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Abstract 

We study the thermal transport properties of twisted-layer graphite nanofibers. We show that 

in the presence of a twisted layer, the phonon thermal conductance of a graphite nanofiber of 

rectangular cross-section varies remarkably with the twisted angle and can reach minimum 

values either at two critical angles 1  and 2  that conform to the rule 0

1 2 180    or exactly 

at the angle   900. A reduction of roughly 50% of the phonon thermal conductance can be 

achieved in some structures. We unveil that the twisting effect mainly influences the optical 

modes, leaving almost unaltered the acoustic ones. The effect is also visible in the higher and 

more numerous van Hove singularities of the phonon density of states. We also point out that 

the behavior of the thermal conductance with the twist angle is associated with and dominated 

by the alteration in the overlap area between the twisted and non-twisted layers. The finite-size 

effect is demonstrated to play an essential role in defining the critical angles at the local minima, 

where these angles are dependent on the size of the investigated nanofibers, in particular in the 

proportion between the widths of zigzag and armchair edges. We also analyze the behavior of 

circular nanofibers where the correlation between the overlap area and the thermal conductance 

is much smaller. 

1. Introduction 

The twisting effect in bilayer graphene results in novel physics when compared to non-twisted 

structures[1–5]. In particular, exceptional electronic characteristics with superconducting states 

have recently been reported at the magic angle of around 1.1 degree[6]. Numerous researches 

on the electronic properties of twisted structures in bilayer and few-layer graphene systems[7–
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12] as well as other 2D materials like black phosphorus[13] have been motivated by this 

fascinating physics. It also creates a new field of electronics known as “twistronics” and opens 

up a vast range of opportunities of exploiting the twisting effect[14].  

The findings on the electronic properties of the twisted graphene layers have also inspired some 

studies on the impact of this effect on their thermal properties. However, the number of works 

dedicated to the thermal properties of twisted graphene structures is still modest[15,16].  

Regarding in-plane phonon characteristics, in 2013 Cocemasov et al.[17] studied phonon 

properties in twisted bilayer graphene, focusing more on AA-stacking structures. They showed 

that the twisting effect induces the largest impact on out-of-plane acoustic (ZA) modes in the 

phonon bands of the bilayer structures. Even so, the impact is still noticeable on optical and 

other acoustic modes[17], and also in AB-stacking bilayer structures[18]. Interestingly, both 

experiments and molecular dynamic (MD) simulations showed in-plane phonon conductivity 

reaching the minimum near the twist angle equal to 150 or 450 and a local maximum at 

300[16,19], demonstrating tunable features of thermal transport in twisted bilayer and multiple 

layer graphene systems. 

Although for few-layer graphene structures, in-plane phonon transport is more important, 

thermal transport across the layers was also assessed. By using MD simulations, Wang et 

al.[15], and Nie et al.[16] pointed out that the perpendicular thermal conductivity in bilayer and 

few-layer graphene structures could reach a minimum at the twist angle of about 300, in contrast 

to the in-plane thermal transport[16,19]. Such results were essentially observed in 2D 

structures, i.e., in structures where layers are assumed to expand infinitely, while the 

investigation of thermal properties for twisted structures of finite size is still lacking.  

It is worth noting that the finite-size effect in structures such as quasi-1D graphene ribbons 

offers extended physical properties compared to those of 2D structures. For instance, the 

observed finite-bandgap in these structures as well as novel physics from the edge-type 

terminations[20] make them suitable for a variety of electronic applications[20–22]. Thus one 

could expect that the combination of both twisting and finite-size effects might result in novel 

phenomena in finite-size multiple-layer graphene structures compared to what has been 

observed in 2D counterparts. Such studies still need to be conducted at both fundamental and 

practical levels. 

