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Abstract

Natural speech perception requires processing the current acoustic input while keeping in mind
the preceding one and predicting the next. This complex computational problem could be
handled by a multi timescale hierarchical inferential process that coordinates information flow up
and down the language hierarchy. While theta and low-gamma neural frequency scales are
convincingly involved in bottom-up syllable-tracking and phoneme-level speech encoding, the
beta rhythm is more loosely associated with top-down processes without being assigned yet a
specific computational function. Here we tested the hypothesis that the beta rhythm drives the
precision of states during the speech recognition hierarchical inference process. We used a
predictive coding model that recognizes syllables on-line in natural sentences, in which the
precision of prediction errors is rhythmically modulated, resulting in alternating bottom-up vs.
top-down processing regimes. We show that recognition performance increases with the rate of
precision updates, with an optimal efficacy in the beta range (around 20 Hz). The model further
performs when prediction errors pertaining respectively to syllable timing and syllable identity
oscillate in antiphase. These results suggest that online syllable recognition globally benefits
from the alternation of bottom-up and top-down dominant regime at beta rate, and that the gain
is stronger when different features are also analyzed in alternation. These results speak to a
discontinuous account of inferential operations in speech processing.
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Introduction

A key challenge in speech processing is the ability to analyze what has just been said while
processing what is being said and predicting what will follow, the so-called “now or never
bottleneck” (Christiansen and Chater, 2016). This threefold challenge does not only require an
appropriate neural architecture but also an efficient temporal orchestration of the neural event
sequence involved, allowing through an inferential process for joint information intake,
processing and prediction. This inferential process takes place in a left-hemispheric network
(Rauschecker and Scott, 2009; Hamilton et al., 2021; Zaccarella, Papitto and Friederici, 2021)
where information flows up and down the hierarchy via feedforward and feedback connections
and spreads at each stage via lateral connections (Friston, 2008; Friston and Kiebel, 2009;
Cope et al., 2017). Speech recognition results from the precise interplay between these
feedforward, feedback and lateral streams during the multi-level inference (Davis and
Johnsrude, 2007; Friston and Kiebel, 2009; Parr and Friston, 2018). Whether the inferential
process involves continuous or discrete/alternating operations, and at which rate(s) they
possibly occur is an essential piece of the puzzle.

Neural oscillations, as a proxy of rhythmic collective properties of neurons (Hauk, Giraud and
Clarke, 2017; Meyer, Sun and Martin, 2019; Bree et al., 2021), are directly involved in various
aspects of speech processing (Zoefel, Archer-Boyd and Davis, 2018; Marchesotti et al., 2020),
including speech chunking at different granularity levels depending on their frequency (phrases,
words, syllables, phonemic features) and information encoding depending on their
cross-frequency interactions (Giraud and Poeppel, 2012; Hyafil et al., 2015; Bonhage et al.,
2017; Ghitza, 2020; Proix et al., 2022). Theta (4-7Hz) and low-gamma (25-35Hz) oscillations are
related to bottom-up processes, notably the hierarchical encoding of phonemic information
within syllables (Hyafil et al., 2015; Mai, Minett and Wang, 2016; Lizarazu, Lallier and Molinaro,
2019). Delta (1-4Hz) and low-beta (14-21Hz) oscillations, which are also frequently observed in
relation with speech processing, have a more endogenous origin. While delta is argued to play a
role in syntactic parsing (Ding et al., 2015, 2017), beta (15-30Hz) oscillations are associated
with comprehension and top-down effects, without being related to specific linguistic units or
language operations (Lewis and Bastiaansen, 2015; Pefkou et al., 2017; Keitel, Gross and
Kayser, 2018; Terporten et al., 2018; Abbasi and Gross, 2020).

The notions of neural oscillations and hierarchical inference are likely intimately related to
cognitive processes, notably in speech reception (Arnal and Giraud, 2012; Cope et al., 2017;
Abbasi and Gross, 2020; Donhauser and Baillet, 2020). Experimental studies and theoretical
proposals suggest that information is generally transferred up and down the hierarchy using
different frequency channels (Arnal and Giraud, 2012; Bastos et al., 2012; Fontolan et al., 2014;
Chao et al., 2018). Gamma oscillations (30-100Hz) are related to bottom-up information and
prediction errors, i.e. the discrepancy between cognitive expectations and sensory signals (Lam
et al., 2016; Sedley et al., 2016; Chao et al., 2018), whereas beta oscillations (15-30Hz) are
rather associated with top-down predictions and modulatory signals (Fontolan et al., 2014;
Arnal, Doelling and Poeppel, 2015; Chao et al., 2018; Bastos et al., 2020). The exact
computational function of the latter, however, and their possible interplay with upgoing signals
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remains unclear (Bastos et al., 2012; Fujioka et al., 2012; Weiss and Mueller, 2012; Fries, 2015;
Chang, Bosnyak and Trainor, 2018; Betti et al., 2020).

