Valentin Resseguier 
email: valentin.resseguier@scalian.com
  
Yicun Zhen 
  
Bertrand Chapron 
  
Constrained random diffeomorphisms for data assimilation

published or not. The documents may come    

Introduction

For ensemble-based data assimilation purposes, there is definite need for relevant ensemble sampling tools. Indeed, the quality and spreading of these ensembles have deep implications in the quality of the data assimilation [START_REF] Dufée | Stochastic parametrization: an alternative to inflation in ensemble kalman filters[END_REF], and -until recently -those so-called covariance inflation tools have mostly relied on unsuitable linear Gaussian frameworks [START_REF] Tandeo | A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation[END_REF]Resseguier et al, 2020a). A promising alternative is the generation of ensembles through stochastic remapping of the physical space.

Consider a random mapping T , acting at every infinitesimal time step, such that T t (x) -x is interpreted as a "location perturbation" expressed by T t (x) = x + a(t, x)∆t + e i (t, x)∆η i (t),

(1.1)

where a(t, x), e i (t, x) ∈ R n , ∆η i (t) ∼ N (0, ∆t) is a random number. In Eq.(1.1), a(t, x)∆t represent a deterministic location shift, and e i ∆η i random ones. At every time step, the random mapping T shall then induce a perturbation to any tensor field θ(t) [START_REF] Tandeo | A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation[END_REF]. For instance, one can perturb a differential form θ(t) applying θ(t) → T * t θ(t) with T * t the associated pull-back operator. A rigorous mathematical definition and calculation of T t and T * t can be obtained in terms of stochastic flows of diffeomorphisms and its Lie derivatives (e.g., [START_REF] De | On the effect of stochastic lie transport noise on fluid dynamic equations[END_REF]). Yet, to rapidly assess T * t θ, a Taylor expansion and usage of Ito's lemma can be used. Given coordinates (x 1 , ..., x n ), when θ is a differential k-form, it can be written as

θ = i1<...<i k f i1,...,i k dx i1 ∧ • • • ∧ dx i k (1.2)
with f a smooth function. Then

T * t θ = i1<...<i k f i1,...,i k (T t (x))T * t (dx i1 ∧ • • • ∧ dx i k ) (1.3)
leading to a compact expression

T * t θ = θ + M(t, θ)∆t + N i (t, θ)∆η i (t), (1.4)
with some differential k-forms M(t, θ) and N i (t, θ), (see Zhen et al, 2022, Appendix B for full proof and defintions of M and N ).

In this paper, we present and discuss the potential of this random mapping scheme to possibly prescribe θ, and the parameters a and e i to ensure that certain quantities, i.e. mass, vorticity, helicity, energy, are conserved.

Induced Stochastic PDE

From the expression of T * t θ, a SPDE is derived from an original PDE, when θ is a differential form. Suppose S is the full state variable of the dynamical system:

∂S ∂t = g(S). (2.1)
Let f be a component or a collection of components of S. We then associate f to a differential form θ, i.e. there is an invertible map F that maps the space of f to the space of θ, such that

F(f ) = θ. Typically, if f is a tracer, it is often associated to the 0-form θ = f . If f is the density ρ, we might associate the n-form θ = ρ dx i1 ∧ • • • ∧ dx in . Consider the propagation equation for f df = g f (S)dt. (2.2)
It implies a propagation equation for θ:

dθ = g θ (S)dt. (2.
3)

The proposed discrete-time perturbation at each time step consists of the following two steps: θ(t + ∆t) = θ(t) + g θ (S(t))∆t

θ(t + ∆t) = T * t θ(t + ∆t) (2.4) (2.5)
with T * t θ(t+∆t) = θ(t+∆t)+M(t, θ(t+∆t))∆t+N i (t, θ(t+∆t))∆η i (t)+o(∆t) for the associated differential forms M(t, θ) and N i (t, θ).