Graphite nanofibers (GNFs) have recently attracted great attention for their extremely high 

thermoelectric capacity[23]. Such structures can be also considered as relevant for exploring 
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the combined twisting and finite-size effects, due to the high probability to find twisted layers 

in these systems and to the fact that each basic cell has finite size with borders made of a mixture 

of zigzag and armchair edges. Therefore, in this work, we focus on the impact of the twisting 

effect on the thermal transport in twisted-layer graphite nanofibers. Our study aims at providing 

a fundamental understanding of the twisting effect in finite-size structures. but also intends to 

reveal how such an effect could play a role in applications of graphite nanofibers. 

The paper is organized as follows. In Sec. 2, we describe in detail the studied systems and then 

briefly present the methodology based on the efficient Force Constant (FC) model and the Non-

Equilibrium Green’s Functions (NEGF) formalism. Section 3 discusses the obtained results,  

more precisely in Sec. 3.1, we investigate the variation of phonon thermal conductance as a 

function of the twist angle in GNFs of rectangular cross-section, and in Sec. 3.2, we analyze  

the role of the finite-size effect. In Sec. 3.3 we discuss the case of GNFs with circular cross-

section, while Sec. 4 is devoted to conclusions.    

2. Studied system and methodology 

2.1. Studied system 

(a) 

 

(b) 

 
 

Figure 1. (a) Sketch of a nanodevice made of “platelet” graphite nanofibers with rectangular 

cross-section and containing a twisted layer marked in red. (b) The atomistic view of a basic 

cell containing 2MA×MZ atoms. The illustration is for the nanofibers with MA = 6 (dA  ≈ 1.207 

nm), MZ = 10 (dZ  ≈ 1.107 nm). 

 

Figure 1(a) illustrates the studied device composed of a GNF of rectangular cross-section in the 

presence of a twisted layer that is marked in red. In Sec. 3.3 we will also examine the case of 

nearly circular GNFs (not schematized here). The transport direction is along the c-axis, 

perpendicular to the graphite layers. It is worth mentioning that among several types of GNFs, 
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this kind of structure is classified as “platelet” graphite nanofibers[24,25]. For the sake of 

convenience, the c-axis is identical to the z-axis and the rotation is performed around this axis. 

In Fig. 1(b), a basic cell containing two sub-layers is shown. The diameter of the fiber is 

characterized by the number of slices in each sub-layer along the armchair and zigzag edges, 

MA and MZ, respectively. The widths dA and dZ of the GNF along armchair and zigzag edges 

can be determined as 
0 0(3 2) / 2 / 2A Ad M a a     and 

0( 1) 3 / 2Z Zd M a    , where 

0 0.142a   nm is the distance between the two nearest in-plane carbon atoms.  

In this work, we consider nanofibers of diameter ranging from sub-nano to more than 2 nm. We 

remark that such small diameters are experimentally reachable thanks to the recent 

developments of the CVD technique in growing carbon nanostructures[26]. 

2.2. Methodology 

The basic cell of studied graphite nanofibers contains hundreds of atoms, which, with a view to 

phonon transport analysis in defected twisted structures, is highly challenging for ab-initio 

calculations. We therefore employed the Force Constant (FC) approximation as an efficient 

approach to construct dynamical matrices, and we combined it with the Non-Equilibrium 

Green’s Functions (NEGF) formalism for simulating the phonon transport properties. 

Force Constant model 

An FC model containing both in-plane and van der Waals (vdW) interactions was employed. It 

accurately reproduces the phonon dispersion of both graphene layers and graphite along the c-

axis obtained from ab-initio methods as well as experimental measurements [18,27]. The 

secular equation for phonons deriving from Newton’s second law reads [28,29]: 

 2 ,U DU   (1) 

where U  is the column matrix containing the amplitude vectors of vibration of all lattice sites, 

  is the angular frequency, and D is the Dynamical matrix that is calculated as [28]: 
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where Mi is the mass of the i-th atom and takes the value of 1.994×10-26 kg for each carbon 

atom. 
ijK  is the 3×3 coupling tensor between the i-th and j-th atoms and is defined depending 

on whether it is in-plane or inter-plane interaction, i.e., 

(i) For in-plane interactions, ijK  was defined by a unitary in-plane rotation[28,29] 

