Fuzzy time and possible impacts of it on science [10]

Theory of Fuzzy Time Computation(TC * ) Farzad Didehvar didehvar@aut.ac.ir Amir Kabir University of Technology (Tehran Polytechnic) January 1 2023 𝐀𝐛𝐬𝐭𝐫𝐚𝐜𝐭. One of the possible hypotheses about time is to consider any instant of time as fuzzy number, so that two instants of time could be overlapped. Historically, some Mathematicians and Philosophers have had similar ideas like Brouwer and Husserl [START_REF] Van Aten | Wadsworth Philosopher's Series[END_REF].

Throughout this article, the impact of this change on Theory of Computation and Complexity Theory are studied.

In order to rebuild Theory of Computation in a more successful and productive approach to solve some major problems in Complexity Theory, the present research is done. This novel theory is called here, the fuzzy time theory of computation, TC * . 𝐊𝐞𝐲𝐰𝐨𝐫𝐝𝐬. P ≠ NP , P = PBB, MA = AM, Fuzzy Time, TC * , Reducibility, Complexity Theory Problems

𝟏. 𝐈𝐧𝐭𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧

Throughout this article, the author presents the Theory of Computation by appllying Fuzzy Time. More specifically, the author tries to rebuild the structure of the Theory of computation based on considering time as a fuzzy concept.

In fact, there are reasons to belive time as a fuzzy concept. In this article, the author does not try to assume these reasons and argue about, but just to note that Brouwer and Husserl views on the concept of time were similar [START_REF] Van Aten | Wadsworth Philosopher's Series[END_REF].

More precisely, here, given the classical definition of Turing Machine, the concept of Time is changed to be Fuzzy. This new theory is called Theory TC * and this type of computation "Fuzzy time Computation". We have relatively large number of fundamental unsolved problems in Complexity Theory. In the new theory, some of the major obstacles and unsolved problems have been solved. It should be noted that in this article, the author considers fuzzy number associated to instants of time as a symmetric one. The point is about applying the symmetricity of fuzzy time function in the proof of Lemma 3.

In particular, the new classes of complexity Theory, P * , NP * , BPP * in the TC * are defined similar to the definitions of P, NP and BPP as their natural alternative definition. Here, we will see, P * = BPP * , MA * = AM * .

𝟐. 𝐑𝐞𝐝𝐮𝐜𝐢𝐛𝐢𝐥𝐢𝐭𝐲

In this section, firstly, we define a quasi-order relation in TC * analogues with the m-reducibility in TC .

It should be reminded that a fuzzy time Turing Machine is a Turing Machine which works with fuzzy time.

In addition, here, the Turing Machine is considered as a two tuple (M, S). Whereas, M is a Turing machine in the usual sense and S is a polynomial function. Meanwhile, M runs in bounded time by S , equivalently, M(x) in less than S([x]) steps is computed.

First, we remind the Classical definition of m-reducibility: Y > m X , if there is a polynomial time computable function f such that:

x ∈ X ↔ f(x) ∈ Y
The parallel definition in TC * is introduced as following

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏: For α > 1 2 , Y > 𝐦 𝛂 X if there is a polynomial time computable* function f such that: 1. x ∈ X & f(x) ↓ in bounded time ↔ (f(x) ∈ Y) 2. Pr (f(x) ↓ in bounded time) > α
A Computable* function f is a function that is computable by a fuzzy time Turing machine.

Here, by bounded time, we mean that for the function f there exists a Polynomial function h such that f(x) ↓ in less than h (length(x)) steps.

Y > 𝐦 𝛂 X can be represented by a 5-tuple, (Y, X, f, S f , α), S f (x) is the number of steps that f(x) is computed. The definition is as follows

Y > 𝐦 𝛂 X ↔ (Y, X, f, S f , α) is an acceptable 5-tuple
One of the major question here is about the independence of the definition from the value of α? (α >

)

In the first step, to answer the above question, we need the following simple lemma.

𝐋𝐞𝐦𝐦𝐚 𝟏 Let for 1 > α > 1 2
, (Y, X, f, S f , α) is an acceptable 5-tuple then for any

1 > β > 1 2
there is a computable function g in which (Y, X, g, S g , β) is an acceptable 5-tuple.