Several hypotheses have nevertheless been formulated (Spitzer and Haegens, 2017; Miller,
Lundqvist and Bastos, 2018; Betti et al., 2020). Beta could work as an information channel
conveying predictions down the processing hierarchy (Bastos et al., 2015; Michalareas et al.,
2016), or, according to the predictive routing hypothesis, it could also prepare specific pathways
by inhibiting neural populations that encode expected sensory signals, lowering the processing
cost of novel information (Bastos et al., 2020; Sherfey et al., 2020). Not incompatibly, it might
also reflect the delay for integrating bottom-up sensory signals and updating predictions (Arnal
and Giraud, 2012). In the same vein, recent work suggests that beta oscillations could directly
be related to the weighting of sensory prediction errors (Palmer et al., 2019).

Following-up on this, we used computational modeling to address the possible function of beta
oscillations in the rhythmic weighting of prediction error in the context of speech processing. We
built on a previous model that uses theta (~5Hz) / gamma (~40Hz) oscillation coupling in a
predictive coding framework to achieve natural speech parsing and on-line syllable identification
in continuous natural speech (Hovsepyan, Olasagasti and Giraud, 2020). In the new model,
Precoss-β, we explore how alternating top-down and bottom-up information streams via the
rhythmic weighting of prediction errors affects the inference process.

Modulating prediction error precisions (PEP) within a frequency range spanning from 2 Hz to 60
Hz, for both syllable identity and timing, we found that Precoss-β outperformed its previous
version with non-modulated prediction errors, and was most efficient when precisions were
modulated at the beta range (20-30Hz). These results show that the low-beta rhythm supports
online speech recognition by controlling the alternation of a bottom-up versus top-down
dominant mode during the inference process. The observed benefit reflects that the model can
flexibly pick up unexpected input while remaining both sensitive to bottom-up information and
reliable in terms of predictions, hence achieving the triple challenge of speech processing.

Results

Precoss-β architecture and oscillating precisions
Precoss-β was built by including oscillating state-dependent precisions in a previous generative
model version (Precoss) (Hovsepyan, Olasagasti and Giraud, 2020). The model input consists
of a speech reduced auditory spectrogram (Chi, Ru and Shamma, 2005) and of its slow
amplitude modulations (Hyafil et al., 2015), both extracted English sentences of the TIMIT
database (Garofolo et al., 1993) (see Hovespyan et al. 2020 (Hovsepyan, Olasagasti and
Giraud, 2020) for details about speech input generation).
In Precoss-β, the activation of the appropriate syllable unit generates the corresponding auditory
spectrogram with a flexible duration determined by eight gamma units (Figure 1). Syllable and
gamma units represent syllable identity and timing within the syllable, respectively. Together with
the other model elements, they are used to deploy predictions about the input acoustic
spectrogram. The ongoing mismatch between predicted and actual auditory spectrograms and
slow amplitude modulations drives the inference process across the model hierarchy and leads
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to updating syllable and gamma units (as well as all other variables in the model) such that
predictions best match the input.

As our goal is to assess how rhythmic fluctuations of internal expectation vs. bottom-up
prediction errors drive the model updates with respect to syllable identity (syllable units) and
timing (gamma units), and affect performance, we introduced specific units that control the
precision of syllable and/or gamma units (variants A, B and C in Figure 2). These precision units
effectively modulate the relative strength of internal predictions based on previous time points
and bottom-up prediction errors in the updates of syllable and/or gamma units.

The model performance was assessed via the output of syllable units, which summarizes the
model estimate about the syllable boundaries and identity in the speech input. Performance
measures are based on comparing the estimated syllable sequence with the actual one in the
input.

Model variants and performance
To assess the effect of modulating top-down and bottom-up information streams, we compared
the performance of Precoss (stationary precisions) and Precoss-β (oscillating precisions) in their
ability to parse and recognize syllables from natural spoken sentences. Whatever the model, the
input is a full sentence without explicit syllable boundaries, and the model parses it into discrete
units and identifies the sequence of activated syllables.

Since predictions about the auditory spectrogram (the input) are generated in concert by syllable
units that recognize the overall spectrotemporal pattern, and gamma units that specify the
position of the acoustic segment within the overall pattern, the discrepancy between the
predicted and actual input can in principle be solved by updating both the estimate of where we
are in the pattern (gamma units) and the pattern identity (what - syllable units).

We, therefore, run simulations varying the frequency at which precision units modulate syllable
and gamma units. We compared model variants (Figure 2, left panel) where precisions drive:
causal syllable units alone (Precoss-β (A)), causal gamma units alone (Precoss-β (B)) or both in
anti-phase (Precoss-β (C)). In the latter case, anti-phase refers to the fact that when syllable
units are in a high precision state, gamma units are in a low precision one, and vice versa. We
also considered the case where both causal gamma and syllable units are in phase (Precoss-β
(C’), Figure 5). The original model with stationary precisions provides baseline performance. The
simulations were run on the same set of 220 natural sentences.