    1 0

ij ij ij ijK U K U  , (3) 

in which  ijU   is the rotation matrix [29] defined by 

  

   

   

cos sin 0

sin cos 0

0 0 1

ij ij

ij ij ijU

 

  

 
 
  
 
 
 

. (4) 

 

The angle 
ij is the anticlockwise rotating angle formed between the positive direction of the x-

axis and the vector from the i-th atom to the j-th atom. 0

ijK is the force constant tensor given 

by: 

 
0

0 0

0 0

0 0

i

o

r

ij t

t

K

 
 

  
   

, (5) 

where ,
ir t   and 

ot
 are the force constant coupling parameters in the radial, transverse in-

plane, and out-plane directions, respectively. In this work, these in-plane force constant 

parameters were considered up to four nearest neighbor interactions, and therefore twelve 

parameters are needed for in-plane couplings. The values of these parameters were taken from 

Wirtz’s work [27].  

(ii) For interactions between layers (vdW interactions), we employed the spherically symmetric 

interatomic potential model, in which each component of the coupling tensor ijK  is defined 

by:[18]  
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    
 

ij ij
ij '

2' ij

k k
ij kk

r r
K r

r
  (6) 

where , 'k k  is one of the x, y, z components. 
ijr is the vector from the i-th to the j-th atom.  ijr  

is the decaying component    ij ij.exp /r A r B    with empirical parameters 573.76 N/mA 

, 0.05 nmB  . It is worth mentioning that the minus sign “-” is not present in equation (6) as 

in ref. [18] because this sign has been already included in equation (2). In practice, to find the 

best fit between the FC model and the experimental data for bulk graphite, we chose the distance 

between two graphite layers equal to 0.328 nm. In addition, to simplify the computation, a cut-

off of 1 nm in real space was applied for 
ijr in Eq. (6).   

Green’s function formalism for transport study 

To investigate the phonon transport properties, we employed the NEGF technique which is 

highly relevant to study transport in nanostructures, including defects [30]. Within this 

technique, all considered structures are divided into three parts: the left and right leads and the 

device (central) region. The leads were considered as semi-infinite periodic regions. The device 

region contains studied defects and has the length characterized by the number of basic cells 

NA. 

The retarded Green's function for phonons can be written as: 

 
1

2 s s

D L RG i D 


       , (7) 

where   is a positive infinitesimal number, 
DD is the dynamical matrix of the device 

(scattering region), and 

 
0

0

s

L DL L LD

s

R DR R RD

D G D

D G D

 

 
 (8) 

are the surface self-energies representing the contribution of the left and right contacts, 

respectively, being  
0

L R
G   the surface Green’s function of the isolated left (right) contact. The 

self-energies were computed using the Sancho-Rubio iterative technique[31]. 
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To compute efficiently the phonon transmission, the recursive technique [32] was employed to 

handle the size of the device Hamiltonian in the Green's function calculation. Phonon 

transmission was then computed as [28,30]: 

   † †

11 11 11 11

s s

p L LT Trace i G G G G     
 

, (9) 

where  †

( ) ( ) ( )

s s s

L R L R L Ri     is the surface injection rate at the left (right) contact.  

The phonon thermal conductance p was computed by [28] 

    
0

,
2

pb
p p

k
K d g T  





  , (10) 

where  
2

2, / sinh
2 2

p

B B

g T
k T k T

 


   
    
   

.  

3. Results and discussions 

In this section, we first examine the variation of the phonon thermal conductance as a function 

of the twist angle. Then, we analyze the role of the finite-size effect in defining the 

characteristics of such a variation. 

3.1. Crucial angles at minimum thermal conductance 

We investigate the dependence of the thermal conductance in nanofibers of rectangular cross-

section on the twist angle of a single twisted layer within the system.  

