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INVERSE PROBLEM FOR LOVE WAVES
IN A LAYERED, ELASTIC HALF-SPACE

MAARTEN V. DE HOOP, JOSSELIN GARNIER, ALEXEI IANTCHENKO, AND JULIEN RICAUD!

ABSTRACT. In this paper we study Love waves in a layered, elastic half-space. We first
address the direct problem and we characterize the existence of Love waves through the
dispersion relation. We then address the inverse problem and we show how to recover
the parameters of the elastic medium from the empirical knowledge of the frequency—
wavenumber couples of the Love waves.
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1. INTRODUCTION

The paper is motivated by applications in seismology. Surface wave tomography has
been used for a long time in global seismology to image crustal and upper mantle struc-
tures. It consists in extracting the dispersion curves of the surface waves (i.e., their
frequency-dependent velocities). From those curves the three-dimensional map of the pa-
rameters of the elastic medium can be deduced tomographically. This last step is the topic
of our paper.

Surface wave tomography was first used with natural seismic events [26, 7, 2]. It has re-
cently attracted attention because it was shown that it can be used with low-frequency seis-
mic ambient noise [22, 16, 18] or both types of data (ambient-noise and earthquakes) [11].
Indeed, surface waves can be easily extracted from ambient noise signals [21, 8], because
they dominate the Green function between receivers located at the surface and because
ambient seismic noise is mostly excited by superficial sources, such as oceanic microseisms,
ocean swell, and atmospheric disturbances [20]. Finally, the use of coda wave interferom-
etry, i.e., the analysis of the cross correlations of the tails of seismographs generated by
earthquakes and that correspond to multiply scattered waves, has recently opened new
ways to extract the dispersion curves [5].

Most inversion methods assume high-frequency asymptotics [6] while the recent appli-
cations using ambient noise provide rich low-frequency information. That is why we would
like to investigate the inverse problem associated with surface waves in a general frame-
work. In this work, we analyze the inverse problem associated with Love waves for a time-
independent, isotropic, stratified half-space, homogeneous in the (z,y)-plane. We show
how to recover the parameters of the elastic medium from the empirical knowledge of the
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dispersion relation. That is, from the empirical knowledge of the frequency—wavenumber
couples of the Love waves.

The discontinuity that we will assume on the media and our goal to obtain results for
all frequencies yield us to use tools from complex analysis and from analytic perturbation
theory [12]. Moreover, the discontinuity assumption makes standard formulae for Weyl’s
law unavailable to us: we establish them by direct computations and a careful analysis.

We consider the space R? x [0, +00) and assume that the relevant quantities are constant
on layers of the form R? x [Hj,Hjt1). More precisely, we consider a medium composed
of n + 1 layers, n > 1, such that the shear modulus ¢ > 0 and the density p > 0 of the
medium are constant inside each layer!:

(11, p1), if 0<z<Hy,
(1(2), p(2)) = q (k55 P5) if Hj<z<Hju1, Yje[2n], (1)
(Hn+15 Pnt1) s if Hpp1 <2 <400,

where we recall that [p,n] = [p,n]NZ. Or, more concisely with H; := 0 and H,,42 := 400,

Viel,n+1], (u(2),p(2) = (1j,p;)  on [Hj Hji1). (2)
Within this setup, we are interested in Love waves. That is, in frequency—wavenumber

couples (w, k) for which there exists L?((0, +00))-solutions ¢ to the boundary value prob-
lem

— (1¢)'(2) + (n(2)k* = p(2)w®) $(z) = 0, on [0, +00), -
¢'(0) =0,
with continuity conditions resulting from the continuity of the displacement and of the
shear and normal stress components: ¢ € C(]0,+00)) and pu¢’ € C([0,+00)). Without loss
of generality we restrict ourselves to ¢ real-valued: ¢ € L((0,+00);R). See Appendix B
for the derivation of this problem, as well as the continuity conditions, from the laws of
physics.
Since p and p are positive, we define

C(z) ==+ m(2)/p(z) >0 on [0,400) and Cj:=/u;j/p; forje[l,n+1]. (4)

We furthermore define
Coo : =Chy1 =1imC=0C(2), V2> Hpy1, and Cp:= min C. (5)
+0o0 [0,+00)

We emphasize that we do not assume a priori that C' is non-decreasing. The only
assumption made on the values of C is that Cy < Cs as, otherwise, there cannot be Love
waves (see Lemma 2.3).

On each layer (indexed by j), = p1; and p = p; being positive constants, the eigenvalue
equation becomes ¢” = (k? — wQ/Cjz)dx Consequently, for j € [0,n + 1] U {co}, we define

v = vj(w, k) = C'j_11 [C3k? — w? = wy /K02 — C’j_2 with Imv; < 0. (6)

On each layer the solutions are either of the form

A et 4 Ay (7)
or affine. The requirement of the solution being L? imposes that on the last layer (which
has parameters voo = Vpt1, Aco+ = Ant14, and Ay — = Ap4q ) the solution is of the

former form with v > 0 and A, + = 0. This means that for a Love wave ¢ to exist
at (w, k), it must verify that k is bounded away from zero by k > w/Cy > 0 and that ¢
must vanish (exponentially) at infinity.

Lwith the convention, for n = 1, that [2,1] = 0.
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Finally, we define, for each layer j € [1,n + 1], its thickness
Tj:=Hj1—Hj e (0, +OO] ) (8)

as well as, for j € [0,n + 1] U {+o0}, the parameters independent of w
o vj(w,wy) . . _
v; = vj(y) ::JT:\/yZ—C'j2 with Im7; <O0. 9)

Main results. The boundary condition at z = 0, the L?-restriction, and the continuity
conditions determine, for each w > 0, the finite set of values of k£ for which a Love wave
exists at the parameters (w, k). Summarizing the above, we consider the problem of finding
0% ¢ = ¢ux € L?((0,400)) such that

— % <M;Z¢> = pw* (1/C? — k*/w?) ¢, on [0,+00), kjw>1/Cx,

¢ € C(]0,+00)) with Egl}qb =0, and ¢ €C(]0,+00)) with ¢'(0) =0.

(10)

In the rest of the paper, we will say that “a Love wave exists at (w,k)”, whenever there
exists an L%-solution ¢, x # 0 to (10) for the couple (w, k).

The goal of this paper is to recover the profiles of the shear modulus ¢ > 0 and the
density p > 0 of the medium, or at least their ratio, as well as the values H;’s, from the
experimental knowledge of the couples (w, k) at which a Love wave exists.

Looking at these k’s as functions of w, we will show that they form branches w — k¢(w),
£ > 1, and our first main result is the following.

Theorem 1.1 (Regularity and monotonicity of the branches ky). Let n > 1. For any
£ > 1, there exists wy > 0 such that the function

(we, +0) = (1/Cx,1/Ch)
w i kp(w)/w

18 analytic, bijective, and increasing.

The precise definition of k;’s will be given later. Graphically, this can be seen in the
numerical simulations in Figure A, where each colored curve corresponds to one £ and the
wy’s are the values of w at which the curve “starts” (with value 1/Cx).

The rest of our main results are concerned with recovering the parameters of the
medium. We first have the following immediate consequence of Theorem 1.1.

Corollary 1.2 (Recovering Cy and Cw). Let n > 1. With the notations of Theorem 1.1,
for all £ > 1, we have
1 ko(w) ko(w) 1 Eo(w)

. . . ke(w
= sup ——= = lim and —— = inf = lim ) .
CO w>wy w w——400 w Coo w>wy w w—rwy w

(11)

Our second main result concerns Weyl’s law and is a complete result for n = 1,2 but a
partial one for n > 3, in which case we conjecture the complete result based on a formal
application of Weyl’s law. These results are concerned with the asymptotics, for any w > 0
and y € (w/Coo,w/Cp), of the number N (w,y) of branches k;(w)/w that are above or equal
to y.

Definition 1.3. Letn > 1. Letw >0 and y € (1/Cx,1/Cy). Define

N(w,y) :=#{£>1 : kfg”) >y}=max{f>1 C) >y>’”“(°”)}.

. - (12)
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In this definition, we take the convention ky(w) = —oo if ks is undefined at w. Note

that, due to the monotonicity of the @’s (Theorem 1.1), w +— N(w,y) is nondecreasing

for any fixed y € (1/Cs, 1/Ch).
In order to state concisely our result and conjecture, we reorder the C;’s as well as the
associated parameters.

Definition 1.4. Let n > 1. Define {6j}1gjgn+1 as the nondecreasing reordering of the
sequence {CjH<j<nt1-

There exists a permutation o of [1,n + 1] s.t. 5]- = Cy(j), and we define the sequences
{7ihi<j<nt1 and {Tj}1<jcns1 by U5 = D5y and T = T,,(;) for j € [1,n+1].

Notice that Cp41 = Coo > C1 =Cy for n > 1 and Cy = C for n = 1.

We are now able to state our main result on Weyl’s law in our setting (for which we
recall that standard formulae are not available since p and p are discontinuous).

Proposition 1.5. Let n = 1. Then, fory € [1/Cx,1/Cy), as w goes to +oo, we have

W, ~
N(w,y) ~ —n(y)|Th- (13)
Let n=2. Then, fory € [1/Cx,1/Ch), as w goes to +o0o, we have
N(w.y) ~ ~|m )T, iy € [1/C2,1/Ch).
~ ~ ~ (14)
w /- N .
Nw.y) ~ = (I )IT +172)[T) . ify € [1/C,1/C).

Let n > 3 and assume Cy < Cs. Then, fory € [1/52, 1/Cy), as w goes to +00, we have
W, _ ~
N(w,y) ~ —n(y)|Th. (15)

In the case n > 3, we conjecture the following natural extension to the whole interval
[1/Cs,1/Cp) and without the assumption Cy < Cy (that is, allowing several of the Cy’s
to be equal to Cp := min; C}).

Conjecture 1.6. Let n >3 and y € [1/Cu0,1/Cy). Then, as w goes to +0o0 we have
J
Nwy) ~ =3 1mWI5, iy e1/C,1/0). (16)
p=1

Under the assumption that C,41 is the largest value taken by the function C, i.e.,
Cj < Coo = Cpqq for all [1,n], and that the C}’s are pairwise distinct, these asymptotics
allow to fully determine C' as well as the T}’s (hence the H;’s). If we only assume that
the C}’s are pairwise distinct, then all the values C; < C can be recovered, as well as
the associated T)’s. Finally, if the “pairwise distinct” assumption is lifted, one can still
recover the values C; < C but only the sums of the thicknesses of the layers sharing the
value Cj.

Indeed, the values C; can be extracted from empirical data (dispersion curves of surface
Love waves can be obtained from earthquakes signals or ambient noise signals as discussed
in the introduction). They are the horizontal lines where the “density” of branches of
frequency—wavenumber couples of the Love waves diverges as the frequency goes to infinity
—see Appendix A for simulated versions of such data. Then, evaluating the number N at
each 1/C; when the frequency diverges yields the values of the T}’s (hence of the H;’s).
Finally, for n = 1 and assuming that p; is known (hence p; = p1C? too), we additionally
determine puo and ps. In practice, least-squares or Bayesian inversion can be applied
to noisy or perturbed dispersion curves to estimate the medium parameters in a robust
way and to quantify the uncertainty of the estimation [17, 23, 24]. Our work gives solid
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foundations to this approach by proving the existence and uniqueness of the least-squares
minimum or Bayesian maximum a posteriori.

As a perspective of this work, the authors hope to address similar questions for Rayleigh
waves. This could allow to recover all the Lamé and density parameters of the elastic
medium.

Organisation of the paper. We derive in Section 2 the dispersion relation defining
(up to a constraint) the existence of Love waves. In Section 3, we prove Theorem 3.1, a
detailed version of Theorem 1.1. Doing so, we also prove in this section the case n > 3 of
Proposition 1.5, see Lemma 3.5.

Because we are able to obtain stronger results for the cases of a simple (n = 1) and of a
double (n = 2) square well, we then focus on these cases. Namely, in Section 4 we study
the simple square well for which all computations can be done explicitly. A direct proof
(by implicit function theorem) of smoothness is given, during which we also obtain the
explicit formulae of the w,’s (see Proposition 4.1), and we show that all the parameters of
the medium can be recovered. Moreover, the proof of Weyl’s law (Proposition 1.5) in this
case is completed at the end of this section (see Subsection 4.4). In Section 5, we focus on
the case of a double square well for which we prove a stronger version of Proposition 1.5
(see Propositions 5.1-5.2).