We posit that modulating the relative strength of internal expectation and bottom-up information
in a rhythmic fashion is expected to improve performance as it alternatively sensitizes the model
to internal knowledge vs. external evidence, which, given the predictive nature of speech, should
be an optimal processing strategy. We also expected the model performance to depend on the
prediction error precision rate, peaking at a frequency that will depend on the two model intrinsic
rhythms (~ 200 ms for syllable units, ~ 25 ms for gamma units).

In Precoss-β (A) PEP are only modulated in the syllable units, which act as evidence
accumulators for each syllable in the input sentence. Therefore, to benefit from the alternation
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between top-down and bottom-up information flows on the inference process, there should be at
least one full PEP cycle per syllable. As the mean syllable duration in our dataset is around
200ms, we expect the preferred PEP modulation frequency to lie within the theta range ~ 5 Hz.

Similarly, in Precoss-β (B) PEP are only modulated within the gamma units. Those units are
responsible for deploying spectrotemporal predictions at the right time and in the correct order.
They operate at gamma scale (40 Hz, at rest). With the same logic as for variant A, we thus
expect a positive effect on alternation to require a PEP modulation frequency within the gamma
range.

Finally, in Precoss-β (C) PEP are modulated in both syllable and gamma functional groups. As
information syllable identity fluctuates at the theta range and information about timing fluctuates
at the higher gamma range, we expect the optimal common PEP frequency to lie somewhere
between  5 Hz and 40 Hz.

Figure 2 shows the performance of variants A, B, and C together with that of the original
Precoss with stationary precisions. To quantify syllable recognition performance we compared
the model output and input. The performance metric takes into account both the order and
duration of the syllables and varies between (0-100%) (for details about this measure see the
original paper and supplementary Figure 1 (Hovsepyan, Olasagasti and Giraud, 2020)). For
almost all conditions, Precoss-β (oscillating precisions) significantly (Supplementary Tables 1-3)
outperformed Precoss. That is, the rhythmic alternation of internal expectations and bottom-up
influence on the inference process improves online syllable recognition from natural sentences.

The orange dots and ranges represent the mean performance and 95% confidence intervals for
Precoss-β (A) obtained by bootstrapping with 10000 reps. For all tested PEP modulation
frequencies, Precoss-β (A) performed better (Wilcoxon signed rank test, Z=4.78, p=1.784e-6, at
5 Hz) than Precoss with stationary precisions (blue line). The difference was statistically
significant (p<0.05) for all frequency values (Supplementary Table 1). However, no optimal
frequency arose; performance reached a plateau at 5Hz and fluctuations beyond 5Hz were not
statistically significant (Supplementary Table 4).

Simulation results for Precoss-β (B) are presented in green. Interestingly Precoss-β with
oscillating precisions performed lower than Precoss with stationary precisions for low modulation
frequencies (Wilcoxon signed rank test, Z=-3.653, p=2.586e-4 at 2 Hz) and higher for
modulations >10 Hz does (Wilcoxon signed rank test, Z=5.55, p=2.819e-8 at 20 Hz)
(Supplementary Table 2). Although performance peaked in the gamma range (Wilcoxon signed
rank test, Z=6.3, p=2.81e-10 at around 40Hz), pairwise comparisons were not statistically
significant for frequencies equal or greater than 20 Hz, indicating a knee point at this frequency
(Supplementary Table 5).

Finally, Precoss-β (C), which controls precisions of both syllable and gamma units, outperformed
Precoss for all frequency values (Supplementary Table 3). Here again, we do not see a
preferred frequency for the best model performance, instead, performance increases with
frequency and reaches a plateau at around 20 Hz (Wilcoxon signed rank test, Z=9.21,
p=3.205e-20). Interestingly, while for lower frequencies Precoss-β (A) and (C) perform more or
less similarly, for frequencies higher than 20 Hz, Precoss-β (C) outperforms the other model
variants (Supplementary table 7). As was the case for Precoss-β (B), pairwise comparisons of
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model performance for different frequencies higher or equal to 20 Hz, were not statistically
significant (Supplementary Table 6).

Bayesian information criterion
The model performance based on the overlap measure evaluates the model's ability to correctly
infer syllables' identity and duration in the input sentence. However, neither the model
complexity - e.g. Precoss-β vs. Precoss, nor the uncertainty of the model’s estimates is taken
into account in performance. We thus also calculated the Bayesian Information Criterion (BIC)
(Schwarz, 1978) for each model variant and each PEP modulation frequency.

BIC was evaluated from the dynamics of the syllable units (not averaged within gamma-defined
windows) as well as the model estimated conditional precisions at each time point (Hovsepyan,
Olasagasti and Giraud, 2020). Thus BIC value represents how the syllable units’ accuracy and
related model-estimated uncertainty change with the PEP modulation frequency.