The deterministic PDE (2.4) and ∥ θ(t + ∆t) -θ(t)∥ scales in O(∆t). There is no noise term to induce a scaling in O( √ ∆t). Therefore, it can be assumed that there exists C > 0 so that ∥M(t, θ(t + ∆t)) -M(t, θ(t))∥ < C∆t and ∥N i (t, θ(t + ∆t)) -N i (t, θ(t))∥ < C∆t, for ∆t small enough. Accordingly,

T * t θ(t + ∆t) = θ(t + ∆t) + M(t, θ(t)) + O(∆t) ∆t + N i (t, θ(t)) + O(∆t) ∆η i (t) + o(∆t) = θ(t + ∆t) + M(t, θ(t))∆t + N i (t, θ(t))∆η i (t) + o(∆t) (2.6)
Therefore,

θ(t + ∆t) = θ(t) + g θ (S(t))∆t + M(t, θ(t))∆t + N i (t, θ(t))∆η i + o(∆t). (2.7)
It suggests the following stochastic propagation equation for θ:

dθ = g θ (S)dt + M(t, θ)dt + N i (t, θ)dη i . (2.8)
Since there is a 1-1 correspondence between θ and f , Eq.(2.3) also suggests a stochastic propagation equation for f , which can be written as

df = g f (S)dt + M f (f )dt + N f i (f )dη i .
(2.9)

We denote the additional terms in Eq.(2.9) by

d s f := M f (f )dt + N f i (f )dη i .
(2.10) Then Eq.(2.9) can be written as:

df = g f (S)dt + d s f.
(2.11)

Comparison with other perturbation schemes

Obtained above, d s f is completely determined by T * t θ, but is not directly related to the original dynamics Eq.(2.2). Once the expression of T in Eq.(1.1) and the choice of θ are determined, the perturbation term d s f is prescribed. However, the choice of θ is up to the user, and may then be related to the original dynamics.

In the following, we thus demonstrate that both the stochastic advection by Lie transport (SALT) equation [START_REF] Holm | Variational principles for stochastic fluid dynamics[END_REF] and the location uncertainty (LU) equation [START_REF] Mémin | Fluid flow dynamics under location uncertainty[END_REF][START_REF] Resseguier | Geophysical flows under location uncertainty, part I random transport and general models[END_REF]Resseguier et al, , 2020b) can be properly recovered using the proposed perturbation scheme.

Comparison with the LU equations

The Reynolds transport theorem is central to the LU setting. The Reynolds transport theorem expresses an integral conservation equation for the transport of any conserved quantity within a fluid, connected to its corresponding differential equation. A link between the proposed perturbation approach and the LU formulation can be anticipated to be related to differential n-forms. But first, we consider a key ingredient of LU: the stochastic material derivative of function (differential 0-forms). 0-forms in the LU framework Dropping the forcing terms, LU equation for compressible and incompressible flow writes [START_REF] Resseguier | Geophysical flows under location uncertainty, part I random transport and general models[END_REF].

∂ t f + w ⋆ • ∇f =∇ • ( 1 2 a∇f ) -σ Ḃ • ∇f (3.1) w ⋆ =w -1 2 (∇ • a) ⊤ + σ(∇ • σ) ⊤ (3.2)
where a = σ •k σ T

•k and f can be any quantity that is assumed to be transported by the flow, i.e. Df /Dt = 0 where D/Dt is the Itō material derivative. For instance, f could be the velocity (dropping forces in the SPDE), the temperature, or the buoyancy.

Separating the terms of the SPDE related to the deterministic dynamics from the term associated to the stochastic scheme, it comes

d LU f = g f (S)dt + d LU s f, (3.3)
where

g f (S) = -w • ∇f (3.4) d LU s f = -(w ⋆ -w) • ∇f dt -σdB • ∇f + ∇ • ( 1 2 a∇f )dt (3.5)
Besides, from our proposed scheme applied to a 0-form θ = f , we obtain:

d s f = a p ∂ x p f + 1 2 e p i e q i ∂ x p ∂ x q f dt + e p i ∂ x p f dη i (3.6)
To physically interpret this equation, we rewrite:

d s f dt = -V p ∂ x p f + ∂ x p ( 1 2 e p i e q i )∂ x q f (3.7)
where

V p = -a p + 1 2 ∂ x q (e p i e q i ) -e p i dη i dt (3.8)
Terms of advection and diffusion are recognized. The matrix 1 2 e i e T i is symmetric non-negative and represents a diffusion matrix. The p-th component of the advecting velocity V p is composed of the drift -a p , a correction 1 2 ∂ x q (e p i e q i ), and a stochastic advecting velocity -e p i dηi dt . Direct calculation yields that Eq.(3.5) coincides with Eq.(3.7) when a = σ •k σ T