Appendix A presents numerical simulations. In Appendix B we derive the linear, elastic
equation, the continuity conditions, and the boundary condition in (10). Appendix C
gives two proofs that we postponed for the readability of the paper. Finally, Appendix D
presents two additional results for the simple square well.

2. CHARACTERIZATION OF LOVE WAVES: DISPERSION RELATION AND FIRST RESULTS

In this section, we characterize Love waves for the settings that we are considering. This
characterization relies on the dispersion relation, which in our context was established in
the literature as early as the celebrated work [10] by Haskell, based on Thomson’s work [25]
describing for the first time the transfer matrix method. Even though this relation is well-
known, we detail here its derivation for several reasons. First, for the convenience of the
reader and because Haskell’s paper [10] being focused on Rayleigh waves (like the one by
Thomson), it gives little details on the computations in the case of Love waves. Second,
because our derivation is slightly different: it is not per se based on the transfer matrix
method even though these matrices appear in our work up to a simple transformation.
Third, and more importantly for our results, because our derivation gives as a direct by-
product the simplicity of the k;’s, see Corollary 2.5, which is a key property in some of
our later proofs.

Using the form of the solutions on each layer (see the introduction), the boundary
condition at z = 0, the L?-restriction, and the fact that v,,,.; > 0, we obtain the form of
a solution ¢:

201 (w) chlvy (w)z], if  0<z<H,,
o(z) = aj(w)e_”j(“’)z + Bj(w)e+”j(w)z, if Hj<z<Hju, Vje[2,n],
Ot (w)e 1@z it Hyp1 <2z<+400.

For this introductory presentation, we assume k(w)/w # C’;l for all j, i.e., vj(w, k) # 0,
but the remaining cases are treated in Proposition 2.1 below. The frequency—wavenumber
couples of the Love waves are the pairs (w, k) for which non-trivial solutions ¢ exist.
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Omitting the dependencies in w for shortness, the 2n continuity conditions at the bound-
aries {H;}o<j<ny1 yield

H: —vo H.
201 Ch[VlTl] — 526+V2 2 4 e 2 2

2#1V10[1 Sh[l/lTl] = l2l2 (B26+V2H2 —Z/2H2)
Bj—retvi-tHi 4o qemvimtHi = gietvitli g et vj e [3.n],

pj—1vj-1 (Bjae ™ — a7 ) =y (Bie ™ —agem ) v € [3,n]

— (g€ s

ﬁne+Van+1 + ane—Van+1 — an+1e—l/n+1Hn+1 ’
tvnH —vnH — —vn41H,
\ pnVi (Bre ™ — ane ™) = — i v e
Denoting A; := p;vj, non-trivial solutions ¢ exist if and only if this linear system has

non-zero solutions, which happens if and only if the determinant

2 ch[nT1) —ev2Hz —etvaHz 0 0 0 0 0

241 shTy] +Age2H2 — Ajetvatl 0 0 0 0 0
0 +evells +etvatls —e 3l —etvsts 0 0 0 0
0 *A267V2H3 +A26+U2H3 +A367V3H3 *A36+V3H3 0 0 0 0
0 0 0 :
: : : . . . 0 0 0
0 0 0 0 4 e Vn—tHn 4 etvn-1Hn —e~vnHn _etvnHn 0
0 0 0 0 —A,_qevn—tHn LA LetvnitHn 4 A e—vndn —A,etvnin 0
0 0 0 0 0 +€7""H"+1 +€+Van+1 —eVnt1Hnt1
0 0 0 0 0 fAne_”"H”“ +Ane+VnH'n+l +A7L+16_""’“H”“

denoted by D,, is zero. Note that this determinant appears for instance in [15, (7)—(8)],
even though under a slightly different form. For clarity, we can write it as

L’{ Ry @2. 09 (O O

0 Ly R3.""'-. 0y
D, =detM,  with M,:=| : @, . . ‘0, - |, a7
(o ."'._Ln—l ‘R, 0
0 Oy Oy 'Oy L, Ry,
where
(00 . chvy 1]
Oy := <0 0) , Ly:=2 ('uly1 Sh[l/lTl] )
and
+e—llej+1 +6+VjHj+1
Lj = f/‘LjVje_VjHj‘Fl +NjVj€+VjHj+l ’
\v/ . > 2 R . fe_VjHj 7€+VjHj
J =z 4 1 \pyyjevilli —pppetvitli )0
1 0 1 0
. . I . -
Lj = Lj <0> s L; = Lj <1> s Rj = Rj <O) s and R; = Rj <1> .

The first important remark is that the submatrix I\7J1n of M,,, where we remove the first
row and the last column, is a block (upper) triangular matrix with the blocks on the
diagonal being 24111 sh{v1T1] and the L;’s. Since det L;j = 2pu;v;, for j > 2, we have

det Mn =2" Sh[VlTl] H IZE (18)
j=1
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Therefore, if the v;’s are non-zero, then det Mn # 0 and rankM,, > 2n — 1. Actually, we
prove this to also hold when some v;’s are zero and we show in the following proposition
that D,, can be computed recursively.

Proposition 2.1. Let n € N\ {0} and D,, = det M, be defined in (17). Then,
rankM,, > 2n — 1
and, if v;;(w) =0 for i € [1,m], vk, (w) # 0 fori € [1,n —m], and vy41(w) > 0, then

(_1)m€1’n+1Hn+1 D,

n—m m = Mn+1yn+1pn+Qn S R7 (]—9)
i=1 =1

where the P,’s and Q,’s are defined recursively by Py =1, Qo =0, and

<g’;> =M,, <£Z:11> for all m € [1,n], (20)
where [ ] [ ’ |
Ch Vme Sh l/me WmVm _
M, = <,umym Sh[Vme] Ch[Vme] > Zf Vm ?é 0, 21
<O 1 ) Zf Vm =0.

Here, we used the convention Hfikl a; = 1if k1 > k.
This proposition leads us to define f, : (0,4+00) x R — C by

fn = Nn+1Vn+1Pn + Qn = HooVooPn + Qn , (22)
where we recall that vo, = vp41, since Cy 1= Ci41, and where we define poo 1= fin41, SO
that the dispersion relation for Love waves reads

fa(w, k) =0. (23)

As explained, a Love wave existing at (w, k) is equivalent to D,, = 0 for this pair —i.e.,
(w, k) solves the dispersion relation f,,(w, k) = 0— under the constraint k > w/Coo:

falw,k)=0 and k>w/Cy. (24)

Remark. Our strategy to derive the dispersion relation is different but somewhat related
to the transfer matrix method, also known as propagator matrix method, which is well-
known in geophysics [25, 10, 9, 13, 3, 14]. Our matrices M, are, indeed, closely related
to the transfer matrices, derived by Haskell [10] in our context:

S cos(krg,, Tin) i%
" imrg,, sinkrg, Tp] coslkrg,, Tp]

(we follow Haskell and Thomson notations “a,,” for the transfer matrices, which are
nowadays often denoted T, in the literature). Indeed, our matrices M,, defined by (21)
in Proposition 2.1 are, up to a simple transformation, exactly the transfer matrices a,:

Min = <(1) z%) 4m ((1) (7;131) ' (25)

Moreover, and of course, our dispersion relation is equivalent to that obtained by the
transfer matrix method. Indeed, using that the rg  ’s in Haskell’s paper are related to our
v;’s by the relation krg,, = ivy, when vy, € iIR_ and krg, = —iv,, when v, > 0, we have

S ch{vpm T W:i'f/m shivm T
me % sh{vy, T] chlvy, Tl
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and consequently the relation Ay = —p,rg,A11 obtained by Haskell for Love waves
through the transfer matrix method —equation (9.9) in Haskell’s paper—, can be written

UnVnA11 FikAs =0, with “4+” when v, > 0.

Remembering that for a Love wave to exist at (w, k), the v associated to the semi-infinite
layer (vp4+1 in our paper but v, in Haskell’s) must necessarily be positive, the identity
determined by Haskell is therefore

,unI/nAn +ikAs1 = 0.
Noticing now that Haskell labeled the layers from 1 to n while we labeled them from 1 to
n + 1, this relation is the same identity as our dispersion relation (23):

Mn+1Vn+1Pn + Qn =0.

Indeed, defining the 2 x 2 matrix M := [, _,; M, and using the relation (25) between
M,, and a,,, we have

B 1 0 1 0 B A (ik)flAlg
M= (0 zk) A <0 (ik:)1> - <z'k:A21 Az ’
thence Pn = M11 = A11 and Qn = M21 = ikAQl by (20) A

Before turning to the proof of Proposition 2.1, let us continue with the definition of the
k¢(w)’s appearing in Theorem 1.1.

Definition 2.2 (Definition of the ky’s). Let n € N\ {0} and w > 0. The k¢(w)’s are the
(decreasingly ordered) values k € R for which (w, k) solves the dispersion relation (23).

Notice that in Definition 2.2, we did not put a priori restrictions on k € R. This is
because we actually have the folllowing.

Lemma 2.3. Definition 2.2 is equivalent to defining the k¢(w)’s as the (decreasingly or-
dered) values k € [w/Coo,w/Cp) for which (w, k) solves the dispersion relation (23).

Note that f, is real valued on (0, +00) X [w/Cos,w/Cp).

Proof. On the one hand, (w,k) being a solution to (23) implies vy(w, k) € iR_ \ {0}.
Indeed, we would otherwise have v;(w, k) for j € [1,n] and vy 41(w, k) > 0. We claim that
it implies P,, > 1 and Q,, > 0 for any m € [1,n]. This is because the diagonal coefficients
of M,,, in (20), are then greater or equal to 1 while the antidiagonal ones are nonnegative.
Hence, since Py = 1 and Qg = 0, a straightforward induction gives the claim. We therefore
obtain the contradiction, to (w, k) being a zero, that

fn(wa k;) = ,UJnJrIVnJrl(Wa k;)Pn(W, k) + Qn(wa k) P HnJernJrl(Wa k) >0.

On the another hand, (w, k) being a solution to (23) implies v, 41(w, k) > 0. Indeed, we
would otherwise have v;(w, k) € iR_ \ {0} for j € [1,n + 1] and, consequently,

iR > Un—l—an—I—lP =—Qn€eR.

because P,, @, € R, since Py and Qg are real and M, has real coefficients (even when the
Um's are purely imaginary). Thus, since pi,41vp+1 # 0, we obtain P, = @,, = 0. However,
the matrices M, are all invertible, since det M,, = 1, contradicting (20):

§)-(2) - ) :

The following proposition establishes the relation between the k;’s and the Love waves.

Proposition 2.4 (Characterization of Love waves). Let n € N\ {0} and the k¢(w)’s be as
in Definition 2.2. Then,

{(w, k) : a Love wave exists at (w,k)} = {(w, ke(w)) : kr(w) # w/Coo }w>0, 51 -
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Proof. Using (24) and Lemma 2.3, we obtain
{(w, k) : a Love wave exists at (w,k)}
={(w, k) € (0,40) X (wW/Cs,400) : frn(w, k) =0}
={(w,k) € (0,+00) xR: 30> 1,k =ki(w) #w/Cx}
= {(w, ke(w)) : ke(w) # W/Coo}w>0,e>1- O

Remark. The reader can notice the small difference between the definition of the ky(w)’s
and the existence of a Love wave at (w, k): the former allows ky(w) = w/Cs, while the
latter excludes (w,w/Cs). Even though there are w’s for which (w,w/Cx) is a zero of f,,
there are no Love waves at these couples. Nevertheless, we allow them in the definition
of ky as it will be useful. A

Finally, the characterization in Proposition 2.4 together with Lemma 2.3 implies that
a Love wave existing at (w, k) is equivalent to

falw,k) =0 and w/Cx <k <w/Cy. (26)

Remark. In particular v,41 = Voo > 0 and vy € iR_. Moreover, if {C} }1<j<n+1 is a strictly
increasing sequence, then C; = C hence v; € iR_. Finally, the lower bound means that
if there is a C; > C, then the knowledge of the frequency-wavenumber couples of the
Love waves will not allow to recover this value Cj. A

As an immediate corollary of Proposition 2.1, and a key property in some of our proofs,
we obtain the simplicity of the k;’s.

Corollary 2.5 (Simplicity of the ky’s). Let n € N\ {0}. If a Love wave exists at (w, k),
i.e., there exists an L*-solution ¢y # 0 to (10) for the couple (w,k), then there are no
other Love waves at (w, k) that are linearly independent of ¢y, .

