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Two-sorted Point-Interval Temporal Logics
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There are two natural and well-studied approaches to temporal ontology and reasoning: point-based and interval-based. Usually, interval-based temporal reasoning deals with points as particular, duration-less intervals. Here we develop explicitly two-sorted point-interval temporal logical framework whereby time instants (points) and time periods (intervals) are considered on a par, and the perspective can shift between them within the formal discourse. We focus on fragments involving only modal operators that correspond to the inter-sort relations between points and intervals. We analyze their expressiveness, comparative to interval-based logics, and the complexity of their satisfiability problems. In particular, we identify some previously not studied and potentially interesting interval logics.

Introduction

The predominant approach in the studies of temporal reasoning and logics has been based on the assumption of time points (instants) as the primary temporal on-tological entities. However, there have also been active studies of interval-based temporal reasoning and logics over the past 2 decades, starting with the seminal work of Halpern and Shoham [START_REF] Halpern | A propositional modal logic of time intervals[END_REF] introducing the multi-modal logic, that we will call HS, comprising modal operators for all possible relations (known as Allen's relations [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF]) between two intervals in a linear order, and followed by a series of publications studying expressiveness and decidability/undecidability and complexity of the fragments of HS, e.g., [START_REF] Goranko | A road map of interval temporal logics and duration calculi[END_REF][START_REF] Bresolin | Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions[END_REF]. For a detailed philosophical study of both approaches -point-based and interval-based -see [START_REF] Van Benthem | The Logic of Time (2nd Edition)[END_REF]. Many studies on interval logics have considered the so-called 'non-strict' interval semantics, allowing point-intervals (with coinciding endpoints) along with proper ones, and thus encompassing the instant-based approach, too; see e.g., [START_REF] Halpern | A propositional modal logic of time intervals[END_REF][START_REF] Goranko | A road map of interval temporal logics and duration calculi[END_REF][START_REF] Bresolin | Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions[END_REF]]. Yet, little has been done so far on formal treatment of both temporal primitives, points and intervals, on a par, in a common, two-sorted framework. The present paper purports to provide a systematic such treatment. Our work is motivated by several observations:

• Natural languages incorporate both ontologies on a par, without assuming the primacy of one over the other, and have the capacity to shift smoothly the perspective from instants to intervals and vice versa within the same discourse.

• There are various temporal scenarios which neither of the two ontologies alone can grasp properly. In particular, sometimes neither the treatment of intervals as sets of their internal points, nor the treatment of points as 'instantaneous' intervals, is really adequate. For example, a sentence like 'Ever since he met her for the first time, he could not stop thinking about her and kept calling her several times every night until she would give him a brush-off, and then after being silent for a while he would phone again...' cannot be properly represented in either instant-only or interval-only framework. As another example, consider a typical safety requirement of an intelligent systems that controls a rail crossing:'At the exact moment in which the train passes over the sensor, the rail crossing bar starts to close; the bar will start to open again a while after the train passes over the second sensor'.

• The technical identification of intervals with sets of their internal points, or of points as instantaneous intervals leads also to conceptual problems, e.g. of confusing events and fluents. Instantaneous events are represented by time intervals and should be distinguished from instantaneous holding of fluents, which are evaluated at time points. Formally, the point a should be distinguished from the interval [a, a] and the truths in these should not necessarily imply each other.

• Moreover, the area of artificial intelligence is concerned with purely practical problems related to the formal representation and reasoning of intelligent agents on various temporal and spatial aspects such as position, motion, actions, processes, events, fluents, etc. Some of these can be adequately represented in either of the rival ontologies, while others become awkward, if not meaningless, in one or the other of them.

• Finally, we note that, while differences in the expressiveness have been found

between the strict and non-strict semantics for some interval logics (see [START_REF] Della Monica | Expressiveness of the Interval Logics of Allens Relations on the Class of all Linear Orders: Complete Classification[END_REF], for example), so far no distinction in the decidability of the satisfiability has been found. Therefore, we believe that an attempt to systemize the role of points, intervals, and their interaction, would make good sense not only from a purely ontological point of view, but also from algorithmic and computational perspectives.

There have been several logical studies of the relationship between instants and intervals, including [START_REF] Hamblin | Instants and intervals[END_REF][START_REF] Van Benthem | The Logic of Time (2nd Edition)[END_REF][START_REF] Roeper | Intervals and tenses[END_REF]. One of the conceptual precursors of our present study is [START_REF] Galton | The Logic of Aspects[END_REF] where Galton introduces a two-sorted 'aspectual calculus' involving points and events on a par. Further, in [START_REF] Galton | A critical examination of Allen's theory of action and time[END_REF] Galton argues that Allen's interval-based theory of time and action is inadequate for representing continuous change and advocates the necessity of adding time instants in their own capacity to it. Other explicit two-sorted point-interval formal studies of time of which we are aware include the system IP from [START_REF] Vila | IP: An instant-period based theory of time[END_REF][START_REF] Schwalb | Temporal constraints: A survey[END_REF], based on the first-order theory of point-interval structures, and the system LNint from [START_REF] De Guzman | Lnint: A temporal logic that combines points and intervals and the absolute and relative approaches[END_REF], where, however, the interval type plays a secondary role since formulae are always evaluated at points, and the time line is assumed to be discrete (the set of integers).

