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Review
Glossary

Predictive coding: the idea that the brain generates hypotheses about the

possible causes of forthcoming sensory events and that these hypotheses are

compared with incoming sensory information. The difference between top-

down expectation and incoming sensory inputs, that is, prediction error, is

propagated forward throughout the cortical hierarchy.

Predictive timing (temporal expectations): an extension of the notion of

predictive coding to the exploitation of temporal regularities (such as a beat) or

associative contingencies (for instance, temporal relation between two inputs)

to infer the occurrence of future sensory events.

Top-down processing: efferent neural operations that convey the internal goals

or states of the observer. This notion generally includes different cognitive

processes, such as attention and expectations (Box 1).

Neural oscillations: neurophysiological electromagnetic signals [from Local

Field Potentials (LFP), electroencephalographic (EEG) and magnetoencephalo-

graphic recordings (MEG)] that reflect coherent neuronal population behavior

at different spatial scales. These signals have been labeled as a function of their

frequency from human surface EEG: delta (2–4 Hz), theta (4–8 Hz), alpha (8–

12 Hz), beta (12– 30 Hz), and gamma bands (30–100 Hz). The mechanistic

properties of oscillations are computationally interesting as a means of

explaining various aspects of perception and cognition, for example, long-
Many theories of perception are anchored in the central
notion that the brain continuously updates an internal
model of the world to infer the probable causes of
sensory events. In this framework, the brain needs not
only to predict the causes of sensory input, but also
when they are most likely to happen. In this article,
we review the neurophysiological bases of sensory
predictions of ‘‘what’ (predictive coding) and ‘when’
(predictive timing), with an emphasis on low-level oscil-
latory mechanisms. We argue that neural rhythms offer
distinct and adapted computational solutions to predict-
ing ‘what’ is going to happen in the sensory environment
and ‘when’.

Cortical oscillations and sensory predictive mechanisms
Our sensory environment is full of regularities, for exam-
ple, repetitive stimuli and contexts, which we use to predict
future events. A popular hypothesis is that the brain hosts
internalized representations of the world from which it
predicts ‘‘what’ happens in the sensory environment [1].
This theory, referred to as ‘predictive coding’, assumes that
the brain infers the most likely causes of sensory events,
which are often not directly accessible to the senses [2].
Predictive coding is classically implemented using the
Bayesian framework, which assumes that the causes of
inputs are retrieved from probabilistic computations [1,3–
6]. The theory and its current implementation imply that
predictions are internal representations of ‘what’ causes
sensory events.

In everyday life, as for instance in speech communica-
tion [7], not only the nature but also the timing of events is
of prime importance [8,9]. Even though the brain likely
generates predictions about ‘‘what’ and ‘when’ simulta-
neously, a recent stream of studies suggests that the
underlying neurophysiological mechanisms might be dis-
tinct. Slow cortical oscillations can tune brain activity to
rhythmic events and optimize signal selection, suggesting
that ‘predictive timing’ may involve specific computations
on specific timescales [10]. Temporal predictions are partly
based on the perception of statistical regularities in physi-
cal stimuli at a high level, for example, semantics (e.g., the
train passes every day at 5pm). However, for organizing
predictive timing at shorter timescales (e.g., a syllable lasts
on average 200 ms), the dynamics of cortical oscillations at
the low-level of sensory processing represents an interest-
ing complementary means.
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Cortical oscillations are involved in many perceptual
and cognitive operations [11–13] and are traditionally
invoked as a tool that fosters flexible communication be-
tween synchronized distant neuronal populations [14]. The
view that they could additionally be instrumental in pre-
dictive processing has recently received extensive experi-
mental support (for a review, see [15]). In this article, we
integrate predictive coding and predictive timing hypothe-
ses into a common framework relying on cortical oscilla-
tions, arguing that neural rhythms offer distinct and
adapted computational solutions to predicting ‘what’
and ‘when’.