We now turn to the proof (by induction) of Proposition 2.1. To that end, for each n we
consider D,, as a function of vy, 1: Dy, = Dy (vp41), and we define

_ _ . - eVn+1Hn+1
Dy, = Dy (vp41) := e”"“H"“Dn(VnH) and Dy = Dyp(vnt1) := ———Dp. (27)
20 11 wjv
j=2
One of the key points in the proof is that, for any n > 2, the one-to-last and two-to-last
columns of ML, are exactly the same up to replacing v, by —vy,, since “RL (v,) = R%(—vp)”
(see the definitions in (17)). Consequently, expanding the determinant of D, will make
appear both Dy, (vp41) and Dy, (—vy 1) which depend very simply on £v4,11, namely, only
through the two factors pi,11v,+1 appearing in (19).

Proof of Proposition 2.1. We start by the result on the rank of M,,. As explained earlier,
inspecting (17), we see that the submatrix M,, obtained by removing from M, the last
column as well as either the first or the second row is a block (upper) triangular matrix
with first diagonal element L, being either 2ui1q shi1T1] or 2ch[v1T1], and the L;’s,
2 < j < n, on the n — 1 other diagonal blocks. Therefore,

n
detM,, = Ly [ [ det L; .

Jj=2
Moreover, on one hand, for 2 < j < n,
( +eviflit1 +etvitlin > if v; #0
ivse—viHin e tvitin 1 vj
pivie " J+ +ﬂj’/je i+

L=

<Hj+1 1> otherwise,
pi 0
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where the formula for v; = 0 is due to the boundary conditions combined with the fact
that the L2-solution is then linear on the j-th layer. Consequently, still for 2 < j < n,
det L; = 2p v if v; # 0 and det L; = —p; if v; = 0. In particular, det L; # 0 for
2 < j < n. On another hand, at least one of the values 2u v shiv1Th] and 2 ch[v;T1]
is non-zero. Hence, we choose Mn (i.e., the row of M, that we remove to form Mn) in
such a way that the number L is non-zero. We have therefore constructed a submatrix
M, € Cop—1,2n—1 of M, with det M, = L H?:Q det L; # 0, hence rank M, > 2n — 1.

We now turn to the result on the determinant D,,. First, the fact that, for n fixed, the
formulae are real-valued is due to the fact that for a Love wave to exist (for a given n
fixed), it must hold that 41 € R and that v; € RU R for j < n.

We start by assuming that all v;’s are non-zero. For n = 1, we have

2 ch[ 1] —emv2ih
Ml == —vo H 3
2uqvy sh{nTh]  povee™v22

hence 22Dy /2 = povy ch[v1T1] + pyvi sh{viTh] and the claim (19) is verified. Assume
now that (19) holds for some n > 1. Then, using again A; = p;v; for shortness, from

| 0 0
|
M ‘
| 0 0
D n ! tvnyp1Hnp
n+l — . —e 0 ,
= Ay et Vnt1Hntl 0
,,,,,,,,,,,,, e O
0---0 qeVnt1Hnt2 1 g otvnyiHng2 _e Vn+2Hn42
0---0 _AnJrle*VnJrlewz :+A7l+15+"n+1 Hp g2 +An+2e*Vn+2Hn+2

we obtain

0 0

! !
! !
! . | .
M ‘ ' M ‘ :
I 0 I 0
n : _etvnt1Hnta + n : _etvnt1Hnt1
|

,,,,,,,,,, I=Apgpel ittt el Anpeltmaafien
0---0 4e ¥nt1Hnt2r  otvntifings 0---0 ,An+le—vn+1Hn+2\+An+le+un+1Hn+2

= Apio (e+V”+1H"+2Dn(l/n+1) — e*”"“H”“Dn(—VnH))

+ A1 (€+V"+1H”+2Dn(l/n+1) + efl’”“H”“Dn(—z/nH))
= Apio (e+V”+1T"+1Dn(Vn+1) — 67V”+1T"+1Dn(—l/n+1))

+ Apgr (eI Dy (vpg) + e T Dy (—vny1)

where we used, for the one-to-last equality, that the last column of M, is the same as the
column in the top-right block up to changing v,,4+1 into —v,4+1. Consequently,

1’5 _ Dn+1
n+1l — ntl

20 1 v
j=2

B Apio <e+l/n+1Tn+1 Dn(Vn+1) e Vn+1Tnt1 Dn(_yn+1)>

A 2 n 2 i
n+1 on H Aj n H Aj
j=2 j=2
+ ettt DTL(VTL+1) + ettt D”(_Vn+1)
n n
2 ol 4 2 ol 4
i=2 j=2

Apio\ etvnsiTnst o Apio e VntiTnyn o
= (1 + Aﬂil) 5 Dyp(Vng1) + |1 - Anil 9 Dn(=vnt1),
n n
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and we can now use the induction assumption

shiv, T),]

ﬁn(iyn+1) = (iAn+1Pn—1 + Qn—l) Ch[VnTn] + (A%Pn—l £ An—i—lQn—l) A

to obtain

~ An 6+V'n+1Tn+1

A ernJrlTnJrl
+({1- 2 (_AnJranfl + anl) Ch[VnTn]
An—i—l 2

shiv, Ty)
An

A etvn+1Tni1
+ <1 + Ani) 5 (APt + Ans1Qn—1)
T

sh{v, T,,]
Anp

A e_Vn+1Tn+1
+ <1 - AZij) 9 (Aq%Pn—l - An-l—lQn—l)

h|vy T,
= |:An+2 (Pn—l Ch[VnTn] + Qn—l S[‘Z]>
sh(v, T,]

An,

+ |:A’2L+1 (Pn—l ch(v, T,] + Qn_lsh[ZnTn]>

sh{v,T,]
Ap

+ <A72—L-Pn1 +Qn-1 Ch[VnTn]):| Ch[Vn+1Tn+1]

sh(vp11Th41]

+A, (Agpn_
i ' An-{—l

s

Sh[Vn—i-lTn—i-l]

= (An42Pn + Qn) chvni1 Tya] + (A2 P+ Ani2Qn) A

This concludes the proof in the case H?:2 vj # 0, since it is exactly

€Vn+2Hn+2

il Dn+1 = Dn+1 = Nn+2Vn+2Pn+1 + Qn+1 s

200 1T pyv
7j=2

where we used the definitions of P, and Q1 given in (20). Namely,
Sh[Vn+1Tn+1]

Mn+1Vn+1
Qn+1 = Pny1Vni1Pn Sh[l/n—l-lTn—l-l] +Qn Ch[l/n—l-lTn—l—l] .

PnJrl =P, Ch[VnJrlTnJrl] + Qn

We now prove the case “v; = 0”. Roughly speaking, we prove that (19) in such limit
case is nothing else than passing to the limit v; — 0 in the formula for H?:z vj # 0.

The r.h.s. of (19) passes to the limit since the formula of M,, in (20) at v, = 0 is indeed
the limit v,,, — 0 of its formula for v, # 0. For the L.h.s., we will expand the determinant
D,, according to columns where v; appears for both the general case and the case v; = 0.
Before doing so, we treat apart the case of vy since it appears only in the first column. In
the general case it appears —see (17)— through

r Ch[l/lTQ]
L] =2
1 (/Lﬂ/l Sh[V1T2]> ’

while in the case ;1 = 0 the solution is linear on the first layer thence, by the boundary

conditions, L7 is replaced by (3) Since the latter is nothing than the limit, when v; — 0
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of the former, we of course have the claim:

) eVn+1Hnt1 eVn+1Hnt1
Tim D, (1) = “———Da(11 = 0).
2n H iV 2n H iV;
j=2 j=2

For j > 1, we first notice that v; appears only at the (25 —2)-th and (2j — 1)-th column
of D,. Thus, omitting the dependency in n, we define ﬁp as the minor where we remove
the (27 — 2)-th column and the p-th row, and DY = INDZ as the minor where we remove the
(27 — 2)-th and (2j — 1)-th columns and the p-th and ¢-th rows. Moreover, we note that
if v; = 0, then the solution is linear on the j-th layer thence, by the boundary conditions,
the determinant is given by (17) but with

+e—1/jHj+1 +€+VjHj+1 _e_VjHj —e—H/jHj
L= —pjvieitlivn o uetvitliv and R = +pguje il —pyzetvitl
replaced by
(o) (i ] (o) (THi 1
Li(v; =0):= < w0 and Rj(v; =0):= w0 )

We first expand D,, when v; # 0 according to the (2j — 2)-th and (2j — 1)-th columns
and obtain
D'I‘L — (_e_VjHj) 52]-_3 + ijje_VjHj52j_2 — e_VjHj+152j_1 + (_ij.e_VjHjJrl) ﬁQﬂ
— eflle]' [_ (_,u/jyj€+VjHj) Egj ?2)_’_e+11] J+1D2] 1 M]V] +I/] ]+1D2J_3:|
[ B B )
e [ (o) B ) B et
s [ (o) B (gt B ot 5]
~2j—2 ~2;j ~2j—1 ~2j
= 2uv D335 + 255 D3y + 2u5v5 ch vy T5) Dyj~5 — 2uv; ch v T5) Dyj g
~2j—1 2.2 ~2j
+2sh [v;T5] Dy;—5 — 2p5v5 sh [v; T3] Dyj s -

Thus,
D, ~9j_2 ~2j-1 727
2,0 _D2j 3+D2g 1 b [y T Dy 5 — ch [y T3] Dy; g
iV,
sh [1;T;] =951 ~9j
+ ’ Dzj 3 — v shy T DY)y
HjiVj
T;
n2i—2 _ p2j N2i-1 . 72 J 231
y—>_>0D2] 5 — D3j 3+ Djj 5 + Dy; 1+M D,

We now expand D,, when v; = 0 according to (2j — 2)-th and (2j — 1)-th columns:
Dy(vj = 0) = = (=H;) D3 + (—pj) Daj2 — Hjs1Daj1 + 11D
— Hy |0 x DyiZ3+1x D5y — 0 x DY_|
— M [_( 1) x D75 + 1 x Dyj=5 — 0 x Dgj_ 2]
s [~(-0DYZY + 0 x DY} —0x DY
g |~ (1D 40 x DY - 1x Dy

~2j-3 2j-2 | ™2-1 72
= —T;D3 1 — b [DJ +D3jy — Dyj_s+ Dyj 1}
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Thus, this concludes the proof of (19) since we have
_ Dn(V Jj — 0)

Hj
To conclude this section, and because they will be useful, we define the following func-
tions and give some of their properties, the proofs of which are postponed to Appendix C.

Definition 2.6. Let n € N\ {0}. Let P, Qm, fn : (0,4+00) X [w/Coo,w/Cy) — R
m € [0,n], be respectively defined by the formulae in Proposition 2.1 and in (22), and v
be defined in (9). Define on [0, +00) x [1/Cuo,1/Cy) the three (real-valued) functions P,
Qm, m € [0,n], and f, by

=Dy "5 - D3 s+ D3, +Dy_, MJDQJ 5 = lim

{Pm(way) = Pp(w,wy) on (0, +00) x [1/Cs,1/Cp) (28)
Pm(oay) = forye [1/00071/00)7
{Qm(w,y) = w ' Qm(w,wy) on (0,+00) x [1/Cs,1/Cp), (20)
Qm(0,9) =0 fory € [1/Co0,1/Co),
and
{fn(w, y) =w fp(w,wy)  on (0,400) x [1/Cse,1/Ch), (30)
fn(0,) = HooTso (y) for y € [1/Co0,1/Ch),
- Fal,9) = pooloc () Pa(0,9) + Qule0.9) (31)

Lemma 2.7. The functions (of two variables) Py, Qm, m € [0,n], and fn are continuous.
Lemma 2.8. ker f, = {(0,1/Cs)} U {(w,¥) : (w,wy) € ker f,}.
3. REGULARITY AND MONOTONICITY OF BRANCHES OF WAVENUMBERS

The aim here is to prove regularity in w of the branches k;, —and of the associated
functions ¢y, — and the monotonicity of the functions w — k¢(w)/w. Namely, the goal is
to prove the following result.

Theorem 3.1. Let n € N\ {0} and the k;’s be as in Definition 2.2. Assume moreover
Coy < C’g if n > 3. Then, for any £ > 1 there exists wy > 0 such that the function

(wg,—i-oo) — (I/COO, 1/C0)
w i kp(w)/w

is analytic, bijective, and increasing, and that k¢(wp) = we/Coo if we > 0.
Moreover, a Love wave ezists at (w, k) if and only if

(w, k) € {(w,ke(w)) 1w > wrlrs1 -

The strategy is to first prove that the k,’s are in finite number for any fixed w. Then, to
deduce from it their regularity by analytic perturbation theory and finally to prove that
the derivative of k¢(w)/w is positive.