Results are presented in Figure 3. Despite higher performance for Precoss-β than Precoss
when based on the overlap measure represented in Figure 2, BIC penalizes variants (A) and (B)
relative to Precoss at all frequencies. However, Precoss-β (C), which controls the precision of
both syllable and gamma units, consistently displays a higher BIC value than Precoss (despite
having more parameters) and other equally complex Precoss-β variants. This suggests that
controlling the precision of both functional groups does not only result in higher syllable
recognition but also in higher confidence in the inference. Interestingly, BIC peaks at 10 Hz,
closely followed by 5 Hz and 20 Hz. This range aligns well with results from electrophysiological
studies showing the alpha-beta range in speech tasks explicitly involving inferential processes
(Mai, Minett and Wang, 2016; Sedley et al., 2016; Pefkou et al., 2017)

Modulation of bottom-up information
Another important factor in evaluating the model is the informativeness about syllable identity
propagated up in the hierarchy via bottom-up prediction errors, and how it might be affected by
PEP modulation frequency. We hence quantified the informativeness of bottom-up prediction
errors by taking into account whether prediction errors signaling a syllable in the input arrive
when the syllable is already in a high activity state (low informativeness) or still in a low one
(high informativeness).

The results are presented in Figure 4. Frequency significantly affected the informativeness
measures (Friedman test, χ2 = 269.85, p = 1.635e-54), which was was significantly higher at 20
Hz than at all other frequencies except 30 and 40 Hz (Bonferroni corrected post-hoc pairwise
comparisons, see Supplementary Table 11 for details). These results confirm the beta range as
an efficient modulation frequency for alternating the influence of top-down and bottom-up
information.
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Effect of PEP modulation phase
Among the three model variants, the best performance (highest number of recognized syllables
with the least uncertainty) is obtained for the one where PEP are modulated in both syllable and
gamma units. By construction, this model variant (C) controls the precisions of syllable and
gamma units in opposite directions; whenever the precision of syllable units increases the
precision of gamma units decreases and vice versa. This choice was based on the idea that
syllable units and gamma units can take turns in absorbing prediction errors, making it easier for
the model to find the right estimates.

To address how this a priori choice affected performance, we also run the model with precisions
of gamma and syllable units oscillating in-phase (same-phase condition, Figure 5, red diagram
on the left). The model with anti-phase condition outperformed the model with same-phase
conditions at all frequencies (Figure 5, right panel, Supplementary table 8). This finding shows
that the model performs best when bottom-up prediction errors are preferentially minimized in
alternation by syllable and gamma units, when syllable identity and timing features are analyzed
via antagonistic streams.

Discussion

The goal of this study was to explore the possible role of cortical beta oscillations in speech
processing from a theoretical perspective, where the brain deploys predictions through top-down
connections and refines them based on bottom-up prediction errors (Rao and Ballard, 1999;
Friston and Kiebel, 2009; Shipp, 2016). Here, we conjectured that beta oscillations might reflect
the alternation of bottom-up versus top-down control in the brain's inference process, and tested
this hypothesis by introducing precisions that oscillated in time within feature-specific functional
groups (syllable recognition and timing units) and comparing performance across frequencies
with a baseline/control model with stationary precisions. We found that performance improved
with the PEP oscillation rate, and reached a plateau, with a knee point that depends on the
model variant (precision of which functional group is controlled).

The added value of rhythmic prediction error precisions (PEP)
The model encompasses two distinct functional groups operating in two distinct regimes: when
the causal states of one group (syllable and/or gamma units) are in the low precision phase of
the oscillation, they are both less strongly receptive to the internal expectations encoded by the
hidden states and more strongly influenced by the bottom-up input carrying prediction errors
from the periphery. As a result, each functional group is periodically in an optimal position to
respond to bottom-up information without being constrained by internal expectations. And vice
versa in the high-precision phase, where causal states are preferentially coupled to hidden
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states encoding internal expectations and more loosely to bottom-up input. The high-precision
phase is therefore ideal to incorporate updates from the preceding low-precision phase into the
internal hidden states. Thanks to oscillating PEPs, the model is rhythmically alternating between
an information gathering and an information consolidation regime. The newly consolidated
information leads to updated predictions, which in the next cycle are again compared with the
input leading to updates in causal states, and to a new round of consolidation. That Precoss-β
outperformed Precoss for almost all PEP frequencies indicates that rhythmic alternation of
top-down and bottom-up streams during the inference process improves online syllable
recognition. An important issue is therefore whether there is an optimal oscillating PEP rate in
speech processing.

Low-beta as an optimal range for rhythmic PEP
The different variants of Precoss-β were assessed based on three different metrics. One that
assesses syllable accuracy and duration (Figure 2), another that additionally takes into account
the number of parameters of the model and the confidence in its output (Figure 3), and one that
quantifies the amount of non-redundant bottom-up information about syllable identity (Figure 4).

Our initial hypothesis was that performance would take a bell shape as a function of frequency,
indicating an optimal PEP oscillation regime, depending on whether syllable vs. gamma units or
both were modulated. Our reasoning was that when PEP rhythm is lower than the intrinsic
rhythm of syllable and gamma units, there is less than one full PEP cycle per information cycle.
Conversely, for frequencies higher than the average rate of syllable and/or gamma units, the
alternation of high and low precision states becomes too fast for the model to grasp relevant
bottom-up information, leading to a weaker performance.