𝐏𝐫𝐨𝐨𝐟. Actually, there is a natural number 𝑘, so that the function g is equivalent to, k times repeating f , till we reach a solution with probability less than β. It is easy to understand that such k exists. □

Lemma 1 indicates for 1 > α > 1 2
, the relation Y > 𝐦 𝛂 X would be independent of α. So, we define Y > 𝐦 * X as follows

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐. Y > 𝐦 * X if for some α (1 > α > 1 2 ), Y > 𝐦 𝛂 X . 𝐋𝐞𝐦𝐦𝐚 𝟐. > m * is a quasi-order relation. 𝐏𝐫𝐨𝐨𝐟. X > 𝐦 𝜶 Y implies ∀ 1 2 > ɛ > 0 X > 𝐦 𝟏-ɛ Y (*) Y > 𝐦 𝜶 Z implies ∀ 1 2 > ɛ > 0 Y > 𝐦 𝟏-ɛ Z (**) From (*), (**), we have ∀ 1 2 > ɛ > 0 X > 𝐦 (𝟏-ɛ) 2 Y (***). □ 𝐋𝐞𝐦𝐦𝐚 𝟑. Y > m X implies Y > 𝐦 * X .
𝐏𝐫𝐨𝐨𝐟. First, we remind that, throughout this article the associated fuzzy numbers to the instants of time are symmetric.

We have computable function

f such that x ∈ X ↔ f(x) ∈ Y
f is associated with a Turing machine, (M, S f ). The computation of f(x) can be depicted by the transition of configurations in time in S f (x) steps, to reach the final configuration. Now, as mentioned above, the concept of time is changed to be fuzzy. So, the probability of reaching or passing the final configuration is higher than the probability of not to reach this point.

According to the rules of probability and the above comments, the probability of reaching or passing the final configuration is more than

3 4
and the probability of not to reach the final configuration is less than But what exactly do we mean by determined? Since it is possible that we do not reach to the final state, we should consider the possibility associated with x ϵ p for any pϵP * when x belongs to p, and the possibility associated with x ∉ p when 𝑥 belongs to p c . Hence, by the above consideration, we are able to modify the definition of P * , as follows 𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟑. P * is a class of problems such that, for any pϵP * and the probability α, we have a polynomial Q α,p and an associated algorithm A α,p to solve p by probability α such that Q α,p is upper bound of the computation time.

Equivalently, for any pϵP * (p as a language) and probability α we have an associated algorithm B α,p and a polynomial Q α,p as an upper bound of the computation time.

xϵp → By probability α , B α,p = 1 x ∉ p → By probability α, B α,p = 0 This is similar to the definition of the class BPP. Equivalently, by considering time as a Fuzzy concept we have BPP * .

By the above considerations, it is easy to see:

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏. P * = BPP * .
The next natural question in TC * is the situation of the problem P vs NP, more exactly P * vs NP * . Firstly, we are going to prove the following proposition about random generators.

𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧𝟏. By considering time as a fuzzy concept, random Generators exist.

𝐏𝐫𝐨𝐨𝐟. Introducing the following algorithm demonstrates that there is a random generator. It is sufficient to consider an algorithm such that in interval times [2n, 2n + 1], it emits as an output 0 and in interval times [2n + 1,2n + 2], it emits 1, when time is considered as a classical concept. Now by considering time as a fuzzy concept, it is easy to see that we have a random number generator. More exactly, by considering fuzzy instant of time as fuzzy number we have probability function p(x), 1 > p(x) > 0, in a way that for any real number X + t , such that 1 > 𝑡 > 0 and X is a natural number If X is an odd number by probability p(t), in X + t, the algorihm emits 1 (p(t) is near to 1!) If X is an even number by probability p(t), in X + t, the algorithm emits 0 (p(t) is near to 1!) Clearly, p(x): R → [0,1] is a periodic function. By this probability function, we are able to produce the random generator. □ Now, let we consider the following definition of NP problems.

