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1 Introduction

For ensemble-based data assimilation purposes, there is definite need for relevant
ensemble sampling tools. Indeed, the quality and spreading of these ensembles
have deep implications in the quality of the data assimilation (Dufée et al, 2022),
and – until recently – those so-called covariance inflation tools have mostly relied
on unsuitable linear Gaussian frameworks (Tandeo et al, 2020; Resseguier et al,
2020a). A promising alternative is the generation of ensembles through stochastic
remapping of the physical space.

Consider a random mapping T , acting at every infinitesimal time step, such
that Tt(x)− x is interpreted as a ”location perturbation” expressed by

Tt(x) = x+ a(t, x)∆t+ ei(t, x)∆ηi(t), (1.1)

where a(t, x), ei(t, x) ∈ Rn, ∆ηi(t) ∼ N (0, ∆t) is a random number. In Eq.(1.1),
a(t, x)∆t represent a deterministic location shift, and ei∆ηi random ones. At
every time step, the random mapping T shall then induce a perturbation to any
tensor field θ(t) (Zhen et al, 2022). For instance, one can perturb a differential
form θ(t) applying θ(t) → T ∗

t θ(t) with T ∗
t the associated pull-back operator.

A rigorous mathematical definition and calculation of Tt and T ∗
t can be

obtained in terms of stochastic flows of diffeomorphisms and its Lie derivatives
(e.g., Bethencourt De Leon, 2021). Yet, to rapidly assess T ∗

t θ, a Taylor expansion
and usage of Ito’s lemma can be used. Given coordinates (x1, ..., xn), when θ is
a differential k−form, it can be written as

θ =
∑

i1<...<ik

f i1,...,ikdxi1 ∧ · · · ∧ dxik (1.2)

with f a smooth function. Then

T ∗
t θ =

∑
i1<...<ik

f i1,...,ik(Tt(x))T
∗
t (dx

i1 ∧ · · · ∧ dxik) (1.3)
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leading to a compact expression

T ∗
t θ = θ +M(t, θ)∆t+Ni(t, θ)∆ηi(t), (1.4)

with some differential k−forms M(t, θ) and Ni(t, θ), (see Zhen et al, 2022, Ap-
pendix B for full proof and defintions of M and N ).

In this paper, we present and discuss the potential of this random mapping
scheme to possibly prescribe θ, and the parameters a and ei to ensure that
certain quantities, i.e. mass, vorticity, helicity, energy, are conserved.

2 Induced Stochastic PDE

From the expression of T ∗
t θ, a SPDE is derived from an original PDE, when θ is

a differential form. Suppose S is the full state variable of the dynamical system:

∂S

∂t
= g(S). (2.1)

Let f be a component or a collection of components of S. We then associate f
to a differential form θ, i.e. there is an invertible map F that maps the space of
f to the space of θ, such that F(f) = θ. Typically, if f is a tracer, it is often
associated to the 0-form θ = f . If f is the density ρ, we might associate the
n-form θ = ρ dxi1 ∧ · · · ∧ dxin . Consider the propagation equation for f

df = gf (S)dt. (2.2)

It implies a propagation equation for θ:

dθ = gθ(S)dt. (2.3)

The proposed discrete-time perturbation at each time step consists of the fol-
lowing two steps: {

θ̃(t+∆t) = θ(t) + gθ(S(t))∆t

θ(t+∆t) = T ∗
t θ̃(t+∆t)

(2.4)

(2.5)

with T ∗
t θ̃(t+∆t) = θ̃(t+∆t)+M(t, θ̃(t+∆t))∆t+Ni(t, θ̃(t+∆t))∆ηi(t)+o(∆t)

for the associated differential forms M(t, θ̃) and Ni(t, θ̃).
The deterministic PDE (2.4) and ∥θ̃(t +∆t) − θ(t)∥ scales in O(∆t). There

is no noise term to induce a scaling in O(
√
∆t). Therefore, it can be assumed

that there exists C > 0 so that ∥M(t, θ̃(t + ∆t)) − M(t, θ(t))∥ < C∆t and
∥Ni(t, θ̃(t+∆t))−Ni(t, θ(t))∥ < C∆t, for ∆t small enough. Accordingly,