•k = e i e T i and σ Ḃ = -e i dη i and

T t (x) = x + e q i ∂ xq e i ∆t + e i ∆η i = x -w c S ∆t + (-w c S ∆t -σ∆B), (3.9) 
where

w c S = -1 2 (σ •k • ∇)σ •k = -1 2 (∇ • a) ⊤ + 1 2 σ(∇ • σ) ⊤ . (3.10)
The LU equation can thus be derived by choosing θ = f and T t by Eq.(3.9). Note, the term (-w c S ∆t-σ∆B) = ( 1 2 e q i ∂ xq e i ∆t+e i ∆η i ) is the Itō noise plus its Itō-to-Stratonovich correction. Hence, it corresponds to the Stratonovich noise e i • dη i of the flow associated to T t . The additional drift -w c S ∆t is different in nature. It is related to the advection correction w c S • ∇f in the LU setting. Indeed, in the LU framework, the Itō drift, w, is seen as the resolved large-scale velocity. That is why, in this framework, the deterministic dynamics (3.4) involves the Itō drift, w. This is also the reason why, under the LU derivation, the advected velocity is assumed to be given by the Itō drift, w. It differs from the Stratonovich drift w S = w + w c S , used as advected velocity in SALT approach or in [START_REF] Mikulevicius | Stochastic Navier-Stokes equations for turbulent flows[END_REF] (where the Stratonovich drift is denoted u). Interested readers are referred to (Resseguier et al, 2020b, Appendix A) for a discussion on these assumptions and for the complete table of SALT-LU notations correspondences. Note however that in all these approaches, the advecting velocity is always the Stratonovich drift. This can be seen e.g., in the Stratonovich form of LU equations, derived in (Resseguier, 2017, Appendix 10.1) and (Resseguier et al, 2020a, 6.1.3):

∂ t f + w S • ∇f = -(σ • Ḃ) • ∇f, (3.11)
where σ • Ḃ is the Stratonovich noise of the SPDE. Since the advecting velocity w S and the resolved velocity w differ by a drift w c S , the term w c S • ∇f is interpreted as an advection correction, being part of the stochastic scheme (3.5). Accordingly, the remapping T t involves an additional drift -w c S ∆t . To also understand (3.9), the inverse flow can be considered:

T -1 t (x) = x -e i ∆η i = x + σ∆B.
(3.12)

If T t represents a necessary perturbation to match, at each time step, a true solution, T -1 t measures the difference, at each time step, between this true solution and a model forecast. Therefore, the LU equation can be derived using the proposed perturbation scheme, choosing θ = f and assuming that a true solution differs from a model forecast by a displacement prescribed by Eq.(3.12). n-forms in the LU framework The LU physical justification relies on a stochastic interpretation of fundamental conservation laws, typically conservation of extensive properties (i.e. integrals of functions over a spatial volume) like momentum, mass, matter and energy [START_REF] Resseguier | Geophysical flows under location uncertainty, part I random transport and general models[END_REF]. These extensive properties can be expressed by integrals of differential n-forms. For instance, the mass and the momentum are integrals of the differential n-forms ρdx 1 ∧• • •∧dx n and ρwdx 1 ∧ • • • ∧ dx n , respectively. In the LU framework, a stochastic version of the Reynolds transport theorem (Resseguier et al, 2017, Eq. (28)) is used to deal with these differential n-forms θ = f dx 1 ∧ • • • ∧ dx n . Assuming an integral conservation d dt V (t) f = 0 on a spatial domain V (t) transported by the flow, it leads to the following SPDE:

Df Dt + ∇ • (w ⋆ + σ Ḃ)f = d dt t 0 D t f, t 0 ∇ • σ Ḃ = (∇ • σ •i )(∇ • σ •i ) T f (3.13)
where D/Dt denotes the Itō material derivative. Forcing terms are dropped for the sake of readability. This SPDE can be rewritten using the expression of that material derivative (Eq. ( 9) and ( 10) of [START_REF] Resseguier | Geophysical flows under location uncertainty, part I random transport and general models[END_REF]):

