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INVERSE PROBLEM FOR LOVE WAVES

IN A LAYERED, ELASTIC HALF-SPACE

MAARTEN V. DE HOOP, JOSSELIN GARNIER, ALEXEI IANTCHENKO, AND JULIEN RICAUD‡

Abstract. In this paper we study Love waves in a layered, elastic half-space. We first
address the direct problem and we characterize the existence of Love waves through the
dispersion relation. We then address the inverse problem and we show how to recover
the parameters of the elastic medium from the empirical knowledge of the frequency–
wavenumber couples of the Love waves.
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1. Introduction

The paper is motivated by applications in seismology. Surface wave tomography has
been used for a long time in global seismology to image crustal and upper mantle struc-
tures. It consists in extracting the dispersion curves of the surface waves (i.e., their
frequency-dependent velocities). From those curves the three-dimensional map of the pa-
rameters of the elastic medium can be deduced tomographically. This last step is the topic
of our paper.

Surface wave tomography was first used with natural seismic events [26, 7, 2]. It has re-
cently attracted attention because it was shown that it can be used with low-frequency seis-
mic ambient noise [22, 16, 18] or both types of data (ambient-noise and earthquakes) [11].
Indeed, surface waves can be easily extracted from ambient noise signals [21, 8], because
they dominate the Green function between receivers located at the surface and because
ambient seismic noise is mostly excited by superficial sources, such as oceanic microseisms,
ocean swell, and atmospheric disturbances [20]. Finally, the use of coda wave interferom-
etry, i.e., the analysis of the cross correlations of the tails of seismographs generated by
earthquakes and that correspond to multiply scattered waves, has recently opened new
ways to extract the dispersion curves [5].

Most inversion methods assume high-frequency asymptotics [6] while the recent appli-
cations using ambient noise provide rich low-frequency information. That is why we would
like to investigate the inverse problem associated with surface waves in a general frame-
work. In this work, we analyze the inverse problem associated with Love waves for a time-
independent, isotropic, stratified half-space, homogeneous in the (x, y)-plane. We show
how to recover the parameters of the elastic medium from the empirical knowledge of the
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dispersion relation. That is, from the empirical knowledge of the frequency–wavenumber
couples of the Love waves.

The discontinuity that we will assume on the media and our goal to obtain results for
all frequencies yield us to use tools from complex analysis and from analytic perturbation
theory [12]. Moreover, the discontinuity assumption makes standard formulae for Weyl’s
law unavailable to us: we establish them by direct computations and a careful analysis.

We consider the space R2×[0,+∞) and assume that the relevant quantities are constant
on layers of the form R2 × [Hj , Hj+1). More precisely, we consider a medium composed
of n + 1 layers, n ⩾ 1, such that the shear modulus µ > 0 and the density ρ > 0 of the
medium are constant inside each layer1:

(µ(z), ρ(z)) =





(µ1, ρ1) , if 0 ⩽ z < H2 ,

(µj , ρj) , if Hj ⩽ z < Hj+1 , ∀ j ∈ J2, nK,
(µn+1, ρn+1) , if Hn+1 ⩽ z < +∞ ,

(1)

where we recall that Jp, nK = [p, n]∩Z. Or, more concisely with H1 := 0 and Hn+2 := +∞,

∀ j ∈ J1, n+ 1K , (µ(z), ρ(z)) = (µj , ρj) on [Hj , Hj+1) . (2)

Within this setup, we are interested in Love waves. That is, in frequency–wavenumber
couples (ω, k) for which there exists L2((0,+∞))-solutions ϕ to the boundary value prob-
lem {

−
(
µϕ′
)′
(z) +

(
µ(z)k2 − ρ(z)ω2

)
ϕ(z) = 0 , on [0,+∞) ,

ϕ′(0) = 0 ,
(3)

with continuity conditions resulting from the continuity of the displacement and of the
shear and normal stress components: ϕ ∈ C([0,+∞)) and µϕ′ ∈ C([0,+∞)). Without loss
of generality we restrict ourselves to ϕ real-valued: ϕ ∈ L2((0,+∞);R). See Appendix B
for the derivation of this problem, as well as the continuity conditions, from the laws of
physics.

Since µ and ρ are positive, we define

C(z) :=
√
µ(z)/ρ(z) > 0 on [0,+∞) and Cj :=

√
µj/ρj for j ∈ J1, n+ 1K . (4)

We furthermore define

C∞ := Cn+1 = lim
+∞

C = C(z) , ∀ z ⩾ Hn+1 , and C0 := min
[0,+∞)

C . (5)

We emphasize that we do not assume a priori that C is non-decreasing. The only
assumption made on the values of C is that C0 < C∞ as, otherwise, there cannot be Love
waves (see Lemma 2.3).

On each layer (indexed by j), µ = µj and ρ = ρj being positive constants, the eigenvalue
equation becomes ϕ′′ = (k2 − ω2/C2

j )ϕ. Consequently, for j ∈ J0, n+ 1K ∪ {∞}, we define

νj ≡ νj(ω, k) := C−1
j

√
C2
j k

2 − ω2 = ω
√
k2ω−2 − C−2

j with Im νj ⩽ 0 . (6)

On each layer the solutions are either of the form

Aj,+e
+νjz +Aj,−e−νjz (7)

or affine. The requirement of the solution being L2 imposes that on the last layer (which
has parameters ν∞ = νn+1, A∞,+ = An+1,+, and A∞,− = An+1,−) the solution is of the
former form with ν∞ > 0 and A∞,+ = 0. This means that for a Love wave ϕ to exist
at (ω, k), it must verify that k is bounded away from zero by k > ω/C∞ ⩾ 0 and that ϕ
must vanish (exponentially) at infinity.

1with the convention, for n = 1, that J2, 1K = ∅.
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Finally, we define, for each layer j ∈ J1, n+ 1K, its thickness

Tj := Hj+1 −Hj ∈ (0,+∞] , (8)

as well as, for j ∈ J0, n+ 1K ∪ {+∞}, the parameters independent of ω

ν̄j ≡ ν̄j(y) :=
νj(ω, ωy)

ω
=
√
y2 − C−2

j with Im ν̄j ⩽ 0 . (9)

Main results. The boundary condition at z = 0, the L2-restriction, and the continuity
conditions determine, for each ω > 0, the finite set of values of k for which a Love wave
exists at the parameters (ω, k). Summarizing the above, we consider the problem of finding
0 ̸≡ ϕ ≡ ϕω,k ∈ L2((0,+∞)) such that





− d

dz

(
µ

d

dz
ϕ

)
= µω2

(
1/C2 − k2/ω2

)
ϕ , on [0,+∞) , k/ω > 1/C∞ ,

ϕ ∈ C([0,+∞)) with lim
+∞

ϕ = 0 , and µϕ′ ∈ C([0,+∞)) with ϕ′(0) = 0 .
(10)

In the rest of the paper, we will say that “a Love wave exists at (ω, k)”, whenever there
exists an L2-solution ϕω,k ̸≡ 0 to (10) for the couple (ω, k).

The goal of this paper is to recover the profiles of the shear modulus µ > 0 and the
density ρ > 0 of the medium, or at least their ratio, as well as the values Hj ’s, from the
experimental knowledge of the couples (ω, k) at which a Love wave exists.

Looking at these k’s as functions of ω, we will show that they form branches ω 7→ kℓ(ω),
ℓ ⩾ 1, and our first main result is the following.

Theorem 1.1 (Regularity and monotonicity of the branches kℓ). Let n ⩾ 1. For any
ℓ ⩾ 1, there exists ωℓ ⩾ 0 such that the function

(ωℓ,+∞) → (1/C∞, 1/C0)

ω 7→ kℓ(ω)/ω

is analytic, bijective, and increasing.

The precise definition of kℓ’s will be given later. Graphically, this can be seen in the
numerical simulations in Figure A, where each colored curve corresponds to one ℓ and the
ωℓ’s are the values of ω at which the curve “starts” (with value 1/C∞).

The rest of our main results are concerned with recovering the parameters of the
medium. We first have the following immediate consequence of Theorem 1.1.

Corollary 1.2 (Recovering C0 and C∞). Let n ⩾ 1. With the notations of Theorem 1.1,
for all ℓ ⩾ 1, we have

1

C0
= sup

ω>ωℓ

kℓ(ω)

ω
= lim

ω→+∞
kℓ(ω)

ω
and

1

C∞
= inf

ω>ωℓ

kℓ(ω)

ω
= lim

ω→ωℓ

kℓ(ω)

ω
. (11)

Our second main result concerns Weyl’s law and is a complete result for n = 1, 2 but a
partial one for n ⩾ 3, in which case we conjecture the complete result based on a formal
application of Weyl’s law. These results are concerned with the asymptotics, for any ω > 0
and y ∈ (ω/C∞, ω/C0), of the number N(ω, y) of branches kℓ(ω)/ω that are above or equal
to y.

