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application to the SMART2013 shaking-table test campaign

P.-É. Charbonnela

aDES-Service d’Études Mécaniques et Thermiques (SEMT), CEA, Université Paris-Saclay, 91191
Gif-sur-Yvette, France

Abstract

A crucial step when identifying the modal signature of systems using growing order
parametric methods consists in discriminating spurious modes from physical modes. In this
paper, a three-stages clustering strategy is presented in a fuzzy framework for automating
this selection process in the context of Input/Output and Output-Only identification. The
novelty and strong point of the approach lies in the first stage where, after computation of
single mode validation indicators, a modified fuzzy c-means clustering procedure is developed
for performing a first partition. It is shown how the membership function obtained for
the cluster of physical modes can be interpreted as a new synthetic modal indicator and
helps with pole-splitting detection, outlier rejection and generally improves the final modal
parameters estimation. The developed methodology does not involve any user-specified
threshold and can be used for discriminating modes produced by any methodology consisting
in fitting a growing order model to experimental data of any type. In this paper, accelerations
measured during the SMART2013 shaking-table test campaign are processed using data-
driven state-space identification algorithms. The automated selection process is used for
tracking the modal signature of a trapezoidal shaped reinforced-concrete specimen using in
turn stochastic and combined deterministic-stochastic algorithms, defining for the latter the
movement of the shaking table as input. Variations in the modal signature are then correlated
to the damage actually observed on the specimen and a comparison between Output-Only
and Input/Output results is made in order to estimate the interaction between the specimen
and the whole shaking table device.

Keywords:
Operational/Experimental Modal Analysis, Stabilization Diagram, Automation, Fuzzy
Clustering, Structural Health Monitoring, Shaking table tests

1. Introduction

Analyzing the response of real structures is an essential preliminary step to modeling
and control of mechanical systems. For linear structures, the modal signature composed of
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frequencies, damping ratios and modeshapes summarizes this response. In order to charac-
terize this key feature, measurements performed on real structures in operational context or
on specimen under experimental dynamic loading are processed using identification methods
described either in a time or frequency framework (see e.g. [1] and [2] to only mention one
of the most popular references of each case and [3] for a more complete overview). Those
methods lie in fitting a linear model to time or frequency data; the modal signature is then
extracted after eigenvalue decomposition of the matrix describing the dynamic behavior of
the system. The order n of the model to be fitted being unknown, a current practice consists
in performing identification for increasing values of n. One then needs to distinguish the
sought physical modes from mathematical artifacts that arise owing to model-order over-
specification.

This crucial discrimination step is generally done with the help of stabilization diagrams
where physical modes can be detected as columns in a frequency versus model-order plot.
However, a careful inspection of stabilization diagrams still requires time and the trained
eye of an experimented user. This paper then focuses on automating the physical modes
selection process among poles identified for large model order range based on a single data
set. This automated modal analysis must be distinguished from modal tracking that relies
on existing knowledge on modal parameters (based on numerical model or reference data)
to detect changes in the modal signature that can further be related to global or local
damage [4], correlated with environment conditions [5, 6] or be used for instability or fault
detection [7, 8]. At the end of this paper, the evolution the modal signature of a reinforced
concrete specimen is sought on the basis of repeated analysis on different data sets; no online
monitoring is performed.

The attempts for automating or at least assisting the interpretation of stabilization dia-
grams are not new (see e.g. [9, 10] and [11] for a more extensive bibliographic review). Early
references relied on the computation of modal indicators : plotting modes with high indica-
tor values leads to clearer stabilization diagrams. Among the most effective indicators, one
can mention the Modal Phase Collinearity (MPC) [12], the Modal Transfer Norm (MTN)
[13], the Modal Coherence Indicator (MCI) [14] and the Mean Phase Deviation (MPD) [9].
Other authors [15, 16, 8, 17] rely on uncertainty computation for discarding spurious modes;
data sets are divided in (statistically independent) blocks and uncertainty bounds on modal
parameters are obtained from perturbation theory. The poles whose modal properties have
the largest standard deviations are declared spurious. Different clustering techniques have
also been used for automating the selecting process usually referred to as hierarchical clus-
tering, partitioning methods and histogram analysis (see ref. [9] for details). Among the
most effective and followed attempts, one can cite [18] that defined a methodology based
on hierarchical clustering for grouping similar modes clusters and successfully performed the
modal identification of a bridge.

The main drawbacks of the aforementioned references is the systematic presence of user-
specified thresholds on modal distances for achieving proper clustering or on modal indicators
for discarding spurious modes (see also [19]). Those thresholds depend on the application, on
the amount and quality of available data, on the level of solicitation and must sometimes be
relaxed depending on (expected) modeshapes complexity. Such methodologies have proven
effective in the case of long-term monitoring where single structures are instrumented with
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permanent sensing devices; in that case the time spent for correctly adapting the thresholds
to the problematic is of less importance compared to monitoring time. However, the seismic
tests conducted in the TAMARIS/CEA facility impose a different context: the zoology of ex-
perimental systems is vast (reinforced concrete building [20], steel-frame structures [21, 22],
timber-frame construction [23], tanks [24], etc.), the ground motion tests numerous, involv-
ing possibly different configurations and a wide variety of sensors. Manual user-dependent
threshold calibration is a huge obstacle to automation and might be intractable in the case
of specimens exhibiting important modal signature variations throughout test sequence. To
overcome this obstacle, Reynders et al. in [9] proposed an efficient strategy for automating
the mode selection process in three stages:

(i) Several modal indicators are first computed for each mode and a k-means (k = 2)
algorithm allows to remove the modes interpreted as certainly spurious modes,

(ii) A hierarchical clustering stage is then carried out on the subsisting family containing
possibly physical modes for detecting groups of similar modes identified for different
values of n,

(iii) A last partition stage is conducted for retaining only the most populated groups gen-
erated at stage (ii). This last group contains the physical modes because they are
expected to be identified for every n.

The maximum within-clusters distance between representations of the same physical mode
for different system orders is the decisive criterion for stopping the hierarchical clustering
procedure in stage (ii). This criterion, that had to be specified by the user in [18], is derived
from the statistics of the group selected after stage (i) in [9].

This strategy offers a high degree of automation, however some limitations have been
experienced. The k-means algorithm used in stage (i) is not necessarily the best option for
building the first partition, as it was also noticed in [25]. For most indicators computed in
stage (i), the cluster of possibly physical modes resembles an exponential distribution whereas
the cluster of spurious modes tends to be normally distributed. The k-means algorithm
is always dominated by the variables with highest variance and, when applied to normally
distributed data, the algorithm tends to split datasets in approximately equally sized clusters
[26]. For an optimal partitioning, one would thus have to choose the maximum order n from
the number of expected observable modes (that is not known in advance) or at least specify
a sufficiently large maximum n in order to guarantee that no possible physical modes will
be discarded after stage (i). Moreover, when plotting the respective cardinals of the groups
identified after hierarchical clustering at stage (ii), in most applications, no clear jump is
noticeable, i.e. no clear partition between ’heavily populated groups’ and ’poorly populated
groups’ can be made by the k-means algorithm that is used at stage (iii) for the final
selection. Once again, k-means will tend to build clusters of equal size.

The present contribution proposes an enhancement of the three-stages selection strategy
described in [9] with the idea of overcoming the above-mentioned limitations. The key
enhancement consists in replacing the k-means algorithm of stage (i) by a more adaptive
fuzzy c-means algorithm that is modified to bring a better insight in the data to be split.
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The membership function, computed at stage (i), can then be interpreted as a synthetic
modal indicator and will help the partitioning at stage (iii). At the end of the proposed
algorithm, the means and standard deviations will be given for physical clusters in a fuzzy
sense (weighted by the membership function), what will improve the overall quality of the
modal estimates, empowering the most reliable candidates of each group and will help dealing
with outliers and pole splitting phenomenon in the same time.

The robustness of the improved algorithm is illustrated using the measurements of the
SMART2013 test campaign [20] during which a reduced scale Reinforced Concrete (RC)
building was submitted to a sequence of shaking table tests. The sequence is composed
of seismic tests of increasing level, that gradually activate non-linear mechanisms on the
specimen, and intermediate low-level broad-band tests. The accelerations measured during
intermediate tests are processed using subspace-based identification algorithms and the new
pole selection strategy is carried out for an automated tracking of the modal signature
along the test campaign. The evolution of the modal signature will be correlated to the
damage actually observed on the specimen and a comparison between Output-Only (OO)
and Input/Output (IO) results will be made in order to estimate the interaction between
the specimen and the shaking table device.

The paper is organized as follows. Section 2 gives a brief recap of the SMART2013 test
campaign, describes the processed dataset and details how subspace-based algorithms are
tuned. The single mode validation criteria used in this paper are also defined, paying partic-
ular attention to a newly derived indicator, called normalized Modal Transfer Norm (nMTN)
difference, that is developed for promoting the detection of weakly excited modes. Section 3
describes the fuzzy-enhanced three stages procedure that is central to this contribution. A
specific focus is made on the modified fuzzy c-means procedure that has been derived at stage
(i) for making a first rejection of artifacts. After quantifying its performance on clusters of
known distribution, the procedure is carried out for modal analysis purpose. The way the
resulting membership function is reused to enhance the procedure is illustrated using OO
measurements performed at the beginning of the SMART2013 test campaign where the RC
specimen is considered healthy. An thorough discussion on the comparative use of k-means
vs. fuzzy-c-means algorithms at stage (i) is also present. The effect of this first partition on
yielding hierarchical clustering threshold used at stage (ii) is particularly studied and this
for different modal indicators-sets whose influence is also investigated. Section 4 presents
the modal analysis results and the evolution of the modal signature throughout the test
campaign, obtained from repeated stochastic OO and combined deterministic-stochastic IO
identification. Section 5 finally gives conclusions.