Figure 2(a) shows the phonon thermal conductance at room temperature as a function of the 

twist angle of the GNF with the size MA = 6 (dA  ≈ 1.207 nm), MZ = 10 (dZ  ≈ 1.107 nm). The 

results of three cases with different positions of the twisted layer and different device lengths 

are displayed. The position of the twisted layer is characterized by the two indices [ncell, nlayer], 

where ncell indicates the cell number in the device region that contains the twisted layer, and 

nlayer is either 1 or 2 to indicate which of the two layers in the basic cell is twisted.   

When the twisted angle is tuned from 0 to 1800, at the first glance, it can be seen that the phonon 

thermal conductance varies remarkably: the curve forms two valleys around 450 and 1350, 

respectively, together with a peak located around the twist angle of 900. It is worth mentioning 

that with twist angles ranging from 1800 to 3600, the results (not shown) lead to a symmetrical 

curve, which makes sense since rotations from 1800 to 3600 are equivalent to those from 0 to -

1800, that are equivalent to those from 0 to 1800. On the other hand, there is not a perfect 
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symmetry with respect to the 900 as the stacking is different on the two sides of this angle. For 

example, the non-twisted structure and the structure twisted with an angle of 1800 do not have 

the same conductance as they exhibit AB and AA stacking, respectively.  

It can be observed that although the minimum thermal conductance depends on the position and 

the length of the device, the twist angle corresponding to the minimum thermal conductance 

remains unchanged, i.e., at 450 and 1350 for the studied structure. In addition, these two angles 

satisfy the rule 

 0

1 2 180   . (11) 

The thermal conductance of twisted structures is reduced remarkably compared to that of the 

non-twisted one. For example, in the case of the green curve, at 450 and 1350, Kp reaches a 

minimum at the values of 0.148 nW/K and 0.147 nW/K, respectively. Compared to the 

conductance of 0.229 nW/K for the non-twisted structure, it is a reduction of about 35%. Such 

a reduction in the thermal conductance is very appealing for thermoelectric applications since 

it can boost the thermoelectric figure of merit ZT. 

The phonon thermal conductance as a function of the twist angle is given in Fig. 2(b) at 

temperatures other than room temperature. It shows clearly that the variation at different 

temperatures is similar. Interestingly, the twist angles at the minimum thermal conductance are 

likewise unaltered. 

The results depicted in Figs. 2(a) and 2(b) thus show that the two twisted angles at the minimum 

conductance are crucial and independent of the position of the twisted layer as well as of 

temperatures. 

 

(a) 
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(b) 

 
Figure 2. (a) Thermal conductance at room temperature is plotted as a function of twisted 

angle with different positions of the twisted layer and different device length NA. (b) Thermal 

conductance as a function of the twisted angle at different temperatures. In all cases, the same 

size nanofiber was considered MA = 6, MZ = 10. 

 

To explore the underlying physics of the variation in phonon thermal conductance as a function 

of the twist angle, it is relevant to look at the phonon bands of the periodic structures even 

though defects do not appear periodically in the systems. For twisted structures, we will 

consider periodic structures with a twisted layer in a basic cell. The phonon bands can be 

defined from the eigenvalues of the equation which is simplified from Eq. (1) to the equation 

for a single unit cell: 
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2d U U , (12) 

where d is the dynamic matrix defined as  

 
 0.

00 0

0

.e
ik R R

d D D









  , (13) 

where 
00D is the dynamical matrix of the cell 0 and 0D  is the dynamical matrix describing the 

coupling between the cells 0 and  . 

The influence of the twisting effect on the phonon modes can be confirmed using the phonon 

density of states (DOS), which is very sensitive to changes in the phonon bands. We calculated 

the phonon DOS by using the Gaussian smearing of the Dirac delta function [33], i.e.,  

     
  

2

21
n k

n

n nk BZ k BZ

DOS k e

 

   
 




 

    , (14) 

where n is the phonon band index, k  is a wave vector in the first Brillouin zone (BZ),   is a 

small positive number, and  n k  is the frequency of the n-th phonon mode at the wave vector 

k , which is calculated from equation (12). Equation (14) is a generic formula that can also be 

used to calculate the phonon DOS for 2D and 3D structures. 