Definition 1.3. Let n ⩾ 1. Let ω > 0 and y ∈ (1/C∞, 1/C0). Define

N(ω, y) := #

{
ℓ ⩾ 1 :

kℓ(ω)

ω
⩾ y

}
= max

{
ℓ ⩾ 1 :

kℓ(ω)

ω
⩾ y >

kℓ+1(ω)

ω

}
. (12)



INVERSE PROBLEM FOR LOVE WAVES IN A LAYERED, ELASTIC HALF-SPACE 4

In this definition, we take the convention kℓ(ω) = −∞ if kℓ is undefined at ω. Note

that, due to the monotonicity of the kℓ(ω)
ω ’s (Theorem 1.1), ω 7→ N(ω, y) is nondecreasing

for any fixed y ∈ (1/C∞, 1/C0).
In order to state concisely our result and conjecture, we reorder the Cj ’s as well as the

associated parameters.

Definition 1.4. Let n ⩾ 1. Define {C̃j}1⩽j⩽n+1 as the nondecreasing reordering of the
sequence {Cj}1⩽j⩽n+1.

There exists a permutation σ of J1, n+ 1K s.t. C̃j = Cσ(j), and we define the sequences

{ν̃j}1⩽j⩽n+1 and {T̃j}1⩽j⩽n+1 by ν̃j = ν̄σ(j) and T̃j = Tσ(j) for j ∈ J1, n+ 1K.
Notice that Cn+1 = C∞ > C̃1 = C0 for n ⩾ 1 and C̃1 = C1 for n = 1.
We are now able to state our main result on Weyl’s law in our setting (for which we

recall that standard formulae are not available since µ and ρ are discontinuous).

Proposition 1.5. Let n = 1. Then, for y ∈ [1/C∞, 1/C0), as ω goes to +∞, we have

N(ω, y) ∼ ω

π
|ν̃1(y)|T̃1 . (13)

Let n = 2. Then, for y ∈ [1/C∞, 1/C0), as ω goes to +∞, we have




N(ω, y) ∼ ω

π
|ν̃1(y)|T̃1 , if y ∈ [1/C̃2, 1/C0) ,

N(ω, y) ∼ ω

π

(
|ν̃1(y)|T̃1 + |ν̃2(y)|T̃2

)
, if y ∈ [1/C∞, 1/C̃2) .

(14)

Let n ⩾ 3 and assume C0 < C̃2. Then, for y ∈ [1/C̃2, 1/C0), as ω goes to +∞, we have

N(ω, y) ∼ ω

π
|ν̃1(y)|T̃1 . (15)

In the case n ⩾ 3, we conjecture the following natural extension to the whole interval

[1/C∞, 1/C0) and without the assumption C0 < C̃2 (that is, allowing several of the Cj ’s
to be equal to C0 := minj Cj).

Conjecture 1.6. Let n ⩾ 3 and y ∈ [1/C∞, 1/C0). Then, as ω goes to +∞ we have

N(ω, y) ∼ ω

π

j∑

p=1

|ν̃p(y)|T̃p , if y ∈ [1/C̃j+1, 1/C̃j) . (16)

Under the assumption that Cn+1 is the largest value taken by the function C, i.e.,
Cj < C∞ = Cn+1 for all J1, nK, and that the Cj ’s are pairwise distinct, these asymptotics
allow to fully determine C as well as the Tj ’s (hence the Hj ’s). If we only assume that
the Cj ’s are pairwise distinct, then all the values Cj < C∞ can be recovered, as well as
the associated Tj ’s. Finally, if the “pairwise distinct” assumption is lifted, one can still
recover the values Cj < C∞ but only the sums of the thicknesses of the layers sharing the
value Cj .

Indeed, the values Cj can be extracted from empirical data (dispersion curves of surface
Love waves can be obtained from earthquakes signals or ambient noise signals as discussed
in the introduction). They are the horizontal lines where the “density” of branches of
frequency–wavenumber couples of the Love waves diverges as the frequency goes to infinity
—see Appendix A for simulated versions of such data. Then, evaluating the number N at
each 1/Cj when the frequency diverges yields the values of the Tj ’s (hence of the Hj ’s).
Finally, for n = 1 and assuming that ρ1 is known (hence µ1 = ρ1C

2
1 too), we additionally

determine µ2 and ρ2. In practice, least-squares or Bayesian inversion can be applied
to noisy or perturbed dispersion curves to estimate the medium parameters in a robust
way and to quantify the uncertainty of the estimation [17, 23, 24]. Our work gives solid
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foundations to this approach by proving the existence and uniqueness of the least-squares
minimum or Bayesian maximum a posteriori.

As a perspective of this work, the authors hope to address similar questions for Rayleigh
waves. This could allow to recover all the Lamé and density parameters of the elastic
medium.

Organisation of the paper. We derive in Section 2 the dispersion relation defining
(up to a constraint) the existence of Love waves. In Section 3, we prove Theorem 3.1, a
detailed version of Theorem 1.1. Doing so, we also prove in this section the case n ⩾ 3 of
Proposition 1.5, see Lemma 3.5.

Because we are able to obtain stronger results for the cases of a simple (n = 1) and of a
double (n = 2) square well, we then focus on these cases. Namely, in Section 4 we study
the simple square well for which all computations can be done explicitly. A direct proof
(by implicit function theorem) of smoothness is given, during which we also obtain the
explicit formulae of the ωℓ’s (see Proposition 4.1), and we show that all the parameters of
the medium can be recovered. Moreover, the proof of Weyl’s law (Proposition 1.5) in this
case is completed at the end of this section (see Subsection 4.4). In Section 5, we focus on
the case of a double square well for which we prove a stronger version of Proposition 1.5
(see Propositions 5.1–5.2).

Appendix A presents numerical simulations. In Appendix B we derive the linear, elastic
equation, the continuity conditions, and the boundary condition in (10). Appendix C
gives two proofs that we postponed for the readability of the paper. Finally, Appendix D
presents two additional results for the simple square well.

2. Characterization of Love waves: dispersion relation and first results

In this section, we characterize Love waves for the settings that we are considering. This
characterization relies on the dispersion relation, which in our context was established in
the literature as early as the celebrated work [10] by Haskell, based on Thomson’s work [25]
describing for the first time the transfer matrix method. Even though this relation is well-
known, we detail here its derivation for several reasons. First, for the convenience of the
reader and because Haskell’s paper [10] being focused on Rayleigh waves (like the one by
Thomson), it gives little details on the computations in the case of Love waves. Second,
because our derivation is slightly different: it is not per se based on the transfer matrix
method even though these matrices appear in our work up to a simple transformation.
Third, and more importantly for our results, because our derivation gives as a direct by-
product the simplicity of the kℓ’s, see Corollary 2.5, which is a key property in some of
our later proofs.

Using the form of the solutions on each layer (see the introduction), the boundary
condition at z = 0, the L2-restriction, and the fact that νn+1 > 0, we obtain the form of
a solution ϕ:

ϕ(z) =





2α1(ω) ch[ν1(ω)z] ,

αj(ω)e
−νj(ω)z + βj(ω)e

+νj(ω)z ,

αn+1(ω)e
−νn+1(ω)z ,

if 0 ⩽ z < H2 ,

if Hj ⩽ z < Hj+1 , ∀ j ∈ J2, nK ,
if Hn+1 ⩽ z < +∞ .

For this introductory presentation, we assume k(ω)/ω ̸= C−1
j for all j, i.e., νj(ω, k) ̸= 0,

but the remaining cases are treated in Proposition 2.1 below. The frequency–wavenumber
couples of the Love waves are the pairs (ω, k) for which non-trivial solutions ϕ exist.
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Omitting the dependencies in ω for shortness, the 2n continuity conditions at the bound-
aries {Hj}2⩽j⩽n+1 yield




2α1 ch[ν1T1] = β2e
+ν2H2 + α2e

−ν2H2 ,

2µ1ν1α1 sh[ν1T1] = µ2ν2
(
β2e

+ν2H2 − α2e
−ν2H2

)
,

βj−1e
+νj−1Hj + αj−1e

−νj−1Hj = βje
+νjHj + αje

−νjHj , ∀ j ∈ J3, nK ,

µj−1νj−1

(
βj−1e

+νj−1Hj − αj−1e
−νj−1Hj

)
= µjνj

(
βje

+νjHj − αje
−νjHj

)
, ∀ j ∈ J3, nK ,

βne
+νnHn+1 + αne

−νnHn+1 = αn+1e
−νn+1Hn+1 ,

µnνn
(
βne

+νnHn+1 − αne
−νnHn+1

)
= −µn+1νn+1αn+1e

−νn+1Hn+1 .