Yet, Figure 2 shows that performance for all model variants (as assessed by syllable accuracy
and duration) reaches a plateau rather than showing a peak frequency. Only the knee point of
the plateau differed from variant to variant: 5 Hz for Precoss-β (A), which roughly corresponds to
the natural syllabic rhythm, and 20 Hz for Precoss-β (B), a relatively sensible result given that
gamma units are designed as a stable heteroclinic channel where activity within neighboring
units can overlap in time.

For Precoss-β (C), while we also observed the knee point at 20 Hz, the performance attained
was higher than for Precoss-β (A, B), indicating an additive benefit of controlling PEP in both
syllable and gamma units. This additive effect occurs when the modulation of syllable and
gamma units are in anti-phase, i.e. when one functional group is in a high precision state while
the other is in a low one. In the anti-phase condition, only one functional group at a time (the one
in the low-precision phase) can grasp changes in the input, while the other incorporates
information from the causal state into the dynamics. This alternation regime reduces the search
space compared to the variant where the model tries to optimize syllable and gamma units
simultaneously (Figure 5).
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Theoretically, the appropriate rhythm to control precisions within early speech processing stages
should hence be both slow enough to span across processing stages (and modules) and fast
enough to achieve an optimal balance between input sensitivity and prediction updating. The
beta rhythm, as an intermediate range between theta and gamma, might hence be ideally suited
for both purposes. The model accordingly reaches a plateau at 20 Hz (low-beta range). Even
though in terms of raw performance, higher PEP frequency might result in better performance,
lower beta-range frequencies might be more suited in a real hierarchical structure. Accordingly,
beta oscillations are considered to be a good channel for long-range communication (Kopell et
al., 2000; Engel and Fries, 2010; Spitzer and Haegens, 2017; Betti et al., 2020). Beta
oscillations that originate in higher levels of the cortical hierarchy could update precisions via a
cascade running through the whole hierarchy down to the sensory areas.

Although assessing the model performance did not allow us to identify an optimal rhythm, but
only the lower-bound of an optimal PEP frequency range, the Bayesian Information Criterion
(BIC, Figure 3), which took into account both confidence and the moment-to-moment dynamics
of syllable units, showed a peak between 5-20 Hz for the best model variant, an interval that
includes the cortical low-beta range (15-20 Hz). In addition, the estimate of bottom-up
informativeness peaked at 20 Hz (Figure 4). These results indicate that the low-beta range (~20
Hz) fulfills three factors for successful inference: syllable recognition accuracy (Figure 2),
inference confidence (Figure 3) and non-redundancy of bottom-up information about syllable
identity.

Rhythmic PEP and precision theories
Sensorimotor beta has been linked to precisions before (Tzagarakis et al., 2010; Tan, Wade and
Brown, 2016). Sensorimotor beta activity is argued to reflect the integration of the sensory signal
uncertainty with the uncertainty of the internal model about prediction errors (Palmer et al.,
2019). Here, we confirm the implication of the beta rhythm in this process, and go further in
showing 1) that the rhythmic modulation of precisions changes the relative weight of bottom-up
vs. top-down information during the inference process, and 2) that this is beneficial in an
eminently dynamic task such as online syllable recognition. In other words, while precision (via
e.g. synaptic gain) is important to assign uncertainty about the input throughout the hierarchy,
there is an added benefit when it oscillates. Given bottom-up processes in the gamma and theta
ranges, beta oscillations provide an optimal timescale to update precisions.

In sum, the role of beta oscillation (or more generally the notion of oscillating precisions) is to
rhythmically modulate the relative influence of top-down and bottom-up information flows on the
fly during a multi-level inference process, here hierarchical speech processing. Beta oscillations
would hence not only act as an information channel (Bastos et al., 2015; Michalareas et al.,
2016), but their effect on precisions would further modulate the strength of the top-down
information flow.
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Rhythmic PEP and Predictive Routing
The rhythmic precision hypothesis is in line with studies suggesting rhythmic attentional
sampling (Buschman and Miller, 2010; VanRullen, 2016, 2018; Fiebelkorn and Kastner, 2019).
The good and bad phases associated with attentional sampling are conceptually similar to high
and low precision states in the model. When bottom-up prediction errors have low precision,
their contribution to the model dynamics decreases. This is similar to forming internal
expectations while periodically scanning the sensory signal for something new or unexpected.
Low precision phases provide windows of opportunities to detect new syllables in the input. In
the absence of a new syllable, there is no substantial prediction error and the current syllable
unit remains the most active one. Conversely, a new syllable triggers prediction error which will,
at the next precision increase phase, switch the corresponding hidden state to its active form.