Phonon bands are shown in Fig. 3(a) for three cases of the twisted angle. As can be seen, when 

the structure is twisted, mini-gaps are slightly widened between optical bands and, in parallel, 

these bands are flattened. These effects seem stronger when increasing the twist angle. 

However, it appears that the acoustic modes are only marginally affected by the distortion of 

the structure. Such an outcome reveals that the effect of the twisted layer is similar to that of 

isotope doping observed in in-plane graphene ribbons[34]. 

The DOS depicted in Fig. 3(b) makes this insight more obvious. They present van Hove 

singularities that are particularly noticeable around nearly flat bands. The DOS of twisted 

structures (color lines) shows more numerous as well as higher peaks compared to that of the 

non-twisted structure (black). Also, the twisted structures present larger mini-gaps and open 

new mini-gaps right above 100 cm-1. This effect is particularly visible in the frequency range 
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from 70 to 250 cm-1. Below 50 cm-1 where acoustic modes locate, the DOS is weakly modified. 

These results are consistent with what has been observed with the phonon bands. The DOS 

obtained for the twisted angle equal to 600 was also plotted for comparison (dashed line). It 

appears that this DOS presents smaller changes than that obtained for 450. That is clearly 

reflected around the mini-gaps and in the frequency range from 70 to 150 cm-1. This outcome 

is coherent with the results of thermal conductance seen in Fig. 2 and suggests that the twisting 

seems to have the highest impact around the angle of 450. 

 

 

(a) 

 

 

 

 

 

(b) 

 

Figure 3. (a) Phonon bands of non-twisted and twisted periodic structures with an assumption 

that a layer in the basic cell is rotated. (b) Phonon density of states corresponding to different 

twisted angles. The size of the nanofiber: MA = 6, MZ = 10. 

 

 

Although the phonon bands and the phonon DOS give some insights to interpret the transport 

properties, it is challenging to exploit them to monitor change at various twisted angles. 

To identify the main factors involved in the variation of the thermal conductance at each twisted 

angle, we focus on the overlap area between the twisted and non-twisted layers, as shown in 

atomic structures inserted in Fig. 2(a) for different angles. At the twisted angle of 450, the 

overlap area is smaller than that at 00 and 900, which means that the variation of the phonon 

thermal conductance might be associated to the change of the overlap area between the twisted 

and non-twisted layers. To elucidate this prediction, we explored the overlap area by 
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considering two layers as two polygons and examined the overlap of these polygons when one 

is twisted. The overlap area as a function of the twisted angle is shown in Fig. 4. 

Interestingly, the variation of the overlap area with the twisted angle in Fig. 4 is very similar to 

that of the phonon thermal conductance in Fig. 2. The two local minima are also located at 450 

and 1350. Thus, the main characteristics of the curve of Kp against the twisted angle are strongly 

associated with the overlap area of the twisted and non-twisted layers. It is worth noting that, 

the overlap area at 900 is close that at 00. However, the thermal conductance at these two angles 

is visibly distinct as can be seen in Fig. 2(a). This indicates that the thermal conductance of the 

twisted layer depends also on the relative position between atoms in the different layers, which 

is understandable as it defines the strength of the van der Waals interactions. However, the 

remarkable resemblance between the variation of the overlap area and the thermal conductance 

with the twist angle reveals that the overlap area between twisted and non-twisted layers in 

nanofibers dominates the characteristics of the change in the thermal conductance. 

 

 
Figure 4. The overlap area of the two layers in a basic cell when one layer is twisted. Here MA 

= 6, MZ = 10. 