Here we develop explicitly two-sorted modal approach to the point-interval temporal reasoning whereby time instants (points) and time periods (intervals) are considered on a par, and the perspective can shift between them within the formal discourse. We compare that language with those interval logics with non-strict semantics, that we already know to be right on the border between decidable and undecidable. One of the most important examples on the decidable side is that of Propositional Neighborhood Logic (PNL) with non-strict semantics [START_REF] Bresolin | Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions[END_REF], that corresponds to the fragment of HS with the modal operator for meets and met-by only, plus the modal constant π for point-interval; In [START_REF] Montanari | Maximal decidable fragments of Halpern and Shoham's modal logic of intervals[END_REF] it has been shown that PNL is almost maximal (amongst the fragments of HS) w.r.t. decidability on the class of all linear orders, while the pair of operators corresponding to Allen's relations ends and ended by constitutes the most interesting exception, as they can be added to PNL without losing the decidability when interpreted over finite models or models based on the set of natural numbers N. Here, we first introduce the logic PI comprising modal operators for all possible binary relations between points and intervals. It is easy to see that PI is at l east as expressive as HS, and therefore it is undecidable under the same assumptions where the latter is. Then, we focus on the fragment PI mix involving only the modal operators that correspond to the inter-sort relations between points and intervals. We analyze the expressiveness and the complexity of the satisfiability problem of PI mix and some of its fragments. In particular, we identify some previously not studied, in the context of fragments of HS, and potentially interesting interval logics whose decidability/undecidability status can be deduced from already known results for fragments of HS and at least one of them has an unexpectedly low complexity.

Preliminaries: the Logic HS

In the classical interval setting, given a linearly ordered set D = D, < , an interval (also called non-strict interval) is defined as a pair [a, b], where a, b ∈ D and a ≤ b. The logic HS, introduced in [START_REF] Halpern | A propositional modal logic of time intervals[END_REF], is defined over a set of propositional letters AP, denoted by p, q, . . ., by using the classical propositional operators ¬, ∨ (whereas the remaining ones can be considered as shortcuts), and a modal operator for each of the 12 Allen's relation, that is, each possible binary relation between two intervals on linear orders (excluding equality, the modal operator for which is trivial). The standard notation for such modal operators is as follows: A (in the non-strict semantics, it is usually denoted by 3 r ) for the relation meets, B for begins, E for ends; moreover and, for each X ∈ { A , B , E }, X denotes its inverse (in the non-strict semantics, 3 l denotes the inverse of 3 r ), and the modal operators for the remaining six operators can easily be defined in terms of the above ones. In this setting, a HS-model M is defined as M = D, I(D) + , V , where I(D) + is the set of all non-strict intervals over D, and V : I(D) + → 2 AP is a labeling function. The semantics of HS-formulae ϕ is as follows:

• M, [a, b] p iff p ∈ V([a, b]); • M, [a, b] π iff a = b; • M, [a, b] A ψ (resp., 3 r ψ) iff there exists c > b (resp., c ≥ b) such that M, [b, c] ψ; • M, [a, b] B ψ iff there exists a ≤ c < b such that M, [a, c] ψ; • M, [a, b] E ψ iff there exists a < c ≤ b such that M, [c, b] ψ; • M, [a, b] D ψ iff there exist a < c < d < b such that M, [c, d] ψ; • M, [a, b] O ψ iff there exist a < c ≤ b < d such that M, [c, d] ψ; • M, [a, b] L ψ iff there exist a < b < c ≤ d such that M, [c, d] ψ.
where the semantics of classical operators is as standard. The semantics of the inverse operators can be easily deduced from the above clauses; for example, we have:

• M, [a, b] A ψ (resp., 3 l ψ) iff there exists c < b (resp., c ≤ b) such that M, [c, b] ψ; • M, [a, b] B ψ iff there exists c > b such that M, [a, c] ψ; • M, [a, b] E ψ iff there exists c < a such that M, [c, a] ψ.
With every subset { X 1 , . . . , X k } of HS modal operators, we associate the fragment X 1 X 2 . . . X k of the logic HS that features all and only those modal operators, possibly extended with the modal constant π, denoted in this case by X 1 X 2 . . . X k π , if π is not definable in that particular fragment. In the recent literature, PNL (resp., PNL π ) is also used to denote the fragment AA (resp., 3 r 3 π l ). Recent results concerning decidability, undecidability, and expressive power of fragments of HS include [START_REF] Della Monica | Expressiveness of the Interval Logics of Allens Relations on the Class of all Linear Orders: Complete Classification[END_REF][START_REF] Montanari | Maximal decidable fragments of Halpern and Shoham's modal logic of intervals[END_REF][START_REF] Bresolin | Decidable and Undecidable Fragments of Halpern and Shoham's Interval Temporal Logic: Towards a Complete Classification[END_REF].