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟒

The Complexity class 𝐍𝐏 is the set of decision problems like D such that there is a deterministic polynomial time Turing machine M D and polynomils p D , q D in order that for every input x with length x ′ ( l(x)=x ′ )

1.

x belongs to D implies there exists string z with length q D (x ′ ) such that for all string y with length p D (x ′ ), P r(M D (x, y, z) = 1) = 1)

2.

x does not belong to D implies for all string z with length q D (x ′ ) such that for all string y with length p D (x ′ ) P r(M D (x, y, z) = 0) = 1 (The definition is Quoted in [START_REF] Goldwasser | Private coins versus public coins in interactive proof systems[END_REF]) By considering the above definition and by fuzzifying time we have the definition of NP * .

We define NP * --hard, NP * -Complete likewise in below

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟓 X is NP * -hard if for any Y ∈ NP * , X > 𝒎 * Y. 𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟔 X is NP * -Complete if X is NP * -hard and X ∈ NP * .
𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐 SAT is NP * -Complete.

𝐏𝐫𝐨𝐨𝐟. SAT belongs to NP, hence SAT ∈ NP * , by definition. The analogues proof of Cook-Levin's theorem works here. More exactly, by employing the reduction associated with the reduction function f in Cook-Levin theorem with this difference that time is fuzzy, we have the analogous function f * in the new proof, also here, we consider > 𝒎 * instead of m -reducibility. Lemma 3 guarantees the proof of the theorem. □ 𝐓𝐡𝐞𝐨𝐫𝐞𝐦𝟑. P * ≠ NP * implies P ≠ NP . 𝐏𝐫𝐨𝐨𝐟. To prove P ≠ NP , we apply Theorem 2 and lemma 3.

Suppose P = NP and we remind that SAT is a NP-Complete problem. Hence, there is an algorithm A which solves SAT in Polynomial time. Possibly MA is the best choice in probabilistic classes [START_REF] Babai | TRADING Group Theory for Randomness[END_REF], [START_REF] Goldwasser | Private coins versus public coins in interactive proof systems[END_REF] (introduced by Laszlo Babai, Shafi Goldwasser, Micheal Sipser). Indeed, the MA complexity class is known as an alternative for NP problems in probabilistic classes, we also have a theorem states [START_REF] Goldreich | a world of P=BPP[END_REF], [START_REF] Goldreich | Studies in Complexity and Cryptography: Miscellanea on the interplay between Randomness and Computation[END_REF] 

P = BPP → MA = NP

The last point, besides P * = BPP * confirms our choice. So, let we define the concept of NP problems in fuzzy time by applying and similar to the definition of MA. On the other hand in the previous chapter we defined NP * , as the second way to define an alternative definition for NP in TC * . It is easy to see, these two ways of defining a parallel concept for NP in TC * , leads us to the equivalent definitions.

Here, we mention the complexity class Merlin-Arthur MA, in Two-sided version definition [START_REF] Goldwasser | Private coins versus public coins in interactive proof systems[END_REF].

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟕. The Complexity class 𝐌𝐀 is a set of decision problems like D such that there are deterministic polynomial time Turing machine M D and polynomials p D , q D in order that for every input x with length x ′ (l(x)=x ′ ) 1. x belongs to D implies there exists string z with length q D (x ′ ) such that for all string y with length p D (x ′ ) Pr (M D (x, y, z) = 1) ≥ 2 3 ⁄ )

2. x does not belong to D implies for all string z with length q D (x ′ ) such that for all string y with length p D (x ′ ) Pr (M D (x, y, z) = 0) ≥ ⅔ (The definition is Quoted in [START_REF] Goldwasser | Private coins versus public coins in interactive proof systems[END_REF])

Likewise, we remind the complexity class Arthur-Merlin AM in Two-sided version definition [START_REF] Goldwasser | Private coins versus public coins in interactive proof systems[END_REF].

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟖. The Complexity class 𝐀𝐌 is a set of decision problems like D such that there are deterministic polynomial time Turing machine M D and polynomials p D , q D in order that for every input x with length x ′ (l(x)=x ′ )

1. x belongs to D implies there exists string z with length q D (x ′ ) such that for all string y with length p D (x ′ ) Pr (M D (x, y, z) = 1) ≥ 2 3 ⁄ )

2. x dose not belong to D implies for all string z z with length q D (x ′ ) such that Pr (for all string y with length p D (x ′ ), M D (x, y, z) = 0) ≥ ⅔ (The definition is Quoted in 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧. Throughout this article, it is shown that by considering time as a fuzzy concept, we have random generators. Under this condition, TC * as a new theory in the field setting of computation is introduced. Hereafter, in the new theory, some problems in parallel to some of the famous problems in Complexity Theory are solved. In brief, P * = BPP * , MA * = AM * .