 

3.2. Finite-size effect 

In general, the size of the nanofibers, namely dA and dZ, determines the overlap area between 

the twisted and non-twisted layer. On the other hand, as demonstrated in Sec. 3.1, a correlation 

between the overlap area and the thermal conductance exists, thus suggesting that the crucial 
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angles at the minimum thermal conductance might be subjected to the finite-size effect. In this 

section, we, therefore, consider the variation of thermal conductance with the twist angle for 

nanofibers of different sizes to unveil the role of this effect.  

In Fig. 5, the thermal conductance at room temperature is shown for four twisted structures of 

different size. Due to the strong dependence of thermal conductance on the size of the 

structures, to make all results clearly visible on the same graph, we normalized the obtained 

thermal conductance of the twisted structure to that of the non-twisted one for each structure 

size considered.  

As can be observed, most structures exhibit a curve with two valleys at the two sides of a peak 

located at the twisted angle of 900, similarly to those observed for the structure MA = 6, MZ = 

10 shown in Fig. 2(a). However, the depth and the position of the valleys depend on the size of 

the structure. Interestingly, the curve corresponding to the structure with the size MA = 6, MZ = 

7 (blue diamonds) displays a distinct pattern in relation to the twist angle, i.e., the lowest thermal 

conductance is precisely determined at 900. 

It is also worth noting that the largest considered structure (cyan triangles) shows a reduction 

of thermal conductance reaching almost 50%, which is potentially very interesting for 

applications such as thermoelectrics. 

 

 
Figure 5. Phonon conductance of twisted nanofibers with different sizes normalized to that of 

the non-twisted structures. 
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To explore the finite-size effect, we first examine the critical angle at the first local minimum 

Kp as a function of the crossing area S = dA×dZ. The results are shown in Fig. 6(a). It is important 

to note that, in all instances, Eq. (11) remains true for the two twist angles at the lowest thermal 

conductance, therefore an investigation at the first important angle should be sufficient. 

Fig. 6(a) clearly shows that the first critical angle varies significantly with the crossing area of 

the nanofibers. The black lines at each data point present the error bar. To limit the 

computational burden, we have made calculations by changing the twist angle by steps of 50.  

The error bar on each side (upper and lower) of a data point is thus 2.50. The critical angle of 

about 300 of the periodic infinite cross-section multi-layer structures known from Refs. [15,16] 

was also added (cross symbol) for comparison. 

The critical angle of the bigger structure appears to be smaller at the first look. However, the 

structure MA = 6, MZ = 7 (blue symbol) has an abnormal larger critical angle compared to that 

of the structure MA = 4, MZ = 5 (red symbol), despite having a larger crossing area. Hence, the 

critical angle depends also on other factors than only the crossing area. 

We notice that the three largest structures considered here have a ratio dA/dZ ~ 1 with a small 

difference in the critical twisted angle (around 450 and 400), while the two structures which 

have a higher critical angle have a parameter dA/dZ far from 1. To unveil the role of the ratio 

dA/dZ (we can consider also dZ/dA), we plot the critical angle of the first minimum conductance 

as a function of the ratio dA/dZ in Fig. 6(b). As can be observed, the dependence of the critical 

angle on the proportion of the edge widths presents a clearer rule than that with the crossing 

area. With a ratio around 1, the critical angle is close to 400-450 and can converge to lower 

values if the crossing area is larger. When this ratio is far from 1, the critical angle increases 

further, and can reach the value of 900 if the ratio is significantly large, i.e. above 1.6.  
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(a) 

 

(b) 

 
Figure 6. The crucial twist angle at the first local minimum thermal conductance of different 

size nanofibers is plotted as a function of (a) the crossing area S = dA×dZ, and (b) of ratio dA/dZ. 

The cross symbol in panel (a) and the dashed line in panel (b) correspond to the result of an 

infinite cross-section twisted multiple-layer graphene structure [15,16]. 