In [START_REF] Halpern | A propositional modal logic of time intervals[END_REF], the satisfiability problem for the logic HS has been proved to be undecidable over all interesting classes of linearly ordered sets. In the classification of decidability/undecidability for most of the interesting fragments of HS for both the strict and non-strict semantics (i.e., classes of models that exclude, resp., include point-intervals), the case of PNL/PNL π , is probably the most interesting one on the decidable side. Its satisfiability problem is decidable in finite, discrete, and dense case, as well as in the class of all linearly ordered sets, among others; in all these cases, it is NEXPTIME-complete . More recently, the fragment AAEE has been shown to be decidable in the finite case and over the set of natural numbers [START_REF] Montanari | Maximal decidable fragments of Halpern and Shoham's modal logic of intervals[END_REF], but its complexity is non-elementary. EXPSPACE-completeness holds, among others, for the fragment ABB in the same cases as PNL/PNL π (see [START_REF] Bresolin | What's decidable about Halpern and Shoham's interval logic? the maximal fragment abbl[END_REF] for a complete survey of these decidable fragments). Finally, in the view of our classification of the expressive power of some of the languages that we introduce in the following sections, we also note that the fragment AAD (and, therefore, AAD π and 3 r 3 r D π ) is an important case of undecidable fragment, very close to the decidability/undecidability border [START_REF] Bresolin | Decidable and Undecidable Fragments of Halpern and Shoham's Interval Temporal Logic: Towards a Complete Classification[END_REF].

Syntax and Semantics of PI and its Fragments

Point and Interval Relations

Given a linearly ordered set D = D, < , we call the elements of D points and define an interval as an ordered pair [a, b] of points in D, where a < b. Now, as we have mentioned above, there are 13 possible relations, including equality, between any two intervals. From now on, we call these interval-interval relations. Besides, there are 3 different relations that may hold between any two points (before, equal, and after), called hereafter point-point relations, and 5 different relations that may hold between a point and an interval and vice-versa, namely before, beginning point, during, ending point, and after, called hereafter point-interval relations. Intuitively, our language will follow the same principle as the logic HS, discussed in the previous section: one modal operator for each one of the 19 relations, excluding the equalities between points and between intervals. To provide a uniform and simple notation, we first distinguish among two main types of modal operators: those evaluated at points, denoted by single square brackets , and those evaluated at intervals, denoted by double square brackets . Now, consider an interval [b, c]: it generates a partition of the set D into five regions (see [START_REF] Ligozat | On generalized interval calculi[END_REF]): the region 0, of those points before b, the region 1 that contains b only, the region 2 (between b and c), 3 (only c), and 4 (the remaining regions). Using that notation, for k ∈ {0, 1, 2, 3, 4}, a point modality may belong to one of two categories: 'point to point', of the type k , that refers to any point in the relation k with the current one -in which case the regions 1, 2, 3 coincide and we use the number 2 to indicate any of them -and 'point to interval', of the type kk , that refers to any interval such that its beginning point is in the region k, and its ending point in the region k , with respect to the current point. Likewise, an interval modality can be of 'interval to point' type k referring to any point in the area k w.r.t. the current interval, or of 'interval to interval' type kk , in which case it becomes a syntactic variation of the respective HS modality in the strict semantics.

Syntax and Semantics of the Point-Interval Logic PI

The language of the Point-Interval Logic PI comprises the classical connectives ¬ and ∨ (the rest are considered definable), two sorts of propositional letters, namely the set of point propositional letters AP po and the set of interval ones AP int , and unary modalities of each of the types specified above. For technical convenience we will assume that each of AP po and AP int is a copy of the set of propositional letters AP from the language of HS. We will denote typical elements of AP by p, q, . . ., respective typical elements of AP po by p po , q po , . . ., and respective typical elements of AP int by p int , q int , . . ..