We believe the restriction Cy < Cs if n > 3 to be purely technical and, in any case, it
is only needed for the proof of Lemma 3.5.

First, we have that at any fixed w the ky(w)’s are in finite number.

Proposition 3.2. Let n € N\ {0}, w > 0, and the k¢(w)’s be as in Definition 2.2. Then,
there is a finite number of ke(w)’s.

The idea of the proof is to extend holomorphically f, to (part of) the complex plane
and to prove that one of the k; being an accumulation points of the kernel of y — f,(w, )
would yield a contradiction on this extension.
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Proof. We fix w > 0 and, for shortness, we omit the dependence in w of the k,’s in this
proof. The ky’s being bounded (Lemma 2.3), them being in finite number is equivalent to
them being isolated.

Assume on the contrary that there exists a kg, denoted wk,, that is an accumulation
point of the kernel of y — f,(w,y), i.e., of the set {k;};>1. Since the k/’s are simple
(Corollary 2.5) —that is, £ # ¢/ = ky # ky—, the accumulation point wky is in particular
simple? and there exists a subsequence (denoted the same) such that k, — wk, as £ — 400
but ky # wk, for all £.

We now define C_ < Cy such that {k/};>1 N [w/Cy,w/C_] also admits wk, as an
accumulation point, that 1/C; ¢ (1/C4,1/C_) for all j, and that Cp < C_ < C1 < C.
To define them properly, we distinguish two cases: either k, # 1/C}; for all j or k, = 1/C}
for some j, in which case we have Cs # Cj # Co by (26). See Figure 1 for a sketch of
the definition. On the one hand, when k, # 1/C; for all j, then the required properties
are satisfied by C_ := ky, — e < Cy := ky + ¢ for € > 0 small enough. On the other
hand, when there exists a C; such that k, = 1/C}, we distinguish two subcases. Either
{ke}jz1 N [wky, wks + 1) admits wk, as an accumulation point, in which case we define
Cy :=Cj = 1/k, and C_ as the largest C}’s such that k, < 1/C;, with the special case
that, if this results in C_ = Cy —hence k, < 1/Cy—, then we replace the value of C_
by C— = 2/(k. + 1/Cp) in order to ensure Cy < C_ < Cy < Co. Or wk, is not an
accumulation point of {k¢}j>1 N [wky, wk, + 1), then it is one of {k¢};>1 N (wke — 1, wky]
and we define C_ := Cj = 1/k, and C, as the smallest C}’s such that k, > 1/C}, with
the special case that, if this results in Cy = Cx, —hence k, > 1/Cs—, then we replace
the value of Cy by Cy =2/(k« + 1/Cs) in order to ensure Cp < C_ < 4 < Cw.

w/Cp wkye w/C_

2

w/Coo w/Cy w/C; w/Cy w/Co
wky =w/Cy w/C_
i i pecooe i —>
w/Coo w/Cy w/C; w/Cy w/Co

w/Cy wky =w/C_
i i oaf i i

w/Coo w/Ch w/C; w/Cp w/Co

%

FIGURE 1. Sketch of the definition of Cy.. Top: k. # 1/Cj for all j.
Center & bottom: k, = 1/C; for some j, the two subcases.

Next, we consider f, restricted to the interval [w/Cy,w/C_], which is a subset of
(w/Coo,w/Cp) due to the careful definitions of C'y.. That is, working with k;/w instead
of ky itself, we consider the function A, : [1/C+,1/C_] — R defined by hy,(y) := fn(w,wy).
Recalling the definition (9) of 7;, every v; appearing in h,, is of the form v;(w, wy) = wv;(y).
The fact that we restrict h,, to [1/Cy,1/C_] implies that each 7; is either real or purely
imaginary on the whole interval [1/C4,1/C_].

We now define Q2 C C such that C\ R C €, that there exists a neighborhood of k,
inside 2, and that the extension of h,, (hence keeping the definitions of the 7;’s fixed to

2Finite multiplicity would actually be enough.
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their definition on [1/C4,1/C_]) to €2 is holomorphic. We choose
Q1= C\ ((~00,1/C; — Q] U[1/C- +6,+00)) = (C\R)U (1/C; — 6,1/C_ +5),

with 6 = 0 if there are no j’s such that k, = 1/C; and with 0 < § < 1/C} —1/C
otherwise. The key point for our argument is that when k, = 1/C}, even though the
corresponding “fixed” 7; is not holomorphic on any complex (open) neighborhood of k,
(because 7; is, on 2, either the function /- — C’;z or the function —z'\/C'j*2 — ), the
function h, on the other hand is holomorphic on §2 in both cases as a sum-product of
the “fixed” functions Vs, chlwp;Tj], shiwr;Tj]/(wr;), and wr;shlwy;T}], which are all
holomorphic on €2: for 7., it is because the square root function is holomorphic on
C\ (—00,0] and because 1/C4 — > 1/Cx; for chjwp;T;] and sh{wr;T}]/(w;) because of
the well-known properties that z — ch[/z] and z — sh[y/z]/1/z are holomorphic on C; and
for wi; shlwi;T;] = (wi;)? shjwi;T;j]/(wi;) as the product of two holomorphic functions
on C.

Given that € is a non-empty, connected, open subset of the complex plane, that h,, is
holomorphic on €, and that the set {z € Q : h,(z) = 0} contains an accumulation point
—namely, ky—, the Identity Theorem implies that h,, = 0 on ).

We are now left with proving that h, cannot be trivial everywhere on 2. Take z € C
such that 22 = C 2 +iw2n% 1 > 0. Then, z € Q and

vj(w,wz) = wj(2) = Vin? = ne't

for the j’s such that C; = C, while for the other j’s we have

C2—-C72
; I o
wyf22 = O} ”¢“+ (njw)? et

vj(w,wz) = wpj(z) = ¢ or ={ or e or

» 2 —2_ -2 —netT
zww/Cj z —in\/—z’ B Cso CQJ Ui
(n/w)

In particular, defining e; € {1} such that v;(w,wz) = wpj(z) ~ e;ne' T, we have

— |cos[yTy/ V2] chlnT;/ V2] + isinnT; /V2) shinT; /v

| chlww;(2)T]| ~ )Ch [EjnTjel%]

— \Jeh?nTy /2] — sin?[T;/v/2) > 0
and, as n — 400,
wij(2) thlwij(2)T] ~ +ne't .

Therefore, for these z, and when 7 — 400, we have the contradiction to hy(z) = 0 that

h -
n n(Z) ~ Knﬁezz 7& 07
[] chlww;(2)T}]
j=1
where
- T n - T
o1 i ((Hngane' ) 1 (pmme' )1 1

is a positive constant depending only on the p;’s, j € [1,n + 1]. In particular, it is
independent of 17 and of €'7, since an easy induction gives

n( 1 (umneiz)‘l):< Ky K?(U@”)*)

pnne’s 1 Kp'ne's K32

m=1
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where the K/’s are independent of 7 and of €'7. g
Remark. For instance, for n = 2, Ko = p1 + po + pus + pips/pe > 0.
We now state our regularity result.

Proposition 3.3. Let n € N\ {0}. The branches w — (k(w),p(w)) satisfying (10) exist
on an open interval, and both components k and ¢ are analytic. Moreover, the branches
of eigenvalues do not cross.

For this result, we use the fact that, for the k;’s restricted to (w/Ceo,w/Cp), ki are
(pseudo-)eigenvalues of the problem in (3) and we apply analytic perturbation theory.
This theory being nowadays standard, for shortness we only give a sketch of the prove.

Sketch of the proof. First, by Proposition 2.4, for any fixed w we identify
{k(w): 3¢, € L%, (k(w), ¢,) satisfies (10)} = {kp(w) : kp(w) # w/Coo Y1 -

Consequently, for the rest of this sketch we write (k¢(w), ¢ ) instead of (k(w), p(w)).

A point to be careful about is that we do not have a (proper) eigenvalue problem, but
a generalized one, due to the function g multiplying the (pseudo-)eigenvalue k%. However,
writing (10) as Tu = AAu with T = 9,00, — w?p, A = k7, and A = —p, we can apply
the arguments of [12, Chapter 7 §6] to bring ourselves back to the standard analytic
perturbation theory.

Now, by Corollary 2.5 and Proposition 3.2, the eigenvalues are simple and isolated.
Therefore, by analytic perturbation theory (see, e.g., [19, Theorem XII.8 (Kato—Rellich
theorem)] or the first sections of [12, Chapter 7]), the branches w — (kg(w)?, ¢r,,) exist
on an open interval, both components w + ky(w)? and w + ¢y, are analytic, and ky(w)?
are simple and isolated. In particular, we have no crossing of branches of eigenvalues.

We then conclude by noticing that, since ky(w) > w/Cs > 0 by Lemma 2.3, the

analyticity of k2 > 0 implies the one of k; = / k%. O
With all these results, we can now prove Theorem 3.1.

Proof of Theorem 3.1. The second part of the statement is a direct consequence of the
first one combined with Proposition 2.4.

The analyticity has been proved in Proposition 3.3. The proof of the rest of the first
part is split into two steps. First, we prove the strict monotonicity of ky(w)/w on any open
interval where ky exists, using the “(pseudo-)eigenvalue” property of the k. Second, using
their “zeros of a function” property, we deduce the bijectivity.

Step 1. We start again by identifying, for any w,

[he(w) : Ko(w) £ 0/Coo ot = {k(w) s 36(w) , (k(w), 6(w)) satisfies (10)}
by Proposition 2.4. We thus write (k¢(w), ¢¢,,) instead of (k(w), p(w)).
By definition of ¢y, we have —0,10, ¢, — w? Py, = —k‘?(w)um’w. Hence,

~kF () IVAdewlls = [Vidhull, = w? IVEdrul > —o* [vpdrul - (32)

with a strict inequality as otherwise we would have /‘—”(b/&w”% < H\/E%WH% = 0 hence
¢¢., constant, since p_ > 0, and the conditions on ¢, in (10) would yield ¢¢,, = 0, a
contradiction to its definition.

By Proposition 3.3, we can differentiate both sides of the equality in (32) w.r.t. w:

—2ke(W)uke (W) | VESewll; = —2w | VDl
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where we used again the eigenvalue equation to cancel terms. Consequently, and since

ko(w)|lv/Rdewll3 > 0 and wl|\/péewl3 > 0,

w || vpdewls
w) || Videw;

We now compute the derivative of ky(w)/w and obtain

5 (@(w)) _ he(w) [wamw) ) 1] he(w [ |l vAsesll,
w L2
© WL k) W K@) Vi s
by the inequality in (32). This proves that, for any ¢, w — ky(w)/w is strictly increasing
on any (open) interval where k; exists.

Step 2. Consider an open interval on which k, exists by Proposition 3.3, and let
(w; ,w)) C (0,+00) be its largest (open) superset on which ky exists. Still by Propo-
sition 3.3, k; is continuous on (w, ,w;’), hence k¢(w)/w too, and, by Step 1, ke(w)/w is
strictly increasing on (w, ,w, ). Moreover, being bounded from below and from above
—with values in [1/Cu,1/Cp), see Lemma 2.3—, it admits limits L, = limw\‘wZ ko(w)/w

and L] = limw/wz k¢(w)/w. We now prove that L, =1/Cs, L = 1/Cp, and w,” = +o0.

Owke(w) =

>0

First, suppose wj < 400. By continuity of fn, we would have

falw/ L)) = fn( lim (w,kdw)/w)) = lim fo(w,ke(w)/w) =0.
w/‘wZ' w/‘wz

If LS = 1/Cp, this contradicts the fact that fn has no zeros of the form (w,w/C), and if

LZ < 1/Cy, this contradicts that (w, , wZ) is the largest open interval on which k; exists

since it would actually exist on (we_,we | and, by Proposition 3.3, also on an open superset

of (w, ,w/]. Thus, we proved that w,” = +oo0.

Second, suppose L, > 1/Cs. If w, > 0, then the continuity of fn gives similarly the
contradiction that ky exists at w, . If w, =0, for any y > 1/C, we notice that

fn(wv y) N MOODOO(y) + O(wQ) )
w\0
which is positive for w small enough, contradicting that k¢ exists on (w, ,w, +¢) = (0,¢).
Thus, we proved that L, =1/Cs. A by product, as a direct consequence of L, = 1/C
and the confinuity of fn, is that there exists wy = w, > 0 such that ky(wy) = wy/Cx if
we > 0 and ky(w) — 0 when w N\ 0 if wy = 0. Note that we do not have equality in the
latter case only because the ky’s have been defined only for w > 0.