Denoting Aj := µjνj , non-trivial solutions ϕ exist if and only if this linear system has
non-zero solutions, which happens if and only if the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 ch[ν1T1] −e−ν2H2 −e+ν2H2 0 0 · · · · · · 0 0 0
2A1 sh[ν1T1] +A2e

−ν2H2 −A2e
+ν2H2 0 0 · · · · · · 0 0 0

0 +e−ν2H3 +e+ν2H3 −e−ν3H3 −e+ν3H3 0 · · · 0 0 0
0 −A2e

−ν2H3 +A2e
+ν2H3 +A3e

−ν3H3 −A3e
+ν3H3 0 · · · 0 0 0

0 0 0
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . . 0 0 0
0 0 0 · · · 0 +e−νn−1Hn +e+νn−1Hn −e−νnHn −e+νnHn 0
0 0 0 · · · 0 −An−1e

−νn−1Hn +An−1e
+νn−1Hn +Ane

−νnHn −Ane
+νnHn 0

0 0 0 · · · · · · 0 0 +e−νnHn+1 +e+νnHn+1 −e−νn+1Hn+1

0 0 0 · · · · · · 0 0 −Ane
−νnHn+1 +Ane

+νnHn+1 +An+1e
−νn+1Hn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

denoted by Dn, is zero. Note that this determinant appears for instance in [15, (7)–(8)],
even though under a slightly different form. For clarity, we can write it as

Dn = detMn with Mn :=




Lr
1 R2 O2 O2 O2 0

0 L2 R3 O2

O2 O2

O2 Ln−1 Rn 0
0 O2 O2 O2 Ln Rl

n+1



, (17)

where

O2 :=

(
0 0
0 0

)
, Lr

1 := 2

(
ch[ν1T1]

µ1ν1 sh[ν1T1]

)
,

and

∀ j ⩾ 2,





Lj :=

(
+e−νjHj+1 +e+νjHj+1

−µjνje−νjHj+1 +µjνje
+νjHj+1

)
,

Rj :=

(
−e−νjHj −e+νjHj

+µjνje
−νjHj −µjνje+νjHj

)
,

Ll
j := Lj

(
1
0

)
, Lr

j := Lj

(
0
1

)
, Rl

j := Rj

(
1
0

)
, and Rr

j := Rj

(
0
1

)
.

The first important remark is that the submatrix M̃n of Mn, where we remove the first
row and the last column, is a block (upper) triangular matrix with the blocks on the
diagonal being 2µ1ν1 sh[ν1T1] and the Lj ’s. Since detLj = 2µjνj , for j ⩾ 2, we have

det M̃n = 2n sh[ν1T1]

n∏

j=1

µjνj . (18)
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Therefore, if the νj ’s are non-zero, then det M̃n ̸= 0 and rankMn ⩾ 2n− 1. Actually, we
prove this to also hold when some νj ’s are zero and we show in the following proposition
that Dn can be computed recursively.

Proposition 2.1. Let n ∈ N \ {0} and Dn = detMn be defined in (17). Then,

rankMn ⩾ 2n− 1

and, if νji(ω) = 0 for i ∈ J1,mK, νki(ω) ̸= 0 for i ∈ J1, n−mK, and νn+1(ω) > 0, then

(−1)meνn+1Hn+1

2n−m
n−m∏
i=1

µkiνki

Dn
m∏
i=1

µji

= µn+1νn+1Pn +Qn ∈ R , (19)

where the Pn’s and Qn’s are defined recursively by P0 = 1, Q0 = 0, and
(
Pm

Qm

)
=Mm

(
Pm−1

Qm−1

)
for all m ∈ J1, nK , (20)

where

Mm :=





(
ch[νmTm] sh[νmTm]/(µmνm)

µmνm sh[νmTm] ch[νmTm]

)
if νm ̸= 0 ,

(
1 Tm/µm
0 1

)
if νm = 0 .

(21)

Here, we used the convention
∏k2

j=k1
aj = 1 if k1 > k2.

This proposition leads us to define fn : (0,+∞)× R → C by

fn := µn+1νn+1Pn +Qn = µ∞ν∞Pn +Qn , (22)

where we recall that ν∞ = νn+1, since C∞ := Cn+1, and where we define µ∞ := µn+1, so
that the dispersion relation for Love waves reads

fn(ω, k) = 0 . (23)

As explained, a Love wave existing at (ω, k) is equivalent to Dn = 0 for this pair —i.e.,
(ω, k) solves the dispersion relation fn(ω, k) = 0— under the constraint k > ω/C∞:

fn(ω, k) = 0 and k > ω/C∞ . (24)

Remark. Our strategy to derive the dispersion relation is different but somewhat related
to the transfer matrix method, also known as propagator matrix method, which is well-
known in geophysics [25, 10, 9, 13, 3, 14]. Our matrices Mm are, indeed, closely related
to the transfer matrices, derived by Haskell [10] in our context:

am :=

(
cos[krβmTm] i

sin[krβmTm]
µmrβm

iµmrβm sin[krβmTm] cos[krβmTm]

)

(we follow Haskell and Thomson notations “am” for the transfer matrices, which are
nowadays often denoted Tm in the literature). Indeed, our matrices Mm defined by (21)
in Proposition 2.1 are, up to a simple transformation, exactly the transfer matrices am:

Mm =

(
1 0
0 ik

)
am

(
1 0
0 (ik)−1

)
. (25)

Moreover, and of course, our dispersion relation is equivalent to that obtained by the
transfer matrix method. Indeed, using that the rβm ’s in Haskell’s paper are related to our
νj ’s by the relation krβm = iνm when νm ∈ iR− and krβm = −iνm when νm > 0, we have

am =

(
ch[νmTm] ik

µmνm
sh[νmTm]

µmνm
ik sh[νmTm] ch[νmTm]

)
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and consequently the relation A21 = −µnrβnA11 obtained by Haskell for Love waves
through the transfer matrix method —equation (9.9) in Haskell’s paper—, can be written

µnνnA11 ∓ ikA21 = 0 , with “+” when νn > 0 .

Remembering that for a Love wave to exist at (ω, k), the ν associated to the semi-infinite
layer (νn+1 in our paper but νn in Haskell’s) must necessarily be positive, the identity
determined by Haskell is therefore

µnνnA11 + ikA21 = 0 .

Noticing now that Haskell labeled the layers from 1 to n while we labeled them from 1 to
n+ 1, this relation is the same identity as our dispersion relation (23):

µn+1νn+1Pn +Qn = 0 .

Indeed, defining the 2 × 2 matrix M :=
∏n

m=1Mm and using the relation (25) between
Mm and am, we have

M =

(
1 0
0 ik

)
A

(
1 0
0 (ik)−1

)
=

(
A11 (ik)−1A12

ikA21 A22

)
,

thence Pn =M11 = A11 and Qn =M21 = ikA21 by (20). △
Before turning to the proof of Proposition 2.1, let us continue with the definition of the

kℓ(ω)’s appearing in Theorem 1.1.

Definition 2.2 (Definition of the kℓ’s). Let n ∈ N \ {0} and ω > 0. The kℓ(ω)’s are the
(decreasingly ordered) values k ∈ R for which (ω, k) solves the dispersion relation (23).

Notice that in Definition 2.2, we did not put a priori restrictions on k ∈ R. This is
because we actually have the folllowing.

Lemma 2.3. Definition 2.2 is equivalent to defining the kℓ(ω)’s as the (decreasingly or-
dered) values k ∈ [ω/C∞, ω/C0) for which (ω, k) solves the dispersion relation (23).

Note that fn is real valued on (0,+∞)× [ω/C∞, ω/C0).

Proof. On the one hand, (ω, k) being a solution to (23) implies ν0(ω, k) ∈ iR− \ {0}.
Indeed, we would otherwise have νi(ω, k) for j ∈ J1, nK and νn+1(ω, k) > 0. We claim that
it implies Pm ⩾ 1 and Qm ⩾ 0 for any m ∈ J1, nK. This is because the diagonal coefficients
ofMm, in (20), are then greater or equal to 1 while the antidiagonal ones are nonnegative.
Hence, since P0 = 1 and Q0 = 0, a straightforward induction gives the claim. We therefore
obtain the contradiction, to (ω, k) being a zero, that

fn(ω, k) = µn+1νn+1(ω, k)Pn(ω, k) +Qn(ω, k) ⩾ µn+1νn+1(ω, k) > 0 .

On the another hand, (ω, k) being a solution to (23) implies νn+1(ω, k) ⩾ 0. Indeed, we
would otherwise have νj(ω, k) ∈ iR− \ {0} for j ∈ J1, n+ 1K and, consequently,

iR ∋ µn+1νn+1Pn = −Qn ∈ R .
because Pn, Qn ∈ R, since P0 and Q0 are real and Mm has real coefficients (even when the
νm’s are purely imaginary). Thus, since µn+1νn+1 ̸= 0, we obtain Pn = Qn = 0. However,
the matrices Mm are all invertible, since detMm = 1, contradicting (20):

(
0
0

)
=

(
Pn

Qn

)
=Mn · · ·M1

(
1
0

)
. □

The following proposition establishes the relation between the kℓ’s and the Love waves.