The logic PI has two sorts of formulae: point formulae and interval formulae. Point formulae are obtained by the following grammar:

ϕ po ::= p po | ¬ϕ po | ϕ po ∨ ψ po | pp ϕ po | pi ϕ int ,
where pp represent any point-to-point modality, and pi is any point-to-interval modality. Similarly, interval formulae are formed by the following grammar:

ϕ int ::= p int | ¬ϕ int | ϕ int ∨ ψ int | ii ϕ int | ip ϕ po ,
where the modal operators are interval-to-point or interval-to-interval. The formulae of the type pp ϕ po , pi ϕ int , ip ϕ po , and ii ϕ int are called (respectively, point or interval) diamond formulae. The respective box formulae are defined, as usual, as their duals, e.g. [ij]ψ := ¬ ij ¬ψ 4 . Lastly, a PI formula is a point-formula or an interval-formula. • M, a p po iff p po ∈ V po (a);

• M, a 0 ϕ iff there exists b < a such that M, b ϕ;

• M, a 4 ϕ iff there exists b > a such that M, b ϕ;

• M, a 00 ϕ iff there exist b, c such that b < c < a, and that M, [b, c] ϕ;

• M, a 02 ϕ iff there exist b, c such that b < c = a, and that M, [b, c] ϕ;

• M, a 04 ϕ iff there exist b, c such that b < a < c, and that M, [b, c] ϕ;

• M, a 24 ϕ iff there exist b, c such that b = a < c, and that M, [b, c] ϕ;

• M, a 44 ϕ iff there exist b, c such that a < b < c, and that M, [b, c] ϕ, and respectively:

• M, [a, b] p int iff p int ∈ V int ([a, b]); • M, [a, b] 0 ϕ iff there exists c < a such that M, c ϕ; • M, [a, b] 1 ϕ iff M, a ϕ; • M, [a, b]
2 ϕ iff there exist c such that a < c < b, and that M, c ϕ;

• M, [a, b] 3 ϕ iff M, b ϕ; • M, [a, b]
4 ϕ iff there exist c such that b < c, and that M, c ϕ, An interval-(resp., point-) PI-formula φ is satisfiable if there exists a PI-model and an interval (resp., a point) in it that satisfies φ. Note that the clauses for the 'interval-to-interval' modalities are identical to those for the HS modalities in the strict semantics.

Expressiveness of fragments of PI

In this section we systematically compare the expressiveness of PI and its fragments to that of HS and its fragments.

Transformations between models of PI and HS

In order for us to compare the expressiveness of fragments of PI and HS we need to specify transformations of two-sorted PI models into HS-models, and vice-versa. 

(M ) = D, I(D), V po , V int .
Further, with a slight abuse of notation we will use τ and σ to denote respec-tive syntactic translations of formulae of the one language to the other, such that the translation τ maps each the propositional letters p po and p int to p, while the translation σ splits into two parts: σ p , producing point formulae by mapping each propositional letter p to p po and σ i , producing interval formulae by mapping each propositional letter p to p int . Note that τ and σ are so far just notation; further we will define different such translations, to match different fragments of HS and PI.

Comparing expressiveness of some fragments of PI and HS

Now, we can compare the expressive power of standard interval logics and twosorted ones, by following the general terminology for comparing expressiveness of logics with respect to the transformations τ and σ, as follows.

Let L be any fragment of PI, and L any fragment of HS; we say that L is at least as expressive as L, denoted by L L , iff τ can be extended to a truth preserving syntactic translation from L to L , that is, one that maps every L formula to L formula, such that:

(i) for every PI-model M , point a ∈ M and a point formula ψ of L: M, a |= ψ iff τ (M ), [a, a] |= τ (ψ), (ii) for every PI-model M , interval [a, b] ∈ M and an interval formula ψ of L: M, [a, b] |= ψ iff τ (M ), [a, b] |= τ (ψ).
Likewise, let L be a fragment of HS and L a fragment of PI. We say that L is at least as expressive as L, denoted L L , iff σ can be extended to a truth preserving syntactic translation from L to L , that is, one that maps every L formula to L formula, such that: In each of the cases above we say that L is more expressive than L, denoted L ≺ L if L L , and not L L. Respectively, we say that L and L are expressively incomparable 6 if neither L L nor L L, and they are expressively equivalent, denoted by L ≡ L , if and only if L L and L L.