Third, suppose that there exists a p > 1 such that LJr < 1/Cy, and consider the
smallest of such p’s. Then, LZ LJr < 1/Cy for all £ > p, since the branches k; do
not cross by Proposition 3.3 and are contlnuous, and L =1/Cp for 1 < ¢ < p. Thus,
on the one hand for ¢ > p the branches k; lie in (1/ C’oo, L}), while on the other hand
for £ > p there exists L € (L,},1/Cp) —one can choose L = (max{l/ég,L;} +1/Ch)/2
for example, so that L > 1/ C, as it will be needed— such that for w large enough the
branches kg lie in (L,1/Cp). This implies that for w large enough none of the branches
ke, £ > 1, lies in [L}, L]. That is, fn has no zeros (w,y) with y € [L}, L] and where
[Lf, L] N1/ Cy,1/Cy) # 0, contradicting Proposition 3.4 stated below, and consequently
proving that L = 1/Cj for all £ > 1. This concludes the proof of Theorem 3.1. O

Proposition 3. 4 Let n € N\ {0} and fn be as in Definition 2.6. Assume moreover
Co < Cy if n > 3. Then, for y € [1/Cy,1/Cy), the function w — fn(w,y) admits a
sequence of zeros divergmg to infinity.
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The cases n = 1, 2 of this porposition will be proved later —see Section 4.4 and Propo-
sition 5.1— for all y € [1/Cx,1/Cp). The proof for n > 3 is a direct consequence of the
following lemma, which also yields the result of Proposition 1.5 for n > 3.

Lemma 3.5. Let n > 3. Assume Cy < Cy and fix y € [1/Cy,1/Ch).
(i) If Co = C1, then on each interval
[m 7(p+1)7r>, p=0,
[ ()10 | (y)[Th
w fn(w,y) admits exactly one zero, which belongs to [\171(py7SIT1’ (I?/:F(%%T)
(ii) Otherwise, i.e., if Co = Cy, for k € [2,n], then on each interval

1
[ pm (p+ )7r>’ p>0,

oe ()| Tx” 171 (y) | T

w fn(wjy) admits, at least for large p’s, exactly one zero. These zeros generi-

pm (p+1/2)m (p+1/2)7  (p+l)m
or(0)Te m(y)m) or all to (wk(y)m’ \vk(ym)-

Proof. We define M,, by M,,(0,y) = I for y € [1/Cs,1/Cp) and, for any w > 0, by

cally belong either all to {

( o ()T) W) ity # o
1oy o ] ) ST () Tr] bl 0T " (39)
T,
L Lo
0 1 St

for which we have on (w,y) € [0,4+00) X [1/Cs, 1/Cp) the identity

(an) =nten (G Cp) - vmen

For (i), we have

Pn Iy S pl T COS[w|I71|T1]
(Qn) = Moo My <@1> = Moo M <—M1|V1|Sin[w\V1|T1]> ’

with, since Cp =: €1 < Cy < Cs and y € [1/Cs,1/Cp), all the M; for j € [2,n]
having nonnegative coefficients with positive diagonal coefficients (bounded below by 1) on
[0, +00) % [1/C2,1/Ch), hence M,, - - - M> too and we denote mq1, mas > 1 and mya, may > 0
the coefficients of M, - - - My. Moreover, vso(y) = 0. Thus,

fo= (HooVooman + ma1) cos[w|in [T1] — (pooVeomiaz + maz) i [ ] sin[w|in | Th],
where the coefficients of cos|w|1|T1] and of sin[w|;|T1] are respectively nonnegative and
negative on [0, +00) x [1/C2,1/Cy). Hence, f,(-,y) has exactly one zero

nmw (n + %) T
()T [ (y) | Th

in every [nr/ (171 (1)|T1), (n + D/ (171 () IT3).
In the case (i), we write f, as the scalar product

wn(y) €

f — En . ,uooDoo
" \@n L)
With & the unique integer in [2,7n] such that Cy = Cy < Oy < Cs, we have

Fo = MMy - N, @ LT (M) (““f“)



INVERSE PROBLEM FOR LOVE WAVES IN A LAYERED, ELASTIC HALF-SPACE 19

and we define the coefficients m;; and m;; through

k=1

~ — m m

M-+ M = HCh[VjTj] < 11 12)
J=1

ma1 M22
and
= M M
T \T Y T _ . 11 12
(M) -+ (M) = ‘];[Hch[u]:r]] <m21 m22>'
]:

A straightforward induction gives that the m;;’s and the m;;’s are multivariate polynomials
in the variables thiwp;Tj], j # k, of order k — 1 and n — k (the numbers of matrices
multiplied), and with 7; > 0 for j € [1,n + 1] \ {k}. A first key remark, that can be
established by induction, is that the coefficients of the polynomials are independent of
w and nonnegative. We therefore define, for clarity and shortness in the forthcoming
computations, a, 3, 7, and ¢ as the multivariate polynomials in the variables th[w;T}],
with coefficients independent of w, through

-1

) ({fowm) s ()= (22)

and
. -1
7Y .= . T (i T [HooVoo\ _ [ HooPoo™il + M2
<5> o H chl T (Mn) (M) < 1 > B <Moo770077~121+ﬁl22>'
j=k+1
Consequently,
r3 fn
fn=0 & ———— =0
[] ch[v;Tj]
Jj#k
< cos[w| 7k |T}] Sin[w|l7k|Tk]/(Mk|l7k)> <a> , <7> _0
— i |k | sinfw|vg | Ty ] cos[w|y|Ty] 5 )
sin|w|vg |17
& (ay + B9) cos|w|vg|Tx] + (B’y — aéu%]ﬂkm W =0.

Now, a second key remark, that can also be established by induction, is that the poly-
nomials m;; and m;; on the diagonal are greater or equal to 1, and the ones on the
anti-diagonal are nonnegative with mg; (respectively mj2) having at least one positive
coefficient if y > 1/C; for one of the j’s in [1,k — 1] (resp. in [k + 1,n]). This means
on one hand that o = mq; > 1 and d > Mg > 1, and another hand tklat either at least
one of B = mg; and v > mi2 has a positive coefficient, or y = 1/Cy = 1/C; for all
j e [Ln+ 11\ {k}.
In the latter case, we actually have
fa=0 & —p|vglsinfw|vg|Ty] =0,

and the zeros are exactly the pr/(|vk(y)|Tk), p = 0.

In the former case, since «, 3, v, and § are multivariate polynomials in the variables
thwr;T;] with nonnegative coefficient, they are nondecreasing in w and converge respec-
tively to constants &, [, 7, and 6 when w — +oo with @, 6 > 1 and, due to the key
properties aforementioned about a positive coefficient, 5,5 > 0 since 8 = mia > 0 and
~ > myy are nondecrasing. Therefore, cos[w|Dk|T)] has a positive prefactor and the one of
sin[w|vg|Tk] converges to 73/ (uux|Pk|) — g |7 |. This limit is generically nonzero, thence
the coefficient of sin|w|;|Tx] has a sign at least for w large enough.



INVERSE PROBLEM FOR LOVE WAVES IN A LAYERED, ELASTIC HALF-SPACE 20

Remark. Note that in the non-generic case ¥(y)B(y) = p2|vk(y)*6(y)a(y), the sign of
the coefficient of sin|w|vg|Ty] is very likely constant for w large enough (because the w —
thjwp;T}] are increasing (and concave) hence what probably matters is the coefficient in
front of th{ww;Tj] for the largest 7;T;. However, we are not able to prove it. A

On the one hand, if y is s.t. this limit is negative —¥(y)5(y) < p2|vk(y)|?0(y)a(y)—,
then for w large enough w — f,(w,y) has in every

[ /(12 (W) Tk), (p + )7 /(|7 (y)| Tk ))
exactly one zero wy € (pm/(|vk(y)|Tk), (p + 1/2)7/(|7k(y)|T%)). On the other hand, if this

limit is positive, then for w large enough w +— fy,(w,y) has in every

[pm /(1 (W)|Tk), (p + )7/ (|7 (y)|Tk))
exactly one zero wy, € ((p + 1/2)7/(|o(y)|Tx), (p + 1)/ (|7n ()| T}k)).
This concludes the proof of Lemma 3.5. O

4. THE SIMPLE SQUARE WELL: DIRECT COMPUTATIONS

In this section, we specify to the simple square well (n = 1), i.e., the “1+1 layers” case:

, , if z< H,
(u(Z),p(Z)):{(m o) s

(p2, p2) it H<z< 400,

where p;,p; > 0, j = 1,2, with Coo = Oz = \/p12/p2 > \/p11/p1 = C1 = Co.
Our goal is to retrieve the values of H,Ci,(5, and ps from the knowledge of the
frequency—wavenumber couples of the Love waves and from the knowledge of p;.
Applying Proposition 2.1 to n = 1 (or by direct computations), f; defined in (22) reads

fi(w, k) = pove(w, k) chvi(w, k)H] + pivi(w, k) shivi(w, k) H] . (34)

By Lemma 2.3, 11 = 1y and 12 = vy defined in (6) satisfy vi(w,k) € iR_\ {0}
and v2(w, k) > 0 if (w, k) is a zero of fi. Hence, for such (w, k) —thus w > 0—, we have

fi(w, k) = w (a2 (k/w) coslw|m (k/w)[H] — pa|p1 (k/w)] sinfw|p (k/w) | H]) . (35)

4.1. Study of the wavenumbers. We can give another form to the characterization of
the k¢’s in Definition 2.2 (and Lemma 2.3): for w fixed, the k’s are the k’s solution to

2,,—2 —2
[o—2 22| _ H2 [Fw -Gy~ w w
tan [Hw Cy k4w }_Ml 01_2_]{:%)_2 and C2<k:<01,

where the Lh.s. of the equation makes sense since fi(w, k) = 0 implies cos||v; (w, k)|H] # 0.
Note that the above dispersion relation can be found for instance in [10, (9.10)].

-2
On one hand the function ¥;(x) := 2_52 is continuous strictly increasing from 0 to
\ or7s

xT

+00 on [Cy%,C;?). On another hand the function ¢5(z) := tan [Hw\ [CT? — l‘:| satisfies

22
(for Hw > 0) the following properties, where n := {“f 5120201 — gJ +1>1.

. - 2 L . . .
IfCy% < O%— (% ) e w> %% glg(iQCf , then it is continuous and strictly decreasing

/2 _ 2
e from tan [wH gfcfl] to —oo on [C{Q,Cf2 — (227};577)2),

e from 400 to —oco on the intervals (C’l_z - (22%;571)2 , 01_2 - (22%—73%)2) Lef2,n+1],

e from +oo to 0 on (Cl_z - (ﬁg)Q,Cfﬂ.
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Ci* = (31%)°
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FIGURE 2. Functions ¢; (red) and ¢ (blue) when C5? < ;2 — (%5)2

L L U
T T

(o
[
o
€l
&
g

FIGURE 3. Functions ¢; (red) and ¢ (blue) when C5? < C; 2 — (%5)2,
but for an w larger than in Figure 2.

If 01—2 _ (%5)2 < 02_2 < 01_2 - (ﬁ 5)2, then it is continuous and strictly decreasing
2__ 2
* from tan [wH@] to —oo on [02—2’01—2 - (ﬁgf)’

* from +o0 to 0 on (01—2 - (ﬁgf 701—2}

FIGURE 4. Functions ¢ (red) and 1 (blue) when C[%— (%5)2 <Cy?<

_ )2
Cﬁ‘(ﬁ&)'

- 2 - - . . .
If C;2— (55%)" < C; ‘sw< o G1C% __ then it is continuous ans strictly decreasing

2H w /03_012 ?

/O2_(2
from tan [ngfol] > 0 to 0 on its domain [052, Cf2].
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— ()
itan[Hw (1,727}

1 1
1! '
— | —

C3 1 C2

FIGURE 5. Functions ¢; (red) and ¢y (blue) when C; 2 — (ﬁg)Q < Cy?
(w small).

The k,’s are therefore implicitly defined as the points z’s at which the two functions
intersect. For instance, in Figures 5 and 4 —that is, w small enough—, there is only one
branch: kq; in Figure 2 —that is, for a larger w—, there are four branches: ki, ko, k3,
and ky; and in Figure 3 —that is, for an even larger w—, there are eleven branches (the
intersection of the curves corresponding to k1, on the right of the figure, is not visible).