Predicting ‘when’: oscillation-based predictive timing
Predicting with accuracy ‘when’ the next event is going to
happen implies having internalized the regularity of
events [8]. This would be a difficult task if events pre-
sented themselves in random temporal sequences. Most
meaningful stimuli, however, show strong regularities.
Biological signals exhibit quasi-periodic modulations,
which makes them very predictable in time. When these
stimuli are produced by living entities, they reflect their
properties, in particular the fact that neuronal activity is
often periodic. Biological signals hence align with slow
endogenous cortical activity [16] and their resonance with
neocortical delta-theta oscillations represents a plausible
way to automate predictive timing at a low processing
level [18].
distance communication across brain regions, unification of various attributes

of the same object, segmentation of the sensory input, memory etc.
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Figure 1. Predictive sensory facilitation using low frequency oscillations. (a) Temporal predictive signals modulate auditory processing by resetting the phase of slow

ongoing oscillations. Temporal signals can be endogenously generated or triggered by exogenous signals (e.g., cross-modal). (b) The phase-alignment of delta-band

oscillations modulates sensory processing and related behavioral responses. If appropriately timed, phase-reset aligns stimulus and the ideal phase of delta oscillations, so

that reaction times become faster[20,21] panel (b) adapted from [21]. In the absence of such a phase reset or if stimuli occur in a non-ideal phase, behavioral responses are

suppressed or slowed down. (c) When the timing of a sound is correctly anticipated (right panel), a decrease in evoked auditory responses (N1) is observed [22,23]. This

schematic compares the amplitude of an event-related response (N1, averaged across 10 trials) to unexpected (left panel) and expected (right panel) auditory stimuli.

Because evoked responses [event-related potentials (ERPs) and event-related fields (ERFs)] are correlated with the phase-locking of (delta-theta) ongoing oscillations [84],

their amplitude depends on the pre-stimulus phase distribution across trials. When a stimulus is anticipated (via the generation of cross-modal or rhythmic predictions),

delta-theta phase-reset precedes stimulus onset, which gives rise to a response (ERPs, ERFs) to predicted stimuli of lower magnitude (right panel) relative to when phase-

locking is only elicited by the stimulus onset (left panel). This mechanism could control the dampening of evoked responses for anticipated stimuli. It suggests that

predictive timing could operate by controlling pre-stimulus delta-theta momentary phase.
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Predictive timing and delta-theta oscillations

We define predictive timing as the process by which uncer-
tainty about ‘when’ events are likely to occur is minimized
in order to facilitate their processing and detection
[8,18,19]. At the neurophysiological level, anticipating
sensory events resets the phase of slow, delta-theta
(2-8 Hz) activity before the stimulus occurs (Figure 1a).
The predictive alignment of delta-theta oscillations in an
ideal excitability phase speeds up stimulus detection
(Figure 1b) [20,21]. Furthermore, when stimuli are implic-
itly expected based on their temporal regularity, early
sensory responses are reduced (Figure 1c) [22,23]. The
magnitude of neural responses, however, depends on
whether temporal predictions are tested in the presence
or absence of explicit attention to the nature or location of
those events (Box 1 and [24–27]). Attention interacts with
predictive timing and increases (rather than dampens)
neural responses to stimuli that fall into its focus
[10,20]. Responses are presumably dampened when pre-
dictable features should receive as little processing as
possible to liberate resources for more relevant and chal-
lenging processing steps (i.e. semantic processing, integra-
tion) or on sensory oddities. Predictive timing likely arises
from a low-level mechanism of neural entrainment by
rhythmic stimulation [28]. For instance, in the presence
of a fast speaker, the auditory cortex first adapts by
increasing the rate of spikes [29] and oscillations. In a
second step, entrained oscillations may become predictive
by creating periodic temporal windows that higher-order
regions can rely upon to read out the encoded information.
Ghitza and collaborators [30] demonstrated that the bot-
tleneck for speech decoding lies in the regularity of the
delay left for the higher order readout rather than in the
quality of the encoded sensory signal [31]. Predictive tim-
ing by oscillatory entrainment presumably suffices to ac-
count for the delay with which one adapts to speaker rates,
as well as for the accuracy of such adaptation [32]. Such a
low-level, stimulus-driven mechanism is not only modulat-
ed by attention, but also by the sensorimotor loop (Box 2;
see [33], for a review) and other sensory systems.