Hereafter we only consider in detail the fragment PI mix of PI that comprises the inter-sort modalities, that is, the 'point-to-interval' and the 'interval-to-point' ones, and some notable fragments of it. We consider PI mix to be the most interesting of the fragments of PI because it captures precisely the expressiveness of the interaction between points and intervals. We also denote by PI mix -k the fragment of PI mix devoid of the interval-to-point modal operator k , and by PI mix -kk the fragment of PI mix devoid of the point-to-interval modal operator kk . Moreover, for any two-sorted language L, we write L > to denote the sub-language

HS AAEE PI mix PI mix -2 PI mix -04 PI mix -2 , 04 ≡PNL π 3 r 3 l D π AB PI mix -04 > Figure 1
. Some interesting fragments of PI and their expressiveness relation with fragments of HS.

of L that only retains the 'future' operators of L, that is, those that refer to the regions to the right of the current point or interval. In Fig. 1 we have indicated expressiveness relations between each pair of fragments of HS and PI connected by a line, where the relation applies between the lower to the higher fragment. With a mild abuse of notation, we will use ≺ and to compare two fragments of PI or of HS, in the obvious way (only syntactic translation needed). Proof All relations on pairs of fragments of HS and on pairs of fragments of PI are trivial. As for the remaining cases, it is sufficient to define suitable truthpreserving translations τ and σ, as discussed above. We do that below for each case. Notice that, in the non-strict semantics π is definable in a HS-fragment in presence of B (π

≡ [B]⊥) or E (π ≡ [E]⊥). Also, observe that 3 r ϕ ≡ E (ϕ ∧ π) ∨ A ϕ and 3 l ϕ ≡ A (ϕ ∨ E (π ∧ ϕ)) (a similar definition can be devised in presence of B instead of E ).
-PI mix AAEE:

The following translation τ works (the easy details are left to the reader). 

• τ ( 00 ψ) = π ∧ 3 l (¬π ∧ 3 l (¬π ∧ τ (ψ))); • τ ( 02 ψ) = π ∧ 3 l (¬π ∧ τ (ψ)); • τ ( 04 ψ) = π ∧ 3 r (¬π ∧ E τ (ψ)); • τ ( 24 ψ) = π ∧ 3 r (¬π ∧ τ (ψ)); • τ ( 44 ψ) = π ∧ 3 r (¬π ∧ 3 r (¬π ∧ τ (ψ))); • τ ( 0 ψ) = ¬π ∧ 3 l (¬π ∧ 3 l (π ∧ τ (ψ))); • τ ( 1 ψ) = ¬π ∧ 3 l (π ∧ τ (ψ)); • τ ( 2 ψ) = ¬π ∧ E (¬π ∧ 3 l (π ∧ τ (ψ)));
• τ ( 3 ψ) = ¬π ∧ 3 r (π ∧ τ (ψ)); • τ ( 4 ψ) = ¬π ∧ 3 r (¬π ∧ 3 r (π ∧ τ (ψ))),
Note that the relationship PI mix AABB holds, too, by symmetry; nevertheless, using AAEE gives us the decidability of PI mix over the natural numbers -the relationship PI mix AABB allows us to say that PI mix is decidable over the (less interesting) set of negative natural numbers [START_REF] Montanari | Maximal decidable fragments of Halpern and Shoham's modal logic of intervals[END_REF].

-PI mix -04 3 r 3 l D π : For this claim it suffices to modify the definition of τ from the previous case as follows, taking into account that 04 is no longer part of the language:

• τ ( 2 ψ) = ¬π ∧ D (π ∧ τ (ψ));
-PI mix -04 > AB: Again, by modifying τ above:

• τ ( 1 ψ) = ¬π ∧ B (π ∧ τ (ψ)); • τ ( 2 ψ) = ¬π ∧ B (¬π ∧ A (π ∧ τ (ψ))). -PI mix -2 , 04 ≡PNL π : To show PI mix -04 , 2
PNL π we define τ as in the translation to AAEE above. To show PNL π PI mix -04 , 2 we define σ as follows:

• σ p (3 r ψ) = 24 σ i (ψ) ∨ σ p (ψ);

• σ p (3 l ψ) = 02 σ i (ψ) ∨ σ p (ψ); • σ i (3 r ψ) = 3 ( 24 σ i (ψ) ∨ σ p (ψ)); • σ i (3 l ψ) = 1 ( 02 σ i (ψ) ∨ σ p (ψ)) • σ p (π) = , σ i (π) = ⊥. 2
We note that the expressive embeddings above are not claimed here to be strict. Proving their strictness requires proving respective non-expressibility results (which, in general, depend on the particular class of structures in which the languages are interpreted) for which there is no space here. However, related classification of the expressive power of fragments of HS has recently appeared in [START_REF] Della Monica | Expressiveness of the Interval Logics of Allens Relations on the Class of all Linear Orders: Complete Classification[END_REF], and some of the expressive embedding results above can be proven strict by using the modeltheoretic techniques applied there.

Decidability and complexity of fragments of PI

Clearly PI is at least as expressive as HS, and therefore its satisfiability problem is undecidable over most interesting classes of linearly ordered sets. Also, the more expressive fragments of PI are at least as expressive as some known undecidable fragments of HS, and thus are undecidable themselves. For example, any fragment of PI including at least the pair of modalities 34 , 22 (resp., the modality 22 , or the pair of modalities 14 , 03 ) is undecidable in every interesting class of models, as it includes the HS-fragment AD (resp., O, BE). On the other hand, a number of fragments of PI are readily embeddable in already known decidable fragments of HS. Still, several fragments of PI give rise to essentially new decidability and complexity problems. Because of space constraints, we will consider in detail only one such case.