4.2. Regularity of the branches of wavenumbers. The goal of this subsection is to
prove the following.

Proposition 4.1. Let n = 1. For any integer { > 1, w — ky(w)/w is smooth, bijective,
increasing from (wg,+00) to (1/Ca,1/C1), where

CiCy 7
Wy = (E — 1)WE

The top-left simulation in Figure A illustrates the bijectivity of w — ky(w)/w.

We already know, by Proposition 3.3, that the function is even analytic. However, we
give the proof of smoothness because it can be obtained “by hand” thanks to implicit
function theorem (IFT), without analytic perturbation theory, and because we obtain the
explicit formulae of the wy’s.

Proof. By the properties described above of the two functions ¢; and 9 introduced earlier,
and the definition of the k;’s, we deduce all claimed results except for the values of the
wy’s, which is established at the end of this proof, and for the strict monoticity and the
smoothness, which are now obtained by the IFT.

Let us define g : R x (0,/1/C? —1/C3) — R by

C3 - Cf

g(w,Y) = /_,LIY SID[H(,UY] — U2 W

—Y?2cos|[HwY],
which is continuous differentiable, as well as

2

Remark. This g is nothing else than — fl in Definition 2.6, up to the domain and after the
change of variable Y = |11 (y)]. A

For any w, > wy, ke(wy) exists and we have g(wy, Yy(wy)) = 0 by definition of the k;’s.
Moreover, defining for shortness

s(Y) — 022_012_Yz€ 0 \/022_0%
' C2032 GG, )
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we have
L9 vy = [1 + ‘”st(y)] sin[HwY] + HwY [1 + “21] cos[HwY],
uy dY 1 w1 Hws(Y)

thence %(w*, Yo(wy)) # 0 since sin[Hw, Yy(wy)] and cos[Hw, Yy (wy)] must have the same
sign (and be non-zero) by (35). Therefore, by the IFT there exists a neighborhood U
of {w,} s.t. there exists a unique ¢ € C1(U,R) with p(wy) = Yp(wy) and g(w, p(w)) =0
on U. This ¢ is (on U) exactly Yy by definition of ky. Moreover, omitting for shortness
the dependency of Y in w, we have

~1
Vi) =) == (e ) L plw)

Yy cos|HwYy] + @s(Yg) sin[HwY}]

=—HY,

[1 + %st(Yg)} sinf[HwYy] + HwYy |1 + £2 )] cos[HwY/]

Hl st(

on U, hence Y;(w,) < 0, for the same reason that the trigonometric functions share the
same sign for any (w, Y;(w)). Finally, given the definition of Y;, we have

Ko(wy) 5 <kg(w*)

Wi

) = Vi) >0

Since ky > 0 and since the above reasoning is true for any w, > wy, it proves that
w — {k¢(w)/w}, is a strictly increasing function (where it is defined).

Moreover, since the denominator of Y, does not vanish, by bootstrapping we obtain
that Y, is smooth. Hence, from the definition of Y, we deduce that w — {k¢(w)/w}, is
also smooth as claimed.

Finally, due to the strict monotonicity, the w,’s are necessarily the w’s such that
(w,w/C3) is a zero of fi. Since vo(w,w/Cs) = 0, the formula (35) of f; gives that the w,’s
are the (increasingly ordered) nonnegative solutions to w|v1(1/Cs)| sinjw|v1(1/C2)|H] = 0.
That is,

we=(£—-1) GiCy 7 O

\/C2 C? H'

4.3. Recovering the parameters of the medium. The properties of the two functions
11 and 1) introduced earlier imply, when ky(w) exists, that ky(w)?/w? belongs to

~ 20—-1 \* 20—3 \? o e
<C12_<2Hw7r> ’012_<2Hw”> )“[0227012%

for £ > 2, and that k;(w)?/w? € (C’f2 — (ﬁw)z , C’fZ). Consequently,

w 0y
>1, li =inf ——,
Ve ¢ = w—1>I-i{loo ko(w) ulgo ko(w) (36)

and we (empirically) recover the value of C; from
k
Vex=1, 1/Cy=sup——= ow )
w>0 W

Since we suppose p; to be known, the definition of C} gives pq: py = plClz.
Additionally, and by construction, we have

V2, \/012—<€_”> _ 1 ke oy, ki)
1

we H Cy wy WN\w1=0 W
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and we consequently recover (empirically) the value of Cy from

Ve>1, Cp= lim d

w
= su — .
oo ke(@) oy ()

1 [

' I W

' I '

' | '

' | '

1 | 1

' | '

' | [

' | '

1 1

' | '

' | '

' | '

' | '

| | |
11 | [
3 ! ! =y

31 | 1 1
1

C* ~ (g 2)”

FIGURE 6. w = ws.

Moreover, the knowledge of the maps ky(w)/w’s allows us to (empirically) determine
the wy’s: they are the value below which k, ceases to exist.
With C, Cs, and the wy’s recovered, the knowledge of two consecutive wy’s yields H:

p-_S9% 7 (38)

VCZ—C? w1 —wr
Finally, to determine py and, consequently, us = p2C3, we use the equation in (26),
which reads pq|vi(w, k)|sin[|vy(w, k)| H] = pave(w, k) cos||vr (w, k)| H] for n = 1. Indeed,
the knowledge of one couple (w, ky(w)), and of p;, yields pa:

_ G} o7 (w)/w)? -
P2 ”1022\/@@)/@2 —ot [me " (hel)/ “’)Q] | (35)

4.4. Proof of Weyl’s law for the simple square well. We give here the proof of
Proposition 1.5 in the case n = 1 (but notice that we did not need it to recover the pa-
rameter of the problem). We want to prove that for any y € [1/Cw,1/Cp) = [1/C3,1/C1),
as w goes to 400, we have

W, . ~ W, _ w _
Nw,y) ~ 2Ty = LI H = £\/07 - 28

By Definition 1.3 of N(w,y), we look for any fixed y € [1/C2,1/C4), at the positive
zeros of

w i fi(w,y) = p2a(y) coslwlmn (y)| H] — |71 (y)| sinw|zi (y)|H] -

Recall that |p1(y)| > 0 for y € [1/C2,1/C1). Note first that if w is a zero of this function,
then cos|w|; (y)|H] # 0 as, otherwise, sinjw|v;(y)|H| = £1 and we have the contradiction
Filw,y) = —pm 7 (y)| sinfw|za(y)|H] # 0.

Hence, fi(w,y) = 0 < tanfw|pi(y)|H] = (u2v2(y))/(ml1(y)]) = 0 and fi(-,y) admits

exactly one zero on each interval
by,
71 (y) | H [ (y) | H
Moreover, if y > 1/C5, then the (p + 1)-th zero belongs to

pm (p+1/2)m
<|171(y)|H’ |1 (y)| H ) p=20,
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while if y = 1/Cs, then the p-th positive zero wy is the (p + 1)-th wy:
pT
Wi=p+1 = 7= 7 N7
TR i (y) | H

The claim N(w,y) ~ w|v1(y)|H/7 for y € [1/C2,1/C4) is therefore proved.

p>1.

5. THE DOUBLE SQUARE WELL

In this section, we specify to the double square well (n = 2), i.e., the “2+1 layers” case:
(11, p1) if 0<z<Hy,
(1(2),p(2)) = ¢ (w2, p2),  if Hy <2z < Hs,
(H3.p3),  if H3 <2 <+o0,
where p;,p; >0, j = 1,2,3, with

Coo = C3 =/ u3/p3 > min{/p1/p1, / p2/p2} = min{Cy,Ca} = Cy .

Our goal is to retrieve the values of Ho, Hs, C'1, Ca, C3, p2 and p3 from the knowledge of
the frequency—wavenumber couples of the Love waves and from the knowledge of p;.
Applying Proposition 2.1 to n = 2, fs defined in (22) reads
fo(w, k) == (pavs ch[pn Th] + pavy shipn T1]) chlvo T3]
Sh[VQTQ]

+ (u3v3 ch[v1Th] + psvspav shin T]) e (40)
if k # w/C5, and
T+
fa(w,w/C2) := pgvg ch{v1T1] + pivi sh{v 1) + psvapivy Sh[VlTl]/Tz ; (41)

where for shortness we omitted in the r.h.s.” the respective dependence in (w,k) and
in (w,w/Cs) of the v;’s. We recall that vy, v1,v0 € Ry UiR_, and v3 = vy are defined
in (6), with v3(w, k) > 0 for a Love wave to exists at (w, k).

We have the following stronger version of Proposition 3.4 for n = 2.
Proposition 5.1. Let n = 2 and fo be as in Definition 2.6 and fiz y € [1/Cx,1/Ch).
(i) If 1/Cy <y < 1/C4, then fao(-,y) admits exactly one zero

pr (p+g) , [ pr (p+ 1)7T>
wp(y) € | — e on each interval |— - , p=1.
(¥) [\m(.y)m 1)/, BT )T

(i) If 1/Cy <y < 1/Ca, then fo(-,y) admits, at least for p large enough, exactly one zero

wp(y) on each interval
[ pr (p+ )7 >
D2 ()| T2 |P2(y) | T2
with either wy(y) € (pr/(|72(y)|T2), (p + 1/2)7/(|v2(y)|T2)] for all p (large enough) or

wn(y) € ((p+1/2)7/(|2(y)[T2), (p + D7/ ([72(y)[T2)) for all p (large enough,).
(i1i) If 1/Co <y < min{l1/C1,1/Cs}, define

{ m = min{|v (y)|T1, |72(y)|T2},

M = max{|1(y)|T1, 7 (y)| T2}

Then, there exists {@p}ps1 8.t Gpy1 — @p = 7/m, &1 > 0, and fa(-,y) admits on each
interval [y, Wp+1) either |[M/m] +1 or [M/m] +1 zeros.

Note that (i) covers in particular the non-standard setting C; < C < Co, and that
(#ii) covers in particular the degenerated setting C1 = Cy < C.
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Proof. Case y = 1/Cs. Hence, necessarily Co, = C5 > Cy > C1 = Cp and we have

Folw.w) = 0 & raa(y) coslilm ()|T3] = (1 +wum<y>f§) |1 ()] sinleol ()| T3]

for any w > 0. Thus, if Cy < Cw, then in every [pr/(|t1(y)[Th), (p + 1)7/(|71(y)|T1)),
p 21, fa(-,y) has exactly one zero wy, € (pr/(|11(y)[T1), (p+ 1/2)7/(|71(y)[T1)), while if
Cy = Cx, then the zeros of fa(-,y) are the w, = pr/(|v1(y)|T1), p > 1.

The special case y = 1/Cy of (i) is therefore proved and, from now on, we assume
y € [1/Cxx,1/Cp) \ {1/C5}. For any w > 0, we have
fa(w,y) = (s chlwinTh] 4 p1y shlwin T1]) chlwinTh)
+ (1375 chlwinTy) + psspuy iy shlwin Ti)) Sh[/i;yyzm
= (usvs chjwaTh] + povs shlwinTh)) chjwv T
+ <ch[wV2T2] + Zzz sh[wV2T2]> (171 shjwin 7] .

We always have 3 > 0, but for 7y and s, there are three distinct situations to consider:
1/C2 <y < 1/01, 1/01 <y< 1/02, and y < min{l/Cl,l/Cg}.

Case 1/Cy <y < 1/Cy. Then, iy = —i|in], o > 0, and fg reads

f2(w,y) = (u3v3 chwiaTa] + pava shlwinTy]) coslw|m |T1]
v
— || <ch[w172T2] 4 K8 Sh[wﬂgT2]> sinfw| | 1],
H2l2

where the factors of cos|w|v1|T1] and sin[w|;|T}] are respectively positive and negative.

Hence, in every [pr/(|71(y)|T1), (p + D) /(|71()|T1)), p = 1, fo(,y) has exactly one zero
wp € (pr/(|71(y)|T1), (p+ 1/2)7 /(|71 (y)|T1)). This concludes the proof of (7).