2. Experimental setup and algorithms for modal identification

2.1. The SMART2013 shaking table test campaign

End 2013, within the framework of the EDF-CEA SMART project, a three-story RC spec-
imen was tested on the six degrees of freedom AZALEE shaking table of the TAMARIS/CEA
facility. The singular trapezoidal design of the RC specimen (see fig. 1) was chosen such
as to emphasize torsional effects to which constructions are subjected during seismic load-
ing. The 6× 6m2 AZALEE shaking table is equipped with eight 1000kN maximum capacity
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hydraulic MTS actuators and can reproduce complex seismic loading composed of six in-
dependent components (three linear accelerations and three angular accelerations). The
size of the table and its movement capacity led to the construction of a 12 tons specimen,
built with respect to classical EC8 design, and with dimensions homogeneously reduced of
a s = 1/4 scale factor. For respecting Cauchy-Froude’s similitude law [27] (accelerations,
strains, stresses and resistance parameters are preserved), the ground motion seismic inputs
have been contracted in time of a factor

√
s and a total of 33.8 tons additional masses, in

a ratio (1 − s)/s w.r.t. reference full scale configuration, have been equally distributed on
each story of the specimen (see fig. 1).
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Figure 1: The SMART RC specimen anchored to the AZALEE shaking table with actuators and sensors
position. The yellow arrows indicate the position of the accelerometers used for modal analysis. Only the

horizontal actuators (V 1x, V 2y, V 3y and V 4x) are represented, the position of the vertical actuators (V 1z,
V 2z, V 3z and V 4z) underneath the AZALEE table is labeled with white dots and their action marked

with black arrows.

The specimen is instrumented with more than 200 sensors including 64 accelerometers
placed on the RC specimen. The accelerometers are labeled on figure 1 with yellow arrows.
Three accelerations are recorded at each corners A, B, C D of the trapeze on each story
(including soleplate level), vertical accelerations are measured in-between the masses at floor
level for points E, F and G, and 7 accelerometers are placed on the central column. In
addition to that, the accelerations of the eight hydraulic actuators rods have been recorded
during the whole test campaign. Further information regarding data acquisition strategy
and experimental results can be found in [20].

Table 1 gives a brief recap of the SMART2013 test campaign. This one consists of an
alternation of bi-axial seismic tests (gray lines of the table) of increasing level, which one
wishes to be gradually damaging for the specimen, and of random tests (white lines) with
an acceleration level chosen such that the first eigenmodes of the experimental system are
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excited but without adding further damage to the RC medium. For this last type of test,
the reference ground motion is defined as a bi-axial random white noise; more precisely, the
reference acceleration üc sent to the MTS controller (see fig. 2) is defined as bi-axial white
noise with decorrelated horizontal components and the level is chosen such as having a RMS
acceleration level E (‖üm‖) = 0.02g measured at the center of the shaking table.

Phase 1 : Signal SMART 2008 – PGAx = 0.2g – PGAy = 0.2g
RUN6 Broad-band ergodic signal (X+Y) 0.02g RMS
RUN7 Seismic signal 50%
RUN8 Broad-band ergodic signal (X+Y) 0.02g RMS
RUN9 Seismic signal 100%
Phase 2 : Northridge signal (main shock) – PGAx = 1.78g – PGAy = 0.99g

RUN10 Broad-band ergodic signal (X+Y) 0.02g RMS
RUN11 Seismic signal 11%
RUN12 Broad-band ergodic signal (X+Y) 0.02g RMS
RUN13 Seismic signal 22%
RUN14 Broad-band ergodic signal (X+Y) 0.02g RMS
RUN15 Seismic signal 22%
RUN16 Broad-band ergodic signal (X+Y) 0.02g RMS
RUN17 Seismic signal 44%
RUN18 Broad-band ergodic signal (X+Y) 0.02g RMS
RUN19 Seismic signal 100%
Phase 3 : Northridge signal (after-shock) – PGAx = 0.37g – PGAy = 0.31g

RUN20 Broad-band ergodic signal (X+Y) 0.02g RMS
RUN21 Seismic signal 33%
RUN22 Broad-band ergodic signal (X+Y) 0.02g RMS
RUN23 Seismic signal 100%
RUN24 Broad-band ergodic signal (X+Y) 0.02g RMS

Table 1: Recap of the SMART2013 test campaign. The biaxial damaging seismic tests are highlighted in
gray whereas the intermediate low-level biaxial random tests stay in white.

The experimental system is composed of every elements represented in figure 1, but also
contains the MTS controller operating in closed loop as shown on figure 2. The closed loop
experimental system, denoted Z is thus defined as :

Z =

{
RC Specimen + Additional masses + AZALEE shaking table

Closed-loop controlled hydraulic actuators

}
(1)

Let one stress that the Three Variable Controller (TVC) provided by the manufacturer MTS
is also involved in the system.

From this system, a total of 72 accelerations are acquired at a sample frequency fs =
1000Hz and filtered with 400Hz cut-off frequency anti-aliasing filters. This set of measure-
ments, with typical 0.003g RMS noise level, will be processed, for each RUN of the test
campaign, by subspace-based identification methods for the purpose of modal analysis.

2.2. Tuning of the subspace-based identification algorithms

Subspace-based identification methods form a class of algorithms dedicated to the iden-
tification of linear systems via state-space modeling. From the presumed order n of the
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Z

Figure 2: Closed-loop experimental system Z.

tested system and knowing a given number of output (and possibly input) measurements,
the system matrices can be retrieved after robust orthogonal (resp. oblique) projections.
The modal signature (λj, φj)

n
j=1 of the system is then obtained after eigenvalue decomposi-

tion of the state-space dynamic transition matrix. No further details about subspace-based
identification will be given here for the seek of conciseness. In this work the data-driven
implementation described in [1] has been used specifying a CVA1 weighting for OO analysis
and combined deterministic-stochastic algorithm with unitary weighting in the IO case.

For IO analysis, two configurations are considered:

IO-1 : Firstly, defining as input the biaxial acceleration movement extracted from the hy-
draulic actuators sensors. In this case, the modal signature identified will be that of a
subsystem Z̄1 defined as:

Z̄1 =
{

RC Specimen + Additional masses + AZALEE shaking table
}

(2)

IO-2 : Secondly, the biaxial movement of the soleplate (floor 0) extracted from the bottom
accelerometers is defined as input. The identified modes this time will be those of the
smaller subsystem Z̄2 composed of:

Z̄2 =
{

RC Specimen (cantilivered at soleplate) + Additional masses
}

(3)

The number i of block Hankel matrices has been chosen, as advised by [13], such as to
verify:

i ≥ fs
2f0

(4)

where fs = 1/∆t is the sample frequency and f0 ≈ 5Hz is the smallest expected eigen-
frequency. The maximum order nmax of the state-space model to be interpolated to the

1Canonical Variate Analysis
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dataset is generally chosen as large as possible (at least twice the number nph of observable
modes expected on the frequency range of interest). In this study, the value nmax = 300
is chosen. One ends up with a maximum number of J ≤ nmax(nmax + 1) mode candidates
(λj, φj)

J
j=1 coexisting in stabilization diagrams, from which one would like to extract the

different variations of the nph physical modes (columns of the diagram).

One can note that, in this paper, the order n is the only tuning parameter that is
investigated; no variations of i (as done for example in [19]) is taken into account, but the
presented methodology could perfectly enable the partition of the broader mode set (λj, φj)j
that would have been generated if multiple values of i were to be considered. Regarding
the SMART2013 dataset, the too low values of i that did not meet the criterion (4) led to
irrelevant results (even failing to catch low frequency modes) and too high values led to CPU
limitations. Several values of i within [100; 200] have been tested and produced extremely
similar results, at least for initial configuration (RUN6) in the OO case; the value i = 200
is chosen for each even RUN of table 1 to account for expected frequency drop (f0 ≈ 2.5Hz
at the end of the test campaign).

2.3. Single-mode validation criteria

Following the lines of [9], as preliminary step to automated selection process, several
numerical indicators are computed for each mode of the set (λj, φj)

J
j=1 for quantifying their

ability to be ‘good mode candidates’. Table 2 synthesizes the different indicators tested in
this work.

Indicator � Definition Ideal phys. mode (C1) Typical artifact (C2)
X1 X ∆ (fj, f̂) 0 1
X2 X ∆ (ξj, ξ̂) 0 1
X3 X ∆ (λj, λ̂) 0 1
X4 X 1−MAC (j, ̂) 0 1
X5 X ∆ (MTNj,MTN̂) 0 1
X6 X ∆ (MPDj,MPD̂) 0 1
X7 X nMTNj 0 1
X8 X MPDj 0 1
X9 MTNj Large 0
X10 MPCj 0 1
X11 MCIj 1 0

Table 2: Single mode validation criteria tested in this work. The checkmarks indicate which indicators are
retained for defining the automated modal selection strategy proposed in this paper.

One first defines a distance between two modes (λj, φj) and (λk, φk) (possibly produced
for different values of n) as:

d(j, k) =
|λj − λk|

max (|λj| , |λk|)
+ 1−MAC (φj, φk) (5)

where the classical Modal Assurance Criterion (MAC) is involved (see e.g. [28]) for measuring
the colinearity between two modeshapes.
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Continuity criteria are then used for establishing if some properties of the same mode
(such as frequency, damping ratio, etc.) are found for other values of n, in particular n+ 2.
Let In+2 =

{
1, 2, . . . , n+ 2

}
be the set of modes indices identified at order n + 2. For each

mode j identified at order n, one seeks the closest mode ̂ in the sense of the modal distance
(5):

̂ = arg min
l∈In+2

d(j, l) (6)

For every modal feature X , whose continuity is to be verified from an order n to n+ 2, one
defines a measure of this continuity under the form:

∆ (Xj,X̂) =
|Xj −X̂|

max (|Xj| , |X̂|)
(7)

This indicator is used on undamped frequencies fj, damping ratios ξj, poles λj, Modal
Transfer Norm MTNj and Mean Phase deviation MPDj.

The MPD gives a measure of the modeshape complexity and characterizes the non-
alignment of the modeshape in the complex plane. When a mode j is physical and when
the associated damping ξj is small, the components of the modeshape φj are organized
along a straight line passing through the origin in the complex plane. This property no
longer stands in the case of having complex modes with local dissipative mechanisms or
closely spaced modes coupled due to damping. This indicator described therefore be used
sparingly. The interested reader is referred to [9] for mathematical derivations and to table
4 for graphical illustrations.