This scenario works when there are already internal expectations formed about the sensory
signal. For example, when subjects listened to short stories, beta activity built up when more
context became available (Pefkou et al., 2017). As the current model does not include higher
hierarchical stages (word, phrase levels) it implicitly assumes that expectations are already
formed and that there is ongoing beta activity. This assumption is sufficient for the demonstration
that oscillating precisions are helpful for online syllable recognition. However, in the brain, beta
activity is most probably not always on, but rather appears as bursts of transient activity when
top-down predictions are possible. Bastos and colleagues (2020) introduced predictive routing
as an implementation of hierarchical processing during visual perception (Bastos et al., 2020).
Predictive routing assumes that alpha/beta bands prepare the pathways to process the
predicted input by inhibiting bottom-up (non predicted) sensory information communicated at the
gamma scale. Electrophysiological recordings showed enhanced alpha (8-14Hz) and beta
(15-30Hz) activity for predictable stimuli, and gamma activity (40-90Hz) for unpredictable ones,
especially in the lower layers of the hierarchy (Bastos et al., 2020). These results may also be
explained by beta activity controlling precisions; when the stimulus is predictable and internal
expectations are formed, beta activity originating from higher cortical areas modulates
precisions throughout the whole hierarchy, explaining more alpha/beta power across the
hierarchy for predictable signals. For unpredictable stimuli, there are no internal expectations
and no need for an alternated contribution of top-down and bottom-up streams. In this case, the
system takes in sensory information with more bottom-up activity communicated by gamma
oscillations. The predictive routing framework can in our opinion comfortably accommodate the
notion that beta oscillations control state precisions, and mediate the contribution of top-down
and bottom-up information during the hierarchical (inferential) perception process.

That our model performance was better when the precision of different functional groups of the
model oscillates in opposite directions, speaks to an oscillatory regime spanning across various
areas encoding different features. In our case, two distinct functional groups are responsible for
predicting syllable identity and timing, mimicking the parallel implementation of what and
when/where features in separate processing streams. We found better performance when the
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model controlled the PEP of these two functional groups in opposite directions, revealing higher
computational efficiency when bottom-up sensory information is collected within one functional
group, while the accumulated evidence is integrated into the hidden states in the other one. By
reflecting rhythmic PEP modulation, beta activity may genuinely represent the beta rhythm that
carries top-down information. How such a functional theory could be implemented at the
biophysics levels remains to be established, but is not incompatible with models of beta ryhyhtm
generation (Kopell et al., 2000; Roopun et al., 2008).

Conclusion
This computational study suggests a new functional role of cortical oscillations during
hierarchical syllable recognition from natural sentences. First, we show that online syllable
recognition benefits from oscillating precisions that rhythmically modulate the contribution of
top-down and bottom-up streams during the speech perception process. The performance gain
is most tangible when one functional group integrates bottom-up information, while the other
ignores it and only maintains internal expectations. The best performance is achieved when the
model controls precisions across functional groups in the 20 Hz range, a range where we found
the highest number of recognized syllables, higher confidence and less redundancy in
bottom-up information about syllables. Oscillating PEP allows the model to reactively detect
changes in the input, while also being able to maintain internal expectations, hence offering a
new mechanistic role for the beta range in speech processing.
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Methods

Speech input and syllabification: We have used the same set of 220 sentences from the
TIMIT dataset (Garofolo et al., 1993) that we used in (Hovsepyan, Olasagasti and Giraud, 2020)
for the simulations of the new model - Precoss-β. Briefly, for each sentence, a 6-channel
reduced auditory spectrogram was calculated with a biologically plausible model of the auditory
periphery (Chi, Ru and Shamma, 2005). Additionally, slow amplitude modulation of the sentence
waveform was calculated following procedures described in Hyafil and colleagues (Hyafil and
Cernak, 2015; Hyafil et al., 2015).
Syllable boundaries in the input sentences were defined with the Tsylb2 (Fisher, 1996)
programme based on the phonemic transcriptions provided in the TIMIT database (Garofolo et
al., 1993). The programme estimates syllable boundaries based on English grammar rules,
using phoneme annotations from TIMIT. Finally, syllable spectrotemporal patterns are calculated
and stored in 6x8 matrices (6 frequency channels x 8 gamma units), where each row
corresponds to the average value of the corresponding frequency bands within 8 binned
temporal windows (assigned to specific gamma unit). For a detailed description of input
construction and syllabification, please see the Methods section in (Hovsepyan, Olasagasti and
Giraud, 2020).

Generative model and Precoss-β: We use predictive coding to construct a model for parsing
and recognizing syllables from natural English sentences. Precoss-β has the same hidden and
causal states as in the original Precoss (Hovsepyan, Olasagasti and Giraud, 2020), but is
defined with two additional hidden states at the top-level. These represent the harmonic
oscillator that controls the precision of syllable and/or gamma units:

𝑑𝑝
1

𝑑𝑡 = 𝑘
1
𝑝
2
+ ε

𝑝
1

(2) (1)

𝑑𝑝
2

𝑑𝑡 =− 𝑘
1
𝑝
1
+ ε

𝑝
2

(2) (2)

𝑘 = 2πΨ
1000

(3)

Equations 1 and 2 correspond to the oscillating precisions, Ψ in equation 3 corresponds to the
modulation frequency of prediction error precisions in Hz and 1000 is the sampling rate. We
have tested each Precoss-β variant for different values of the modulation frequency Ψ ranging
from 2 Hz up to 60 Hz. Table 1 contains precisions for new hidden states and oscillating causal
states for each model variant.