Some complexity bounds for PI mix and its fragments

Here we use the comparative expressiveness results from the previous section to immediately obtain results on decidability and complexity upper bounds of fragments of PI, by using respective known results for fragments of HS.

Proposition 5.1 (i)

The satisfiability problem for PI mix interpreted in the class of all finite models and in the class of models based on the set of natural numbers N is decidable, but with a non-elementary time complexity upper bound [START_REF] Montanari | Maximal decidable fragments of Halpern and Shoham's modal logic of intervals[END_REF].

(ii) The satisfiability problem for PI mix -04 > , interpreted in each of the classes of finite, discrete, dense, all linearly ordered models, as well as over models based on N, is decidable in EXPSPACE [START_REF] Bresolin | What's decidable about Halpern and Shoham's interval logic? the maximal fragment abbl[END_REF];

(iii) The satisfiability problem for PI mix -2 , 04 , in each of the classes of all finite, discrete, dense, and all linearly ordered models, as well as over models based on N, is NEXPTIME-complete [START_REF] Bresolin | Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions[END_REF].

Note that matching lower bounds for most of these cases are not known yet, because PI mix and its fragments do not have precise expressively matching fragments of HS.

In the rest of this section we will adapt model-theoretic arguments used in [START_REF] Bresolin | Metric propositional neighborhood logics on natural numbers[END_REF][START_REF] Bresolin | Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions[END_REF] to obtain a new decidability and complexity result for the satisfiability problem for PI mix -2 interpreted over finite models by proving bounded-model property with respect to models of exponential size. For that we will use the more general notion of fulfilling labeling structures.

Fulfilling labeling structures for PI mix -2

To begin with, note that satisfiability of an interval formula ϕ is equivalent to satisfiability of the point formula 24 ϕ; therefore it suffices to consider satisfiability of point formulas. Also, notice that two of the interval-to-point modalities are definable in terms of the others:

4 ψ ≡ 3 24 3 ψ, 0 ψ ≡ 1 02 1 ψ,
and, therefore, we will treat them as shortcuts. Similarly, two of the point-to-interval modalities are definable, too: 44 ψ ≡ 24 3 24 ψ, 00 ψ ≡ 02 1 02 ψ.

Definition 5.2

The closure of ϕ is the set CL(ϕ) of all subformulae of ϕ and their negations, where we identify every ¬¬ψ with ψ. We denote by CL po (ϕ) the subset of point formulae of CL(ϕ) and by CL int (ϕ) the subset of interval formulae of CL(ϕ).

Definition 5.3 A point ϕ-atom is a set A ⊆ CL po (ϕ) such that for every ψ ∈ CL po (ϕ), ψ ∈ A iff ¬ψ ∈ A and for every

ψ 1 ∨ ψ 2 ∈ CL po (ϕ), ψ 1 ∨ ψ 2 ∈ A iff ψ 1 ∈ A or ψ 2 ∈ A.
An interval ϕ-atom is defined likewise, using CL int (ϕ) instead of CL po (ϕ).

We Hereafter, by 'labeling structure' we will mean a labeling structure for some formula ϕ.

Note that every interval model M induces a LS, with labeling functions:

ψ ∈ L po (a) iff M, a ψ and ψ ∈ L int ([a, b]) iff M, [a, b] ψ.
Labeling structures can be thought of as quasi-models, in which the truth of formulae containing no modal operators is determined by the labeling functions. Furthermore, the labeling functions respect the semantics of the box operators. To obtain 'true models', we must also guarantee that the labeling is in accordance with the semantics of the diamond operators, too. To this end, we introduce the following notion. (ii) The set of diamond formulas of the type 02 ξ or 24 ξ in a given modal type R(a) can be satisfied by using at most m distinct endpoints of intervals.

For lack of space we have to omit the proof of the next, main technical result. 

Corollary 5.11 Satisfiability of PI mix

-2 on the class of all finite linear orderings is decidable in NEXPTIME, and hence it is NEXPTIME-complete.

Small ultimately periodic model property of PI mix

-2 on N

Here, we will extend the previous result to decidability of PI mix -2 on N. Again, for lack of space, we can only provide a sketch. Definition 5.12 An LS L = (N, I(N), L po , L int ) is ultimately periodic (UPLS) with prefix length K ≥ 0 and period length P if L po (c+P ) = L po (c) for every point c ≥ K and for every interval [c, d]:

• If c ≥ K, then L int ([c + P, d + P ]) = L int ([c, d]); • If d ≥ K, then L int ([c, d + P ]) = L int ([c, d]),
Note that every finite LS can be regarded as an UPLS with a period length 0. Also, note that every UPLS is finitely representable: it suffices to define its labeling functions only on all points c < K +P and on all intervals [c, d] such that d < K +P or d < K + 2P and K < c < K + P , and then it can be uniquely extended by periodicity.