When physical stimuli reach the brain through several
senses, their processing is facilitated by cross-modal mech-
anisms. Visual and somatosensory inputs, for instance,
induce fast responses in the auditory cortex [34,35], which
act as temporal priors by resetting low-frequency activity
[17,36,37]. This reset, as in the unimodal situation described
above, aligns neuronal excitability to expected sound mod-
ulations, which fosters the extraction of the most relevant
acoustic cues in the auditory stream [17,38,39]. This
is typically ‘what’ happens in noisy environments, when
391



Box 1. Distinct top-down modulations by attention and expectation

Attention and expectation are generally thought of as a single

mechanism that enhances detection and facilitates recognition (for

reviews, see [25,27]). However, they operate in a distinct fashion on

neuronal populations and modulate responses in opposite directions:

attention increases neural responses to attended stimuli, whereas

expectations reduce responses to expected stimuli. This dissociation

presumably signifies that, although attention prioritizes sensory

processing as a function of input relevance for goal-directed behavior,

expectations exploit the prior probability of events, that is, they

constrain the interpretation of incoming inputs [25,87]. This distinction

makes it possible to (i) sort out the data showing that predictions

modulate cortical oscillations and ii) unify the findings for predicting

‘what’ and ‘when’.

In the context of predicting ‘what’ (or ‘where’), the distinction

between attention and expectation is grounded on experimental

neuroimaging [24–26] and behavioral [87] data. Quantitative models

describe the relative effects of expectations and attention on neural

responses (Figure I). Electrophysiological data demonstrate that

attention increases neural excitability (gamma-band activity) [88,89].

On the other hand, if a stimulus is expected, gamma-band activity

decreases [75,76], reflecting fulfilled expectations. Because gamma-

band activity covaries with metabolic demands [90,91], and in line

with Kok et al. [26], we propose that there should be a similar

interaction of attention and expectations in gamma-band activity

when predicting the content of events.

Predicting ‘when’ is generally thought to rely on temporal

attention, which controls time periods of maximal excitability [10].

Accordingly, the magnitude of delta and gamma oscillations

increases when rhythmic stimuli are in the focus of attention, which

boosts evoked responses and stimulus salience [20,92]. Conversely,

temporal expectations are encoded in the phase of pre-stimulus

delta oscillations, which align as a function of the temporal

probability of a sensory event [21,93]. Prestimulus phase alignment

is a possible cause of reduced evoked responses under temporal

expectations (Figure 1c). In sum, behavioral relevance (attention)

and prior probability (expectation) of a sensory signal might

modulate sensory processing in a dissociable way: whereas atten-

tion globally gains neural entrainment and reduces internal noise,

temporal expectations control the momentary phase of low

frequency oscillations, biasing the baseline of signal selective

populations [94]. Whether attention and expectation induce reverse

effects on oscillatory patterns in predictive timing remains to be

tested using dedicated experimental designs that orthogonalize

these two factors Figure I.
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Figure I. Schematic illustration of the interplay between attention and prediction and related amplitude-modulation of neural activity. Whereas prediction errors reflect

the extent to which a stimulus differs from the observer’s prediction, the magnitude of prediction error-related neural effects is modulated by attention. According to

this model, the activity of neuronal populations that compute the difference between top-down predictions and incoming input (error units; see also Figure 3) depends

on whether the stimulus is presented in the focus of attention or not. This predicts how neural responses (i.e., prediction errors, as indexed by bold and gamma activity;

expressed in arbitrary units, a.u.) are weighted as a function of prediction precision. Adapted from [26].
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listeners automatically resort to orofacial movements to
understand an interlocutor [40]. In such a situation, the
amount of visual information (visual predictiveness) is
reflected in delta-theta oscillation phase-locking [41], which
likely causes the cross-modal acceleration of early auditory
responses [41–44]. Importantly, temporal facilitation by
cross-modal input does not appear to rely on the ecological
validity (i.e., the congruence of visual and auditory associa-
tions [41,42]), but only requires that visual stimuli precede
sounds by about 50 to 150 milliseconds [36]. The fact that
this predictive mechanism is both rapid and non-supervised
argues for its automaticity and non-semantic nature. Ac-
cordingly, cross-modal delta-theta phase reset is proposed to
be driven either by the non-specific thalamus [10,17] or from
a direct, cortico-cortical route from visual to auditory corti-
ces [34,41].
392
Predictive timing and alpha and beta oscillations

