

− ∑ 𝑄(𝑤1, ⋯ , 𝑤𝑛)

𝑤1:𝑤𝑛

ln 𝑝 (𝑤1, ⋯ , 𝑤𝑛, 𝑠𝑦𝑛1, ⋯ , 𝑠𝑦𝑛𝑛, 𝑠, 𝑐, 𝑇𝑦)]         (16) 907 

The expanded expression of F1,2 and derivation of the gradient descent equations can be 908 

found in Appendix III.  909 

b. Spectral to lemma 910 

The memoryless property of lower-level (lemma and below) states implies that the 911 

observation from the previous epoch does not directly affect the prediction for the new 912 

epoch, only indirectly through the evidence accumulated at superordinate levels. The 913 

framework from Friston et al. (71) is suitable for such construction. It uses the same 914 

algorithm of free-energy (inserting eq. 5-7 to eq. 12-13) minimization for posterior 915 

estimation, but this time there is conditional independence between factors in the same 916 

level. We implemented this part of the model by adapting the variational Bayesian routine in 917 

the DEM toolbox from the SPM12 software package. 918 

c. Continuous to spectral 919 

To enable the information exchange between the continuous and higher discrete levels that 920 

were not accounted for in (26), we implemented the inversion of the spectral-to-continuous 921 

generative model using the “mixed model” framework in (71). Essentially, the dynamics of 922 

spectral fluctuation determined by each spectral vector I (eq.8) is treated as a separate 923 

model of continuous trajectories, and the posterior estimation of I constitutes post-hoc 924 

model comparison that minimizes free energy in the continuous format. For a specific model 925 

m represented by spectral vector Im, the free energy F(t)m can be computed as (adapted 926 

from (71)):  927 

𝐹(𝑡)𝑚 = − ln 𝑃 (𝑜𝑚) − ∫ 𝐿(𝑡)𝑚𝑑𝑡
𝑇

0

(17) 928 

𝐿(𝑡)𝑚 = ln 𝑃(𝑜(𝑡)|𝐼𝑚) − ln 𝑃(𝑜(𝑡)|𝐼) (18) 929 

P(om) indicates the likelihood for the mth spectral vector (discrete). P(o(t)|Im) is the likelihood 930 

of observing the continuous input o(t) given the mth I vector, and P(o(t)|I) is the averaged 931 

likelihood over all possible I vectors. In this way, the model compares the top-down 932 

prediction of I and the estimate derived from the bottom-up evidence of integrated acoustic 933 

input over 25ms. Detailed explanation of the algorithm can be found in previous studies (71, 934 
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107). The software implementation was also adapted from existing routines in the DEM 935 

toolbox of SPM12 (105). 936 

Information theoretic metrics 937 

Two metrics were derived from the belief updating process just described: the Kullback-Leibler (KL) 938 

divergence (Div), which characterizes the discrepancy between the current and previous state 939 

estimates of a factor, and entropy H that characterizes the uncertainty of the current state estimates 940 

of the factor. We denote the posterior probability of the ith possible state of an arbitrary factor at 941 

time point τ as qt
i . The divergence and entropy are defined as: 942 

𝐷𝑖𝑣τ = − ∑ 𝑞𝑖
τ ln 𝑞𝑖

τ−1

𝑖

+ ∑ 𝑞𝑖
τ ln 𝑞𝑖

τ

𝑖

(19) 943 

𝐻τ = − ∑ 𝑞𝑖
τ ln 𝑞𝑖

τ

𝑖

(20) 944 

These two (non-orthogonal) metrics provide a qualitative summary of the model response that can 945 

be linked to neurophysiological signals (see Result and Discussion).  946 

Model guided MEG data analysis 947 

Next-word prediction statistics from GPT-2 model 948 

We implemented a transformer pre-trained language model, GPT-2 (20) in Google Colab (108), to 949 

obtain word prediction statistics of the sentence stimuli. The model is trained on ~40 GB text data 950 

and generates next-word predictions given arbitrary sentence contexts. Inputs to the model were 951 

sentences taken from (32), each sentence consisting of four parts (see Table 3 for an example set): a 952 

lead-in phrase, a target word, a bridge phrase, and a resolution word. For every lead-in phrase, four 953 

variations were played by crossing two different Target words and two different Resolution words.  954 

Target: either with or without semantic ambiguity (Ambiguous vs. Unambiguous). 955 

Resolution: either resolves the semantic ambiguity of the Ambiguous Target, or not (Resolve vs. 956 

Unresolve).   957 

For each set of (Target × Resolution) combination, two versions of the lead-in phrase were available. 958 

However, only one of the two lead-ins in each set was used for each subject in the MEG experiment, 959 

i.e. each set of (Target × Resolution) combination was played only once. Therefore, we averaged the 960 

GPT-2 prediction metrics for the two versions. The bridge phrase was the same within each set, 961 

regardless of other parts of the sentence. 962 
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The original speech stimuli in (32) contained sentence sets where the Target words were ambiguous 963 

between two phonetically identical but morphologically different words. These sets were removed 964 

for the GPT-2 analysis as well as for the MEG data analysis, resulting in 58 out of 80 sets. 965 

