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The main advantage of isogeometric analysis resides in its ability to represent exactly a wide range of geometries, and has
proven great efficiency in mechanical problems compared to standard finite elements. The application of the isogeometric context to
electromagnetic problems leads to the isogeometric representation of air region, a particularly ineffective process. To overcome this
hindrance, in a magnetostatic context, an original magnetic scalar potential Finite element - Boundary element coupling is presented.
Numerical considerations and implementation specificities are discussed, and the efficiency of the method is demonstrated.

Index Terms—FEM-BEM, isogeometric analysis, scalar potential, magnetostatics.

I. INTRODUCTION

THE finite element method (FEM) is widely used to study
low frequency electromagnetic devices. However, it is

well known that this method has a number of limitations due
to its dependence on the mesh. When modeling electrical
machines for instance, the accuracy of the solution in the
airgap is a key point and is extremely sensitive to the accuracy
of the discretization used for its description. In 2005, Isogeo-
metric Analysis (IGA) was introduced [1], originating from the
mechanical simulation community. Since its implementation,
IGA has gained increasing interest over the past two decades.
This method uses generalized Bézier curves, generated by a
basis of spline functions, to exactly model complex geome-
tries. The mathematical properties of the spline basis makes
it a suitable choice for standard FEM projection functions,
and allows to naturally embed the geometry it describes. The
support of the elements of the spline basis provides parametric
elements that can be used as a mesh during the assembly
process, making it very similar to standard FEM assembly. In
addition, having a generalized spline basis as projection and
interpolation function offers great flexibility as regularity can
be locally imposed, and spline orders can be elevated easily.
Isogeometric analysis has proven great efficiency in standard
FEM for a wide variety of problems (contact mechanics, fluid
mechanics, wave propagation...) as presented in the review [2].

However, when modeling electromagnetic problems, the
conventional IGA and FEM based models need a full domain
representation including active (magnetic and/or conductive)
regions and inactive (air) ones. As a result, the number of
degrees of freedom (DoFs) can be huge. Moreover, IGA does
not provide an efficient way to represent inactive regions since
the air region often has a complex topology.
In order to overcome this drawback, and inspired by the FEM-
BEM coupling already developed in [5], a coupling between
the IGA-FEM and the boundary element method (IGA-BEM)
can be developed. The IGA-BEM is used to model only the
linear unbounded regions (air domain) and the IGA-FEM
is used to model the non-linear active regions, allowing to
benefit from both methods. In this context, as the geometry is
represented exactly, a better precision per degree of freedom

is expected as the only source of error is the interpolation of
the solution by the shape functions. IGA-FEM-BEM coupling
started developing in 2014, in mechanics [3], with only few
contributions to magnetostatics except very recently in [4].
We will first introduce the basics of isogeometric analysis,
then we will introduce the proposed isogeometric FEM-BEM
coupling, based on the magnetic scalar potential formulation
for 2D and 3D magnetostatic problems, and discuss the iso-
geometric specificities tied to the numerical implementation.
Finally, numerical validation and results will be presented to
assess the efficiency of the proposed formulation.

II. ISOGEOMETRIC ANALYSIS

A. NURBS

Non-Uniform Rational B-spline (NURBS) curves are gen-
erated as a sum of n rational basis functions (Ri,p), i=1,...,n,
of degree p, and n control points Pi:

C(ξ) =

n∑
i=1

Ri,p(ξ)Pi. (1)

The rational basis functions are constructed as a rational sum
of weighted elements of a spline basis wj(Nj,p)j=1,..,n:

Ri,p(ξ) =
Ni,p(ξ)wi∑n
j=1 Nj,p(ξ)wj

. (2)

The n elements of the spline basis functions of degree p,
(Nj,p)j=1,..,n are constructed according to the Cox-deBoor re-
currence formulae as described in [2], and the associated knot
vector will be denoted Ξ = [ξ1, ..., ξm]. Most CAD software
provides default values for knot vectors, control points, and
weights to create spline basis functions, which then generate
the rational basis and NURBS curve. The modeling process
involves altering these default values to change the shape of
the default model, as shown in Figure 1. NURBS surfaces
and volumes can be made by combining NURBS curves
or surfaces through tensor products, and multiple NURBS
elements can be used to create a single model (multipatch
geometry) if needed.
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Fig. 1. Left: Default NURBS curve (grey), the associated control points
(red) and rational basis Right: A modification of the default NURBS curve
through knot vector, and control point modification, and the corresponding
rational basis.