Temporal predictions of event occurrence have been asso-
ciated with a desynchronization of oscillations in the alpha
(8-12 Hz) band at the expected onset of the predicted
stimulus [45,46]. Moreover, for temporally unpredictable
stimuli, neural and perceptual responses are modulated by
the phase of alpha oscillations at which stimulation occurs
[47,48]. Oscillations in the alpha band are generally viewed
as an active inhibitory mechanism that gates sensory
information processing as a function of cognitive relevance
[49]. The specific role of delta-theta oscillations in this
context is less clear. How alpha- and delta-theta-band
oscillations functionally interact during predictive timing
of visual events remains to be elucidated.

Beta oscillations might additionally contribute to pre-
dictive timing (Box 2). They are traditionally associated



Box 2. Active inference by motor systems in predictive

timing

Internal predictive model theories provide a unifying standpoint

about perception and action. In these theories, internal models

make it possible to infer either (i) forthcoming sensory input or (ii)

the sensory consequences of an action. When experimentally

tested, both types of inference are associated with reduced evoked

responses relative to responses to unexpected sensory inputs

[22,95]. In the context of action, response reduction relies on

efference copies propagating from motor to sensory cortices [95].

During speech production, such efference copies suppress auditory

responses specifically in the high (80-100 Hz) gamma band [96].

Efference copies could also serve to anticipate externally generated

sensory inputs [97], as the motor system is recruited during passive

listening of rhythmic streams, including speech [16], even when

attention is directed away from this stimulus [52]. The motor system

appears to actively contribute to predicting the timing of rhythmic

events by controlling neural excitability. This notion is consistent

with the contingent negative variation, a slow electrophysiological

component generated in motor regions during predictive timing

[98], and supported by coupled delta and beta activity in sensor-

imotor systems [53,56] during predictive timing. A causal link

between sensory and motor delta/beta activity during predictive

timing remains to be addressed using appropriate methods, for

instance by applying Granger causality measures to simultaneous

motor and sensory recordings during beat perception.
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with motor functions [50,51] and their role in sensory
predictive timing is denoted by the fact that they can track
the expected timing of beats [52,55] (Figure 2). Whereas
stimulus-driven beta-desynchronization is transient and
does not depend on stimulus rate, the post-inhibitory
resynchronization of beta activity (beta rebound) follows
the rate of the beat, such that beta activity peaks when the
next expected event occurs [52]. Interestingly, the omission
of an expected sound induces a larger beta rebound (fol-
lowing an increase of gamma-band response) [54], which
possibly reflects the correction of temporal inferences
(Figure 2). Note that, in this specific case, prediction errors
are related to the violation of both ‘what’ and ‘when’
expectations (see next section). Finally, the phase of del-
ta-theta oscillations when anticipating a stimulus is also
Stimuli
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γ

-400 0 400
Time (ms)

Isochronous 

800

Figure 2. Beta and gamma oscillatory patterns during predictive timing. Event-relate

measured during the perception of an isochronous sequence of tones without (left pan

fluctuate in opposite phase (left panel). Whereas gamma power is maximal after the pre

beta power is maximal when the next expected sound occurs. Of note, the alignment o

[52], which indicates their role in anticipating the timing of future events. When a sou

increased beta rebound. Omission constitutes a violation of expectations that induces

increased beta rebound. Adapted from [54].
coupled with beta-power modulations in sensorimotor sys-
tems [53,56]. Beta oscillations could hence cooperate with
low-frequency activity in top-down modulation of ongoing
activity in sensory regions during predictive timing.

In sum, predictive timing operates by organizing low
and mid-frequency oscillations (in the delta-theta and beta
ranges) and by dissolving activity in the alpha band.
Although delta-theta oscillations are primarily entrained
by mere stimulus regularity, higher-order predictive mech-
anisms actively strengthen this entrainment by coordinat-
ing the coupling between delta-theta and beta oscillations
[56]. Whether stimulus-driven delta-theta activity is am-
plified by endogenous beta oscillations that originate in the
motor system remains to be directly addressed. At any
rate, the fact that they interact during temporal expecta-
tions [53,56] supports a functional cooperation between
these oscillations in predictive timing.