Probability distributions of the next-word prediction of GPT-2 were obtained for two time points to 966 

calculate the prediction entropy and surprisal, respectively:  967 

1. After Target, i.e. the input to GPT-2 is [lead in] + [target] 968 

We use the entropy H of this prediction as a proxy for the (semantic) ambiguity of the target 969 

word, with the hypothesis that if a word has multiple meanings, different meanings will 970 

predict different next words with similar probabilities, resulting in a flatter distribution 971 

compared to the prediction from its unambiguous counterpart. H is calculated as follows, 972 

where 𝑖 indexes all words in the dictionary: 973 

𝐻 = − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑖

 974 

2. Before Resolution, i.e. the input to GPT-2 is [lead in] + [target] + [bridge] 975 

We calculate the surprisal S for each resolution word from the prediction probability as 976 

follows, where r is the index for the resolution word in the dictionary: 977 

𝑆 = − ln 𝑝𝑟  978 

This surprisal is equivalent to the KL divergence of the posterior distribution after the 979 

resolution word, because the distribution has collapsed to p=1 for the received word and 0 980 

elsewhere.  981 

MEG sensor space analysis 982 

The MEEG module in SPM12 (105) was used for the MEG data preprocessing. Statistical analysis and 983 

plotting of the preprocessed results were performed with the Fieldtrip Toolbox (109). We first 984 

performed the identical preprocessing as MacGregor et al. (32) on head-adjusted raw MEG 985 

responses to the 58 selected sentence sets for all 16 subjects. Briefly, raw recordings were first 986 

bandpass filtered between 0.1 and 40 Hz, then epoched at the offsets of each keyword (Target or 987 

Resolution). After baseline correction and the rejection of bad trials, combined gradiometer (RMS of 988 

each of the 102 gradiometer pairs) responses were cropped into shorter time windows (-0.2~0.8s for 989 

the Target offset, -0.5~1s for the Resolution offset) and averaged across trials for each subject. For 990 

averaging, trials were split in the following way that allow for statistical tests for both the GPT-2 991 

prediction metrics and the linguistic metrics of interest, i.e. semantic ambiguity at the Target offset 992 

and resolution at the Resolution offset: 993 

1. Target  994 
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Sentences were split into two groups: 1. The GPT-2 entropy for the Ambiguous word was 995 

larger than the entropy for the Unambiguous word (Amb1, Uam1), and 2. The GPT-2 entropy 996 

for the Ambiguous word was smaller than for the Unambiguous word (Amb2, Uam2).  997 

2. Resolution  998 

Sentences containing the Resolve words were split into two groups: 1. The GPT surprisal of 999 

the Resolve word following the Ambiguous target was larger than the Resolve word 1000 

following the Unambiguous target (Res_Amb1, Res_Uam1), and 2. The GPT surprisal of the 1001 

Resolve word following the Ambiguous target was smaller than following the Unambiguous 1002 

target (Res_Amb2, Res_Uam2).  1003 

To assess the effects of linguistic and GPT-2 metrics on the combined gradiometer data, we 1004 

constructed the following four contrasts: 1005 

1. [Amb1 + Amb2] vs. [Uam1 + Uam2]: effect of semantic ambiguity. 1006 

2. [Amb1 + Uam2] vs. [Amb2 + Uam1]: effect of GPT-2 prediction entropy. 1007 

3. [Res_Amb1 + Res_Amb2] vs. [Res_Uam1 + Res_Uam2]: effect of preceding ambiguity. 1008 

4. [Res_Amb1 + Res_Uam2] vs. [Res_Uam1 + Res_Amb2]: effect of GPT-2 prediction surprisal. 1009 

To test for differences between the two conditions within each contrast, we first took the average of 1010 

the two averages in each condition within individual subjects, e.g. (Amb1 + Amb2)/2 for the 1011 

ambiguous condition in contrast 1. This yields one sensor × time response per condition and per 1012 

subject. We then performed a paired t-test across subjects for each sensor and time point, resulting 1013 

in a 2D parametric map of the test statistic. Clusters of sensors with ps <0.05 were identified on this 1014 

map, each including at least 2 neighboring sensors. The statistical significance of each cluster was 1015 

evaluated by comparing the maximum t-statistic of the cluster to a null distribution generated by 1016 

randomly permuting the condition labels within each subject (5000 times across all 16 subjects). The 1017 

cluster-level p-value (pc) was the proportion of the t statistic in the permutation distribution larger 1018 

than the maximum t statistic of the selected cluster. None of the clusters identified by the t-test 1019 

survived the permutation test, therefore we report the five clusters with the highest t-statistics for 1020 

the positive effect in each contrast. We also computed Cohen’s d (110) from the grand average over 1021 

time and across subjects of all the 102 combined gradiometer channel to evaluate the effect size of 1022 

each contrast at single gradiometer pairs.  1023 

  1024 
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Supporting Figures 1255 