∂ t f + ∇ • (w S f ) = 1 2 ∇ • (a∇f ) + 1 2 ∇ • (σ •i (∇ • σ •i ) T f ) -∇ • (σ Ḃf ) (3.14) (3.15)
The original deterministic equation and stochastic perturbation correspond to

g f (S) = -∇ • (wf ) (3.16) d LU s f =(-∇ • (w c S f ) + 1 2 ∇ • (a∇f ) + 1 2 ∇ • (σ •i (∇ • σ •i ) T f ))dt -∇ • (σdBf ) (3.17) = -∇ • ((-( 1 2 ∇ • a) T dt + σdB)f ) + ∇ • ( 1 2 a∇f )dt (3.18)
We can now compare these LU equations to our new stochastic scheme ap- (3.19) where J i = ∂ x p e p i ∂ x q e q i -∂ x p e q i ∂ x q e p i . Rewritten, it leads to:

plied to n-form θ = f dx 1 ∧ • • • ∧ dx n : This implies that d s f = (∂ x p a p + 1 2 J i )f + (a p + e p i ∂ x q e q i )∂ x p f + 1 2 e p i e q i ∂ x p ∂ x q f dt + (∂ x p e p i f + e p i ∂ x p f )dη i ,
d s f dt = -∂ x p Ṽ p f + ∂ x p ( 1 2 e p i e q i )∂ x q f (3.20)
where

Ṽ p = V p -(e p i ∂ x q e q i ) = -a p + 1 2 (∂ x q e p i e q i -e p i ∂ x q e q i ) -e p i dη i dt (3.21)
Again a advection-diffusion equation is recognized, but of different nature. Indeed, as expected for a n-form, the PDE is similar to a density conservation equation. Moreover, the advecting drift is slightly different to take into account the cross-correlations between f (T t (x)) and

T * t (dx 1 ∧ • • • ∧ dx n ). Identifying a = σ •k σ T •k = e i e T i and σ Ḃ = -e i dη i , Ṽ = -a p + 1 2 (∂ x q e p i e q i -e p i ∂ x q e q i ) -e p i dη i dt = -( 1 2 ∇ • a) T + σ Ḃ (3.22)
i.e.

a p = 1 2 (∂ x q e p i e q i -e p i ∂ x q e q i ) + 1 2 ∂ x q (e p i e q i ) = e q i ∂ x q e p i (3.23)

A remapping is thus obtained to write

T t (x) = x + e q i ∂ xq e i ∆t + e i ∆η i = x -w c S ∆t + (-w c S ∆t -σ∆B), (3.24) 
already derived for differential 0-form in LU framework (Eq. (3.9)). Therefore, the proposed perturbation mapping can also encompass the LU framework for n-forms, and its capacity -given by the Reynolds transport theorem -to deal with extensive properties. Moreover, for incompressible flows, LU equation further imposes that

∇ • σ = 0 ∇ • ∇ • a = 0 (3.25)
Translating it into our present notation, it reads as

∂ xp e p i = 0 for each i ∂ xp ∂ xq (e p i e q i ) = 0
Following straightforward calculation, Eq.(3.25) is found equivalent to that T * t θ = θ for θ = dx 1 ∧ • • • ∧ dx n . Such a result is expected since constraints Eq. (3.25) are obtained from the LU density conservation.

The SALT perturbation scheme

Holm (2015) derived the original SALT equation following a stochastically constrained variational principle δS = 0, for which S(u, q) = ℓ(u, q)dt dq + £ dxt q = 0.