B. NURBS integration in conventional FEM assembly

To detail the IGA-FEM assembly process, we first introduce
the parametrisations required to integrate functions over the
domain Ω. The application:

C :

{
[0, 1] −→ Ω

ξ 7−→ C(ξ)

is a parametrisation from the parametric domain to the physical
domain Ω. The images of the elements {[ξi, ξi+1], i ∈ J1,m−
1K}, extracted from the knot vector Ξ define a cartesian grid
in the parametric domain. Therefore, C can be decomposed
as C =

∑m−1
i=1 Ci with:

Ci :

{
[ξi, ξi+1] −→ Ωi ⊂ Ω

ξ 7−→ C(ξ).

The images of the applications Ci define a structured grid on

the physical domain Ω =
m−1⋃
i=1

Ωi, playing the role of the mesh

in standard FEM. For convenience, an extra parametrisation is
used to work on a reference domain (parent space):

Ĉi :

{
[0, 1] −→ [ξi, ξi+1]

ξ̂ 7−→ ξ.

Denoting JC the Jacobian of C, the integration can be decom-
posed:∫

Ω

f(x)dΩ =

∫
[0,1]

f(C(ξ))|JC(ξ)|dξ

=

m−1∑
i=1

∫
[0,1]

f(Ci ◦ Ĉi(ξ̂))|JCi◦Ĉi
(ξ̂)|dξ̂

(3)

which can be evaluated using usual integration routines.
This process can be generalized to higher dimensions (sur-
faces/volumes) and to multipatch geometries. Figure 2 illus-
trates the different parametrisations on a simple 2D case.

Fig. 2. Illustration of the different parametrisations involved when integrating
a quantity on the physical domain

In addition, the standard FEM shape functions are replaced by
the rational basis (Ri,p), i=1,...,n that generated the geometry,

the unknown are placed at control points and equation (1)
allows the reconstruction of the solution directly on the
modeled domain. Although the structured grid and the rational
basis are imposed by the geometry, they can be modified:
refining the structured grid (h-refinement), increasing the order
of the spline basis (p-refinement) and local modification of
the continuity of the spline basis are all managed by knot
vector modifications (mostly insertion of elements) without
re-modeling nor geometry modification, giving the shape
functions more flexibility than in standard FEM throughout
the resolution process.

III. ISOGEOMETRIC FEM-BEM COUPLING

A. Formulation

In this work, we are interested in the solving of magneto-
static problems. The studied domain is decomposed into non
linear magnetic materials ΩActive region with boundary ΓActive
and an air region ΩAir containing static currents which create a
source magnetic field Hs. In order to develop our isogeometric
FEM-BEM approach, a H-conforming formulation is chosen
with magnetic scalar potentials as state variables as opposed to
[4], where a vector potential is used. This choice is explained
by the handling of scalar degrees of freedom which are
easier to treat in the IGA context, and the absence of gauge.
In addition, an integration strategy is proposed to integrate
strongly singular integrals, and allow 3D problems.
Due to the so-called cancellation error problem, using a
reduced potential in the active domain would lead to numerical
instabilities for magnetic materials with high permeabilities,
worsened when considering non-linear materials, a coupled
total-reduced scalar potential decomposition of H is preferred
[5]. It should be noticed here that this formulation is known
to pose problems with multiply connected magnetic regions.
Magnetic cuts can probably be used to address this issue,
as standard mesh based algorithm would still work on the
structured grid. For a given magnetic source field Hs, we
decompose the magnetic field H:

H = −∇ϕ in ΩActive
H = Hs −∇ϕr in ΩAir

(4)

and solve:

−div(µ∇ϕ) = 0 in ΩActive (5)
∆ϕr = 0 in ΩAir (6)

with interface conditions:

n × (Hactive − Hair) = 0 on ΓActive (7)
n · (Bactive − Bair) = 0 on ΓActive (8)