The core difference between Precoss and Precoss-β is the inversion scheme used for inference:
Dynamic Expectation Maximisation (Friston, Trujillo-Barreto and Daunizeau, 2008) for Precoss,
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and Generalized filtering (Friston et al., 2010) for Precoss-β. The latter features state-dependent
precisions (Feldman and Friston, 2010), which we use to actively modulate the precision of
bottom-up prediction errors of syllable and/or gamma units.

For details about common aspects for Precoss and Precoss-β, we refer to (Hovsepyan,
Olasagasti and Giraud, 2020).

hidden states causal states

Precoss-β (A) W⍵ = exp(3)
Wγ = exp(5)
Wp = exp(5)

V⍵ = exp(2.5+2p2)
Vγ = exp(1.5)

Precoss-β (B) W⍵ = exp(3)
Wγ = exp(5)
Wp = exp(5)

V⍵ = exp(5)
Vγ = exp(1.5+4p2)

Precoss-β (C) W⍵ = exp(3)
Wγ = exp(5)
Wp = exp(5)

V⍵ = exp(2.5+2p2)
Vγ = exp(1.5-4p2)

Precoss-β (C’) W⍵ = exp(3)
Wγ = exp(5)
Wp = exp(5)

V⍵ = exp(2.5+2p2)
Vγ = exp(1.5+4p2)

Table 1: Precisions of syllable, gamma units and hidden states of the oscillating precisions. The
left column represents stationary precisions for syllable and gamma units W⍵ and Wγ respectively, and for
the new hidden states that generate oscillating precisions - Wp. The right column represents the precision
of causal states for each variant. Depending on the Precoss-β variant either syllable (A) or gamma (B)
units have oscillating precision. Meanwhile, for variants C and C’, both syllable and gamma units have
oscillating precisions, with the difference that for variant C they oscillate in opposite phases, while for C’ in
the same phase.

Modulation of bottom-up information:
To account for how modulation frequency of PEP affects the amount of non-redundant
bottom-up information on syllable units, we defined a metric that captures when bottom-up
evidence about the presence of a syllable is noteworthy. Specifically, we weigh the positive
evidence in favor of a syllable by the level of “inactivity” of the corresponding syllable. If positive
evidence about the presence of the syllable arrives when the corresponding syllable unit has low
activity, it has a stronger contribution to the measure than when the same positive evidence
arrives when the activity of the corresponding syllable unit is already high:
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First, for each syllable i in sentence j we calculate the root sum square of the product of positive
evidence in favor of syllable i ( , positive bottom-up prediction errors , equation 6) and𝑧

𝑖
𝑝(𝑡) 𝑧

𝑖
(𝑡)

its level of “inactivity” , where the summation is across time but excluding periods of(1 − ω
𝑖
(𝑡))

active resetting of syllable units that happens when the gamma network signals the end of a
syllable (for details see (Hovsepyan, Olasagasti and Giraud, 2020)) and corresponds toω

𝑖
(𝑡)

the i-th component of the softmax of the syllable hidden states (equation 4). is one outsideℎ(𝑡)
active resetting periods and 0 during active resetting periods.

Then we define the average root sum square ( ) across all syllables ( ) of sentence j𝑅
𝑗

𝑁
𝑠𝑦𝑙

(equation 5). is our measure of interest and was calculated for each Precoss-β variant and𝑅
𝑗

each modulation frequency.

Statistical analysis: The model performance was evaluated based on the overlap measure
(Supplementary Figure 1) that provides a single value for each sentence assessing the model's
ability to infer syllable identity and duration for each sentence. Simulations were performed on
the same set of 220 sentences for each model variant and each frequency of modulation of
prediction error precisions.

To compare the performance of Precoss vs Precoss-β we performed a Wilcoxon signed-rank
test for each PEP frequency. To control for multiple comparisons the alpha = 0.05 was adjusted
with the Bonferroni procedure. Each test was considered statistically significant if the p-value
was less than 0.05/8 (dominator corresponds to the number of comparisons - the number of
tested frequencies).

The same method was used for the comparisons reporting performance differences for
comparing Precoss-β variants for each frequency of oscillating PEP (Supplementary Table 7) as
well as for same-phase vs. anti-phase conditions (presented in Figure 5). Results are presented
in Supplementary Tables 1-3 for Precoss-β variants A, B and C, and Supplementary Table 8 for
anti-phase vs same-phase comparisons. In all tables the first column indicates which frequency
is tested, the second column the associated signed-rank, and the third column the
corresponding z-statistics. The last column represents the corresponding p-value.
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For each Precoss-β variant, the effect of the modulation frequency was evaluated with a
Friedman test, followed by multiple comparisons controlled by Bonferroni correction.
Supplementary Tables 4-6 (for overlap measure) and 9-11 (non-redundant bottom-up
information) report results of pairwise comparisons, where the first two columns indicate which
modulation frequencies of precisions are being compared. The fourth column indicates the
difference in the mean signed-rank for the corresponding pair, whereas the third and fifth
columns indicate lower and upper bound of 95% confidence interval, correspondingly. Lastly, the
sixth column represents Bonferroni corrected p-values. Pairwise comparisons are considered
statistically significant if the corrected p-value < 0.05.