Claim 5.13 (Small Periodic Model Property) If ϕ is any formula of PI mix -2 satisfiable in N, then there exists a (possibly finite) ultimately periodic FLS satisfying ϕ with lengths of the prefix and of the period at most exponential in m = |CL(ϕ)|.

Proof [sketch] Given an interval model based on N and satisfying ϕ, we take its corresponding FLS and transform it to an ultimately periodic FLS for ϕ, by identifying sufficiently long prefix and period in it, and then modifying the rest of the model to make it ultimately periodic. That produces an LS which we make a fulfilling one by applying defect-repairing technique similar to the one in the proof of Lemma 5.9, but now fixing simultaneously all defects involving points on the same periodic orbit, and in a uniform way. Once the ultimately periodic FLS for ϕ is obtained, we reduce both the prefix and the period down to size, by applying again the defect-repairing technique in a uniform way. Thus, the satisfiability problem for PI mix -2 over N is NEXPTIME-complete, too. 2

Concluding remarks

In this paper we have considered a new approach to interval logics where time instants (points) and time intervals are treated as separate sorts, and have introduced the two-sorted point-interval logic PI that formalizes that approach. We have then focused on its fragment PI mix , involving only the inter-sort modalities and its subfragments, and have analyzed the expressiveness of its fragments with respect to fragments of HS. Using results and adapting techniques for the latter, and we have obtained some decidability and complexity results for the former.

A number of open problems remain, including: determining the decidability status and exact complexity of the satisfiability for the fragments of PI on the most natural classes of models (based on all, dense, discrete, finite, etc. linear models) and obtaining complete classification of these fragments with respect to their expressiveness, analogous to (and generalizing) the one for the fragments of HS recently completed in [START_REF] Della Monica | Expressiveness of the Interval Logics of Allens Relations on the Class of all Linear Orders: Complete Classification[END_REF]. The current work is intended as a beginning of their systematic exploration. CORE project, funded by the Danish Natural Science Research Council. We also thank the reviewers for some corrections and useful remarks.

A

  point-interval structure is a pair F = D, I(D) where D = D, < is a linear order and I(D) is the set of all strict intervals in D. A PI-model is a tuple M = (D, I(D), V po , V int ) where (D, I(D) is a point-interval structure and V po : D → 2 APpo and V int : I(D) → 2 AP int are valuations 5 assigning to each point (respectively, interval) the set of point (respectively, interval) propositional letters that are true of it. The truth (satisfaction) relation is defined in a PI-model by a mutual recursion on point and interval formulae as follows (the clauses for the classical connectives are standard):

First

  , let M = (D, I(D), V po , V int ) be a point-interval model based on some linearly ordered domain D = D, < . The corresponding non-strict HS-model τ (M ) is obtained by taking the set of all non-strict intervals over D: I(D) + = {[a, b] | a, b ∈ D, a ≤ b} and defining V as follows. For each proper interval [a, b], where a < b, we put V([a, b]) = {p ∈ AP | p int ∈ V int ([a, b]). Likewise, for each point interval [a, a] we put V([a, a]) = {p ∈ AP | p po ∈ V po (a). Conversely, given any HS-model M = D, I(D) + , V , the corresponding PI-model σ(M ) is obtained as follows. First, we consider the set of all strict intervals over D, I(D) = {[a, b] | a, b ∈ D, a < b}. Then, with every propositional letter p ∈ AP we associate two distinct new propositional letters: p po and p int . Now, for each p ∈ AP and all points a ∈ D such that p ∈ V([a, a]), we put p po ∈ V po (a); respectively, for all strict intervals [a, b] ∈ I(D) such that p ∈ V([a, b]), we put p int ∈ V int ([a, b]). Finally, we define σ

  (i) for every HS-model M , point interval [a, a] ∈ M and a formula ψ of L: M, [a, a] |= ψ iff σ(M ), a |= σ p (ψ), (ii) for every HS-model M , strict interval [a, b] ∈ M and a formula ψ of L: M, [a, b] |= ψ iff σ(M ), [a, b] |= σ i (ψ).