 
S1 Fig. Effect of contextual bias ratio on the inference process. A-C: metrics derived from the sentence “One 
more ace wins the tennis” as function of contextual bias between “poker game” and “tennis game”. A bias of 
x implies that the prior probability ratio (the total probability is always normalized to 1) for context was set to [x 
1 1 1] for all 4 possible contexts {‘poker game’, ‘tennis game’, ‘night party’, ‘racing game’} for x>=1, and [1 1/x 1 
1] for x<1 to balance the influence of the two irrelevant contexts. D-F: same metrics derived from sentence 
“One more ace wins the game”. A. Inferred states for the context (blue) and the agent (red) do not change with 
contextual bias, i.e. the model always resolved to the correct states. B. Sum of entropy across context, agent 
and patient at the subject word (“ace”) offset and the sentence offset. At the offset of “ace” (blue), the entropy 
is maximum at bias=1 and symmetric on both sides. At sentence offset (red), the entropy is overall lower than at 
the offset of “ace” and monotonically increases with a small slope, reflecting that the model was more certain 
about the state estimations at this point, but keeps a small possibility towards the poker game that increases 
with the bias towards the poker context. C. At the sentence offset, the divergence monotonically increases with 
bias towards poker reflecting the increasing difference between the expected context (poker) and the actual 
one (tennis).  D. Inferred states for context and agent at the end of sentence B as a function of bias. For bias<1 
(preference for ‘tennis’context), the inferred context is “tennis (game)” and inferred agent is “serve”. For 
bias>=1, the result corresponds to a preference for the “poker” context. E. Sum of entropy. For both time 
points, the entropy is at maximum when bias=1. Both curves are symmetrical by bias=1. The blue curve is the 
same as in B because the sentence input up to this point was the same. F. Sum of divergence across the same 
three factors at two critical time points. At the offset of “ace”, the divergence reached its minimum at bias=1 as 
a result of the uniform distribution over “poker” and “tennis” states, which is the least different from the 
previous time point. At the sentence offset, the stronger the bias (farther from 1), the smaller the difference 
between before and after hearing the final word. However, a notch is seen at bias=1 due to the uncertainty (S1 
Fig E). 
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S2 Fig. Message passing in the processing of the same word in different sentences. Figure specifications 
are the same as Fig 3. A. Semantic-to-lemma and lemma-to-syllable predictions in response to sentence 
“one more sprint wins the tennis”. The second lemma “sprint” influences the prediction for the final lemma 
as well as the corresponding syllables as compared to Fig 3A. B. Estimation of posterior probabilities for 
lemma and syllable states for the sentence [SRPINT-tennis]. Similar to Fig 3B, the model instantly 
recognizes each syllable (lower panel). C. Upper panels: entropy derived from sentence [ACE-TENNIS] 
minus sentence [SPRINT-TENNIS] for the lemma and the syllable levels for the entire sentence. Vertical 
dotted lines mark the onset of each syllable of the final lemma. Entropies for both the lemma and the 
syllable level was higher for [ACE-TENNIS] after the onset of the second syllable, reflecting a greater 
complexity (three possible states compared to two in the sentence [SPRINT-TENNIS]) of the prediction of 
the final lemma. Lower panels: the difference between the divergence in response to the two sentences. A 
positive difference at the onset of the third syllable (the offset of the second syllable) indicates that the 
input “the tennis” is less expected in the sentence [ACE-TENNIS] due to the prior preference for the poker 
context, compared to in the sentence [SPRINT-TENNIS] where the context was already resolved to “poker 
game” after hearing “sprint”. 
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S3 Fig. A. Distribution for the difference of GPT-2 prediction entropy calculated from ambiguous vs. 
unambiguous Target words. Only the 58 selected sentences were included. B. Distribution for the difference 
of GPT-2 prediction surprisal calculated from the same Resolution words following ambiguous vs. 
unambiguous Target. 
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S4 Fig. Comparison of effect sizes between semantic and GPT-2 prediction metrics. A. Cohen’s d computed 
from the effect of semantic ambiguity (x-axis) and the effect of GPT-2 prediction entropy (y-axis) at Target 
offset for each of the 102 combined gradiometers. B. Cohen’s d for the effect of preceding ambiguity (x-
axis) vs. GPT-2 prediction surprisal (y-axis) at Resolution offset for each combined gradiometer. 
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S5 Fig. A, B: Inference of lemma and syntax states at moderately high precision (exp(6)) with (A) or 
without (B) informative top-down predictions. The posterior estimates are very similar to the intact 
condition (Fig 4B and 5A, respectively) in that the model quickly converged onto the correct states after 
each update. However, longer delays to convergence can be observed at the syllable level with prediction, 
and both lemma and syllable levels without prediction, compared to their intact counterparts.  C, D: 
Inference of lemma and syntax states at extremely low precision (exp(-4)) with (C) or without (D) 
informative top-down predictions. The posterior estimates with informative prediction are qualitatively the 
same as the low-precision condition in Fig 6A but with longer delays before convergence. Without any top-
down prediction, the model completely fails at the syllable level, hence cannot make accurate estimates for 
higher levels. 

 1265 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.04.01.486694doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486694
http://creativecommons.org/licenses/by-nc-nd/4.0/