A last indicator used in this work is the MTN. Introduced initially in [16], the authors
highlighted that physical modes have a high MTN, whereas spurious (noise or mathemat-
ical) modes have a much lower MTN. For modal selection, this indicator is somehow too
discriminating; what has been observed on numerous applications involving complex struc-
tures is that this criterion tends to reinforce clear dominant modes, sometimes relegating
less participative physical modes to the rank of artefacts. In order to favor the selection of
weakly excited modes, a normalized version of the MTN is proposed and derived as follows.
In the OO case, the Power Spectral Density (PSD) matrix Syy (ω) of observable outputs y
at pulsation ω writes by definition as the Fourier transform of the auto-covariance sequence(
Ryy (k)

)
k
:

Syy (ω) =
−1∑

k=−∞

Ryy (k) z−k + Ryy (0) +
∞∑
k=1

Ryy (k) z−k (8)

with z = eıω∆t. Now using the fact that Ryy (−k) = Ryy (k)T and Ryy (k) = CAk−1G
introducing the classical state-space matrices (A,C ,G), one can easily show that the PSD
reads2:

Syy (ω) = C (zI − A)−1 G + R0 + GT
(
z−1I − AT

)−1
C T (9)

Now expressing the system matrices in the modal basis Ψ , one introduces:

ΨΛΨ−1 = A , g = Ψ−1G , Φ = CΨ (10)

2where Ryy (0) has been replaced by R0 as long as there is no ambiguity
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to write the contribution of mode j to the power spectral density as:

Syy , j(ω) = φj (z − λj)−1 gj + R0,j + gTj (z−1 − λj)−1 φTj with R0,j =
φjgj
λj

(11)

The modal transfer norm is then defined as:

MTNj =
∥∥∥Syy , j(ω)

∥∥∥
∞

= max
ω

∣∣∣λ1

(
Syy , j(ω)

)∣∣∣ (12)

where the λ1 (•) operator extracts the highest singular value of argument matrix.

One shall now remark that, in the neighborhood of resonant pulsations ωj, the PSD
should be dominated by the response of corresponding mode j, what writes:

Syy (ω = ωj) ≈ Syy , j(ωj) = MTNj (13)

Using the ∆ operator introduced in (7), one defines a normalized MTN distance as:

nMTNj = ∆(MTNj,MTNj) with MTNj = Syy (ω = ωj) (14)

where Syy (ω) is an estimation of PSD matrix obtained thanks to formula (9) with system

matrices and thus involving all modes identified at order n. MTNj is the targeted value that
an ideal physical mode contribution should reach at resonance. A physical mode will then
have a nMTN close to 0 whereas artefacts with no local dominant influence on the PSD will
exhibit closer-to-unit values.

In the IO case, the MTN can be adapted as explained in [13]. After, splitting the
state and output vectors of the state-space model into a deterministic and stochastic con-
tribution, the MTN is defined as the highest singular value of the concatenated matrices[
H (ω), (Sysys)

+(ω)
]

where H (ω) is the transfer matrix of the deterministic system verify-

ing:
H (ω) = C (zI − A)−1 B + D (15)

using the classical system matrices (A,B ,C ,D) and where (Sysys)
+(ω) is the positive power

spectral density of the stochastic part of the measured outputs ys (see [13] for details). From
this redefinition of the MTN, an IO-adapted nMTN can then be defined analogously to OO
case using (14) with MTNj = [H (ωj), (Sysys)

+(ωj)].

Other indicators such as MPC [12], MCI [14] and MTN in its classical definition [13] have
also been tested. In this work, only the first eight criteria of table 2 are retained for carrying
out the automated modal selection. A complete discussion on the choice of indicators and
its impact on the modal selection performance of several algorithms is available at section
3.5 processing the SMART2013/RUN6 data in the OO case.

3. Three-stages automated selection strategy

The strategy, initially proposed by [9] and used and improved in this paper, aims at
separating the physical modes from the spurious modes produced by a growing model-order
identification algorithm. Somehow, this strategy tries to mimic the classification that would
be done manually by an expert user and is composed of three stages:
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stage (i) : Based on the preliminiary calculation of modal indicators detailed in section
2.3 this stage consists in partitioning the modes of the diagram into two families
using clustering techniques. The first family Esp contains the modes that can
be classified as ’certainly spurious’: the members of this first family, less stable
regarding modal indicators, will be discarded. The second family Eph contains
physical modes, or at least modes with good stability properties that make them
potential physical modes;

stage (ii) : The modes of the family Eph are then divided into sub-groups
(
Ephi
)
i

such that

Eph = ⊕iEphi . In each group Ephi , one expects to find only variations of the same
mode i obtained for different values of n. Hierarchical clustering techniques are
implemented for this stage using a threshold, specified at section 3.2, that directly
depends on the quality of the first partition done at stage (i);

stage (iii) : The sub-groups of Eph are then split into two groups: the physical modes and
the spurious modes. A single modeshape is chosen for the representation of mode
i (associated with median damping ratio) and the mean and standard deviation
for frequency and damping ratio is computed based on the members populating
group Ephi .

This methodology, initially proposed by [9] and also followed by [25], has been adapted
here and will be detailed in the next subsections; emphasis will be put when the implemented
methodology differs from the above-mentioned references.

3.1. Stage (i) : fuzzy clustering

3.1.1. Preliminary observations

The objective of this first stage is to make a first partition of the modes into two groups,
that of possible physical modes Eph and that of certainly spurious modes Esp. Each of
the J ≤ nmax(nmax + 1) modes present in the diagram (modes with negative damping are
removed) is associated to a vector in Rd containing the d = 8 retained modal indicators of
table 2. Indicators are then gathered in column for each mode j in a matrix X of size 8× J
and having coefficients within [0; 1]. Of course, one has: card Esp + card Eph = J . What is
important is to avoid the situation of having a too small Eph, meaning that physical modes
would be wrongly classified in Esp. On the contrary having a too large Eph would have a
negative impact on stage (ii). At stage (ii), Eph is subdivided using hierarchical clustering
with a threshold computed from the statistical properties of the family Eph; having too many
artefacts in this group would lead to irrelevant threshold (see discussion 3.5).

Hard clustering k-means algorithm is used in [9, 25] for stage (i). The centers C1 (of Eph)
and C2 (of Esp) are sought as:

{
C1, C2

}
= arg min

C

2∑
k=1

J∑
j=1

‖Xj − Ck‖2
2 (16)

However, this algorithm is known for having two strong limitations [26]:
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(a) Due to its euclidean metrics, the k-means algorithm is suitable for normally distributed
clusters of similar variance which is not the case for modal indicators;

(b) Even when applied to normally distributed data, k-means tends to split the datasets
in approximately equally-sized clusters.

Figure 3 shows a scatter plot of the modal indicators nMTN and MPD. One can observe
two not normally distributed clusters of in-homogeneous size that furthermore do not exhibit
good convex properties. On figure 3, the marginal probability density functions (pdf) f have
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Figure 3: Scatter plot of the nMTN vs. MPD indicators. The estimated marginal probability density
functions (in green) have been superimposed to the histograms.

been estimated in the maximum likelyhood sense using a combination of two direct- and
reversed- log-normal distributions:

f(t;α, τ (1), µ(1), σ(1), τ (2), µ(2), σ(2)) = α logN (t+;µ(1), σ(1)) + (1− α) logN (t−;µ(2), σ(2))
(17)

with t+ = t− τ (1) and t− = −(t− τ (2)) and:

logN (t;µ, σ) =
1

σ
√

2πt
exp

(
−(log t− µ)2

2σ2

)
(18)

The limitations of the k-means algorithm and the disadvantages of using it at stage (i)
have also been noticed in [25]. In this last reference, the indicators X [1:4,6] of table 2 are
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used for discrimination and the observation is made that the marginals can be reasonably
well approximated by exponential-like distributions. Then, a change of variable X →M(X)
involving logarithmic-like functions (Box-Cox transform) is proposed for transforming the
feature vector into a shape that resembles a normal distribution. Thanks to this transfor-
mation, the partition enabled by k-means is improved, provided that the maximum model
order nmax is chosen such that card Esp ≈ card Eph. This implies that the number of expected
physical modes is known in advance, which is not the case in most practical applications.

As claimed in the introduction, in this paper a different way is followed. Somehow, a
change of variable involving a mapping M is also used, but this time, the transformation
is identified from the structure of the data itself, following a spectral clustering approach
(see e.g. [29] for a detailed tutorial). A spectral transformation will allow to circumvent
limitation (a) and a modified fuzzy c-means clustering algorithm will enable to overcome
limitation (b) as explained in the following lines. More robustness w.r.t. non-convexity and
inhomogeneous clusters is then expected. Before carrying out the newly developed algorithm
on modal indicators for partitioning Eph and Esp, it will first be tested on two academic
test-cases (representative to a certain extent of modal indicators distributions) for enabling
comparison with classical k-means and fuzzy c-means algorithms on known distributions.

3.1.2. Two reference 2D test cases

For illustrating the comparative performance of the different clustering algorithms de-
veloped in this section, two test-cases involving clusters in [0; 1]2 are considered. For each
one of them, the clusters are defined using a bivariate expression of the pdf (17) that was
fitted to the marginals distribution of nMTN and MPD indicators. The identified parame-
ters (τ (k), µ(k), σ(k))k=1,2 however have been changed for producing simpler distributions that
will facilitate the discussion on the performance of the different clustering algorithms. (For
reproducibility, the parameters used for the test-cases are given in Appendix A). So, one
considers:

� A first case (see fig. 4a) where the two clusters exhibit good convex properties,

� A second case (see fig. 4b) where the blue cluster has a non-convex shape produced
by a bivariate lognormal distribution with negative off-diagonal term in the covariance
matrix.

In both cases, the parameters for generating the red cluster are chosen such that its scatter
plot resembles this of a bivariate normal distribution. Identifying for convenience Eph to the
blue cluster and Esp to the red cluster of convex spread, the following ratio a = card Eph/J
is considered. This cardinality ratio is fixed to a = 0.3; in the modal analysis context, this
situation would correspond to the case of having greater number of artefacts than physical
modes in the diagram. The in-between clusters distance (simple euclidean distance between
the theoretical positions of the two cluster centers, see fig. 4) is d̄ = 0.60 in the convex case,
d̄ = 0.42 in the non-convex case.

3.1.3. Clustering algorithms

Spectral clustering is generally of valuable help when dealing with non convex clusters
(see e.g. [29, 30] and references therein). As previously explained, a mapping M is derived
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Figure 4: Test case – Two overlapping reference clusters of known pdf. The solid lines represent the
isovalues of the bivariate pdf. The theoretical positions of the two cluster centers are marked with yellow

circled crosses.

from the structure of the data for transforming non-convex possibly overlapping clusters X
into hopefully better separated clusters of more convex shape Y , through a change of variable
writing Y = M(X). The mapping M (more precisely transformed Y data) is constructed
from the smallest eigenvalues (0 in the ideal case) of the so-called graph Laplacian L following
the steps described hereafter.

First, a similarity matrix S is assembled. The quantity Sjl measures to what extend a
given point Xj is closed to its neighbors Xl. Almost unit values are associated to close points
whereas smaller values concern more distant points. There are several ways to construct
the similarity matrix. In this work, a Gaussian similarity function is considered: Sjl =

exp
(
−1

2

‖Xj−Xl‖2

σ2

)
where the parameter σ controls the width of the neighborhood where

points l are to be considered close to point j.