All statistical tests were performed using built-in Matlab functions. One sentence (N182) did not
converge for Precoss-β (B), thus this sentence was excluded from all model variants in the
calculation of BIC results (Figure 3) and the non-redundancy measure for variant B
(Supplementary figure 7).

Code and Data availability
Simulations were performed with DEM Toolbox in SPM (SPM - Statistical Parametric Mapping,
no date) using MATLAB 2018b, The MathWorks, Inc., Natick, Massachusetts, United States.
Custom code and raw data for statistical analysis would be freely distributed online.
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Figures

Figure 1

Figure 1: A generative model for on-line syllable recognition with rhythmic
state-dependent precisions. The bottom panel represents the input to the model. As in the
original model (Precoss), the input consists of the speech slow amplitude modulation (on the
left) and auditory spectrogram (on the right). On the top level, the theta module tracks the slow
amplitude modulation in the input and feeds it to a theta oscillator. Theta-triggers, associated
with a pre-defined phase, signal the estimated syllable onsets which reset the sequence of
gamma units in the Spectrotemporal module. Additionally, the instantaneous frequency of the
theta oscillator sets the preferred rate of the gamma sequence. Together, gamma and syllable
units generate the auditory spectrogram in the input. Accumulated evidence about each syllable
in the sentence, represented by syllable units, is reset by the last gamma unit (upwards arrow).
Precision units change the precision of syllable and gamma units, modulating the influence of
the corresponding prediction errors on the hidden states’ dynamics. Depending on the phase of
precision units (green and blue arrows), either syllable or gamma units get higher precision
(Precoss-β (C)).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.486037doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.28.486037
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

Figure 2: Model performance based on the overlap measure. We tested the online syllable
recognition accuracy of the model based on simulation results on 220 sentences (giving a total
of about 3000 syllables). Accuracy was evaluated based on the overlap of the recognized
syllable sequence and the input sentence. Data for each model variant is represented by the
colour of the outlines on the left panel. The figure shows the mean performance and 95%
confidence interval for each frequency value of precision units. Diagrams on the left indicate the
main functional groups of the model: θ corresponds to the theta-module, γ and ⍵ to syllable and
gamma units respectively. Arrows indicate connections between functional groups (θ → γ
represents rate and onset information from theta module to gamma units, whereas γ → ⍵

indicates the reset of accumulated evidence by the last gamma unit). π represents precision
units, and the arrows originating from it indicate which functional groups they control.
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Figure 3

Figure 3: Bayesian information criterion. The left panels represent the Precoss-β variants
with oscillating precisions and Precoss as in Figure 2. Precoss-β (C) has the highest BIC values
among all models at precision frequency 5-20 Hz. These results suggest that the model is the
most confident about its inference when the influence of the top-down and bottom-up
information flows on the model's dynamics alternates within this specific frequency range.
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Figure 4

Figure 4: Non-redundancy of bottom-up information - Precoss-β (C). We evaluated how
the modulation frequency of PEP affects the amount of informative (non-redundant) bottom-up
signal. Friedman test indicated that the modulation frequency affects the amount of informative
signal propagated up in the model-hierarchy. Pairwise comparisons were performed for each
frequency pair (Supplementary Table 11). Bonferroni procedure was used to control for multiple
comparisons. The measure for non-redundant bottom-up signal peaked at 20 Hz, with
statistically significant (p<0.05) differences from all other frequencies except 30 and 40 Hz. Each
point on the scatter plot represents the measurement value for each sentence for the
corresponding PEP frequency. The central-red mark of the box plots corresponds to the median,
whereas bottom and top edges represent 25th and 75th percentiles, respectively. Red crosses
indicate outliers, whereas whiskers extend to the highest and lowest performance values that
are not considered outliers.
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Figure 5

Figure 5: Effect of the oscillating PEP phase on model performance. Precoss-β (C)
controls the precision of both syllable and gamma units so that the high precision state of the
syllable units coincides with the low precision state for gamma units (anti-phase condition,
purple). Here we tested whether the performance depends on the phase lag for the precisions of
the syllable or gamma unit. Thus, we also tested Precoss-β (C’) when syllable and gamma units
reach a high precision state simultaneously (same-phase condition, red). The mean values
(based on the overlap measure, supplementary figure 1) and corresponding 95% confidence
intervals are presented in the figure. Results suggest that for all frequencies, the anti-phase
condition leads to better model performance. These results indicate that high- versus
low-precision states should oscillate in different directions for different functional (what vs. when)
groups.
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