Proposition 2.4 (Characterization of Love waves). Let n ∈ N \ {0} and the kℓ(ω)’s be as
in Definition 2.2. Then,

{(ω, k) : a Love wave exists at (ω, k)} = {(ω, kℓ(ω)) : kℓ(ω) ̸= ω/C∞}ω>0, ℓ⩾1 .
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Proof. Using (24) and Lemma 2.3, we obtain

{(ω, k) : a Love wave exists at (ω, k)}
= {(ω, k) ∈ (0,+∞)× (ω/C∞,+∞) : fn(ω, k) = 0}
= {(ω, k) ∈ (0,+∞)× R : ∃ ℓ ⩾ 1 , k = kℓ(ω) ̸= ω/C∞}

=: {(ω, kℓ(ω)) : kℓ(ω) ̸= ω/C∞}ω>0, ℓ⩾1 . □

Remark. The reader can notice the small difference between the definition of the kℓ(ω)’s
and the existence of a Love wave at (ω, k): the former allows kℓ(ω) = ω/C∞, while the
latter excludes (ω, ω/C∞). Even though there are ω’s for which (ω, ω/C∞) is a zero of fn,
there are no Love waves at these couples. Nevertheless, we allow them in the definition
of kℓ as it will be useful. △

Finally, the characterization in Proposition 2.4 together with Lemma 2.3 implies that
a Love wave existing at (ω, k) is equivalent to

fn(ω, k) = 0 and ω/C∞ < k < ω/C0 . (26)

Remark. In particular νn+1 = ν∞ > 0 and ν0 ∈ iR−. Moreover, if {Cj}1⩽j⩽n+1 is a strictly
increasing sequence, then C1 = C0 hence ν1 ∈ iR−. Finally, the lower bound means that
if there is a Cj ⩾ C∞, then the knowledge of the frequency–wavenumber couples of the
Love waves will not allow to recover this value Cj . △

As an immediate corollary of Proposition 2.1, and a key property in some of our proofs,
we obtain the simplicity of the kℓ’s.

Corollary 2.5 (Simplicity of the kℓ’s). Let n ∈ N \ {0}. If a Love wave exists at (ω, k),
i.e., there exists an L2-solution ϕω,k ̸≡ 0 to (10) for the couple (ω, k), then there are no
other Love waves at (ω, k) that are linearly independent of ϕω,k.

We now turn to the proof (by induction) of Proposition 2.1. To that end, for each n we
consider Dn as a function of νn+1: Dn ≡ Dn(νn+1), and we define

D̄n ≡ D̄n(νn+1) := eνn+1Hn+1Dn(νn+1) and D̃n ≡ D̃n(νn+1) :=
eνn+1Hn+1

2n
n∏

j=2
µjνj

Dn . (27)

One of the key points in the proof is that, for any n ⩾ 2, the one-to-last and two-to-last
columns of Mn are exactly the same up to replacing νn by −νn, since “Rl

n(νn) = Rr
n(−νn)”

(see the definitions in (17)). Consequently, expanding the determinant of Dn+1 will make

appear both D̃n(νn+1) and D̃n(−νn+1) which depend very simply on ±νn+1, namely, only
through the two factors µn+1νn+1 appearing in (19).

Proof of Proposition 2.1. We start by the result on the rank of Mn. As explained earlier,

inspecting (17), we see that the submatrix M̃n obtained by removing from Mn the last
column as well as either the first or the second row is a block (upper) triangular matrix

with first diagonal element L̃1 being either 2µ1ν1 sh[ν1T1] or 2 ch[ν1T1], and the Lj ’s,
2 ⩽ j ⩽ n, on the n− 1 other diagonal blocks. Therefore,

det M̃n = L̃1

n∏

j=2

detLj .

Moreover, on one hand, for 2 ⩽ j ⩽ n,

Lj =





(
+e−νjHj+1 +e+νjHj+1

−µjνje−νjHj+1 +µjνje
+νjHj+1

)
if νj ̸= 0

(
Hj+1 1
µj 0

)
otherwise,
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where the formula for νj = 0 is due to the boundary conditions combined with the fact
that the L2-solution is then linear on the j-th layer. Consequently, still for 2 ⩽ j ⩽ n,
detLj = 2µjνj if νj ̸= 0 and detLj = −µj if νj = 0. In particular, detLj ̸= 0 for
2 ⩽ j ⩽ n. On another hand, at least one of the values 2µ1ν1 sh[ν1T1] and 2 ch[ν1T1]

is non-zero. Hence, we choose M̃n (i.e., the row of Mn that we remove to form M̃n) in

such a way that the number L̃1 is non-zero. We have therefore constructed a submatrix

M̃n ∈ C2n−1,2n−1 of Mn with det M̃n = L̃1
∏n

j=2 detLj ̸= 0, hence rankMn ⩾ 2n− 1.
We now turn to the result on the determinant Dn. First, the fact that, for n fixed, the

formulae are real-valued is due to the fact that for a Love wave to exist (for a given n
fixed), it must hold that νn+1 ∈ R and that νj ∈ R ∪ iR for j ⩽ n.

We start by assuming that all νj ’s are non-zero. For n = 1, we have

M1 =

(
2 ch[ν1T1] −e−ν2H2

2µ1ν1 sh[ν1T1] µ2ν2e
−ν2H2

)
,

hence eν2H2D1/2 = µ2ν2 ch[ν1T1] + µ1ν1 sh[ν1T1] and the claim (19) is verified. Assume
now that (19) holds for some n ⩾ 1. Then, using again Aj = µjνj for shortness, from

Dn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
.
.
.

.

.

.

0 0

−e
+νn+1Hn+1 0

−An+1e
+νn+1Hn+1 0

0 · · · 0 +e
−νn+1Hn+2 +e

+νn+1Hn+2 −e
−νn+2Hn+2

0 · · · 0 −An+1e
−νn+1Hn+2 +An+1e

+νn+1Hn+2 +An+2e
−νn+2Hn+2

Mn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

we obtain

D̄n+1 = An+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
.
.
.

0

−e
+νn+1Hn+1

−An+1e
+νn+1Hn+1

0 · · · 0 +e
−νn+1Hn+2 +e

+νn+1Hn+2

Mn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
.
.
.

0

−e
+νn+1Hn+1

−An+1e
+νn+1Hn+1

0 · · · 0 −An+1e
−νn+1Hn+2 +An+1e

+νn+1Hn+2

Mn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= An+2

(
e+νn+1Hn+2Dn(νn+1)− e−νn+1Hn+2Dn(−νn+1)

)

+An+1

(
e+νn+1Hn+2Dn(νn+1) + e−νn+1Hn+2Dn(−νn+1)

)

= An+2

(
e+νn+1Tn+1D̄n(νn+1)− e−νn+1Tn+1D̄n(−νn+1)

)

+An+1

(
e+νn+1Tn+1D̄n(νn+1) + e−νn+1Tn+1D̄n(−νn+1)

)
,

where we used, for the one-to-last equality, that the last column of Mn is the same as the
column in the top-right block up to changing νn+1 into −νn+1. Consequently,

D̃n+1 =
D̄n+1

2n+1
n+1∏
j=2

µjνj

=
An+2

An+1

(
e+νn+1Tn+1

2

D̄n(νn+1)

2n
n∏

j=2
Aj

− e−νn+1Tn+1

2

D̄n(−νn+1)

2n
n∏

j=2
Aj

)

+
e+νn+1Tn+1

2

D̄n(νn+1)

2n
n∏

j=2
Aj

+
e−νn+1Tn+1

2

D̄n(−νn+1)

2n
n∏

j=2
Aj

=

(
1 +

An+2

An+1

)
e+νn+1Tn+1

2
D̃n(νn+1) +

(
1− An+2

An+1

)
e−νn+1Tn+1

2
D̃n(−νn+1) ,
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and we can now use the induction assumption

D̃n(±νn+1) = (±An+1Pn−1 +Qn−1) ch[νnTn] +
(
A2

nPn−1 ±An+1Qn−1

) sh[νnTn]
An

to obtain

D̃n+1 =

(
1 +

An+2

An+1

)
e+νn+1Tn+1

2
(An+1Pn−1 +Qn−1) ch[νnTn]

+

(
1− An+2

An+1

)
e−νn+1Tn+1

2
(−An+1Pn−1 +Qn−1) ch[νnTn]

+

(
1 +

An+2

An+1

)
e+νn+1Tn+1

2

(
A2

nPn−1 +An+1Qn−1

) sh[νnTn]
An

+

(
1− An+2

An+1

)
e−νn+1Tn+1

2

(
A2

nPn−1 −An+1Qn−1

) sh[νnTn]
An

=

[
An+2

(
Pn−1 ch[νnTn] +Qn−1

sh[νnTn]

An

)

+

(
A2

nPn−1
sh[νnTn]

An
+Qn−1 ch[νnTn]

)]
ch[νn+1Tn+1]

+

[
A2

n+1

(
Pn−1 ch[νnTn] +Qn−1

sh[νnTn]

An

)

+An+2

(
A2

nPn−1
sh[νnTn]

An
+Qn−1 ch[νnTn]

)]
sh[νn+1Tn+1]

An+1

= (An+2Pn +Qn) ch[νn+1Tn+1] +
(
A2

n+1Pn +An+2Qn

) sh[νn+1Tn+1]

An+1
.