T ∗
t θ̃(t+∆t) =θ̃(t+∆t) +

(
M(t, θ(t)) +O(∆t)

)
∆t

+
(
Ni(t, θ(t)) +O(∆t)

)
∆ηi(t) + o(∆t)

=θ̃(t+∆t) +M(t, θ(t))∆t+Ni(t, θ(t))∆ηi(t) + o(∆t) (2.6)
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Therefore,

θ(t+∆t) = θ(t) + gθ(S(t))∆t+M(t, θ(t))∆t+Ni(t, θ(t))∆ηi + o(∆t). (2.7)

It suggests the following stochastic propagation equation for θ:

dθ = gθ(S)dt+M(t, θ)dt+Ni(t, θ)dηi. (2.8)

Since there is a 1-1 correspondence between θ and f , Eq.(2.3) also suggests a
stochastic propagation equation for f , which can be written as

df = gf (S)dt+Mf (f)dt+N f
i (f)dηi. (2.9)

We denote the additional terms in Eq.(2.9) by

dsf := Mf (f)dt+N f
i (f)dηi. (2.10)

Then Eq.(2.9) can be written as:

df = gf (S)dt+ dsf. (2.11)

3 Comparison with other perturbation schemes

Obtained above, dsf is completely determined by T ∗
t θ, but is not directly related

to the original dynamics Eq.(2.2). Once the expression of T in Eq.(1.1) and the
choice of θ are determined, the perturbation term dsf is prescribed. However, the
choice of θ is up to the user, and may then be related to the original dynamics.

In the following, we thus demonstrate that both the stochastic advection by
Lie transport (SALT) equation (Holm, 2015) and the location uncertainty (LU)
equation (Mémin, 2014; Resseguier et al, 2017, 2020b) can be properly recovered
using the proposed perturbation scheme.

3.1 Comparison with the LU equations

The Reynolds transport theorem is central to the LU setting. The Reynolds
transport theorem expresses an integral conservation equation for the transport
of any conserved quantity within a fluid, connected to its corresponding differ-
ential equation. A link between the proposed perturbation approach and the LU
formulation can be anticipated to be related to differential n−forms. But first,
we consider a key ingredient of LU: the stochastic material derivative of function
(differential 0−forms).

0-forms in the LU framework Dropping the forcing terms, LU equation for
compressible and incompressible flow writes (Resseguier et al, 2017).

∂tf +w⋆ · ∇f =∇ · ( 12a∇f)− σḂ · ∇f (3.1)

w⋆ =w − 1
2 (∇ · a)⊤ + σ(∇ · σ)⊤ (3.2)
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where a = σ•kσ
T
•k and f can be any quantity that is assumed to be transported

by the flow, i.e. Df/Dt = 0 where D/Dt is the Itō material derivative. For
instance, f could be the velocity (dropping forces in the SPDE), the temperature,
or the buoyancy.

Separating the terms of the SPDE related to the deterministic dynamics from
the term associated to the stochastic scheme, it comes

dLUf = gf (S)dt+ dLUs f, (3.3)

where

gf (S) =−w · ∇f (3.4)

dLUs f =− (w⋆ −w) · ∇fdt− σdB · ∇f +∇ · ( 12a∇f)dt (3.5)

Besides, from our proposed scheme applied to a 0-form θ = f , we obtain:

dsf =
(
ap∂xpf + 1

2e
p
i e

q
i∂xp∂xqf

)
dt+ epi ∂xpfdηi (3.6)

To physically interpret this equation, we rewrite:

dsf

dt
= −V p∂xpf + ∂xp

(
( 12e

p
i e

q
i )∂xqf

)
(3.7)

where

V p = −ap + 1
2∂xq (epi e

q
i )− epi

dηi
dt

(3.8)

Terms of advection and diffusion are recognized. The matrix 1
2eie

T
i is symmetric

non-negative and represents a diffusion matrix. The p-th component of the ad-
vecting velocity V p is composed of the drift −ap, a correction 1