Theorem 4 . 1

 41 All expressiveness relations between fragments of HS and PI, represented in Fig. 1 hold true.
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Definition 5 . 4

 54 denote the set of point ϕ-atoms by A ϕ po and the set of interval ϕ-atoms by A ϕ int . Let ϕ be a PI mix -2 -formula. A labeling structure (LS) for ϕ is a tuple L = (D, I(D), L po , L int ), where (D, I(D)) is a point-interval structure and L po and L int are labeling functions defined respectively as L po : D → A ϕ po and L int : I(D) → A ϕ int and satisfying the following properties: • For every [b, c] ∈ I(D) and formula [24]ψ, if [24]ψ ∈ L po (b) then ψ ∈ L int ([b, c]); • For every a ∈ D, [b, c] ∈ I(D) such that b < a < c, and formula [04]ψ, if [04]ψ ∈ L po (a) then ψ ∈ L int ([b, c]); • For every [a, b] ∈ I(D) and formula [02]ψ, if [02]ψ ∈ L po (b) then ψ ∈ L int ([a, b]), • For every [a, b] ∈ I(D) and formula [[3]]ψ, if [[3]]ψ ∈ L int ([a, b]) then ψ ∈ L po (b); • For every [a, b] ∈ I(D) and formula [[1]]ψ, if [[1]]ψ ∈ L int ([a, b]) then ψ ∈ L po (a).

Definition 5 . 5

 55 An LS L = (D, I(D), L po , L int ) for a formula ϕ is fulfilling (a FLS) iff:• For every formula 24 ψ in CL po (ϕ) and point a ∈ D, if 24 ψ ∈ L po (a), then there exists an interval [a, b] ∈ I(D) such that ψ ∈ L int ([a, b]); • For every formula 02 ψ in CL po (ϕ) and point a ∈ D, if 02 ψ ∈ L po (a), then there exists an interval [b, a] ∈ I(D) such that ψ ∈ L int ([b, a]); • For every formula 04 ψ and point a ∈ D, if 04 ψ ∈ L po (a), then there exists an interval [b, c] ∈ I(D) such that b < a < c and ψ ∈ L int ([b, c]); • For every formula 1 ψ in CL int (ϕ) and interval [a, b] ∈ I(D), if 1 ψ ∈ L int ([a, b]), then ψ ∈ L po (a);

Definition 5 . 8

 58 Given an LS L = (D, I(D), L po , L int ) and a point a ∈ D, the modal type of a in L is the set R(a) consisting of all diamond point formulae in the label L po (a). We will call the formulae in R(a) requests at the point a.

5. 3

 3 Decidability and NEXPTIME-completeness of PI mix -2 in the finite Now we will show that every finite FLS satisfying a given formula of PI mix -2 can be cut down to size exponentially bounded above by the size of the formula. Let us define m = |CL(ϕ)|, and observe what follows: (i) If R(ϕ) is the set of modal types for points in L, then |R(ϕ)| ∈ O(2 m ).

Lemma 5 . 9 Corollary 5 . 10

 59510 Let L = (D, I(D), L po , L int ), where D = (D, <), be a finite FLS for a point formula ϕ, satisfying ϕ at some point a. Suppose that there exists a point e = a ∈ D with modal type R = R(e) such that there are at least m 2 + m + 1 points with modal type R before e, and at least m 2 + m + 1 such points after e in (D, <). Then, there exists a FLS L = ( D, I( D), Lpo , L int ) satisfying ϕ such that D = D \{e}. Satisfiability of a PI mix -2 -formula ϕ on the class of finite linear orderings is equivalent to its satisfiability on the class of finite linear orderings of size at most 2 m+1 (m 2 + m + 1), where m = |CL(ϕ)|.

•

  For every formula 3 ψ in CL int (ϕ) and interval[a, b] ∈ I(D), if 3 ψ ∈ L int ([a, b]), then ψ ∈ L po (b).A point (resp. interval) formula ψ is satisfied by a point (resp. interval) in a given FLS if it belongs to its label. A point (resp. interval) formula ψ is satisfied by an LFS if it is satisfied by some point (resp. interval) in it.

	Definition 5.6 Proposition 5.7 For every PI mix	-2 -formula, satisfiability in a point-interval
	model is equivalent to satisfiability in some fulfilling labeling structure.

P. Balbiani et al. / Electronic Notes in Theoretical Computer Science 278 (2011) 31-45

The typographic similarity between a box [ij] and an interval [a, b] is unfortunate, but should not cause confusion.

Usually, in modal logic valuations are functions assigning sets of possible worlds to propositional letters, and the functions defined here are called 'labeling functions', but in this paper we will use the term 'labeling function' for another purpose. P. Balbiani et al. / Electronic Notes in Theoretical Computer Science 278 (2011) 31-45

Note that these definitions are given in terms of the specific transformations τ and σ. However, it is easy to see that these definitions are as general as possible. P. Balbiani et al. / Electronic Notes in Theoretical Computer Science 278 (2011) 31-45
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