The test-case results have proved to be extremely sensitive to the choice of this control
parameter. A small change in a manually found appropriate σ leads to poor quality results,
to the point that no generally suitable value has been found. The same observation is made
in [31] and [32] and in this work, following the lines of [31], an adaptive value σ2 is chosen
according to the local neighborhood of each point j. The distance from any point l to point
j is defined as ‖Xj −Xl‖ /σj using the classical euclidean norm and where the local scaling
parameter σj is associated to the density of the neighborhood of point j; the converse is
‖Xl −Xj‖ /σl. In practice, σj is identified to the euclidean distance from point j to its p-th
closest neighbor i.e. σj = ‖Xj −Xp‖; in this work as in [31], the choice p = 7 is made,
however, values within [5; 10] were also tested and proved good adaptability to different
cluster densities, spreads and sizes. Similarity matrix thus writes:

Sjl = exp

(
−1

2

‖Xj −Xl‖2

σjσl

)
(19)
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The variant proposed by [32], consisting in building the similarity matrix from the results of
a preliminary fuzzy clustering, has also been tested and has led to results of slightly improved
quality for the 2D test cases. However, a certain loss of robustness has been experienced
partitioning the modal indicators when dimensionality increases. The adaptive σj similarity
construction [31] has shown the best overall performance.

The graph Laplacian is then defined as L = D− S, where the so-called degree matrix D
only contains diagonal elements dj =

∑J
l=1 Sjl. According to classical graph theory (see e.g.

[29]) the multiplicity of the 0 eigenvalue of the graph Laplacian L corresponds to the number
of (well) separated clusters. Two equivalent weightings are classically used for improving the
condition number of L: the symmetric Lsym = D−1/2LD−1/2 and random walk Lrw = D−1L
weighting. The random walk weighting is used in this work and the transformed data Y are
obtained from the null (or close to zero) singular vectors of Lrw after normalization of each
row. Algorithm 1 synthesizes the construction of such mapping M.

Input : Data X ∈ RJ×d
Output : Data Y ∈ RJ×c
Parameter : c (=2, number of clusters)

1 Compute the similarity matrix S using (19) and adaptative σj based on [31]
2 Compute the weighted graph Laplacian Lrw = I −D−1S
3 Solve the eigenvalue problem on Lrw and retain the eigenvectors Uk=1...c corresponding to

the c smallest eigenvalues

4 Compute Yk=1...c as : Yjk = Ujk/(
∑c

k=1 U
2
jk)

1/2

Algorithm 1: Computation of Y =M(X).

The scatter plot of the sought clusters in the Y1 vs. Y2 plane now shows convex shaped
clusters (see e.g. fig. 5a and 5b on test-cases). Traditional hard or soft clustering methods
can then be used. In this work, a fuzzy c-means (FCM) algorithm is used for accounting
the not-necessary spherical spread of the clusters and a modification is made to handle the
potential asymmetry in terms of cardinality. The modified FCM algorithm is described in
the following lines.

Compared to hard clustering methods, soft clustering methods somehow relax the notion
of belonging to a group by introducing membership functions µk=1...c with values in [0; 1] and
verifying:

∀j,
c∑

k=1

µjk = 1 (20)

Thus, a point j will be more likely to belong to a cluster k if the value µjk is close to one.
Using a non-necessary euclidean norm ‖•‖A, the centers and membership functions are the
solutions of the constrained minimization problem:{

C, µ
}

= arg min
C,µ

c∑
k=1

J∑
j=1

µmjk ‖Xj − Ck‖2
A︸ ︷︷ ︸

J(C, µ;X)

(21)
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with µ verifying eq. (20). The exponent m, chosen superior to 1, enables one to tune the
degree of “fuzziness” of the partition: m = 1 corresponds to hard clustering and m = 2 is
the classically used value that is also chosen in this work. The hermitian norm ‖•‖A can
be defined using a positive definite matrix A, identically chosen for all clusters, as initially
defined in [33]. The euclidean (identity matrix) and mahalanobis distance (inverse of the
covariance matrix) are special cases for the choice of a constant A. Constant A matrices will
have less robustness with respect to asymmetrical clusters.

Alternatively, following the lines of [34], the metric ‖•‖A can be defined using a c-tuple
A = (A1, A2, . . . , Ac) for naturally accounting for the potential ellipticity of each cluster. The
objective function in (21) becomes: J(C, µ,A;X) =

∑
k

∑
j µ

m
jk ‖Xj − Ck‖2

Ak
. The matrices

Ak must verify positivity and definiteness and are introduced in the minimization problem as
optimization variables. Ideally, one would like the metric to handle different scalings along
each direction in the feature space. The matrices Ak will then be computed iteratively by
the minimization algorithm thus allowing each cluster k to adapt its distance norm to the
local topological structure of the data.

The objective functional to minimize will now include the c-tuple A : J(C, µ,A;X). Note
that the cost function J , linear in A, can be made as small as desired by simply making the
Ak less positive. The Ak has to be constrained in some sort and what the authors advocate
in [34] is to constraint their determinants:

∀k, |Ak| = ρk = 1 (22)

This involves a volume constraint; for what has been noted in the simulations, the local
control volume for clustering is roughly inversely proportional to |Ak|. An alternative way
tested in this work is to set the following constraint:

c∑
k=1

ραk = 1 (23)

with α = −1. The idea behind this constraint is to let the metric adapt to the local density
of the feature space and hopefully enable a better separation of inhomogeneous clusters.

The augmented cost function J̄ of the constrained minimization problem now writes:

J̄ (C, µ, λ,A, β, ρ, γ;X) = J (C, µ;X) +
J∑
j=1

λj

(
c∑

k=1

µjk − 1

)
+

c∑
k=1

βk (|Ak| − ρk) + γ

(
c∑

k=1

ραk − 1

)
(24)

introducing the following Lagrange multipliers (λj)
J
j=1, (βk)

c
k=1 and γ. Now, writing the

stationarity of J̄ with respect to every solution field in (C, µ, λ,A, β, ρ, γ) gives rise to a set
of equations, that, after elimination of the Lagrange multipliers (λ, β, γ), leads to:

∀k, Ck =

J∑
j=1

µmjkXj

N∑
j=1

µmjk

(25)
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∀j, k, µjk =
1

c∑
p=1

(
‖Xj − Ck‖2

Ak

‖Xj − Cp‖2
Ap

) 1
m−1

(26)

∀k, ρk =
c |Dk|

1
d−1

c∑
p=1

|Dp|
1

d−1

(27)

∀k, A−1
k =

(
1

ρk |Σk|

) 1
d

Σk (28)

with Σk =
(∑J

j=1 µ
m
jk(Xj − Ck)(Xj − Ck)T

)
/
(∑J

j=1 µ
m
jk

)
and Dk =

(∑J
j=1 µ

m
jk

)d
/ |Σk|.

This set of equations is solved using a classical fixed-point algorithm with alternate search
directions (see alg. 2) that proved quick and effective convergence for all tested datasets.
(Further clues indicating why such algorithms should converge, esp. their link to maximum
likelyhood estimation can be found in [34]). If the position of one or several centers is known
(as for the case of identifying the center of an exponentially distributed cluster), the update
step [5] of algorithm 2 can be skipped. Finally, a new algorithm combining spectral and
fuzzy clustering can be derived (see alg. 3).

Input : Data X ∈ RJ×d
Output : Centers C ∈ Rd, Membership functions µ ∈ RJ×c
Parameters : c, α, Initial centers C0 (if known), ε0, update parameter up

1 Initializations C = C0, A = (11, . . .1c)
2 while J(C, µ;X) > ε0 do
3 Compute membership functions µk using (26)
4 if up(k) then
5 Update centers Ck using (25)
6 end
7 Compute cost function J(C, µ;X)
8 Compute Σk and Dk

9 Compute determinant ρk using (27)
10 Update matrix Ak using (28)

11 end

Algorithm 2: Modified fuzzy c-means algorithm.

3.1.4. Results on the 2D test-cases

Figure 5 shows the clustering results obtained by running algorithm 3 on the 2D test-cases
of figure 4. The total number of points is J = 2000. In both convex and non-convex cases, the
clusters are represented in the Y - and X-plane where the color-scale of the markers is chosen
according to the value of the membership function µ1 associated to the first cluster Eph. The
members j belonging to the first cluster (chosen such as µj1 ≥ 0.5) are then circled in blue
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Input : Data X ∈ RJ×d
Output : Centers C ∈ Rd, Membership functions µ ∈ RJ×c
Parameters : c, α, Initial centers C0 (if known), ε0, update parameter up

1 Stack initial centers if needed X = [X;C0]
2 Compute mapping Y =M(X; c) using alg. 1
3 Dissociate transformed data Y from transformed centers CY0 : [Y ;CY0 ] = Y
4 Compute membership functions [CY , µ] = FCM(Y ; c, α, CY0 , ε0, up) using alg. 2
5 Recompute final centers C from µ using (25)

Algorithm 3: New spectral fuzzy c-means algorithm.

whereas the points of the second cluster (verifying µj1 < 0.5) are circled in red. The final
clustering results (see fig. 5) exhibit a very satisfying partition in each case. Unsurprisingly,
the membership functions have close-to-1 values near centers and close-to-0.5 values in the
overlapping gray area.

As can be seen on figures 5c and 5d, the clusters in the Y plane can have elliptical
spreads, that sometimes can be degenerated into lines. This stresses the importance of
having a metric that adapts to the shape of the clusters to detect.

A study of the influence of the total point number J has also been performed. 10 different
data sets following the reference distributions of the two test cases have been generated for
increasing values of J ranging from 100 to 4000. For each data set, three different algorithms
have been run: the classical k-means algorithm used in [9, 25], the modified fuzzy c-means
algorithm 2 and the new spectral fuzzy c-means algorithm 3. In each configuration, the
identified cardinality-ratio a = card Eph/J has been computed and compared to its 0.3
reference value. Figure 6 condenses the results of this study for both convex (6a) and non-
convex (6b) cases. The colored areas contain the identified values of a for the 10 generated
data sets for each J . The solid lines of corresponding color are associated to the mean values
of a w.r.t. to J .