2∂xq (epi e
q
i ), and

a stochastic advecting velocity −epi
dηi

dt .
Direct calculation yields that Eq.(3.5) coincides with Eq.(3.7) when a =

σ•kσ
T
•k = eie

T
i and σḂ = −eidηi and

Tt(x) = x+ eqi∂xqei∆t+ ei∆ηi = x−wc
S∆t+ (−wc

S∆t− σ∆B), (3.9)

where

wc
S = − 1

2 (σ•k · ∇)σ•k = − 1
2 (∇ · a)⊤ + 1

2σ(∇ · σ)⊤. (3.10)

The LU equation can thus be derived by choosing θ = f and Tt by Eq.(3.9).
Note, the term (−wc

S∆t−σ∆B) = (12e
q
i∂xq

ei∆t+ei∆ηi) is the Itō noise plus its
Itō-to-Stratonovich correction. Hence, it corresponds to the Stratonovich noise
ei ◦ dηi of the flow associated to Tt. The additional drift −wc

S∆t is different
in nature. It is related to the advection correction wc

S · ∇f in the LU setting.
Indeed, in the LU framework, the Itō drift, w, is seen as the resolved large-scale
velocity. That is why, in this framework, the deterministic dynamics (3.4) in-
volves the Itō drift, w. This is also the reason why, under the LU derivation,
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the advected velocity is assumed to be given by the Itō drift, w. It differs from
the Stratonovich drift wS = w + wc

S , used as advected velocity in SALT ap-
proach or in Mikulevicius and Rozovskii (2004) (where the Stratonovich drift
is denoted u). Interested readers are referred to (Resseguier et al, 2020b, Ap-
pendix A) for a discussion on these assumptions and for the complete table of
SALT-LU notations correspondences. Note however that in all these approaches,
the advecting velocity is always the Stratonovich drift. This can be seen e.g., in
the Stratonovich form of LU equations, derived in (Resseguier, 2017, Appendix
10.1) and (Resseguier et al, 2020a, 6.1.3):

∂tf +wS · ∇f =− (σ ◦ Ḃ) · ∇f, (3.11)

where σ ◦ Ḃ is the Stratonovich noise of the SPDE. Since the advecting velocity
wS and the resolved velocity w differ by a drift wc

S , the term wc
S · ∇f is in-

terpreted as an advection correction, being part of the stochastic scheme (3.5).
Accordingly, the remapping Tt involves an additional drift −wc

S∆t .
To also understand (3.9), the inverse flow can be considered:

T−1
t (x) = x− ei∆ηi = x+ σ∆B. (3.12)

If Tt represents a necessary perturbation to match, at each time step, a true
solution, T−1

t measures the difference, at each time step, between this true solu-
tion and a model forecast. Therefore, the LU equation can be derived using the
proposed perturbation scheme, choosing θ = f and assuming that a true solution
differs from a model forecast by a displacement prescribed by Eq.(3.12).

n-forms in the LU framework The LU physical justification relies on a
stochastic interpretation of fundamental conservation laws, typically conserva-
tion of extensive properties (i.e. integrals of functions over a spatial volume) like
momentum, mass, matter and energy (Resseguier et al, 2017). These extensive
properties can be expressed by integrals of differential n−forms. For instance, the
mass and the momentum are integrals of the differential n−forms ρdx1∧· · ·∧dxn

and ρwdx1 ∧ · · · ∧ dxn, respectively. In the LU framework, a stochastic version
of the Reynolds transport theorem (Resseguier et al, 2017, Eq. (28)) is used to
deal with these differential n−forms θ = fdx1 ∧ · · · ∧ dxn. Assuming an integral
conservation d

dt

∫
V (t)

f = 0 on a spatial domain V (t) transported by the flow, it

leads to the following SPDE:

Df

Dt
+∇ · (w⋆ + σḂ)f =

d

dt

〈∫ t

0

Dtf,

∫ t

0

∇ · σḂ
〉

= (∇ · σ•i)(∇ · σ•i)
T f

(3.13)

where D/Dt denotes the Itō material derivative. Forcing terms are dropped for
the sake of readability. This SPDE can be rewritten using the expression of that
material derivative (Eq. (9) and (10) of Resseguier et al (2017)):