This concludes the proof in the case
∏n

j=2 νj ̸= 0, since it is exactly

eνn+2Hn+2

2n+1
n+1∏
j=2

µjνj

Dn+1 = D̃n+1 = µn+2νn+2Pn+1 +Qn+1 ,

where we used the definitions of Pn+1 and Qn+1 given in (20). Namely,




Pn+1 = Pn ch[νn+1Tn+1] +Qn

sh[νn+1Tn+1]

µn+1νn+1

Qn+1 = µn+1νn+1Pn sh[νn+1Tn+1] +Qn ch[νn+1Tn+1] .

We now prove the case “νj = 0”. Roughly speaking, we prove that (19) in such limit
case is nothing else than passing to the limit νj → 0 in the formula for

∏n
j=2 νj ̸= 0.

The r.h.s. of (19) passes to the limit since the formula ofMm in (20) at νm = 0 is indeed
the limit νm → 0 of its formula for νm ̸= 0. For the l.h.s., we will expand the determinant
Dn according to columns where νj appears for both the general case and the case νj = 0.
Before doing so, we treat apart the case of ν1 since it appears only in the first column. In
the general case it appears —see (17)— through

Lr
1 := 2

(
ch[ν1T2]

µ1ν1 sh[ν1T2]

)
,

while in the case ν1 = 0 the solution is linear on the first layer thence, by the boundary

conditions, Lr
1 is replaced by

(
2
0

)
. Since the latter is nothing than the limit, when ν1 → 0
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of the former, we of course have the claim:

lim
ν1→0

eνn+1Hn+1

2n
n∏

j=2
µjνj

Dn(ν1) =
eνn+1Hn+1

2n
n∏

j=2
µjνj

Dn(ν1 = 0) .

For j > 1, we first notice that νj appears only at the (2j−2)-th and (2j−1)-th column

of Dn. Thus, omitting the dependency in n, we define D̃p as the minor where we remove

the (2j− 2)-th column and the p-th row, and D̃q
p = D̃p

q as the minor where we remove the
(2j − 2)-th and (2j − 1)-th columns and the p-th and q-th rows. Moreover, we note that
if νj = 0, then the solution is linear on the j-th layer thence, by the boundary conditions,
the determinant is given by (17) but with

Lj :=

(
+e−νjHj+1 +e+νjHj+1

−µjνje−νjHj+1 +µjνje
+νjHj+1

)
and Rj :=

(
−e−νjHj −e+νjHj

+µjνje
−νjHj −µjνje+νjHj

)

replaced by

Lj(νj = 0) :=

(
Hj+1 1
µj 0

)
and Rj(νj = 0) :=

(
−Hj −1
−µj 0

)
.

We first expand Dn when νj ̸= 0 according to the (2j − 2)-th and (2j − 1)-th columns
and obtain

Dn = −
(
−e−νjHj

)
D̃2j−3 + µjνje

−νjHjD̃2j−2 − e−νjHj+1D̃2j−1 +
(
−µjνje−νjHj+1

)
D̃2j

= e−νjHj

[
−
(
−µjνje+νjHj

)
D̃2j−2

2j−3 + e+νjHj+1D̃2j−1
2j−3 − µjνje

+νjHj+1D̃2j
2j−3

]

+ µjνje
−νjHj

[
−
(
−e+νjHj

)
D̃2j−3

2j−2 + e+νjHj+1D̃2j−1
2j−2 − µjνje

+νjHj+1D̃2j
2j−2

]

− e−νjHj+1

[
−
(
−e+νjHj

)
D̃2j−3

2j−1 +
(
−µjνje+νjHj

)
D̃2j−2

2j−1 − µjνje
+νjHj+1D̃2j

2j−1

]

− µjνje
−νjHj+1

[
−
(
−e+νjHj

)
D̃2j−3

2j +
(
−µjνje+νjHj

)
D̃2j−2

2j − e+νjHj+1D̃2j−1
2j

]

= 2µjνjD̃
2j−2
2j−3 + 2µjνjD̃

2j
2j−1 + 2µjνj ch [νjTj ] D̃

2j−1
2j−2 − 2µjνj ch [νjTj ] D̃

2j
2j−3

+ 2 sh [νjTj ] D̃
2j−1
2j−3 − 2µ2jν

2
j sh [νjTj ] D̃

2j
2j−2 .

Thus,

Dn

2µjνj
= D̃2j−2

2j−3 + D̃2j
2j−1 + ch [νjTj ] D̃

2j−1
2j−2 − ch [νjTj ] D̃

2j
2j−3

+
sh [νjTj ]

µjνj
D̃2j−1

2j−3 − µjνj sh [νjTj ] D̃
2j
2j−2

−→
νj→0

D̃2j−2
2j−3 − D̃2j

2j−3 + D̃2j−1
2j−2 + D̃2j

2j−1 +
Tj
µj
D̃2j−1

2j−3 .

We now expand Dn when νj = 0 according to (2j − 2)-th and (2j − 1)-th columns:

Dn(νj = 0) = − (−Hj) D̃2j−3 + (−µj) D̃2j−2 −Hj+1D̃2j−1 + µjD̃2j

= Hj

[
−0× D̃2j−2

2j−3 + 1× D̃2j−1
2j−3 − 0× D̃2j

2j−3

]

− µj

[
−(−1)× D̃2j−3

2j−2 + 1× D̃2j−1
2j−2 − 0× D̃2j

2j−2

]

−Hj+1

[
−(−1)D̃2j−3

2j−1 + 0× D̃2j−2
2j−1 − 0× D̃2j

2j−1

]

+ µj

[
−(−1)D̃2j−3

2j + 0× D̃2j−2
2j − 1× D̃2j−1

2j

]

= −TjD̃2j−3
2j−1 − µj

[
D̃2j−2

2j−3 + D̃2j−1
2j−2 − D̃2j

2j−3 + D̃2j
2j−1

]
.
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Thus, this concludes the proof of (19) since we have

−Dn(νj = 0)

µj
= D̃2j−2

2j−3 − D̃2j
2j−3 + D̃2j−1

2j−2 + D̃2j
2j−1 +

Tj
µj
D̃2j−1

2j−3 = lim
νj→0

Dn

2µjνj
. □

To conclude this section, and because they will be useful, we define the following func-
tions and give some of their properties, the proofs of which are postponed to Appendix C.

Definition 2.6. Let n ∈ N \ {0}. Let Pm, Qm, fn : (0,+∞) × [ω/C∞, ω/C0) → R,
m ∈ J0, nK, be respectively defined by the formulae in Proposition 2.1 and in (22), and ν̄∞
be defined in (9). Define on [0,+∞)× [1/C∞, 1/C0) the three (real-valued) functions P̃m,

Q̃m, m ∈ J0, nK, and f̃n by
{
P̃m(ω, y) = Pm(ω, ωy) on (0,+∞)× [1/C∞, 1/C0) ,

P̃m(0, y) = 1 for y ∈ [1/C∞, 1/C0) ,
(28)

{
Q̃m(ω, y) = ω−1Qm(ω, ωy) on (0,+∞)× [1/C∞, 1/C0) ,

Q̃m(0, y) = 0 for y ∈ [1/C∞, 1/C0) ,
(29)

and {
f̃n(ω, y) = ω−1fn(ω, ωy) on (0,+∞)× [1/C∞, 1/C0) ,

f̃n(0, y) = µ∞ν̄∞(y) for y ∈ [1/C∞, 1/C0) ,
(30)

i.e.,
f̃n(ω, y) = µ∞ν̄∞(y)P̃n(ω, y) + Q̃n(ω, y) . (31)

Lemma 2.7. The functions (of two variables) P̃m, Q̃m, m ∈ J0, nK, and f̃n are continuous.

Lemma 2.8. ker f̃n = {(0, 1/C∞)} ∪ {(ω, y) : (ω, ωy) ∈ ker fn}.

3. Regularity and monotonicity of branches of wavenumbers

The aim here is to prove regularity in ω of the branches kℓ —and of the associated
functions ϕℓ,ω— and the monotonicity of the functions ω 7→ kℓ(ω)/ω. Namely, the goal is
to prove the following result.

Theorem 3.1. Let n ∈ N \ {0} and the kℓ’s be as in Definition 2.2. Assume moreover

C0 < C̃2 if n ⩾ 3. Then, for any ℓ ⩾ 1 there exists ωℓ ⩾ 0 such that the function

(ωℓ,+∞) → (1/C∞, 1/C0)

ω 7→ kℓ(ω)/ω

is analytic, bijective, and increasing, and that kℓ(ωℓ) = ωℓ/C∞ if ωℓ > 0.
Moreover, a Love wave exists at (ω, k) if and only if

(ω, k) ∈ {(ω, kℓ(ω)) : ω > ωℓ}ℓ⩾1 .