What can be seen in the convex case (fig. 6a) is that the k-means algorithm gives a
slightly biased value a ≈ 0.345, which in our modal analysis context would lead to include
artefacts in the group of possibly physical modes. The new modified- and spectral- FCM
algorithms in this case exhibit a similar behavior and offer a better partition with values of
a closer to 0.3. In the non-convex case, as expected, the spectral-FCM algorithm enables
a clear improvement of the partition with close-to-0.3 values for a, whereas modified-FCM
algorithm gives more biased values a ≈ 0.35 and k-means shows a more unstable biased
behavior (a ≈ 0.4) with larger dispersion. One can also notice from those two plots that none
of those algorithms shows good performances when the data sets are too small (J < 500).
This is another reason for preferring large nmax values in the modal analysis context when
tuning growing model-order identification algorithms.

One may now question the performances of the modified spectral-FCM algorithm when
the in-between clusters distance decreases. A last study has been done, generating again
10 data sets for different values of (d̄, a) and containing this time a fixed value of J = 2000

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0

Membership function µ1

µm
1

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

(a) Convex case: clusters in the Y plane

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(b) Non-convex case: clusters in the Y plane

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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(d) Non-convex case: clusters in the X plane

Figure 5: Test-case – Final clustering results using alg. 3. In the four plots, the color of each point j is
chosen according to the value of the membership function µj1 (see color scale at the top). Points of the
first (µj1 ≥ 0.5) and second cluster (µj1 < 0.5) are respectively circled in blue and red. Yellow circled

crosses mark the identified centers.

members. A colored plot of the identified a = card Eph/J is shown figure 7 for varying
values of d̄. One can observe for the two test-cases a clear improvement of the partition
when d̄ > 0.4. However, a general trend still persists: the results are better when trying to
dissociate relatively homogeneous clusters (values a ∈ [0.3; 0.7] in fig. 7).

In conclusion to this test-case study, the newly derived spectral-FCM algorithm (see alg.
3) has shown good robustness with respect to both non-convexity and inhomogeneity of
the clusters to be separated. This algorithm is now used in lieu and place of the classical
k-means algorithm for separating the group Eph of possibly physical modes from the group
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Figure 6: Influence of the total point number J on the clustering results. For each value of J , the
identified value of a for each of the 10 generated data sets are contained in the colored areas. The solid
lines of corresponding colors are associated to the mean values of a. The thick dashed line marks the

targeted reference value.
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Figure 7: Performance of the new spectral-FCM algorithm for varying values of (a, d̄). Each color
corresponds to a fixed value of a: (blue) a = 0.1, (red) a = 0.3, (yellow) a = 0.5, (purple) a = 0.7, (green)

a = 0.9. The thick dashed lines mark the targeted reference values.

Esp of spurious modes at stage (i). Also note that modified FCM alg. 2 also exhibited good
similar performance in the non-convex case.

3.1.5. Modal analysis results

Algorithm 3 is carried out for separating Eph from Esp in R8 after computation of the
X [1:8] modal indicators of table 2 for the SMART2013 dataset. In the rest of current section
3, derivations will be illustrated using test results recorded for RUN6 in the OO context.
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Figure 8 shows a scatter plot of four out of the eight validation criteria used for dissociating
the two families. The theoretical center C1 of Eph is not updated during the FCM algorithm
(diamond and square are superposed) so that the membership function µj1 can be interpreted
as a performance indicator for each mode j. Indeed, modes with the higher membership
function value are closer to the theoretical ideal center C1 and have thus more chances
to be good physical mode candidates. This membership function µ1 is preciously kept as
performance indicator and will be reused at stage (iii) (see section 3.3).
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Figure 8: Stage (i) – Clustering results on single mode validation criteria X ∈ R8 obtained by alg. 3 – OO
identification RUN6 – Here only for 4 out of 8 criteria (see tab. 2) are represented. The color of each point
is defined according to the values of the membership function µ1 of group Eph (see gray scale at the top).

Possibly physical modes in Eph are circled in blue, spurious modes in Esp are circled in red. The initial
guesses for centers Ci are marked with squares and their updated positions are marked with diamonds.
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3.2. Stage (ii) : hierarchical clustering

This stage is at the center of the automated selection process. The idea is to form

sub-groups
(
Ephi
)I
i=1

of Eph, each one containing variations of the same mode obtained for

different model order n. This is done using hierarchical clustering and this stage is not
treated differently than in the reference [9]. Hierarchical clustering algorithms start from
a situation where each mode belongs to its own cluster and progressively group the modes
using a distance criterion for building a unique cluster containing all modes. This iterative
clustering process can be visually summarized using the so-called dendrogram shown figure
9.

Figure 9: Stage (ii) – Dendrogram obtained from hierarchical clustering – OO identification RUN6 – The
cut-off distance d0 is represented in red.

The main steps for hierarchical clustering can be summarized as follows:

1. Every mode in the stabilization diagram is placed in its own group and the distance
d(p, q) between two groups p and q is computed using the inter-mode distance (5);

2. The two closest groups are merged and the mutual distance between groups is calcu-
lated as the average distance between their different elements;

3. Previous stage is then repeated until the mutual distance between groups is greater
than a threshold value d0. This threshold is derived from the statistical properties of
the family Eph identified at stage (i) as:

d0 = E
(
dph
)

+ 2σ(dph) (29)

where E
(
dph
)

and σ(dph) are respectively the mean and standard deviation values of
the inter-modes distance (5) denoted dph and computed for the possibly physical modes
in Eph.

In the application (see fig. 9), the cut-off distance d0 has led to the creation of I = 239
sub-groups of Eph containing similar modes according to the modal distance (5).
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3.3. Stage (iii) : final selection

One last stage is now necessary to discard the groups Ephi that contain a too small number
of mode occurrences. The goal here is to mimic the detection of columns in the stabilization
diagrams when visual inspection is carried out. In order to proceed to the last selection stage
without introducing a new user-specified threshold, a k-means (k = 2) algorithm is used in [9]
to separate the set of potential physical modes Eph = ⊕Ii=1E

ph
i into two subgroups according

to the number of modes contained in Ephi . Thus, defining ni = card Ephi , the “centers” nc,1
and nc,2 of the physical and non-physical modes are sought as:

(nc,1, nc,2) = arg min
nc

2∑
k=1

I∑
i=1

(ni − nc,k)2 (30)

In this work a last improvement is made to benefit from the results of stage (i). In order
to favor modes with good stability properties, the Eph membership function is used for
redefining the ni values as:

ni =

card Ephi∑
k=1

µmk1 (31)

Figure 10 shows the more clear partition that is obtained using the new definition of ni.
The jump in the ni distribution appears more clearly on figure 10b and is more likely to be
identified by the k-means algorithm.
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(b) Improved version, ni defined wrt (31)

Figure 10: Stage (iii) – Final clustering stage – OO identification RUN6 – Cluster score ni for each group

Ephi .

Remark 3.1 (Pole splitting). When large model orders nmax are specified, the so-called pole
splitting phenomenon can occur, i.e. for high model orders, a single physical mode tends to
be modeled by two (or more) similar modes in the stabilization diagram for several values of
n (see fig. 11). The hierarchical clustering algorithm of stage (ii) will produce a group Ephi
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containing too many representations of mode i and this can deteriorate the quality of the
last partitioning stage (iii). To ensure that only one representation of mode i for any model
order n is present in Ephi , the membership function µ1 is used once again. If a group Ephi
contains two occurrences p and q of the same mode for the same value of n, the membership
function enables one to automatically select the more ‘reliable’ candidate k by simply taking:
k = arg maxp,q(µp1, µq1).
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Figure 11: Pole splitting and duplicated pole removal – OO identification RUN6 – Group Eph1 associated

to first eigenfrequency. The modes k present in Eph1 are represented in red with an opacity defined
according to µk1. The right column representations are more reliable than the left column representations

regarding the performance criterion µk1.

3.4. Final results and statistical properties

Figure 12 shows the stabilization diagram obtained in the OO context for RUN6. Keeping
the same convention, the face color of each mode k is chosen according to the value of the
membership function µk1 and the artefacts are circled in red. Î = 6 modes have been
automatically selected (circled in blue and highlighted with blue lines in fig. 12) by the
three stages algorithm on the frequency range [0; 100Hz].

Figure 13a shows the cleared stabilization diagram obtained after stage (iii) and du-
plicated pole removal. One color is chosen per selected family Ephi and the opacity of the
colors marking the poles is defined according to the membership function µ1. Thus, the most
reliable modes appear in brighter colors while the less reliable ones are nearly transparent.

Table 3 collects the values of the eigenfrequencies and damping ratios of the Î = 6 auto-
matically selected modes using the new spectral FCM algorithm for partitioning indicators
[X1, . . . , X8] at stage (i). The modeshapes of the 6 selected modes are represented in table
4 and a comparison with other selection algorithms involving different modal indicators sets
is made in section 3.5 and collected in table 3. Please note that the mean and standard
deviation values are given in a fuzzy sense for each group i according to the membership
function values µk1 with k ∈ Ephi . More precisely, for any modal feature X , the fuzzy mean
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Figure 12: Stabilization diagram and modes selected by proc. FCM-X [1:8] – OO identification RUN6 –
The continuous and dotted green lines correspond to the first and second eigenvalues of Syy (ω) plotted

against frequency (log-scale on the right).

and fuzzy standard deviation is computed using:

Ẽ (Xi) =

∑
k∈Ephi

µmk1Xk∑
k∈Ephi

µmk1

, σ̃ (Xi) =

√
Ẽ

([
Xi − Ẽ (Xi)

]2
)

(32)
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Figure 13: Final modal analysis results – OO identification RUN6 – One color per mode group Ephi and
opacity of colors defined according to µ1. The squares � mark the mean damping values while the stars ∗

point the modes with median damping values chosen for modeshape representation.

The idea behind this is still to give more importance to the modes with the greatest confidence
index. No outlier rejection strategy, as used e.g. in [25], is implemented in this work.
One here relies on the fuzzy framework (more precisely on the performance index µ1) to
minimize the impact of the outliers on the statistical properties of the modes. What have
been empirically found is that outliers generally have low µk1 values as one can see on figure
13b (outliers are nearly transparent).

The results can finally be summarized in a last figure using the Complex Mode Indicator
Function (CMIF). The CMIF [35] is defined as the ∞-norm of the power spectral density
matrix Syy (ω) in the OO context, of the transfer function H (ω) in an IO context. This
synthetic frequency indicator has the property of having clear local maxima in the neigh-
borhood of natural frequencies ωi and is clearly related to the previously introduced MTN
reading MTNi = CMIF(ω = ωi). An indication on how well the Syy (ω) (resp. H (ω)) matrix

is reconstructed from the Î automatically selected modes can be obtained by comparing two
CMIF curves:

� The first version is defined by the ∞-norm of the PSD matrix computed using the
Welch’s periodogram method (see e.g. [36] for details). In this work, regularly spaced
60% overlapping Blackman windows of 5s length are used.