 

 

We have seen that the three red, green, and cyan curves of thermal conductance for different 

structures in Fig. 5 have a twist-angle-dependence similar to that of the structure considered in 

≈ ∞ 
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Fig. 2. We checked and observed that this behavior is also the same as that of the overlap area 

depicted in Fig. 4. However, the blue curve in Fig. 5 shows a distinct behavior, and it is worth 

checking if in this case the variation of the overlap area still agrees with that of the thermal 

conductance.  

 

In Fig. 7(a), we show the thermal conductance at room temperature for two cases of different 

positions of the twisted layer. In both cases the minimum of conductance occurs at the same 

twist angle of 900. The atomistic view around the twisted layer for some values of the twist 

angle is also inserted in the panel and shows that the smaller overlap area seems to be observed 

around 900. To confirm this, we examined the overlap area as a function of the twist angle and 

plotted it in Fig. 7(b). The result of the overlap area also shows a minimum at 900 and thus 

reinforces the fundamental role of the overlap area in all cases of the size of graphite nanofibers. 

 

(a) 

 

(b) 

 

Figure 7. (a) Thermal conductance of nanofibers at 300 K with the size MA = 6 (dA = 1.21 nm) 

MZ = 7 (dZ = 0.74 nm) as a function of the twisted angle. (b) The overlap area of the twisted 

and fixed layers in a basic cell versus the twisted angle. 

 

3.3. The case of circular graphite nanofibers 

Above analyses for GNFs of rectangular cross-section have unveiled the important role of the 

overlap area. In the case of circular cross-sections GNFs, the overlap area should remain weakly 

dependent on the twisted angle. It is thus relevant to investigate the correlation between the 

overlap area and the change of the phonon thermal conductance in circular nanofibers. 
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To create a circular cross-section structure, we simply removed some atoms in the corners of 

the rectangular-cell structure presented in Fig. 1, so the same values of MA and MZ are used to 

determine the size of a circular structure. For the sake of convenience, we chose to remove all 

the atoms that are out of the circle of radius 2 2

max min max min 0 0(min(( ) / 2,( ) / 2)) ( / 2) / 4R x x y y a a     . 

In practice, at the atomic level, we can only obtain nearly circular cross-section structures. As 

a result, the two layers of a basic cell do not perfectly overlap and the overlap area still varies 

slightly with the twist angle. In the first row of Fig. 8, we show the variation of overlap area for 

three circular structures of different size. The variation of the overlap area is evaluated as 

     Variation of overlap area= twisted non-twisted / non-twisted 100%overlap overlap overlapS S S    . 

A negative value of this quantity indicates a reduction of the overlap area. 

The second row of Fig. 8 shows the change in the thermal conductance for each structure.  

(a)  (b) 

 

(c) 

 

   

Figure 8: Variation of overlap area and thermal conductance of three different circular cross-

section graphite nanofibers. 

 

As can be observed, the thermal conductance curves in Figs. 8(a) and 8(b) exhibit some 

characteristics of the curves of the variation of the overlap area, however, they do not have the 

same form as the case of the rectangular nanofibers considered in sections 3.1 and 3.2. In 
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particular, the largest considered structure in Fig. 8(c) displays a remarkable difference between 

the variation of the overlap and the one of the thermal conductance. Thus, the role of the overlap 

area is weaker and even almost negligible in the case of circular nanofibers.  

To understand more deeply such a discrepancy, and eventually link it to the case of the 

rectangular GNFs for a global conclusion, we analyzed in more detail the variation of the 

overlap area with the twisted angle for each structure. In the first row of Fig. 8, we can see that 

when the overlap reaches its minimum, the variation of the overlap does not exceed 3.8%, 1.6%, 

and 0.85% in Figs. 8(a), 8(b) and 8(c), respectively. Interestingly, the variation degree of the 

overlap seems proportional to the correlation between the overlap area and the change of the 

thermal conductance, i.e., the similarity between the curves of the conductance and the overlap 

area in Fig. 8(a) is higher due to a larger variation of the overlap, and it is almost invisible in 

Fig. 8(c) due to a small change of the overlap. This suggests that a strong correlation between 

the conductance and the overlap area in the case of the rectangular nanofibers must correspond 

to a significant variation degree of the overlap area in these structures. We can verify this 

prediction by looking at Fig. 4 and Fig. 7, or Fig. 9 below. Indeed, in these rectangular cross-

section nanofibers, the change of the overlap at its minima can reach 15% and even more than 

30% as can be seen in Fig. 9. 