The strategy is to first prove that the kℓ’s are in finite number for any fixed ω. Then, to
deduce from it their regularity by analytic perturbation theory and finally to prove that
the derivative of kℓ(ω)/ω is positive.

We believe the restriction C0 < C̃2 if n ⩾ 3 to be purely technical and, in any case, it
is only needed for the proof of Lemma 3.5.

First, we have that at any fixed ω the kℓ(ω)’s are in finite number.

Proposition 3.2. Let n ∈ N \ {0}, ω > 0, and the kℓ(ω)’s be as in Definition 2.2. Then,
there is a finite number of kℓ(ω)’s.

The idea of the proof is to extend holomorphically fn to (part of) the complex plane
and to prove that one of the kℓ being an accumulation points of the kernel of y 7→ fn(ω, y)
would yield a contradiction on this extension.
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Proof. We fix ω > 0 and, for shortness, we omit the dependence in ω of the kℓ’s in this
proof. The kℓ’s being bounded (Lemma 2.3), them being in finite number is equivalent to
them being isolated.

Assume on the contrary that there exists a kℓ, denoted ωk⋆, that is an accumulation
point of the kernel of y 7→ fn(ω, y), i.e., of the set {kℓ}j⩾1. Since the kℓ’s are simple
(Corollary 2.5) —that is, ℓ ̸= ℓ′ ⇒ kℓ ̸= kℓ′—, the accumulation point ωk⋆ is in particular
simple2 and there exists a subsequence (denoted the same) such that kℓ → ωk⋆ as ℓ→ +∞
but kℓ ̸= ωk⋆ for all ℓ.

We now define C− < C+ such that {kℓ}j⩾1 ∩ [ω/C+, ω/C−] also admits ωk⋆ as an
accumulation point, that 1/Cj ̸∈ (1/C+, 1/C−) for all j, and that C0 < C− < C+ < C∞.
To define them properly, we distinguish two cases: either k⋆ ̸= 1/Cj for all j or k⋆ = 1/Cj

for some j, in which case we have C∞ ̸= Cj ̸= C0 by (26). See Figure 1 for a sketch of
the definition. On the one hand, when k⋆ ̸= 1/Cj for all j, then the required properties
are satisfied by C− := k⋆ − ε < C+ := k⋆ + ε for ε > 0 small enough. On the other
hand, when there exists a Cj such that k⋆ = 1/Cj , we distinguish two subcases. Either
{kℓ}j⩾1 ∩ [ωk⋆, ωk⋆ + 1) admits ωk⋆ as an accumulation point, in which case we define
C+ := Cj = 1/k⋆ and C− as the largest Cj ’s such that k⋆ < 1/Cj , with the special case
that, if this results in C− = C0 —hence k⋆ < 1/C0—, then we replace the value of C−
by C− = 2/(k⋆ + 1/C0) in order to ensure C0 < C− < C+ < C∞. Or ωk⋆ is not an
accumulation point of {kℓ}j⩾1 ∩ [ωk⋆, ωk⋆ + 1), then it is one of {kℓ}j⩾1 ∩ (ωk⋆ − 1, ωk⋆]
and we define C− := Cj = 1/k⋆ and C+ as the smallest Cj ’s such that k⋆ > 1/Cj , with
the special case that, if this results in C+ = C∞ —hence k⋆ > 1/C∞—, then we replace
the value of C+ by C+ = 2/(k⋆ + 1/C∞) in order to ensure C0 < C− < C+ < C∞.

ω/C∞
. . .

ω/Ck ω/Cj ω/Cℓ
. . .

ω/C0

ωk⋆ω/C+ ω/C−

ω/C∞
. . .

ω/Ck ω/Cj ω/Cℓ
. . .

ω/C0

ωk⋆ = ω/C+ ω/C−
××××××××××××

ω/C∞
. . .

ω/Ck ω/Cj ω/Cℓ
. . .

ω/C0

ωk⋆ = ω/C−ω/C+

× × ××××××××××

Figure 1. Sketch of the definition of C±. Top: k⋆ ̸= 1/Cj for all j.
Center & bottom: k⋆ = 1/Cj for some j, the two subcases.

Next, we consider fn restricted to the interval [ω/C+, ω/C−], which is a subset of
(ω/C∞, ω/C0) due to the careful definitions of C±. That is, working with kℓ/ω instead
of kℓ itself, we consider the function hn : [1/C+, 1/C−] → R defined by hn(y) := fn(ω, ωy).
Recalling the definition (9) of ν̄j , every νj appearing in hn is of the form νj(ω, ωy) = ων̄j(y).
The fact that we restrict hn to [1/C+, 1/C−] implies that each ν̄j is either real or purely
imaginary on the whole interval [1/C+, 1/C−].

We now define Ω ⊂ C such that C \ R ⊂ Ω, that there exists a neighborhood of k⋆
inside Ω, and that the extension of hn (hence keeping the definitions of the ν̄j ’s fixed to

2Finite multiplicity would actually be enough.
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their definition on [1/C+, 1/C−]) to Ω is holomorphic. We choose

Ω := C \ ((−∞, 1/C+ − δ] ∪ [1/C− + δ,+∞)) = (C \ R) ∪ (1/C+ − δ, 1/C− + δ) ,

with δ = 0 if there are no j’s such that k⋆ = 1/Cj and with 0 < δ < 1/C+ − 1/C∞
otherwise. The key point for our argument is that when k⋆ = 1/Cj , even though the
corresponding “fixed” ν̄j is not holomorphic on any complex (open) neighborhood of k⋆

(because ν̄j is, on Ω, either the function
√

· − C−2
j or the function −i

√
C−2
j − ·), the

function hn on the other hand is holomorphic on Ω in both cases as a sum-product of
the “fixed” functions ν̄∞, ch[ων̄jTj ], sh[ων̄jTj ]/(ων̄j), and ων̄j sh[ων̄jTj ], which are all
holomorphic on Ω: for ν̄∞, it is because the square root function is holomorphic on
C \ (−∞, 0] and because 1/C+ − δ > 1/C∞; for ch[ων̄jTj ] and sh[ων̄jTj ]/(ων̄j) because of
the well-known properties that z 7→ ch[

√
z] and z 7→ sh[

√
z]/

√
z are holomorphic on C; and

for ων̄j sh[ων̄jTj ] = (ων̄j)
2 sh[ων̄jTj ]/(ων̄j) as the product of two holomorphic functions

on C.
Given that Ω is a non-empty, connected, open subset of the complex plane, that hn is

holomorphic on Ω, and that the set {z ∈ Ω : hn(z) = 0} contains an accumulation point
—namely, k⋆—, the Identity Theorem implies that hn ≡ 0 on Ω.

We are now left with proving that hn cannot be trivial everywhere on Ω. Take z ∈ C
such that z2 = C−2

∞ + iω−2η2, η > 0. Then, z ∈ Ω and

νj(ω, ωz) = ων̄j(z) =
√
iη2 = ηei

π
4

for the j’s such that Cj = C∞, while for the other j’s we have

νj(ω, ωz) = ων̄j(z) =





ω
√
z2 − C−2

j

or

−iω
√
C−2
j − z2

=





η

√

+i+
C−2∞ − C−2

j

(η/ω)2

or

−iη

√

−i−
C−2∞ − C−2

j

(η/ω)2

∼
η→+∞





+ηei
π
4

or

−ηeiπ4
.

In particular, defining εj ∈ {±1} such that νj(ω, ωz) = ων̄j(z) ∼ εjηe
iπ
4 , we have

| ch[ων̄j(z)Tj ]| ∼
∣∣∣ch
[
εjηTje

iπ
4

]∣∣∣ =
∣∣∣cos[ηTj/

√
2] ch[ηTj/

√
2] + i sin[ηTj/

√
2] sh[ηTj/

√
2]
∣∣∣

=

√
ch2[ηTj/

√
2]− sin2[ηTj/

√
2] > 0

and, as η → +∞,

ων̄j(z) th[ων̄j(z)Tj ] ∼ +ηei
π
4 .

Therefore, for these z, and when η → +∞, we have the contradiction to hn(z) = 0 that

hn(z)
n∏

j=1
ch[ων̄j(z)Tj ]

∼ Knηe
iπ
4 ̸= 0 ,

where

Kn := η−1e−iπ
4

(
µn+1ηe

iπ
4

1

)
·
([

n∏

m=1

(
1 (µmηe

iπ
4 )−1

µmηe
iπ
4 1

)](
1
0

))

is a positive constant depending only on the µj ’s, j ∈ J1, n + 1K. In particular, it is

independent of η and of ei
π
4 , since an easy induction gives

n∏

m=1

(
1 (µmηe

iπ
4 )−1

µmηe
iπ
4 1

)
=

(
K11

n K12
n (ηei

π
4 )−1

K21
n ηe

iπ
4 K22

n

)
,



INVERSE PROBLEM FOR LOVE WAVES IN A LAYERED, ELASTIC HALF-SPACE 16

where the Kij
n ’s are independent of η and of ei

π
4 . □

Remark. For instance, for n = 2, K2 = µ1 + µ2 + µ3 + µ1µ3/µ2 > 0. △

We now state our regularity result.