Considering

  Fuzzy time, A also solves SAT in polynomial time, hence SAT belongs to P * . SAT is NP * -Complete, so P * = NP * , A contradiction. Consequently, P ≠ NP. □ 𝐋𝐞𝐦𝐦𝐚 𝟒. SAT ∉ P implies SAT ∉ P * , unless P = NP. 𝐏𝐫𝐨𝐨𝐟. SAT is NP * -Complete. Suppose SAT ∉ P . If SAT ∈ P * then P * = NP * . In brief, P ≠ NP implies P * = NP * , which contradicts Theorem 4. □ 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. P ≠ NP implies P * ≠ NP * . 𝐏𝐫𝐨𝐨𝐟. Suppose P ≠ NP. By above lemma, P ≠ NP implies SAT ∉ P * . But SAT ∈ NP * , so P * ≠ NP * . □ Chapter 2. 𝐌𝐀 * , 𝐀𝐌 * In the previous chapter, by defining the concepts of P, BPP in the new framework, we define the new classes P * , BPP * . It is shown that the new classes P * , BPP * are both equal to each other. In contrast, what is the alternative definition for the NP class in this new framework? To illustrate NP problems in the Theory of Algorithm, it is required to define a new class for it.

  By considering time as a fuzzy concept, we define MA * . AM * is defined similarly, by considering Two sided definition of AM in above. The list of new possible classes which we study here, is P * , NP * , BPP * ,MA * AM * and AM * . Instead of P = NP problem and in parallel to it, we have the following problems BPP * = MA * BPP * = AM * MA * = AM * Theorems 3&4 shed a light on the above problems. It is easy to see: 1. P * = BPP * (Theorem 1) 2. NP * = MA * (Considering certificate definition of NP) It is notable to remind, by proposition 1, we have random generators in the new Theory. So, the pseudo-random generators exist too. In addition, we have P * = BPP * (Theorem 1). In this theory the third major conclusion is about the classes MA * , AM * . . 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟓. MA * = AM * . 𝐏𝐫𝐨𝐨𝐟. MA is the nondeterministic version of BPP, AM is the probabilistic version of NP. So, clearly AM * = NP * and MA * is the nondeterministic version of BPP * . By the way, P * = BPP * . Consequently, MA * is the nondeterministic version of P * . By definition, MA * = NP * . In sum, AM * = MA * = NP * . □ Moreover, by above we have 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟔. The following statements are equivalent 1. P ≠ NP 2. P * ≠ NP * 3. BPP * ≠ MA * (= AM * ) 𝐏𝐫𝐨𝐨𝐟. By Theorems 2, 3, 4, 5.

  Using lemma 3, suppose we have a computation by Turing Machine (M, S f ) and the input x in classical time and (M, S f )(x) ↓. If we change the classical time to the symmetric fuzzy time, the probability of reaching to the final state is more than One of the main questions throughout this article is, how to redefine the most important classes of Complexity Theory in the new theory? As a first attempt, let we try to define P

	1 4 of p S f (x) units of time, the probability of reaching the final configuration or passing it, is more , if we consummate 2S f (x) units of time. Likewise, by consumption than 1 -1 2 𝑝 and the probability of not to reach this final configuration is less than 1 2 𝑝 . So, we have, Y > 𝐦 2 . As a conclusion, if we consider the computation (M, k S f )(x) ↓, the probability of reaching to the final state is more than 1 -1 2 𝑘 . 1 𝟐. 𝟐 𝐏

* X. □ 𝐑𝐞𝐦𝐚𝐫𝐤 𝟏. * , 𝐍𝐏 * , 𝐍𝐏 * -𝐇𝐚𝐫𝐝, 𝐍𝐏 * -𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞 * as follows:

P * is the class of all problems that can be determined by a Fuzzy Turing Machine (M, S).