� The second version is obtained after reconstruction of the PSD matrix using the Î
modes selected after SSI:

Syy (ω) =
Î∑
i=1

Syy , i(ω) (33)

where each single-mode contribution Syy , i(ω) is computed using (11).

Figure 14 compares these two versions. In addition to the CMIF reconstructed from (33)
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using the mean values Ẽ (fi) and Ẽ (ξi) (black solid line), an envelope curve is also plotted
using undamped frequency values in [Ẽ (fi) − σ̃ (fi) ; Ẽ (fi) + σ̃ (fi)] and damping ratios in
[Ẽ (ξi)−σ̃ (ξi) ; Ẽ (ξi)+σ̃ (ξi)]. Reconstructed CMIF and Welch CMIF are very close over the
entire frequency range [0; 30Hz]. The very good match between the two curves demonstrates
the good modal reconstruction of the PSD matrix Syy (ω) and validates the automatically
identified modal signature in terms of eigenfrequencies, damping ratios, modeshapes and
participation factors.
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10-2
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102

104

Median CMIF
+/-  Enveloppe
Welch CMIF

Figure 14: Comparison of CMIF curves – OO identification RUN6 – CMIF reconstructed from the modal
signature (in black) vs. CMIF obtained from Welch’s periodogram (in green). The mean values of the

selected eigenfrequencies appear as blue vertical lines.

3.5. Discussion: choice of modal indicators and comparison with other algorithms

The 6 automatically selected modes are clear structural modes of the RC specimen cou-
pled with hydraulics (see additional physical interpretation section 4.1) with low MPD and
higher MTN values. However, inspecting the diagram fig. 12, one can notice that several
modes on the frequency range [30Hz; 100Hz] have been discarded by the algorithm although
they visually exhibit nice stable display with µ1 values above 0.7. Those higher frequency
modes are associated to higher MPD levels (as reported tab. 3) and the question if whether
or not they should have been retained by the automated selection algorithm is legitimate.

Further investigation is made in this sense and is explained in the following lines. The
current procedure (referred to as FCM-X [1:8] in table 3) has been run a second time, removing
MPD from the indicators-set on which fuzzy clustering is performed at stage (i). What can
be observed in table 3 (see FCM-X [1:7]) is that modes with stable behavior and higher MPD
level are now selected by the algorithm. For this second procedure, a larger number of mode
candidates was selected in Eph leading to higher threshold value d0 (see two last rows of table
3). The adaptability of the threshold to the nature of the user-specified indicators set is a
desirable feature.
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Proc. FCM-X [1:8] FCM-X [1:7] KM-X [1:8] KM-X [1:7] KM-logX [1:4,6] KM-X [1:5,8:10] Manual

Mode Ẽ (f) Ẽ (ξ) Ẽ (f) Ẽ (ξ) E (f) E (ξ) E (f) E (ξ) E (f) E (ξ) E (f) E (ξ) E (f) E (ξ) MPD
1 6.26 3.5 6.26 3.5 6.26 3.5 6.26 3.5 6.24 3.4 6.26? 3.5 6.25 3.5 0.10
2 7.91 3.6 7.91 3.7 7.91 3.7 7.91 3.7 7.91 3.6 7.90 3.7 7.89 3.7 0.05
3 16.21 3.8 16.21 3.8 16.21 3.8 16.21 3.8 16.20? 4.2 16.21 3.7 16.21 3.8 0.12
4 20.53 5.7 20.53 5.8 20.52 5.8 20.52 5.8 20.55 5.4 20.54 5.7 20.52 5.8 0.11
5 21.46 5.9 21.47 5.9 21.51 6.0 21.52 6.1 21.47 5.6 21.45 5.8 21.48 6.1 0.15
6 28.91 2.1 28.91 2.1 28.90 2.1 28.90 2.1 28.91 2.0 28.92 2.1 0.14
7 30.04 3.7 30.06 3.8 30.05 3.7 30.05 3.7 0.32
8 33.01 2.1 33.12 2.1 33.32 2.1 0.43
9 36.79 2.5 36.81 2.4 36.81 2.4 36.89 2.4 0.46
10 40.76 1.9 40.75 1.9 40.75 1.9 40.77 1.9 0.28
11 51.23 2.7 51.22 2.7 51.21 2.5 51.20 2.5 0.44
12 60.61 0.6 0.66
13 66.92 3.1 66.92 2.9 66.88 3.1 0.48
14 72.13 0.7 72.16 0.7 72.15 0.7 72.21 0.7 0.41
15 85.43 0.9 85.23 0.9 85.24 0.9 85.63 0.9 0.46
16 90.44 1.7 90.63 1.8 0.44
d0 0.0805 0.1077 0.1153 0.1155 0.0162? 0.0613 0.1
a 0.42 0.48 0.52 0.52 0.42 0.30 -

Table 3: Modal selection results for different algorithms – OO identification RUN6 – Mean values of
undamped frequencies E (f) (in Hz) and damping ratios E (ξ) (in %) for different automated selection

procedures and manually selected modes. The names of the tested procedures indicate the modal
indicators X used referring to table 2 and the clustering algorithm carried out for partitioning stage (i)

(FCM: fuzzy c-means, KM: k-means). Please note that mean values Ẽ (•) are given in a fuzzy sense when
FCM algorithm is used. The two last rows indicate the (automatically-)chosen threshold d0 employed for

each procedure and the ratio a = card Eph/J achieved by the clustering algorithm. The MPD values in the
last column corresponds to the MPD value of manually selected modeshapes. The markers ? indicate when

singularity in the results is observed (see text for details).

The results of a third and a forth procedure are presented in table 3 where k-means is
used at stage (i), referring this time to KM-X [1:8] and KM-X [1:7]. Modal selection results in
this case are very similar: the presence of the MPD in the indicators-set did not sensitively
change the partition realized by k-means that split the data into equally-sized Eph and Esp,
and led to nearly identical values for threshold d0. As was also noticed on the test-cases
of section 3.1, the quality of the k-means partition greatly depends on the total number
of modes J = 1/2 nmax(nmax + 1) to be split and implies an optimal choice for nmax.
The dependence of the automatically chosen threshold d0 defined by (29) to nmax can be
observed on figure 15 for both hard- and fuzzy-clustering cases. The two curves were obtained
repeating procedures FCM-X [1:8] and KM-X [1:8] for nmax ranging from 200 to 500. What is
noticeable is the greater independence of d0 to the user-specified nmax using the new FCM
algorithm: this is an other desirable characteristic for preferring fuzzy clustering to k-means.

The procedures described in [25] and [9] were also tested for comparison. According
to the lines of [25], the indicators-set was restrained to [X1...4, X6] and a log-transform was
applied to each Xi before performing k-means. The centers were initialized as advised in
the reference and the threshold d0 was computed fitting a Weibull distribution to dph, the
inter-modes distance (5) restrained to Eph, and defining it as the 95th percentile threshold:
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Figure 15: Evolution of threshold distance d0 with maximal user-specified model order nmax – OO
identification RUN6 – Partition is realized on the indicators set [X1, . . . , X8] of table 2.

P(dph < d0) = 0.95. This definition has led to d0 = 0.0145 and only one mode (7.91Hz) on
the frequency range [0; 100Hz] was selected after stage (iii). The definition has then been
replaced by (29) yielding the more appropriate selection of 6 modes. The results associated
to this version are collected in table 3 referring to KM-logX [1:4,6] and final stabilization
diagram is presented in figure 16a. One has to notice that only 5 modes are reported in
table 3: due to the low threshold value d0 = 0.0162, two different groups Eph3a and Eph3b

were formed for the third mode after stage (ii) and both of them were selected after stage
(iii). The group with the larger variance has been manually discarded while the other
one was reported in table 3 and marked with a star. Processing the accelerometers of the
SMART2013 test campaign, a clear trend of the procedure KM-logX [1:4,6] to produce too low,
sometimes unusable, threshold values d0 has been noted for every run, although it showed
good overall performance in [25]. In the reference, the quasi-analytical nature of the tested
specimen (cantilevered glass fiber-reinforced polymer plate) enables the discrimination of
artefacts based solely on stabilization criteria; physical modes are stable and nicely decoupled
while artefacts are more randomly distributed. In the SMART2013 dataset however, the
modal density is much higher, especially above 30Hz. Those higher frequency modes intend
to model more complex mechanisms occurring at the contact of additional masses with
floors and exhibit good overall stabilization properties to the extend that they are massively
included in Eph when performing k-means on X [1:4,6]. Their presence somehow disturbs the
definition of the threshold d0 that becomes too low and inappropriate, finally missing the
selection of the 6 linear dominant modes. This trend is here accentuated by the fact that
accelerometers are processed: their high frequency range favors the emergence of numerous
modes of that kind in the diagrams.

Following this time the methodology proposed in [9], a k-means partition is realized on
the indicators-set [X1...5, X8...10]. As advised in the reference, indicators were normalized
before partitioning. Final modal selection results are collected in table 3 referring to KM-
X [1:5,8:10] and the selected modes are placed in the diagram of figure 16b. For this dataset,
final selection results are very similar to those obtained with FCM-X [1:8]. One has to notice

29



that, contrary to what could be expected using k-means, a large number of artefacts were
removed at stage (i). This is explained by the presence in the indicators-set of the Modal
Phase Collinearity (MPC); this indicator is strongly correlated with the MPD, empowering
modes with a line distribution in the complex plane. The clustering stage is thus clearly
dominated by the MPD/MPC distribution and many modes, too weak in the sense of those
two indicators, were removed from Eph. Furthermore, the procedure identified the spurious
pole-splitting mode around 6Hz as physical. Those spurious modes paradoxically have all the
attributes of good physical mode candidates (high MTN, reasonably low MPD and MPC as
well as good stabilizing properties) and the low threshold d0 resulting from the tight partition
realized by k-means enabled the hierarchical clustering stage to build a heavily populated
cluster of modes one wishes to discard. The pole-splitting group was manually removed from
table 3 and first mode is marked with a star.

6 8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

(a) Proc. KM-logX[1:4,6] described in ref. [25]
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(b) Proc. KM-X[1:5,8:10] described in ref. [9]

Figure 16: Final modal selection for refs. [25] and [9] – OO analysis RUN6.