Proposition 3.3. Let n ∈ N \ {0}. The branches ω 7→ (k(ω), ϕ(ω)) satisfying (10) exist
on an open interval, and both components k and ϕ are analytic. Moreover, the branches
of eigenvalues do not cross.

For this result, we use the fact that, for the kℓ’s restricted to (ω/C∞, ω/C0), k
2
ℓ are

(pseudo-)eigenvalues of the problem in (3) and we apply analytic perturbation theory.
This theory being nowadays standard, for shortness we only give a sketch of the prove.

Sketch of the proof. First, by Proposition 2.4, for any fixed ω we identify

{k(ω) : ∃ϕω ∈ L2 , (k(ω), ϕω) satisfies (10)} = {kℓ(ω) : kℓ(ω) ̸= ω/C∞}ℓ⩾1 .

Consequently, for the rest of this sketch we write (kℓ(ω), ϕℓ,ω) instead of (k(ω), ϕ(ω)).
A point to be careful about is that we do not have a (proper) eigenvalue problem, but

a generalized one, due to the function µ multiplying the (pseudo-)eigenvalue k2ℓ . However,
writing (10) as Tu = λAu with T = −∂zµ∂z − ω2ρ, λ = k2ℓ , and A = −µ, we can apply
the arguments of [12, Chapter 7 §6] to bring ourselves back to the standard analytic
perturbation theory.

Now, by Corollary 2.5 and Proposition 3.2, the eigenvalues are simple and isolated.
Therefore, by analytic perturbation theory (see, e.g., [19, Theorem XII.8 (Kato–Rellich
theorem)] or the first sections of [12, Chapter 7]), the branches ω 7→ (kℓ(ω)

2, ϕℓ,ω) exist
on an open interval, both components ω 7→ kℓ(ω)

2 and ω 7→ ϕℓ,ω are analytic, and kℓ(ω)
2

are simple and isolated. In particular, we have no crossing of branches of eigenvalues.
We then conclude by noticing that, since kℓ(ω) > ω/C∞ > 0 by Lemma 2.3, the

analyticity of k2ℓ > 0 implies the one of kℓ =
√
k2ℓ . □

With all these results, we can now prove Theorem 3.1.

Proof of Theorem 3.1. The second part of the statement is a direct consequence of the
first one combined with Proposition 2.4.

The analyticity has been proved in Proposition 3.3. The proof of the rest of the first
part is split into two steps. First, we prove the strict monotonicity of kℓ(ω)/ω on any open
interval where kℓ exists, using the “(pseudo-)eigenvalue” property of the kℓ. Second, using
their “zeros of a function” property, we deduce the bijectivity.

Step 1. We start again by identifying, for any ω,

{kℓ(ω) : kℓ(ω) ̸= ω/C∞}ℓ⩾1 = {k(ω) : ∃ϕ(ω) , (k(ω), ϕ(ω)) satisfies (10)}

by Proposition 2.4. We thus write (kℓ(ω), ϕℓ,ω) instead of (k(ω), ϕ(ω)).
By definition of ϕℓ,ω, we have −∂zµ∂zϕℓ,ω − ω2ρϕℓ,ω = −k2ℓ (ω)µϕℓ,ω. Hence,

−k2ℓ (ω) ||
√
µϕℓ,ω||22 =

∣∣∣∣√µϕ′ℓ,ω
∣∣∣∣2
2
− ω2 ||√ρϕℓ,ω||22 > −ω2 ||√ρϕℓ,ω||22 , (32)

with a strict inequality as otherwise we would have µ−||ϕ′ℓ,ω||22 ⩽ ||√µϕ′ℓ,ω||22 = 0 hence

ϕℓ,ω constant, since µ− > 0, and the conditions on ϕℓ,ω in (10) would yield ϕℓ,ω = 0, a
contradiction to its definition.

By Proposition 3.3, we can differentiate both sides of the equality in (32) w.r.t. ω:

−2kℓ(ω)∂ωkℓ(ω) ||
√
µϕℓ,ω||22 = −2ω ||√ρϕℓ,ω||22 ,
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where we used again the eigenvalue equation to cancel terms. Consequently, and since
kℓ(ω)||

√
µϕℓ,ω||22 > 0 and ω||√ρϕℓ,ω||22 > 0,

∂ωkℓ(ω) =
ω
∣∣∣∣√ρϕℓ,ω

∣∣∣∣2
2

kℓ(ω)
∣∣∣∣√µϕℓ,ω

∣∣∣∣2
2

> 0 .

We now compute the derivative of kℓ(ω)/ω and obtain

∂ω

(
kℓ(ω)

ω

)
=
kℓ(ω)

ω2

[
ω∂ωkℓ(ω)

kℓ(ω)
− 1

]
=
kℓ(ω)

ω2

[
ω2
∣∣∣∣√ρϕℓ,ω

∣∣∣∣2
2

k2ℓ (ω)
∣∣∣∣√µϕℓ,ω

∣∣∣∣2
2

− 1

]
> 0

by the inequality in (32). This proves that, for any ℓ, ω 7→ kℓ(ω)/ω is strictly increasing
on any (open) interval where kℓ exists.

Step 2. Consider an open interval on which kℓ exists by Proposition 3.3, and let
(ω−

ℓ , ω
+
ℓ ) ⊂ (0,+∞) be its largest (open) superset on which kℓ exists. Still by Propo-

sition 3.3, kℓ is continuous on (ω−
ℓ , ω

+
ℓ ), hence kℓ(ω)/ω too, and, by Step 1, kℓ(ω)/ω is

strictly increasing on (ω−
ℓ , ω

+
ℓ ). Moreover, being bounded from below and from above

—with values in [1/C∞, 1/C0), see Lemma 2.3—, it admits limits L−
ℓ = limω↘ω−

ℓ
kℓ(ω)/ω

and L+
ℓ = limω↗ω+

ℓ
kℓ(ω)/ω. We now prove that L−

ℓ = 1/C∞, L+
ℓ = 1/C0, and ω

+
ℓ = +∞.

First, suppose ω+
ℓ < +∞. By continuity of f̃n, we would have

f̃n(ω
+
ℓ , L

+
ℓ ) = f̃n

(
lim

ω↗ω+
ℓ

(ω, kℓ(ω)/ω)

)
= lim

ω↗ω+
ℓ

f̃n(ω, kℓ(ω)/ω) = 0 .

If L+
ℓ = 1/C0, this contradicts the fact that f̃n has no zeros of the form (ω, ω/C0), and if

L+
ℓ < 1/C0, this contradicts that (ω

−
ℓ , ω

+
ℓ ) is the largest open interval on which kℓ exists

since it would actually exist on (ω−
ℓ , ω

+
ℓ ] and, by Proposition 3.3, also on an open superset

of (ω−
ℓ , ω

+
ℓ ]. Thus, we proved that ω+

ℓ = +∞.

Second, suppose L−
ℓ > 1/C∞. If ω−

ℓ > 0, then the continuity of f̃n gives similarly the

contradiction that kℓ exists at ω
−
ℓ . If ω

−
ℓ = 0, for any y > 1/C∞, we notice that

f̃n(ω, y) ∼
ω↘0

µ∞ν̄∞(y) +O(ω2) ,

which is positive for ω small enough, contradicting that kℓ exists on (ω−
ℓ , ω

−
ℓ + ε) = (0, ε).

Thus, we proved that L−
ℓ = 1/C∞. A by product, as a direct consequence of L−

ℓ = 1/C∞
and the confinuity of f̃n, is that there exists ωℓ = ω−

ℓ ⩾ 0 such that kℓ(ωℓ) = ωℓ/C∞ if
ωℓ > 0 and kℓ(ω) → 0 when ω ↘ 0 if ωℓ = 0. Note that we do not have equality in the
latter case only because the kℓ’s have been defined only for ω > 0.