 

  Figure 9: Variation of the overlap area of several rectangular cross-section nanofibers 

 

Thus, we can conclude that the correlation between the overlap area and the change of the 

phonon thermal conductance is proportional to the variation degree of the overlap area. The 

overlap is a dominant factor that defines the characteristics of the variation of the thermal 

conductance with the twist angle in the structures where the overlap area varies significantly. 
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The role of the overlap area is much smaller, if not fully negligible, in circular nanofibers due 

to the smaller variation of this quantity.  

Last but not least, it is also worth discussing the feasibility of the studied systems in the view 

of the experimental context. First, concerning the fabrication of carbon structures including 

graphene and graphite nanofibers, finite-size structures such as ribbons can be fabricated by 

using top-down[35] or bottom-up techniques[35]. The former approach always produces 

ribbons with relatively rough edges which strongly impacts the properties of the structure[35] 

and also cannot be used to fabricate narrow ribbons of few nm in width. The latter allows us to 

control ribbons in desired shapes and with smooth edges[35]. In 2015, based on the bottom-up 

technique, Kimouche et al.[36] grew successfully the smallest graphene ribbon with a width of 

5 dimer lines (~0.5 nm) in an ultra-high vacuum. Since the 2000s, it has been also possible to 

synthesize graphite nanofibers with diameters of about 2 nm using the bottom-up technique[37–

39]. Second, concerning techniques to twist layers, the control of the twist angle is now possible 

thanks to recent development techniques by combining wafer-scale highly-oriented monolayer 

growth techniques and a water-assisted transfer method[40]. On the other hand, different 

techniques such as using microdevice[41] or “T-type probe”[42] have been employed 

successfully to measure the thermal conductivity of individual nanofibers with a diameter 

ranging from a few tens to hundreds nm. Thus, with rapid development in experimental 

techniques, the thermal transport properties of graphite nanofibers considered in this work could 

be verified experimentally. 

4. Conclusion 

We have studied the phonon transport properties in twisted-layer graphite nanofibers. We 

demonstrated that in the presence of a twisted layer, the phonon thermal conductance of such 

systems varies significantly. Interestingly, we found that the thermal conductance reaches a 

local minimum at the two angles 1 2,   around 900 or at exactly 900 and these critical angles are 

independent of the position of the twisted layer and the length of the device, but it depends on 

the shape of the cross section.  

We pointed out that the variation of the thermal conductance stems from the change of phonon 

modes due to the twisting effect. It was unveiled that the twisting effect impacts strongly the 

optical modes, in particular, in the frequency range from 70 cm-1 to 250 cm-1, and it weakly 

influences the acoustic modes. This phenomenon is similar to that observed with isotope doping 

in in-plane graphene structures.  
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We also unveiled that the behavior of the variation of the thermal conductance with the twisted 

angle is associated directly with the overlap area between the twisted and non-twisted layers.  

The magnitude of the critical angles relies on the size of the nanofibers, and in particular, on 

the relative ratio between the widths along the zigzag and armchair edges of the nanofibers, 

thus demonstrating the dominance of the finite-size effect in the variation of the thermal 

conductance of a twisted graphite nanofiber.  

Finally, we also pointed out that the correlation between the overlap area and the thermal 

conductance is much weaker and almost negligible in the case of circular cross-section 

nanofibers due to the small variation of the overlap area as a function of the twisted angle. 

Our findings provide fundamental understanding of the thermal transport in twisted-layer 

graphite nanofibers and also point out potential applications of this effect in areas such as 

thermoelectrics. 
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