The results of the different automated selection procedures were also confronted to manual
selection where stabilization charts are cleared out by means of user-defined threshold d0 and
final selection is performed after careful inspection of the modeshapes and indicators values
corresponding to the columns with best stabilizing properties. A group of four expert users
was consulted for interpreting the diagram of figure 12; all of them benefited from the
additional knowledge of (a) the Welch’s CMIF and (b) the modeshapes of the numerical FE
model developed in the framework of the SMART2013 benchmark [20]. It should be noted
that manual interpretation of stabilization diagram greatly depends on the experience and
engineering judgment of the analyst; provided results are user dependent. The four experts
selected the six first modes but reported having encountered difficulties in the selection
process on the interval [30; 100Hz]. They all reported that the simultaneous plot of the CMIF
in the stabilization diagram and the knowledge of the numerical modeshapes were of great
help for resolving ambiguous cases. Only one manual selection result is collected in table 3.
Compared to the proposed automated selection procedure FCM-X [1:7], two additional modes
near 60 and 66Hz were retained. Those modes, associated to simultaneous 2nd and 3rd floor
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movements, were discarded by the automated procedure because of their high MPD level.
Two out of the four experts discarded them as well for the same reason.

In conclusion to this OO analysis, the new spectral-fcm algorithm proposed for stage (i)
enabled a better definition of the cluster Eph of potential physical modes. Yielding thresholds
d0 using (29) have proved to be:

� More adapted to the physical meaning of the user-specified set of single-mode validation
criteria. The analyst now has more flexibility to include weakly excited modes or more
complex modes in the final selection;

� Less sensitive to the delicate choice of nmax, that, without prior knowledge on the
studied structure and dealing with complex systems is generally chosen as high as
possible.

Let one note that the newly developed nMTN indicator has played a important role for
dealing with weakly excited modes and polesplitting detection. When removing the nMTN
from the indicators-set, the FCM-X [1:6,8] procedure only selected the seven following modes{

1, . . . , 6, 10
}

referring to the numbering of table 3 and a group corresponding to the pole-
splitting column for mode 1 was included in the selection. This stresses the importance of
the nMTN in the set of considered single mode validation criteria. Let one finally remark
that in some rare cases (found while processing other experimental data-sets), the spectral-
fcm algorithm 3 did not achieve proper partition, gathering the family Eph around a unique
mode corresponding to anti-aliasing filter frequency. This kind of issue can be easily bypassed
specifying a reduced frequency range on which modes are to be selected or using fuzzy alg. 2
instead of alg. 3. In this last case, the threshold d0 has more chances to be sub-optimal, but
the rest of the methodology remains unchanged and still gives satisfactory results benefiting
from the advantages of the fuzzy framework for pole-splitting and final mode selection as
described in section 3.3.

4. SMART2013 shaking-table test campaign : evolution of the modal signature

4.1. Modal signature of the initial configuration

4.1.1. Output-Only framework

Table 4 represents the modeshapes associated to the six modes identified by the FCM-
X [1:8] procedure and collected in table 3. Those six modes dominate the dynamic behavior
of the system Z on the low frequency range (see also fig. 14). On each line of the table,
spatial representations of the modeshapes are given for the sensors on the RC specimen
and the participation of the accelerometers on the hydraulic actuators (not represented) are
plotted as histograms with full scale harmonized with the spatial plots. An inspection of the
modeshape colinearity is finally proposed by representing the modeshapes φi = Cψi in the
complex plane: each dot k stands for the component φi,k of modeshape i at measurement
point k. The blue dots are associated to the sensors placed on the RC specimen, the red
dots to the sensors on the hydraulics.
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Table 4: Modeshapes identified for RUN6 – OO analysis.
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Modeshapes identified for RUN6 – OO analysis.
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Table 4 – Modeshapes identified for RUN6 – OO analysis.

The two left spatial plots represent the modeshapes projected at RC specimen’s sensors location.

Then ensues the modal participation of the sensors placed on the eight hydraulic actuators

(accelerometers acV ∗ named “unrepresented degrees of freedom”) taking the form of a bar plot

with full scale harmonized with the first two plots. Finally the full modeshapes φi are represented

in the complex plane with blue dots for the sensors on the RC specimen and red dots for

hydraulics.

The three first modes are structural modes of the RC specimen with a low participation
of the hydraulics: flexion mode along x at 6.26Hz, flexion mode along y at 7.91Hz and
torsion mode around z at 16.2Hz. The two following modes around 20Hz are hydraulic
modes that mainly involve the mass of the set {Table + RC Specimen} and the stiffness of
the oil column contained in hydraulic jacks. The oil column resonances of the actuators in
the x and y direction are clearly decoupled. A slight response in flexion of the RC specimen
is to observe for the second hydraulic mode along y. The sixth mode around 29Hz is a
second order flexion mode along x of the RC specimen with a slight implication of two first
floors.

Other modes have been identified above 30Hz using the FCM-X [1:7] algorithm (see table
3). They mainly involve floor movements with expected local dissipative phenomena of hys-
teretic nature (sliding friction between additional masses and concrete surface at anchoring):
the modeshapes exhibit a higher complexity that is translated into MPD values above 0.3.
Those modes with lower participation factor are not plotted in this paper for conciseness.
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4.1.2. Input/Output framework

In the IO context, the biaxial ground motion of the AZALEE shaking table is defined
as input of the experimental system. Two different analysis are performed specifying in
the input vector u the two independent components contained in the row space of the data
associated to accelerometers, located on the hydraulic actuators rods in a first study IO-1,
on the the soleplate (floor 0) in a second study IO-2. Comparing the results obtained in the
OO and IO frameworks, the objective is to quantify the the coupling of the tested structure
with the hydraulics and AZALEE shaking table. Table 5 collects the results obtained after
carrying out procedure FCM-X [1:7] for each case and recalls the OO results for commodity.
Figure 17 presents the stabilization diagram obtained for the IO-1 analysis where the modes
selected by the FCM-X [1:7] procedure are highlighted with blue lines. The figure is completed
by the plot of the two singular values of the transfer function H (ω) computed from the
Welch’s periodogram and verifying:

Syy (ω) = H (ω) Suy (ω) (34)

where Suy (ω) is the cross-PSD matrix between inputs and outputs. H (ω) is then computed
after classical Moore-Penrose pseudo-inversion. Unsurprisingly, one visually observes that
the automated selection algorithm correctly prioritizes the selection of frequencies where
the H -CMIF indicator is peaking. Figure 18 compares the H -CMIF obtained from Welch’s
periodograms (see eq. 34) with the modal decomposition of expression (15) involving the
modehshapes, participation factor together with undamped frequency and damping ratio
living respectively in [Ẽ (fi)− σ̃ (fi) ; Ẽ (fi) + σ̃ (fi)] and [Ẽ (ξi)− σ̃ (ξi) ; Ẽ (ξi) + σ̃ (ξi)].

The OO and IO results of table 5 exhibit good correlation and the H -CMIF reconstructed
after modal selection in figure 18 is in good accordance with the Welch’s estimation. As
could be expected, the two modes 4 and 5 associated to important hydraulic participation
near 20Hz (oil column resonance) are removed by the oblique projection in the IO context.
Compared to the OO case, a greater proportion of artefacts is present on figure 17 and
removed by the new FCM algorithm (see ratio a) and the higher order modes above 30Hz
now appear more clearly in the stabilization diagram. For those modes, associated to local
floor movements and higher order flexion of the RC specimen in the x and y direction, no
significant difference between OO and IO analysis is to be noted in terms of undamped
frequencies and modeshapes (see MAC indicator tab. 5). Regarding the three first modes
however, a significant 6 to 17% increase in mean undamped frequency values is observed in
the IO case. The closed-loop controlled hydraulic devices included in the definition of system
Z and excluded from Z1 and Z2 (see definitions (2) and (3)) in the IO case obviously adds
a non-negligible dynamic impedance to the experimental system, what mainly affects global
modes at low frequency.

Furthermore, one can notice that the two IO analysis gave very similar results: the
undamped frequencies identified for Z̄1 and Z̄2 (with and without the AZALEE shaking
table) differ from less than 1.5% on the three first modes and less than 0.5% for higher
order modes. The coupling between AZALEE shaking table and the 45.8 tons {Specimen +
Additional masses} can be qualified as negligible. When trying to reproduce experimental
results with numerical models (see e.g. SMART2013 benchmark [37]) more efforts should be
made for including the effect of the closed-loop controlled hydraulic actuators rather than
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Figure 17: Stabilization diagram and modes selected by proc. FCM-X [1:7] – IO-1 identification RUN6 –
The continuous and dotted green lines correspond to the first and second singular values of H (ω) plotted

against frequency (log-scale on the right).

this of the AZALEE shaking table itself.

Inspecting fig. 17, one can wonder about the presence stable modes around 13.3Hz and
22.6Hz. There are indeed modes at those frequencies associated to a piping system with
embedded mass that is connected to the RC wall and central column at the third floor level.
The device is visible on figure 1 and was an attempt for representing a pumping equipment
present on typical nuclear electrical secondary buildings [20]. The coupling between this de-
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Figure 18: First singular value of the transfer function (H -CMIF) – IO-1 identification RUN6 – H -CMIF
reconstructed from the modal signature (in black) vs. H -CMIF obtained from Welch’s periodogram (in

green). The mean values of the selected eigenfrequencies appear as blue vertical lines.