Predicting ‘what’: a hypothetical oscillatory framework
for predictive coding
How the brain predicts ‘what’ is going to happen in its
sensory environment has been extensively discussed at a
theoretical level [25]. According to predictive coding and
other popular theories of perception (analysis-by-synthe-
sis, generative models) [1,57–61], the brain uses available
information continuously to predict forthcoming events
and reduce sensory uncertainty. While doing so, it presum-
ably exploits the errors made when predicting events to
update internal representations that serve as templates, or
so-called ‘models’, for predictions. This theory is parsimo-
nious and conveniently accounts for many psychophysical
and neurophysiological facts (mismatch negativity, prim-
ing effects, repetition suppression) [1]. Yet, it insufficiently
specifies how local neural computations are implemented
at neurophysiological and biophysical levels. Whereas in-
vestigating the timing of neural events is easy to do even
from human scalp recordings, exploring concepts such as
internal models requires access to fine-grained spatial
resolution. Evidence that the major computation at each
Time (ms)
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d changes in gamma- (28-48 Hz) and beta-band (15-20 Hz) auditory activity are

el) or with omission of one sound (right panel). Gamma- and beta-band activities

sentation of the sound, beta activity is suppressed and resynchronizes later so that

f beta resynchronization with sensory events adapts to the rate of the stimulation

nd is omitted (right panel), gamma-band response is larger and followed by an

 prediction error-related responses primarily in the gamma band followed by an
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Box 3. Asymmetric hierarchical message-passing reflected in beta and gamma oscillations

It has recently been proposed that the beta band carries descending

information, whereas the main vector of ascending information is

the gamma band [12]. The hypothesis of asymmetric hierarchical

message-passing reflected in beta and gamma oscillations is

roughly consistent with their laminar expression. On the one hand,

in vitro and in vivo recordings show that gamma activity is

prominently generated in superficial layers 2/3 of the cortex,

whereas beta oscillations are largely found in deep 5/6 layers

[65,78,99–101]. On the other hand, feed-forward projections origi-

nate in superficial layers and contact layer IV of the next hierarchical

stage [85], whereas feed-back connections project from deep layers

to the lower stage superficial layers (Figure I). Even though

hierarchical cortical connectivity is presumably much more complex

than this scheme, a growing amount of evidence supports such a

simplification.

These anatomofunctional data have not yet been explicitly

connected to predictive coding. Recent findings, however, support

the view that prediction errors are propagated forward on a gamma

frequency channel from superficial cortical layers to deep layers of the

next stage, while predictions are propagated backward on a beta

frequency channel from deep cortical layers to superficial layers of the

lower stage (Figure 3) [74,99,102]. A model by Roopun et al. [101]

suggests that beta could be generated by the concatenation of faster

activity in superficial and deep layers. As a consequence, feed-

forward message-passing could be interrupted and redirected back-

wards (Figure I). This scheme is hypothetical and should be tested

experimentally. It implies that feed-forward and feedback propagation

on distinct frequency channels is not simultaneous (multiplexing), but

is characterized by alternation of gamma-forward dominant and beta-

backward dominant phases.
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Figure I. A model of sensory information message-passing between hierarchical cortical levels. (a) The left panel reproduces a schematic from Wang [12] depicting a

reciprocally connected loop between two hierarchical levels. Neuronal populations situated in superficial layers generate synchronous oscillations in the gamma range

that propagate information to deep-layer neuronal populations of the level above, which in turn generate oscillations in the beta range. Gamma oscillations are involved

in forward propagation of sensory information, whereas beta oscillations are involved in top-down signaling and presumably control lower-level gamma activity. The

right panel extends the Wang’s model to predictive coding. The model assumes two functional categories of neuronal units: Error units (e) and Representational units