∂tf +∇ · (wSf) =
1
2∇ · (a∇f) + 1

2∇ · (σ•i(∇ · σ•i)
T f)−∇ · (σḂf) (3.14)

(3.15)
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The original deterministic equation and stochastic perturbation correspond to

gf (S) =−∇ · (wf) (3.16)

dLUs f =(−∇ · (wc
Sf) +

1
2∇ · (a∇f) + 1

2∇ · (σ•i(∇ · σ•i)
T f))dt−∇ · (σdBf)

(3.17)

=−∇ · ((−( 12∇ · a)T dt+ σdB)f) +∇ · ( 12a∇f)dt (3.18)

We can now compare these LU equations to our new stochastic scheme ap-
plied to n-form θ = fdx1 ∧ · · · ∧ dxn: This implies that

dsf =
(
(∂xpap + 1

2Ji)f + (ap + epi ∂xqeqi )∂xpf + 1
2e

p
i e

q
i∂xp∂xqf

)
dt

+ (∂xpepi f + epi ∂xpf)dηi, (3.19)

where Ji = ∂xpepi ∂xqeqi − ∂xpeqi∂xqepi . Rewritten, it leads to:

dsf

dt
= −∂xp

(
Ṽ pf

)
+ ∂xp

(
( 12e

p
i e

q
i )∂xqf

)
(3.20)

where

Ṽ p = V p − (epi ∂xqeqi ) = −ap + 1
2 (∂xqepi e

q
i − epi ∂xqeqi )− epi

dηi
dt

(3.21)

Again a advection-diffusion equation is recognized, but of different nature. In-
deed, as expected for a n-form, the PDE is similar to a density conservation
equation. Moreover, the advecting drift is slightly different to take into account
the cross-correlations between f(Tt(x)) and T ∗

t (dx
1 ∧ · · · ∧ dxn).

Identifying a = σ•kσ
T
•k = eie

T
i and σḂ = −eidηi,

Ṽ = −ap + 1
2 (∂xqepi e

q
i − epi ∂xqeqi )− epi

dηi
dt

= −( 12∇ · a)T + σḂ (3.22)

i.e.

ap = 1
2 (∂xqepi e

q
i − epi ∂xqeqi ) +

1
2∂xq (epi e

q
i ) = eqi∂xqepi (3.23)

A remapping is thus obtained to write

Tt(x) = x+ eqi∂xq
ei∆t+ ei∆ηi = x−wc

S∆t+ (−wc
S∆t− σ∆B), (3.24)

already derived for differential 0−form in LU framework (Eq. (3.9)). Therefore,
the proposed perturbation mapping can also encompass the LU framework for
n− forms, and its capacity – given by the Reynolds transport theorem – to deal
with extensive properties.

Moreover, for incompressible flows, LU equation further imposes that{
∇ · σ = 0

∇ · ∇ · a = 0
(3.25)
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Translating it into our present notation, it reads as{
∂xpe

p
i = 0 for each i

∂xp∂xq (e
p
i e

q
i ) = 0

Following straightforward calculation, Eq.(3.25) is found equivalent to that T ∗
t θ =

θ for θ = dx1 ∧ · · · ∧ dxn. Such a result is expected since constraints Eq. (3.25)
are obtained from the LU density conservation.

3.2 The SALT perturbation scheme

Holm (2015) derived the original SALT equation following a stochastically con-
strained variational principle δS = 0, for which{

S(u, q) =
∫
ℓ(u, q)dt

dq +£dxtq = 0.
(3.26)

where ℓ(u, q) is the Lagrangian of the system, £ is the Lie derivative, and xt(x)
is defined by (using our notation)

xt(x) = x0(x) +

∫ t

0

u(x, s)ds−
∫ t

0

ei(x) ◦ dηi(s), (3.27)

in which u is the velocity vector field. The ◦ means that the integral is defined
in the Stratonovich sense, instead of in the Ito sense. Hence, dxt = u(x, t)dt −
ei ◦ dηi refers to an infinitesimal stochastic tangent field on the domain. We
can express dxt = Tt(x) − x + udt. Note the difference between Ito’s notation
and Stratonovich’s notation, i.e. ei ◦ dηi ̸= eidηi. The initial expression of Tt

essentially follows Ito’s notation. In this subsection, it comes that Tt(x) ̸= x −
ei∆ηi. Instead, it becomes Tt(x) = x+ 1

2e
p
i ∂xpei∆t− ei∆ηi.