Case 1/C) <y < 1/Cy (proof of (i4)). Then, 7y = —i|7s|, and 7, > 0, and fo reads

(M = (/13173 + uitn th[wz?lTl]) COS[UJ‘172|T2]
Sin[w|172]T2]

+ (usvspa i thiwon Ty] — p|vo|? -
(M w [ ] /*j’2| | ) ILL2|V2’

e If y = 1/C, then 7; = 0 and the positive zeros of fa(-,y) are the ones of tan[w|y|Th] —
pss/(p2|2|). Hence, they are spaced exactly by 7/(|i2(y)|T2) and belong to the
intervals (pm/(|72(y)|T2), (p + 1/2)7/(|P2(y)|T2)) if 1/Cs < 1/C4, while they are the
wp = (p+1/2)7/(|72(y)|T2), p > 1, if 1/C5 = 1/C).

e For y > 1/C1, on the one hand, if y is s.t. usvs(y)pu121(y) < p3|va(y)|? —which allows
y = 1/C3—, then in every [pr/(|72(y)|T2), (p + D7/(|[72(y)|T2)), p > 1, fa(-,y) has
exactly one zero wy, € (p/(|2(y)|T2), (p+ 1/2)7/(|72(y)|T2)], similarly to previously.
On the other hand, if u33(y) 171 (y) > p3|ve(y)|? —which excludes y = 1/C3—, then
for w large enough, the factor of sin[w|e|T3| is positive. Thus, for p large enough, in
every [pr/(|7a(y)|T2), (p + 1)7/(|7a(y)|T2)) the function fa(-,y) has exactly one zero
wp € ((p+1/2)m/(I72(y)[T2), (p + D)7/ ([72(y) [ T2)).

This concludes the proof of (7i).
Case 1/C3 < y < min{1/Cy,1/C5} (proof of (iii). Then, fo reads

’ 2

fa(w,y) = (uavs cos|w|va|Ta] — pa|ve| sin|w|a|T3]) cos|w|v |T1]
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7 _ ) _
— 1|71 <cos[w\l72|T2] + H3Vs sm[w]uﬂTﬂ) sin[w|1|T1] .

p2|va|

o If |in|Th = |2|To = m = M, it reduces to

~ _ _ _ . _ M1l
folw,y) = uss cos2[wm} — (p1|m1| + po|v2|) cosjwm] sinjwm| — M3V3z2;ﬂzl

If y > 1/Cs, since the r.h.s. does not vanish when cos[wm| = 0, then the Lh.s.
shares its zeros with

sin?

wm .

_ _ _ _ pin
s — (] + o)) tanfuom] — sy LA
piz|v2]

tan®[wm] ,

i.e., the w’s s.t.

\/(leﬂl\ + pi2|72])? + 4(/&3173)2“”171| + (p1|o1] 4 pa|m2|) 0
<

— 12| 7o) p2|2]
230311 |01 |
tanjwm] = ¢ or
. ’Wlw + p2|72])? + Ap137s) L2 — (pa 7] + prol ) o
2|2 - -
230311 |01 |

Hence, in every [pr/(2m), (p +1)7/(2m)), p > 1, the function fo(-,y) has exactly
one zero wy. That is, exactly 2 = |M/m] + 1 = [M/m] + 1 zeros in every interval
[pm/m, (p + 1)7/m) of length 7/m.

If y = 1/Cj5, then the positive zeros are the positive w’s s.t. cos[wm]sinfwm| = 0,
i.e., the elements of {nmw/(2m)},>1, and the claim is also proved.

o If M = |in|Th > |2|T> = m, then we consider the sequence @, of consecutive positive
zeros of tanfwm] + pa|a|/(usvs) if y > 1/C3 and of cosjwm] if y = 1/C5. Considering
on (wp, wpy1) the function

B H3v3 — /1,2‘172| tan[wm]

1+ /f;'ll_:z' tan|wm]

/,L1|171] tan[wM]

one can check the following. Either cos[@, M| = 0 and the function has exactly [M/m]
zeros on (@p, Dpy1), hence fo(-,y) admits exactly [M/m] + 1 zeros on [@,, @pr1): @y
plus these [M/m] zeros in (@p,@p+1); or cosjwpyM] # 0 and cos[@,M] has either
|M/m] or [M/m] zeros in (@p,@p41) hence the function has either |[M/m| 4+ 1 or
[M/m]+1 zeros on (Op, Gpi1), and fa(-,y) admits also either | M/m|+1 or [M/m]+1
Z€ros on Wy, Wp41)-

o If m = |n|Th < |2|T> = M, then we consider the sequence @, of consecutive positive
zeros of tanfwm)] + (uz2|2|)?/(u11ps3) if y > 1/C3 and of cos[wm] if y = 1/C3. The
same result is obtained working on

W33 — || tanfwm]

u3vs  pivi
p2|v2| p2|v2]

|| tanjw M| — .
tan[wm)
Summarizing, in the case 1/C3 < y < min{1/C,1/C5}, we have found intervals [@p, Op41)

of length 7 /m partitioning R such that f(-,y) admits on each of them either | M/m|+1
or [M/m] + 1 zeros. This concludes the proof of (%ii). O

We can now prove Proposition 1.5 in the case n = 2, that we recall in Proposition 5.2
below. The proof is in the spirit of the one of Proposition 5.1 (and is actually an immediate
consequence of it in its cases (i) and (4)). This result will allow, thanks to Corollary 5.3
below, to recover 52 (and Cp) as well as T 1 and T 5.
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Proposition 5.2. Let y € [1/C,1/Cy) be fized. As w goes to +00, we have
W, - ' ~
N(w,y) ~ —ln(y)Th, ify € [1/C2,1/C),
w - - _ -
Niwy) ~ = (11T + [52)[T2) , if y € [1/Coc,1/Cs)

Notice that on the one hand if C; = Cy, then 1/Cy < 1/52 = 1/Cy and the first case
is empty but not the second one, which then reads N(w,y) ~ w|?1(y)[(T1 + T»)/7, and

that on the other hand if 1/Cs > 1/Cs, then 1/Cy > 1/Cs > 1/Cs and the second case
is empty but not the first one.

Proof. When y € [1/C ,1/Cp), this is an immediate consequence of Proposition 5.1 (%)~ ().
When y € [1/Cx,1/C2), we follow the proof of Proposition 5.1 (7).

o If |11 |Ty = ||To = m = M, the result is an immediate consequence of the proof of
Proposition 5.1 (iii) for that case, since the proof gives either, for y > 1/Cy, the exact
number of zeros —two zeros in every interval [pm/m, (p + 1)m/m) of length m/m—
or, for y = 1/Cx, the exact location of all the zeros —{nn/(2m)}n>1.

o If m = min{|1|Th, |72|T2} < max{|vi|T1,|ve|To} = M —here, we group together the
second and third subcases of the proof of Proposition 5.1 (i73)—, then the proof of
Proposition 5.1 (4ii) shows that we have to study on (@p,@p+1) the function

tanfwM] — a — [ tan[wm]
1 + v tan[wm)

either, if y > 1/C, for o, 8,7 > 0 and where the ©,’s are the consecutive positive

zeros of 1+ tanfwm], or, if y = 1/Co, for f > 0 = o = 7y and where the @,’s are the

consecutive positive zeros of cos[wm/|. In both cases, the number of zeros in (@, @p+1)
of the studied function is one plus the number of zeros of cos[wM| in that interval

of length 7/m. Moreover, @, is itself a positive zero of f2(-,y) if and only if it is a

zero of cos[wM]. Thus, the average of the number of positive zeros of fa(-,y) on the

intervals [@p, Wpt1) is 1 + M/m. Consequently, when w — +oo0,

N~ 2 (14 50) =S+ ) = £ (IGIT+ ). O

w/m m

Corollary 5.3. Letn =2 and y € [1/Cw,1/Cp). Then,

. N(wvy_w_l)_N(wvy)
lim =«
w—r+-00 \/%

and in such case, for C; < Cy, we have

>0 & ye{1/C1,1/C}\{1/Cx},

N(w,1/G; —w™) = N(,1/8) Ti/\/C; if Oy 4 Co,
V2w Wt (T + To)//Co  if CL=Cs.

This corollary means that the branches ky(w)/w “accumulate” from below at the 1/C}’s,
in the sense that the number of branches below and close to 1/C} is diverging with w, at

speed /w.

Proof. First, at y = 1/Cw, N(w,y —w™!) =0 for w > 0, hence

™

N —w H =N
- (w,y —w™) (w,y)go'

V2w
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From now on, we suppose y € (1/Cq,1/Cp). We have
Yo~

1
%0+ (5

’ﬁj(y _w_l)’ = -1
2 w . ~_
Vec, (1‘45”( )) =G

J

Recall that at y = 1/Cy = 1/C1, we have N(w,1/Co) = 0. Therefore,
~ T

+0(w™?)  ify<Cit,

W

(11 L
N(“’vc%*$>*N(wvc%) 5 <Co_w> Tlﬁﬁ if Cy > Co,
V2w w . 1 1 ~ ~ f1+TV2 e
\/>V1<Co—w>'<T1+T2>—> Co if Cy=0Cp.
At y =1/Cy < 1/Cp, we have
N(w7 651 — w_l) - N(w7 6;1)
V2w
W N1 —1\7 ~ -1 —1\7 N aes NT~
~ % (9@ - R L)
w1/2 " o8l
Tt O(w) = 2

\ﬁ V28| (Cy ) N

For 1/Cs < y < 1/Cs, we have

ﬂ,N(w’y - w_l) — N(w7y)
V2w

w,y —w )= N(w w T
7TN( Y Gl N\/;(|51(y—w1)!—’ﬁl(y)’)T1

_ v (D 1
=V <|m<y>| ol )> oo
O]

In order to recover the values we are looking for, one has to plot the experimental data
into a graph (w, k(w)/w) —see top-right figure in Figure A for a simulated version of such
data—, then to proceed as follow. N

First, following Corollaries 1.2 and 5.3, one reads in the plot the three values 1/Cj.
Corollary 5.3 ensures that the levels y of “accumualtion” of branches, when w becomes
large, that one reads on the plot, are the values 1/Cy and 1/C; and only them: the plot
contains no other levels of “accumualtion”. In particular, if there is only one level of
“accumualtion” (which is then necessarily at the top of the plot), then Cy = Cs.

Second, one retrieves Ti and Ty by evaluating the limits in Corollary 5.3. In the special
case C71 = (9, we recover instead the sum 77 + Tg
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Third, if we have three different values for the C;’s (i.e., if C # C3), we identify which
layer is at the surface and which one is below it (and above the semi-infinite layer). To
do so, we use (see the proof of Proposition 5.1) that on the one hand if C; > Cy, then
the zeros at y = 1/Cy = 1/C) are equidistant —by 7/(|72(1/C1)|T)— while on the other
hand if C1 > Co, then the zeros at y = 1/ 52 = 1/C5 are not equidistant (but their spacing
tends to 7/(|71(1/C2)|T1) from above).

Summarizing, we have identified Cy, Ca, Cs, T1, and Ty (or T} + Ty if C; = Cy < C3).
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support from the Agence Nationale de la Recherche under Grant No. ANR-19-CE46-0007
(project ICCI). The authors thank the referees for the suggestions that helped improving
the manuscript.
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APPENDIX

A. Numerical simulations. We present here numerical simulations of ky(w)/w.
k(w) / w k(w) / w

0000000

O [
T
Jddaita )

) 1000 ’ T 500 “ 0.000G; ’ T s00 ) 1000
(1 + 1)-layers (2 + 1)-layers
(C1,C2) = (1000, 10000) H> =100 (Cy, Cs, C3) = (1000, 1818, 10000) (Hs, H3) = (100, 200)
(w) k(w) / w
010 —

// /

1000 1500 @ 09%% 500 1000
(3 + 1)-layers (4 4+ 1)-layers
(Cq, Ca, C3,Cyq) = (1000, 1429, 2500, 10000) (Cy,Cs,C3,C4,Cs) = (1000, 1290, 1818, 3077, 10000)
(Hs, Hs, H4) = (100, 200, 300) (H2, Hs, Hy4, Hs) = (100, 200, 300, 400)
Kw)/ w

/
/

////////

1000 1500 ' @ 0.0000, ) T os00 ) 1000
(5 + 1)-layers (6 + 1)-layers
(C1,C2,C3,C4,Cs5,Cg) = (1000, 1220, 1562, 2174, 3571, 10000) (Cy1,Cs,C3,C4,Cs,Cgs, C7) = (1000, 1176, 1429, 1818, 2500, 4000, 10000)
(Ha, Hs, Hy, Hs, Hg) = (100, 200, 300, 400, 500) (Ha, Hs, Hy, Hs, Hg, Hr) = (100, 200, 300, 400, 500, 600)

FIGURE A. Numerical computations of w +— {k¢(w)/w},, from 1+ 1 to 6 + 1 layers.
For w € (0,1800], increments of 0.25, and p; =1, ¢ > 1.