(r), respectively sitting in superficial and deep layers of the cortex [1,85,86]. According to predictive coding and recent in vitro and in vivo data, prediction error is

propagated forward from en to rn+1 units using a gamma-frequency channel, whereas top-down predictions are conveyed backward from rn to en-1 units through a beta-

frequency channel. (b) Priors conveyed by the higher level constrain the possible state of en units. (c) In the case of an invalid prediction with regard to the incoming

input, prediction error is computed in en units and propagated to the level above using a gamma frequency channel. The generation of gamma activity is associated

with competitive spiking between neural assemblies [78]. (d) The generation of new predictions from rn+1 units reduces prediction error in en units that change their

state accordingly, which induces a new conflict with rn units. (e) The transition to a beta regime (see text) results in the formation of another stable neuronal assembly

[78,100,101], which generates new predictions in rn units that are propagated to lower sensory levels on a beta channel.
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processing stage consists in comparing descending and
ascending signals in such a way that residual error is
propagated forward is currently scarce. The understanding
of computations at a very local level hence remains a
challenging endeavor [62]. Recent work, however, suggests
that cortical oscillations could be used in directional mes-
sage-passing [12,63–65]. This view offers a novel putative
neurophysiological substrate of the operations required by
predictive coding (Box 3).

Predictive coding and gamma oscillations

Gamma-band oscillations (>30 Hz) do not underpin a
unitary function. They accompany a wide variety of cogni-
tive processes, such as feature integration, stimulus
selection, attention, multisensory, and sensorimotor inte-
gration [11,15,66,67]. They admittedly signal local cortical
processes, in particular the encoding of stimulus proper-
ties in sensory cortices [68]. Herrmann and colleagues
proposed that gamma activity is implicated in the assess-
ment of sensory predictions and suggested that gamma-
band activity depends on the match between expectations
and bottom-up input [69]. Other experimental paradigms
incidentally support the implication of gamma oscillations
in the evaluation of predictions. Mismatch negativity
(MMN) and other violations of expectations are generally
associated with an increase of gamma-band activity and
changes of gamma topography [70–73]. Gamma activity
also scales with prediction errors stemming from the
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error is generated by pre-activated units (e units 1 and 2) that do not receive any input. (e

residual error.
violation of cross-modal expectations [74]. Paradigms that
manipulate sensory expectations demonstrate that this
effect is reversed when predictions are fulfilled, that is, the
amplitude of evoked gamma-band activity is reduced
when a repetition (or an omission) of the stimulus is
correctly anticipated (Figure 3a and b) [75,76]. On the
other hand, unexpected omissions of predicted events
constitute an interesting experimental tool to examine
situations where expectations do not coincide with bot-
tom-up input and hence cannot be fulfilled (Figure 3d) [77].
In such situations, omissions induce an increase in gam-
ma-band activity (Figure 2) [54,55]. Altogether, experi-
mental data concur to suggest that gamma activity is
modulated as a function of sensory surprise and, among
its other possible functions, is used to signal unexpected
information, that is, prediction error.

Predictive coding and beta oscillations

Interestingly, error-related effects also reveal modulations
in the beta band, yet gamma and beta oscillations behave
differently during external stimulation: gamma activity
increases, whereas beta oscillations are first suppressed
(or desynchronized) and then resynchronized (beta re-
bound, see Figure 2) [50]. When explicit expectations are
violated, the beta rebound is determined by the magnitude
of earlier gamma enhancement [70]. As mentioned above,
the omission of a sound in an isochronous sequence also
induces an increase in gamma-band activity followed by a
D
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larger beta rebound (Figure 2) [54,55]. On the whole, these
observations imply that beta activity signals processing
steps downstream from prediction error generation.

Whereas predicting ‘when’ predominantly involves low-
frequency oscillations, predicting ‘what’ points to a com-
bined role of gamma and beta oscillations. Computational
studies suggest that beta and gamma rhythms could reflect
distinct aspects of neuronal population synchronization
during sensory processing. Although ongoing input usually
prompts the formation of neuronal assemblies at gamma
rhythms, the emergence of a beta rhythm changes these
assemblies into new patterns via a rebound from inhibition
[78]. In addition, beta and gamma oscillations could un-
derlie the flow of information in opposite directions, that is,
forward vs. backward (Box 3; see [12], for a review). Along
the lines of predictive coding, this suggests that prediction
errors could be propagated in a feed-forward manner,
mainly using the gamma frequency channel, whereas pre-
dictions (and their revisions) could be transmitted ‘back-
ward’ using mainly the beta channel [12,65,79].