Firstly, denoting Tu = u|Γ the trace operator on the boundary
Γ, and remarking that ∇|Γ = n ×∇ on Γ, (7) can be written:

n × (∇(ϕr − ϕ)) = n × Hs (9)
∇|Γ(ϕr − ϕ) = n × Hs (10)

which projected on test functions ∇wi|Γ leads to the weak
form:∫

Γactive

∇wi|Γ · ∇|Γ(ϕr − ϕ) =

∫
Γactive

Hs∇wi|Γ . (11)
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Pre-solving this equation gives a solution δϕ = ϕr−ϕ allowing
to express the reduced potential with the total one: ϕr = ϕ+δϕ
on the interface ΓActive.
This simple finite element pre-resolution forces the construc-
tion of a trace space, which is easy to build if the NURBS
surface/volume geometry was constructed as a tensor product
of NURBS curves/surfaces, as the rational basis on the bound-
ary can be canonically recovered.
In ΩActive, equation (5) is treated with an isogeometric finite
element method. Denoting Bn the normal component of B,
doing an integration by part, using the divergence theorem
and imposing strongly (8) yields:∫

Ωactive

∇wi · µ∇ϕ = −
∫
Γactive

wiBn. (12)

In ΩAir, equation (6) is computed with an isogeometric bound-
ary element method. Using Green’s third identity, with:

G(x, y) =
1

2π
ln(r), with r = ||x− y|| for x, y ∈ R2 (13)

G(x, y) = − 1

4πr
, with r = ||x− y|| for x, y ∈ R3 (14)

we can write the boundary integrals:∫
Γactive

wi|Γ
ϕ+ δϕ

2
= −

∫
Γactive

wi|Γ

∫
Γactive

dG

dn
(ϕ+ δϕ)

+

∫
Γactive

wi|Γ

∫
Γactive

G(−Bn

µ0
+ Hsn).

(15)

Equations (12) and (15) are then coupled through Bn, and the
global matrix system can be written: FE1 0

FE2
0 µ0K T

(
ϕ
Bn

)
=

(
0
R

)
Where:

FE2 =

∫
Γactive

wi|Γwj |Γ , K =
FE2
2

+

∫
Γactive

wi|Γ

∫
Γactive

dG

dn
wj |Γ

FE1 =

∫
Ωactive

∇wi · µ∇wj , T =

∫
Γactive

wi|Γ

∫
Γactive

Gwj |Γ

R =

∫
Γactive

wi|Γ

∫
Γactive

GHsn − Kδϕ

The shape functions to approximate ϕ are numbered in such
a way that the ones not vanishing at the boundary are placed
at the end, giving the zero blocks correspondence to functions
vanishing on the boundary. The reconstruction of H in ΩAir is
done in post-processing:

H = Hs+

∫
Γactive

∇dG

dn
(ϕ+δϕ)−

∫
Γactive

∇G(−Bn

µ0
+Hsn) (16)

To consider non-linear permeability, we apply the New-
ton–Raphson technique. Although it involves the evaluation
of every matrix, only the derivative of the finite element part∫

Ω

∇wiµ[H]∇wj

is required, and the procedure is as fast as in standard FEM-
BEM couplings.

B. Isogeometric assembly process

The IGA assembly process has some implementation
specifics and requires some numerical considerations. The
assembly process is generally more complex than the standard
FEM-BEM assembly [7].
The assembly process is more efficient when the structure
of the surfaces/volumes generated through tensor products is
maintained, as it allows only the parametric directions to be
considered instead of the entire surface. This results in a matrix
assembly being performed for each parametric direction, with
flexible shape functions as illustrated in Figure 1 (varying sup-
port, continuity, value, ...). Furthermore, it is common to work
with multipatch geometries, where a structure must be created
for each individual geometry and a global structure must also
be established, which connects the degree of freedom at the
interfaces between patches and assigns a global numbering
for the degree of freedom. For the presented coupling, a
multipatch geometry structure is generated for the domain
ΩActive and for the boundary domain ΓActive as shown in Figure
3, such that the B-spline in ΓActive are the traces of the B-
spline of ΩActive. In particular, it is important to be able to link