OO – System Z IO-1 – System Z1 IO-2 – System Z2

Mode Ẽ (f) σ̃ (f) Ẽ (ξ) σ̃ (ξ) Ẽ (f) σ̃ (f) Ẽ (ξ) σ̃ (ξ) MAC Ẽ (f) σ̃ (f) Ẽ (ξ) σ̃ (ξ) MAC
1 6.26 0.048 3.5 0.55 6.60 0.004 4.3 0.11 1.00 6.68 0.003 4.4 0.11 0.99
2 7.91 0.023 3.7 0.12 9.10 0.022 5.4 0.19 0.98 9.23 0.018 5.3 0.22 0.98
3 16.21 0.048 3.8 0.58 17.49 0.097 4.3 0.68 0.95 17.60 0.102 4.4 0.88 0.94
4 20.53 0.106 5.8 0.49
5 21.46 0.089 5.9 0.50
6 28.91 0.049 2.1 0.20 29.08 0.093 1.4 0.21 0.92 28.82 0.102 2.4 0.44 0.95
7 30.02 0.179 3.7 0.61 29.95 0.079 1.7 0.41 0.97
8 33.01 0.034 2.1 0.20 33.45 0.155 2 0.28 0.80 33.60 0.055 2.1 0.25 0.78
9 36.79 0.124 2.5 0.10 36.62 0.057 1.7 0.18 0.97 36.65 0.050 1.7 0.14 0.97
10 38.54 0.083 1.8 0.23 -
11 40.76 0.122 1.9 0.32 41.39 0.084 2.1 0.24 0.90
12 45.78 0.229 2.2 0.39 - 45.62 0.088 1.8 0.15 -
13 51.23 0.205 2.7 0.62 51.20 0.126 1.8 0.23 0.97 50.51 0.152 2.2 0.25 0.93
14 60.96 0.754 0.4 0.11 - 60.83 0.685 0.4 0.28 -
15 66.62 0.262 0.4 0.12 - 66.64 0.254 0.5 0.13 -
16 72.14 0.162 0.7 0.31 72.35 0.075 0.5 0.09 0.42
17 85.44 0.357 0.9 0.40
18 90.45 0.543 1.7 0.40 90.54 0.117 1.0 0.20 0.93
d0 0.1077 0.1260 0.1283
a 0.48 0.36 0.44

Table 5: Modal selection results obtained for RUN6 in the OO and IO context – Mean values and standard
deviations of undamped frequencies Ẽ (f) , σ̃ (f) (in Hz) and damping ratios Ẽ (ξ) , σ̃ (ξ) (in %) obtained
after carrying out selection procedure FCM-X [1:7]. The two last rows indicate the (automatically-)chosen

threshold d0 employed for each procedure and the ratio a = card Eph/J achieved by the clustering
algorithm. The MAC values appearing in the table measure the correlation between modeshapes computed

in the IO case and those obtained in the OO case (extracted at compatible sensors position).
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vice and the RC structure is very low, such that the modes are barely observable (extremely
low MTN and close-to-0 nMTN) and has been classified as spurious. The proper character-
ization of such modes can be done including in the analysis the triaxial accelerometer that
was placed on the piping system. For conciseness and because of the low interest of these
modes for our study, no further detail is given.

Damping ratios, in turn, are coherently identified for both OO and IO analysis and
give results within [1; 5.5%] for the modes involving the reinforced-concrete structure. The
uncertainties being much higher regarding damping, no real general trend is to observe.

4.2. Evolution of the modal signature – Correlation with observed damage

Figures 19a and 19b show the evolution of the modal signature in terms of frequency
(vertical) axis and damping ratio (local horizontal axis) along the SMART2013 test campaign
respectively in the OO and IO context. Groups of similar modes are made from the results
of independent analysis and modes are joined together with solid lines of different colors for
the six first modes of table 5. For building those groups, a last post-processing is carried out
using hierachical clustering on 1 −MAC(ψi, ψj) distance and with a stop criterion on the
maximum cardinal number of each group (equal to ten, the number of experimental runs
processed in this work). On figure 19a, the hydraulic modes are pointed out with green
squares.

One can note for the RC-involved modes a progressive reduction of the six main natural
frequencies with two notable drops after RUN13 and 19 for which a sudden rupture of the
steel reinforcements was observed at the base of the connection between the small wall V04
and the soleplate, together with a strong damage level of concrete medium (see fig. 20). A
sensitive damping ratio increase is also to noticeable. One of the contributions of this work
thus concerns the experimental characterization of damping ratios for a RC structure having
different damage rates. Corresponding values are gathered in table 6 where damping ratios
are corrected by a factor

√
s to account for Cauchy-Froude’s similitude (s = 1/4 scale factor)

and obtain typical damping ratios to be expected on full scale reinforced-concrete structures.

Damage level (RC structure) Healthy Light Extended
Damping ratio (experimental specimen) 2-5% 5-7% 5-8%
Damping ratio (full scale structure) 1-2.5% 2.5-3.5% 2.5-4%

Table 6: Damping coefficients obtained imposing low 0.02g RMS broad-band ergodic ground motion to
RC structure for different damage states. Light damage: cracks in the concrete matrix, possible rupture of

reinforcements in most loaded area. Extended damage: rupture of all reinforcements in the most loaded
area, complete loss of stiffness of the RC structure locally observed.

The stability of the modeshapes characteristics along the test campaign has also been
investigated, computing for each RUNk the MPDk

i and MAC(φ6
i , φ

k
i ) values for modes i ∈

[1; 6] and considering the modeshapes identified for RUN6 as reference. No clear trend could
be observed except for a slight increase in the MPD level for the first mode (flexion /x) and
third mode (torsion /z) after RUN19 rising from typical 0.1 to 0.2 values. The second mode
(flexion /y) however, has shown stable close-to-0.05 MPD and close-to-1 MAC values. A
slight decrease of MAC(φ6

3, φ
k
3) was also noted. The slight MPD1 increase can be explained by

the presence of local dissipative phenomena of hysteretic nature (friction between concrete’s
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(a) OO analysis.
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(b) IO-1 analysis.

Figure 19: Evolution of the modal signature. One color per mode, the mean values (Ẽ (fi) , Ẽ (ξi)) are
marked with crosses with while centered rectangles of dimensions σ̃ (fi)× σ̃ (ξi) materialize their

corresponding standard deviations. Green dashed lines point modes with important hydraulic
participation. See fig. 20 for a visual description of associated damage on the RC specimen.

crack lips at the base of wall V04) and MAC variations indicate the effect of the local loss of
stiffness (rupture of reinforcements and cracked concrete medium) on the modal signature.
Modes 4 to 6 in turn exhibited generally higher MPD levels within [0.3; 0.4] and MAC values
associated to such dispersion that no real conclusion could be drawn. These less stable
modal properties reflect above all the difficulty of the subspace algorithms to identify less
observable modes. Let one finally note that the instrumentation considered in this work is
maybe too sparse (especially in the damaged area) to enable further accurate tracking of the
modeshapes characteristics.
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After RUN13 After RUN19 Position of wall V04

Figure 20: Main damage area of the SMART2013 specimen: base of the wall V04. (After RUN13) first
crack appearing near the junction between wall and soleplate – sudden rupture of one or more vertical

reinforcements. (After RUN19) rupture of the rest of the vertcal reinforcements at the base of wall V04 –
complete loss of rigidity between wall and soleplate (breathable crack) – high damage level to concrete.

5. Conclusion

This paper describes a fuzzy-driven multistage clustering strategy for automating the
time consuming modal selection process when performing growing model-order system iden-
tification. Just like earlier references, in the continuity of which this work is part, the pre-
sented automated selection strategy does not contain any case-dependent manually-chosen
threshold nor parameter and the fuzzy framework has proven to bring more robustness to the
methodology in general and particularly with respect to maximum model order specification,
outliers and polesplitting phenomena. Compared to other k-means based methodologies, a
better adequacy of the final modal selection with the set of modal indicators specified for pri-
mary partition has also been demonstrated. The clarifying role of the newly derived nMTN
indicator was also highlighted.

The potential of the approach has been illustrated using data from the SMART2013 test
campaign during which a 1/4 reduced scale reinforced concrete specimen was submitted to a
sequence of seismic ground motions of increasing level. The new automated modal selection
strategy was applied to low-level broadband intermediate tests and enabled the characteriza-
tion of the modal signature of the specimen for different damage states. Both Output-Only
and Input/Output system identification have been carried out for estimating the coupling
between the shaking table device and the experimental specimen. One important conclusion
to be seen on the first natural frequencies is that the impedance associated to the AZALEE
shaking table itself seem negligible compared to that of the hydraulic actuators. Modeling
the shaking-table-to-specimen interaction should focus on the interaction with the controlled
hydraulic device.

Progresses still need to be made to deal with the case of high modal densities which may
still be problematic. Some of the single mode validation criteria used in this work such as
the MPD or nMTN may loose relevance in the case of multimodal behavior and could lead
coupled physical modes to be wrongly classified as artifacts. One has to think in terms of
modal subspace, considering the combination of several modes at very close frequencies.
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Appendix A. Parameters used for the 2D test-cases (sec. 3.1)

The bivariate expression of the lognormal pdf used for defining the 2D reference clusters
of fig. 4 reads:

logN (x;µ,Σ) =
1

2π |x1| |x2|
√
|Σ|

exp
−1

2
(log x− µ) Σ−1 (log x− µ)T

(A.1)

The following parameters were used for cluster 1 (in blue):

a. convex case

µ(1) =

[
−2.5
−2.5

]
, Σ(1) =

[
0.40 0.06
0.06 0.40

]
(A.2)

b. non-convex case

µ(1) =

[
−1.8
−1.8

]
, Σ(1) =

[
0.325 −0.225
−0.225 0.250

]
(A.3)

A reversed lognormal pdf logN (x−;µ,Σ) was used for generating cluster 2 (in red) defin-
ing x− = −(x− τ) and choosing:

a. convex case

τ (2) =

[
3
3

]
, µ(2) =

[
0.96
0.92

]
, Σ(2) =

[
0.0015 0.0010
0.0010 0.0027

]
(A.4)

b. non-convex case

τ (2) =

[
2.8
2.8

]
, µ(2) =

[
0.88
0.84

]
, Σ(2) =

[
0.0015 0.0010
0.0010 0.0027

]
(A.5)

The choice of those parameters is not crucial, however, some care has been taken to
tune them for generating convex and non-convex clusters with equivalent overlapping areas.
Other pdf choices leading to similar clusters in terms of spread, convexity and overlapping
could be used and would lead to analogous results.

40



References

[1] P. Van Overschee and B. De Moor. Subspace Identification for Linear Systems : Theory,
Implementation, Applications. Kluwer Academic Publishers, 1996.

[2] P. Guillaume, P. Verboven, S. Vanlanduit, H. Van der Auweraer, and B. Peeters. A poly-
reference implementation of the least-squares complex frequency-domain estimator. In
Proc of IMAC XXI, Kissimee, Florida, February 2003.

[3] R. J. Allemang, D. L. Brown, and A. W. Phillips. Survey of modal techniques applicable
to autonomous/semi-autonomous parameter identification. In International Conference
on Noise and Vibration Engineering (ISMA), 2010.

[4] Arnaud Deraemaeker and Keith Worden, editors. New Trends in Vibration Based Struc-
tural Health Monitoring. Springer, 2010.

[5] F. Ubertini, N. Cavalagli, A. Kita, and G. Comanducci. Assessment of a monumental
masonry bell-tower after 2016 central italy seismic sequence by long-term shm. Bulletin
of Earthquake Engineering, 16:775–801, 2018.

[6] C. Gentile, A. Ruccolo, and F. Canali. Long-term monitoring for the condition-based
structural maintenance of the milan cathedral. Construction and Building Materials,
228:117101, 2019.

[7] L. Mevel, M. Basseville, and A. Benveniste. Fast in-flight detection of flutter onset:
A statistical approach. Journal of Guidance, Control, and Dynamics, 28(3):431–438,
2005.
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