That beta activity increases before the occurrence of an
expected event [52] potentially reflects the mobilization of
neuronal populations under predictive signals [80]. To
what extent such top-down signals are content-specific
remains unclear. Yet, a strong argument for the ‘what’
nature of such predictive mechanisms is that post-stimulus
beta rebound increases in sensory regions when the con-
tent of predictions is violated [74]. Beta oscillations may
hence be exploited to predictively synchronize relevant
neuronal populations that encode expected sensory inputs.
If the input is correctly anticipated, evoked gamma activity
could be limited to the population ‘pre-synchronized’ by
beta oscillations (Figure 3b). Conversely, if the neuronal
population recruited by sensory stimulation differs from
the pre-activated one, the number of units recruited would
have to extend to the not pre-activated ones (Figure 3b),
resulting in a larger neural response due to an increase in
the overall gamma activity proportional to prediction error
(e.g., a spatial mismatch).

Combining predictive timing and coding in the
oscillatory framework: the example of speech
processing
In this article, we have presented two means the brain may
use to predict its sensory environment. Predictive timing
uses the temporal regularities of sensory input to minimize
the sensory processing of events that do not require exten-
sive processing, which frees cognitive resources for higher-
order cognitive processes. The most compelling example is
probably that of speech comprehension. Continuous speech
perception results from cortical sequencing into segments
or units that most likely do not receive full processing, but
only sufficient processing of their most salient parts [7].
Severely time-compressed speech can remain intelligible,
provided enough processing time follows each speech unit
[30]. Processing focused on the salient parts of speech
(onset of syllables) likely relies on predictive timing and
a plausible role of oscillations in this mechanism is not only
to align neuronal excitability with important speech cues,
but also to suppress the less important parts in order to
free processing time [10]. Because predictive timing is
396
largely based on stimulus-induced regularities, it is (in
part at least) a non-supervised computational process that
minimally depends on the validity of predictions. When an
expected event falls out the expected temporal window, it
receives reduced processing [20]. If, conversely, an unex-
pected event (oddball) falls within the expected window
(as, for instance, in MMN paradigms), then the ‘predicting
what’ scheme applies, whereby the response reflects the
mismatch between expectation and input. Whereas slow
delta-theta oscillations are mostly involved in setting tem-
poral windows of sensory integration due to predictive
mechanical entrainment, beta oscillations are involved
in both the rhythmic modulation of sensory sampling
[52,54,55] and in top-down transmission of content specific
predictions [50].

In summary, implicit temporal predictions could peri-
odically modulate the overall activity of sensory cortices
with a relatively weak functional specificity to facilitate
sensory processing, regardless of the informational con-
tent of forthcoming information. Furthermore, when tar-
geting specific neuronal populations, top-down signals
could provide content-related priors. These two mecha-
nisms are complementary at the computational level.
Whereas predictive timing temporally aligns neuronal
excitability by controlling the momentary phase of low-
frequency oscillations relative to incoming stimuli, pre-
dictive coding targets neuronal populations specific to the
representational content of forthcoming stimuli. The com-
bination of these two types of mechanisms is again ideally
illustrated by speech processing. Speech comprehension
has long been argued to rely on cohort models where each
heard word preactivates a pool of other words with the
same onset, until it reaches a point where the word is
uniquely identified [81,82]. This model assumes that cog-
nitive resources are used at the lexical level, where pre-
dictions are formed. Gagnepain and collaborators [83]
recently demonstrated, however, that the predictive
mechanisms in word comprehension involve segmental
rather than lexical predictions, meaning that each seg-
ment is likely used to predict the next. Computationally,
this observation supports the view that auditory cortex (i)
samples speech into segments using mechanisms that
make them predictable in time and (ii) that a representa-
tion of these segments is used to test specific predictions in
a recurrent, predictable fashion.
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