(3.26)

where ℓ(u, q) is the Lagrangian of the system, £ is the Lie derivative, and x t (x) is defined by (using our notation)

x t (x) = x 0 (x) + t 0 u(x, s)ds - t 0 e i (x) • dη i (s), (3.27) 
in which u is the velocity vector field. The • means that the integral is defined in the Stratonovich sense, instead of in the Ito sense. Hence, dx t = u(x, t)dte i • dη i refers to an infinitesimal stochastic tangent field on the domain. We can express dx t = T t (x) -x + udt. Note the difference between Ito's notation and Stratonovich's notation, i.e. e i • dη i ̸ = e i dη i . The initial expression of T t essentially follows Ito's notation. In this subsection, it comes that T t (x) ̸ = xe i ∆η i . Instead, it becomes T t (x) = x + 1 2 e p i ∂ xp e i ∆t -e i ∆η i . In the second equation of Eq.(3.26), q is assumed to be a quantity advected by the flow. q can correspond to any differential form that is not uniquely determined by the velocity (since the SALT equation for the velocity is usually determined by the first equation of Eq.(3.26)). [START_REF] Holm | Variational principles for stochastic fluid dynamics[END_REF] evaluates the Lie derivative £ dxt q using Cartan's formula:

£ dxt q = d(i dxt q) + i dxt dq.
(3.28)

This Lie derivative £ dxt q corresponds to T * t q -q + f q (S)dt, if we assume that the deterministic forecast of q is simply the advection of q by u. More generally, £ dxt-udt q = T * t q -q. Therefore, the SALT equation for q is the same as our perturbation for q. Note, the Cartan's formula can not be directly applied to calculate the Lie derivative if the expression of dx t is in Ito's notation.

Within the SALT setting, the velocity u comes from the first equation of Eq.(3.26). For most cases, the velocity u is associated with the momentum, a differential 1-form m = u j dx j = u 1 dx 1 + ... + u n dx n . When the Lagrangian includes the kinetic energy, [START_REF] Holm | Variational principles for stochastic fluid dynamics[END_REF] observed that the stochastic noises contribute a term £ dxt θ, where θ is a differential 1-form related to the momentum 1-form. In particular, θ = m for the "Stratonovich stochastic Euler-Poincaré flow" example, and θ = m + R j dx j for the "Stochastic Euler-Boussinesq equations of a rotating stratified incompressible fluid".

Already pointed out, the operator £ dxt is closely related to T * t , and the SALT momentum equation can thus also be derived using our proposed perturbation scheme by properly choosing θ, without relying on Lagrangian mechanics.

Another way to appreciate the correspondence to SALT is by looking at the final SPDE. If we choose θ to be a differential 1-form to represent the momentum f , i.e. θ = f j dx j we obtain (Zhen et al, 2022):

d s f j =(a p ∂ x p f j + 1 2 e p i e q i ∂ x p ∂ x q f j + ∂ x j a p f p + ∂ x j e p i e q i ∂ x q f p )dt + (e p i ∂ x p f j + ∂ x j e p i f p )dη i (3.29)
Regrouping the terms for physical interpretation, it writes:

d s f j dt = -V p ∂ x p f j + ∂ x p ( 1 2 e p i e q i )∂ x q f j + ∂ x j a p + e p i dη i dt f p + ∂ x j e p i e q i ∂ x q f p (3.30)
Two last terms of the right-hand side complete the advection-diffusion terms, already appearing in (3.7). The first one, ∂ x j -a p -e p i dηi dt f p , is reminiscent to the additional terms appearing in SALT momentum equations [START_REF] Holm | Variational principles for stochastic fluid dynamics[END_REF]Resseguier et al, 2020b). The second term, -∂ x j e p i e q i ∂ x q f p , comes from crosscorrelation in Itō notation.

Conclusion

As demonstrated, both SALT and LU equations can be recovered using a prescribed definition of a random diffeomorphism T t used to perturb the physical space. However, compared with SALT and LU settings, the proposed perturbation scheme does not directly rely on a particular physics. Hence, the random mapping is more flexible and can be applied to any PDE. Interestingly, similarities and differences can then be identified and studied between the proposed use of the random diffeomorphism and the existing stochastic physical SALT and LU settings. For instance, the proposed derivation provides interesting interpretation the operator £ dxt-udt , appearing in the SALT equation. This term can indeed represent an infinitesimal forecast error at every forecast time step.

To apply the proposed perturbation scheme to any specific model, the diffeomorphism parameters a and e i must be determined specifically. Hence it is necessary to learn these parameters from existing data, experimental runs, or additional physical considerations. This framework naturally provides new perspectives to generate ensembles through constrained stochastic mappings applied in the physical space.
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