Note that, at least for the case (2 + 1)-layers, i.e., n = 2, similar simulations can be
found in the literature, even though with less details. See e.g., in [3, Fig 1(a)].

Remark. Contrarily to what the above figures could mislead to think, the first branch does
not (necessarily) “starts” at (0,1/Cy41). As shown in Section 4, this is true for n = 1,
but this is generically false for n > 2, for which it starts at (w1,1/Cp41) with wy > 0. A
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B. Derivation of the Love waves boundary value problem. We consider and present
first the linear elastic wave equation (without source term) in R? x [0, +00), see e.g., [1].

In coordinates (x,z), x = (v1,72) € R? 2z = x3 € [0,4+00), we consider solutions
u = (u1, uz, uz) satisfying stress-free (Neumann) boundary condition at the surface z = 0,
pOpu = div T(u) and T(u)‘zzo ce3 =0, (B.1)

where p(x,z) is the mass density, u(x, z,t) = (u1(x,2,t), u2(x, 2,t), us(x, z,t)) the dis-
placement vector, and 7(u) = (7;;)1<i,j<3 the Cauchy stress tensor given by Hookes’ law

7(u) = Ce(u),
in which C(x,2) = (Cijre(X, 2))1<ij k<3 is the stiffness tensor and e = (g45)1<i j<3 the
infinitesimal strain tensor, which is given by the strain—displacement equation

Vu+ Vu'
e(u)= ——.

2
Equivalently, in terms matrices’ coefficients we have

3
mij(u) = > Cijpecre(u)  with  egg(u) 5

k0=1

Note that, in particular, € is symmetric: €;; = €;; for all 4,5 € [1, 3].
Our first but physically natural assumption is that C is symmetric:

Cijkg = Cjikg = Ckgij , for all i,j € [[1, 3]] .

The i-th component of the elastic wave equation (B.1) therefore reads

3
) O, U
pOpu; = (divT(u)), = Z@xj Z Cijle—= ¢ 5 = Z 02, CijreOr,ue  (B.2)

3 3
+ 8{1?[“]6
=1 k=1 k=1

J

and the one of the stress-free boundary condition reads

3
> ClseOr, g
k=1

=0.
z=0

We now introduce our main assumption. Namely, we assume that the medium is a
time-independent, stratified medium that is homogeneous in the (x,y)-plane: p and C
depend only on the variable z. This allows us to write the elastic wave equation (B.2) as

3

2 2 2
pOuus =Y |0:Cizze0: + Y Cijse0n;0: + Y 0:ClgeOuy + Y Cijkeu; O, | s -
/=1 j=1 k=1 j.k=1

Introducing the time and (x,y)-space Fourier transform

() = (&, 2,w) CZ/ /ui(x7z,t)ei“’tei€'xdtdx
R2 JR

(and assuming that everything is well-defined), we formally obtain

3

2 2 2
~w?plty = |0:Cizz00: + Y 1&;Cijae0: + Y 1640:ClgeOr, — Y &u&iCijre | i (B.3)

=1 j=1 k=1 jk=1

and the one of the stress-free boundary condition reads

3 2
> {i > Ciskebitie + Ci33z3z@£}

(=1 k=1

=0. (B.4)
z=0
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In the case of isotropic media, the stiffness tensor C takes the form [1]
Cijne = NGO + 1 (555§ + 555?‘) , (B.5)
where A\ and p are the Lamé parameters. Injecting (B.5) in (B.3)-(B.4), we obtain

0= (()‘ + /‘)E% + M|£|2 - (az,uaz + ,OWQ)) ﬁl + ()‘ + /‘)5152'&2 —1 ()‘82 + az,u) §1ﬂ3 y
0=+ mw&&in + (A + )& + plél® — (9:p0: + pw?)) Gy — i (AD: + D2pu) otz
0= —i (u0: + 9:\) &1ty — i (0 + 0:X) &2tz + (pl€]* — (02 (A + 2p) O: + pw?)) 3,

that is,

A+ )& + plél® = (8:p0; + pu?) A+ &t —i (A\0: + 8210) &1 iy 0
(/\ + N)5152 ()‘ + H)gf + ,“"5‘2 - (Bzﬂaz + /JWZ) —i ()\(92 + azﬂ) 52 ﬁ2 =10
—i(pd; + 0:7) &1 —i (05 + 9:A) &2 nglz - (az (A+2p)0; + PWZ) a3 0
and
151113(0) + 8Zﬁ1(0) =0,
i&213(0) + 0,12(0) =0,
iIA(0) (£11(0) + &212(0)) + (A(0) + 21(0)) 053(0) = 0

Introducing the orthogonal matrix

&/1€l —&1/1€] 0
P&) = &/I&l /1€ 0
0 0 1

and ¢ := (¢1, ¢2, ¢3)" := P(&)(11, 12, 13)", we obtain the equation

—0,110, + pl&|?> — pw? 0 0 P 0
0 —0:p10; + (A + 2:“‘)‘€|2 - pw2 —i[€] (A0 + O p1) g2 =10
0 —i|&] (10; + 9:N) —0:(A+21)0, + plg)? — pw? o3 0
with the boundary condition
9:41(0) =0,
i1€]¢3(0) + 02¢2(0) =0,
iA(0)[€]d2(0) 4 (A(0) + 214(0)) D-3(0) = 0.

In this decoupled system, the component ¢; corresponds to Love waves and (¢2, ¢3) to
Rayleigh waves. Defining the wavenumber k := |£|, we have derived the boundary value
problem (3).

Remark. In [4], the equation —(5.2) in the paper—
~0.(10:¢ + €6 = A¢

is obtained for Love waves in an isotropic medium, where i = u/p and A = w?. Our
equation in (3) differs by the presence of p multiplying A = w? because we started from
the true linear elastic wave equation while an approximated version of it (but equivalent
from the semiclassical point of view) is considered in [4, Sect. 2]. A

Finally, the continuity condition on the solution means that 1, hence ¢, is z-continuous,
while the continuity condition on the stress components xz and yz means here that

T13(u) = p (i§1as + 0.11) and To3(u) = p (iaus + 0,U2)

are continuous and, consequently, that ¢; = €211 — & te satisfies pud, ¢ continuous.
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C. Postponed proofs in the general case.

Proof of Lemma 2.7. We prove it for P, and Q,,, then the result for fn is an immediate
consequence.
First, Py = 1 and Qg = 0 on [0, +00) x [1/Cse, 1/Cy), and they are obviously continuous.
Now, with the M,,’s defined in (33), for which on [0, +00) x [1/Cs,1/Cp) we have

(@nz) =smen (GE) vmenon

we see that the M,,’s are continuous on (0, 400) x [1/Cs,1/Cy), as Py and Qq are, and
an induction immediately gives the claimed continuity on this domain. We are left with
proving the continuity at (0,yo), yo € [1/Cwx,1/Ch), which we also do by induction.

The result holds for m = 0 as explained earlier. Assume now that P,,_; and Qm_1,
m € [1,n], are continuous at (0, o). Then, (P (0,90), @m(0,%0)) = (1,0) and, writing

() = (1) = ((GE0) = 0)) et =20 (g)

we obtain the wanted result as (w,y) — (0, ), since

| ) vt (2520 ),

o [ |

and HMm(w, y)HOO is uniformly bounded on any neighborhood of (0, o). O

Remark. Notice that even though the M,,’s are not continuous since

M, (0,1/Cp) = I # (1 Tm{“?") = Mp(w,1/Cp) s Vw >0,

the P,,’s and the Qm’s are continuous. A

Proof of Lemma 2.8. Since the zeros of f, are in (0, +00) x [w/Ce,w/Cp) by Lemma 2.3
and fr(w,y) = w L f(w,wy) on (0,4+00) x [1/Cs,1/Cy) by definition of f,, we have

{(w,y) : (w,wy) € ker f,} = ker f, N (0, +00) x [1/Css,1/Co).
Since ker f,, C [0,400) x [1/Cso, 1/Co) by definition of f,,, we are left with proving that
ker f,, N {0} x [1/Co0,1/Co) = {(0,1/Cxx0)} -
By definitions, P,(0,3) = 1 and Q,(0,y) = 0 hence f,(0,4) = fiooPos(y) = 0. Hence,

fu(0,y) > 0 if y > 1/Cs and f,,(0,1/Cs) = 0, since vao(y) > 0 if y > 1/Cs and
Uso(1/Cs) = 0. This concludes the proof. O

D. Supplementary results for the simple square well. We recall that v; = vg and
V9 = Uso are defined in (6). More precisely, v1(w, k) € Ry UiR_ and, by Section 1, for a
Love wave to exist at (w, k) we must have vo(w, k) > 0.

D.1. Alternative formula giving H .
Proposition D.1. Let n =1 and £ > 1. The function

(w,+00) = (=D, (€= 1)+ o)

w— wYy(w) = |v1(w, ke(w))| =
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s smooth, bijective, increasing. Consequently,

w—++00 \/UCJ’% kpyq(w \/
Proof. Since sinjwY;(w)H]| cos[wYy(w)H] > 0 by (26), which reads
p1lvr (w, k)| sinf|vy (w, k)| H] = pave(w, k) cos||vy (w, k)|H] and w/Cy <k <w/Cy

for n = 1, and since w — wYy(w) is continuous by Proposition 4.1, for any ¢ there exists
a p such that HwY;(w) € (pm,pm + 7/2) for w > wy. From the formula of wy and the fact
that lim,,\ o, ke(w)/w = 1/Cy by Proposition 4.1, we obtain limy\ ,, wYs(w)H = (£ — 1),
hence p=¢ —1 and

VO, Yw>w, wYiw)H e ((e ), (0= )7+ g) . (D.1)

We are therefore left with proving that the function is strictly increasing, which we do
again by the IFT. Let us define, as before for shortness,

02 _02
r(w,Z) =y | 25>t w?H? — 72 >0
\/ Crc3
on (wg,+00) x (0 — 1)m, (¢ — )7+ 7/2), and gy : (wg, +00) x (£ — V)7, (¢ — )7+ 7/2) b
9w, Z) = i ZsinZ — por(w, Z)cos Z .

For any w, > wy, go(ws, wixYs(wyx)H) = 0 and we have

dge
dY

——(w,Z) = [ + por(w, Z)]sin Z + [Ml + ] cos Z ,

H2
r(w, Z)
hence 4 T (W, ws Yy (wi)H) # 0 again since sinfw, Yy(wy) H] cos|w,Yy(ws)H] > 0.

Therefore, by the IFT there exists a neighborhood U of {w,} s.t. there exists a unique
h € CY(U,R) with h(w,) = wsYe(ws)H and gg(w, h(w)) = 0 on U. This h is (on U) exactly
w — wYy(w)H by definition of k,. Moreover, on U,

-1
W) = - (b)) oun)
A3 — O

" Cr(w, h(w)) ([ + s | + i + par(w, ()] tanlh(w)])

hence h'(wy) > 0, again since tan|w,Yy(ws)H| > 0, concluding the proof of the first claim.
Moreover, by a bootstrapping argument, we obtain that h is smooth.
The second claim is a direct consequence of the first result. O

D.2. On the behaviour of the ke(w)’s when w N\, wy.

Proposition D.2. Let n =1, the k¢(w)’s be defined in Definition 2.2, and the wy’s as in
Proposition 4.1. Define y; : (wg, +00) — (1/C%,1/C1) by ye(w) = ke(w)/w. Then,

lim 0.
N ye( )

w Wy

Proof. By definition, fi(w,y(w)) = 0. Differentiating w — f1(w,ye(w)), we obtain

sin[w|1 (ye(w))|H]
71 (ye(w))|

K2 w | cos|w|y w
(5 s ) coslln () ]

= pi2H 03 (ye(w)) 71 (ye(w)) | sinfw] 21 (ye(w)) | H] + p H|1 (ye(w)) | cosfw |71 (ye(w)) | H],

Yp(w)ye(w) | (peHwis(ye(w)) — p1)
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where |1 (ye(w))], 72(ye(w)) > 0 since |71 (ye(w))| < ye(w) < 1/Ci. Multiplying both sides
by 72(y¢(w)) > 0 then taking the limit w \, wy =

” .
———— T we obtain
V1/C3-1/cz H?

D2 jim g (w =0,
()22 i yiw)
where we used that lim,, y, = 1/C2, hence lim,, 7oy, = 0, lim,,, |1]oy, = \/1/CF — 1/C3,
and lim, ., w|71 (ye(w))|H = (£ = 1)7. O
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