In the second equation of Eq.(3.26), q is assumed to be a quantity advected
by the flow. q can correspond to any differential form that is not uniquely de-
termined by the velocity (since the SALT equation for the velocity is usually
determined by the first equation of Eq.(3.26)). Holm (2015) evaluates the Lie
derivative £dxtq using Cartan’s formula:

£dxt
q = d(idxt

q) + idxt
dq. (3.28)

This Lie derivative £dxt
q corresponds to T ∗

t q − q + fq(S)dt, if we assume that
the deterministic forecast of q is simply the advection of q by u. More generally,
£dxt−udtq = T ∗

t q − q. Therefore, the SALT equation for q is the same as our
perturbation for q. Note, the Cartan’s formula can not be directly applied to
calculate the Lie derivative if the expression of dxt is in Ito’s notation.

Within the SALT setting, the velocity u comes from the first equation of
Eq.(3.26). For most cases, the velocity u is associated with the momentum,
a differential 1−form m = ujdxj = u1dx1 + ... + undxn. When the Lagrangian
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includes the kinetic energy, Holm (2015) observed that the stochastic noises con-
tribute a term £dxt

θ, where θ is a differential 1−form related to the momentum
1−form. In particular, θ = m for the “Stratonovich stochastic Euler-Poincaré
flow” example, and θ = m + Rjdxj for the “Stochastic Euler-Boussinesq equa-
tions of a rotating stratified incompressible fluid”.

Already pointed out, the operator £dxt
is closely related to T ∗

t , and the SALT
momentum equation can thus also be derived using our proposed perturbation
scheme by properly choosing θ, without relying on Lagrangian mechanics.

Another way to appreciate the correspondence to SALT is by looking at the
final SPDE. If we choose θ to be a differential 1-form to represent the momentum
f , i.e. θ = f jdxj we obtain (Zhen et al, 2022):

dsf
j =(ap∂xpf j + 1

2e
p
i e

q
i∂xp∂xqf j + ∂xjapfp + ∂xjepi e

q
i∂xqfp)dt

+ (epi ∂xpf j + ∂xjepi f
p)dηi (3.29)

Regrouping the terms for physical interpretation, it writes:

dsf
j

dt
= −V p∂xpf j + ∂xp

(
( 12e

p
i e

q
i )∂xqf j

)
+ ∂xj

(
ap + epi

dηi
dt

)
fp + ∂xjepi e

q
i∂xqfp

(3.30)

Two last terms of the right-hand side complete the advection-diffusion terms,
already appearing in (3.7). The first one, ∂xj

(
−ap − epi

dηi

dt

)
fp, is reminiscent

to the additional terms appearing in SALT momentum equations (Holm, 2015;
Resseguier et al, 2020b). The second term, −∂xjepi e

q
i∂xqfp, comes from cross-

correlation in Itō notation.

4 Conclusion

As demonstrated, both SALT and LU equations can be recovered using a pre-
scribed definition of a random diffeomorphism Tt used to perturb the physical
space. However, compared with SALT and LU settings, the proposed perturba-
tion scheme does not directly rely on a particular physics. Hence, the random
mapping is more flexible and can be applied to any PDE. Interestingly, similari-
ties and differences can then be identified and studied between the proposed use
of the random diffeomorphism and the existing stochastic physical SALT and
LU settings. For instance, the proposed derivation provides interesting interpre-
tation the operator £dxt−udt, appearing in the SALT equation. This term can
indeed represent an infinitesimal forecast error at every forecast time step.

To apply the proposed perturbation scheme to any specific model, the dif-
feomorphism parameters a and ei must be determined specifically. Hence it is
necessary to learn these parameters from existing data, experimental runs, or
additional physical considerations. This framework naturally provides new per-
spectives to generate ensembles through constrained stochastic mappings applied
in the physical space.
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