Fig. 3. Left: Multipatch domain Right: Multipatch boundary extracted from
the multipatch domain

every boundary DoFs of ΩActive to their corresponding DoFs
in ΓActive as they are coupled through the matrices FE1,K, and
the pre-resolution.
Moreover, the singularities of the boundary element integrals
in K and T are computed with a Telles transform [6]. The
Telles transform aggregates the target Gauss points towards
the source points through a polynomial transformation, and
provides a Gauss point efficient mean of computing singular
integrals.
Suppose we want to integrate

∫ 1

−1
f(x)dx, with a singularity

x̄ ∈ [0, 1], using a Gauss-Legendre quadrature. We define:

γ̄ = 3
√

x̄(x̄2 − 1) + |(x̄2 − 1)|)+ 3
√
x̄(x̄2 − 1)− |(x̄2 − 1)|)+x̄

(17)
And we integrate:∫ 1

−1

f [
(γ − γ̄)3 + γ̄(γ̄2 + 3)

(1 + 3γ̄)2
]
3(γ − γ̄2)

(1 + 3γ̄)2
dx. (18)

As the polynomial transformation is known for every source
point, and only consists in a change of variable, it can be
encoded in a quadrature rule, and the necessary structures can
be generated before assembling the dense matrices. Figure 4
illustrates the new quadrature obtained after a Telles transform
on a standard Gauss-Legendre quadrature.
In addition, standard matrix compression techniques can be
used to handle the dense BEM matrices.
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Fig. 4. Distribution of a Gaussian quadrature (9 points) on [-1,1] before, and
after applying the Telles Transform, to compute a singular integral with a
singularity located in x̄ = 0.

IV. VALIDATION AND RESULTS

The validation of the developed model has been carried out
first on a 2D simple academic case consisting in a magnetic
disk in a uniform magnetic field HS, where the analytical
solution is known. Figure 5 illustrates the structured grid after
two differrent h-refinement levels on the geometry, to increase
the number of degrees of freedom, and the solution ∇ϕ at
the finest level. Figure 6 shows the relative error comparison

Fig. 5. Successive h-refinement on the geometry, and the computed potential
∇ϕ on the finest structured grid.

of ∇ϕ and Bn to the reference solution for different levels
of h-refinement. It should be noticed that a good accuracy is
obtained using only a few DoFs, and that the geometry only
needs to be imported once. To illustrate the flexibility offered

Fig. 6. Relative error comparison of ∇ϕ and Bn obtained using the presented
IGA-FEM-BEM coupling to a reference solution.

by Isogeometric Analysis, we can transform the geometry
of Figure 5 into a square, via weight modifications, and re-
compute the solution with different levels of h-refinements on
the new geometry. The developed method has then been used

Fig. 7. Successive transformation of the initial geometry, followed by h-
refinement, and the computed potential ∇ϕ

to model a 2-dimensional actuator. It is a magnetic circuit with
a coil as shown in Fig.8(a). In order to handle the geometry, the
active domain is decomposed into multiple NURBS patches.
The Figure 8(b) illustrates the magnetic field cartography.

Fig. 8. a) scheme of the modeled Actuator. b) Norm of the magnetic field B
inside the actuator generated with multiple NURBS patches.

The presented coupling is not restricted to 2D models, and
to demonstrate the geometric descriptive ability of NURBS,
we have modeled a 3-dimensional actuator, with a circular
core. The results presented in Figure 9 are in good agreement
with the expected physical solution, with few DoFs (≈ 750)
compared to the conventional FEM-BEM.

Fig. 9. Cartography of the magnetic field B on a 3-dimensional circular core
actuator with only 740 DoFs.

V. CONCLUSION

In this work, a new IGA-FEM-BEM formulation based on
the magnetic scalar potential has been developed to model
magnetostatic problems. The key points of the method have
been discussed and addressed. The presented Isogeometric
FEM-BEM coupling allows a good geometric descriptive
ability and an easy geometry access. In addition, the approach
maintains a typical FEM-BEM precision with fewer required
DoFs.
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