Third, suppose that there exists a p ⩾ 1 such that L+
p < 1/C0, and consider the

smallest of such p’s. Then, L+
ℓ ⩽ L+

p < 1/C0 for all ℓ ⩾ p, since the branches kℓ do

not cross by Proposition 3.3 and are continuous, and L+
ℓ = 1/C0 for 1 ⩽ ℓ < p. Thus,

on the one hand for ℓ ⩾ p the branches kℓ lie in (1/C∞, L+
p ), while on the other hand

for ℓ ⩾ p there exists L ∈ (L+
p , 1/C0) —one can choose L = (max{1/C̃2, L

+
p } + 1/C0)/2

for example, so that L > 1/C̃2 as it will be needed— such that for ω large enough the
branches kℓ lie in (L, 1/C0). This implies that for ω large enough none of the branches

kℓ, ℓ ⩾ 1, lies in [L+
p , L]. That is, f̃n has no zeros (ω, y) with y ∈ [L+

p , L] and where

[L+
p , L] ∩ [1/C̃2, 1/C0) ̸= ∅, contradicting Proposition 3.4 stated below, and consequently

proving that L+
ℓ = 1/C0 for all ℓ ⩾ 1. This concludes the proof of Theorem 3.1. □

Proposition 3.4. Let n ∈ N \ {0} and f̃n be as in Definition 2.6. Assume moreover

C0 < C̃2 if n ⩾ 3. Then, for y ∈ [1/C̃2, 1/C0), the function ω 7→ f̃n(ω, y) admits a
sequence of zeros diverging to infinity.
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The cases n = 1, 2 of this porposition will be proved later —see Section 4.4 and Propo-
sition 5.1— for all y ∈ [1/C∞, 1/C0). The proof for n ⩾ 3 is a direct consequence of the
following lemma, which also yields the result of Proposition 1.5 for n ⩾ 3.

Lemma 3.5. Let n ⩾ 3. Assume C0 < C̃2 and fix y ∈ [1/C̃2, 1/C0).

(i) If C0 = C1, then on each interval
[

pπ

|ν̄1(y)|T1
,
(p+ 1)π

|ν̄1(y)|T1

)
, p ⩾ 0 ,

ω 7→ f̃n(ω, y) admits exactly one zero, which belongs to
[

pπ
|ν̄1(y)|T1

, (p+1/2)π
|ν̄1(y)|T1

)
.

(ii) Otherwise, i.e., if C0 = Ck for k ∈ J2, nK, then on each interval
[

pπ

|ν̄k(y)|Tk
,
(p+ 1)π

|ν̄k(y)|Tk

)
, p ⩾ 0 ,

ω 7→ f̃n(ω, y) admits, at least for large p’s, exactly one zero. These zeros generi-

cally belong either all to
[

pπ
|ν̄k(y)|Tk

, (p+1/2)π
|ν̄k(y)|Tk

)
or all to

(
(p+1/2)π
|ν̄k(y)|Tk

, (p+1)π
|ν̄k(y)|Tk

)
.

Proof. We define M̄m by M̄m(0, y) = I2 for y ∈ [1/C∞, 1/C0) and, for any ω > 0, by

M̄m(ω, y) :=





(
ch[ων̄m(y)Tm] sh[ων̄m(y)Tm]

µmν̄m(y)

µmν̄m(y) sh[ων̄m(y)Tm] ch[ων̄m(y)Tm]

)
if y ̸= 1

Cm
,

(
1 Tm

µm

0 1

)
if y =

1

Cm
,

(33)

for which we have on (ω, y) ∈ [0,+∞)× [1/C∞, 1/C0) the identity
(
P̃m(ω, y)

Q̃m(ω, y)

)
= M̄m(ω, y)

(
P̃m−1(ω, y)

Q̃m−1(ω, y)

)
, ∀m ∈ J1, nK .

For (i), we have
(
P̃n

Q̃n

)
= M̄n · · · M̄2

(
P̃1

Q̃1

)
= M̄n · · · M̄2

(
cos[ω|ν̄1|T1]

−µ1|ν̄1| sin[ω|ν̄1|T1]

)
,

with, since C0 =: C1 < C̃2 ⩽ C∞ and y ∈ [1/C̃2, 1/C0), all the M̄j for j ∈ J2, nK
having nonnegative coefficients with positive diagonal coefficients (bounded below by 1) on

[0,+∞)×[1/C̃2, 1/C0), hence M̄n · · · M̄2 too and we denotem11,m22 ⩾ 1 andm12,m21 ⩾ 0
the coefficients of M̄n · · · M̄2. Moreover, ν∞(y) ⩾ 0. Thus,

f̃n = (µ∞ν∞m11 +m21) cos[ω|ν̄1|T1]− (µ∞ν∞m12 +m22)µ1|ν̄1| sin[ω|ν̄1|T1],
where the coefficients of cos[ω|ν̄1|T1] and of sin[ω|ν̄1|T1] are respectively nonnegative and

negative on [0,+∞)× [1/C̃2, 1/C0). Hence, f̃n(·, y) has exactly one zero

ωn(y) ∈
[

nπ

|ν̄1(y)|T1
,

(
n+ 1

2

)
π

|ν̄1(y)|T1

)

in every [nπ/(|ν̄1(y)|T1), (n+ 1)π/(|ν̄1(y)|T1)).
In the case (ii), we write f̃n as the scalar product

f̃n =

(
P̃n

Q̃n

)
·
(
µ∞ν̄∞

1

)
.

With k the unique integer in J2, nK such that Ck = C0 < C̃2 ⩽ C∞, we have

f̃n = M̄kM̄k−1 · · · M̄1

(
1
0

)
· (M̄n)

T · · · (M̄k+1)
T

(
µ∞ν̄∞

1

)
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and we define the coefficients mij and m̃ij through

M̄k−1 · · · M̄1 =




k−1∏

j=1

ch[νjTj ]



(
m11 m12

m21 m22

)

and

(M̄n)
T · · · (M̄k+1)

T =




n∏

j=k+1

ch[νjTj ]



(
m̃11 m̃12

m̃21 m̃22

)
.

A straightforward induction gives that themij ’s and the m̃ij ’s are multivariate polynomials
in the variables th[ων̄jTj ], j ̸= k, of order k − 1 and n − k (the numbers of matrices
multiplied), and with ν̄j ⩾ 0 for j ∈ J1, n + 1K \ {k}. A first key remark, that can be
established by induction, is that the coefficients of the polynomials are independent of
ω and nonnegative. We therefore define, for clarity and shortness in the forthcoming
computations, α, β, γ, and δ as the multivariate polynomials in the variables th[ων̄jTj ],
with coefficients independent of ω, through

(
α
β

)
:=




k−1∏

j=1

ch[νjTj ]




−1

M̄k−1 · · · M̄1

(
1
0

)
=

(
m11

m21

)

and

(
γ
δ

)
:=




n∏

j=k+1

ch[νjTj ]




−1

(M̄n)
T · · · (M̄k+1)

T

(
µ∞ν̄∞

1

)
=

(
µ∞ν̄∞m̃11 + m̃12

µ∞ν̄∞m̃21 + m̃22

)
.

Consequently,

f̃n = 0 ⇔ f̃n∏
j ̸=k

ch[νjTj ]
= 0

⇔
(

cos[ω|ν̄k|Tk] sin[ω|ν̄k|Tk]/(µk|ν̄k|)
−µk|ν̄k| sin[ω|ν̄k|Tk] cos[ω|ν̄k|Tk]

)(
α
β

)
·
(
γ
δ

)
= 0

⇔ (αγ + βδ) cos[ω|ν̄k|Tk] +
(
βγ − αδµ2k|ν̄k|2

) sin[ω|ν̄k|Tk]
µk|ν̄k|

= 0 .

Now, a second key remark, that can also be established by induction, is that the poly-
nomials m̃ii and m̃ii on the diagonal are greater or equal to 1, and the ones on the
anti-diagonal are nonnegative with m21 (respectively m̃12) having at least one positive
coefficient if y > 1/Cj for one of the j’s in J1, k − 1K (resp. in Jk + 1, nK). This means
on one hand that α = m11 ⩾ 1 and δ ⩾ m̃22 ⩾ 1, and another hand that either at least

one of β = m21 and γ ⩾ m̃12 has a positive coefficient, or y = 1/C̃2 = 1/Cj for all
j ∈ J1, n+ 1K \ {k}.

In the latter case, we actually have

f̃n = 0 ⇔ −µk|ν̄k| sin[ω|ν̄k|Tk] = 0 ,

and the zeros are exactly the pπ/(|ν̄k(y)|Tk), p ⩾ 0.
In the former case, since α, β, γ, and δ are multivariate polynomials in the variables

th[ων̄jTj ] with nonnegative coefficient, they are nondecreasing in ω and converge respec-
tively to constants ᾱ, β̄, γ̄, and δ̄ when ω → +∞ with ᾱ, δ̄ ⩾ 1 and, due to the key
properties aforementioned about a positive coefficient, β̄, γ̄ > 0 since β = m12 > 0 and
γ ⩾ m̃12 are nondecrasing. Therefore, cos[ω|ν̄k|Tk] has a positive prefactor and the one of
sin[ω|ν̄k|Tk] converges to γ̄β̄/(µk|ν̄k|)− δ̄ᾱµk|ν̄k|. This limit is generically nonzero, thence
the coefficient of sin[ω|ν̄k|Tk] has a sign at least for ω large enough.
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Remark. Note that in the non-generic case γ̄(y)β̄(y) = µ2k|ν̄k(y)|2δ̄(y)ᾱ(y), the sign of
the coefficient of sin[ω|ν̄k|Tk] is very likely constant for ω large enough (because the ω →
th[ων̄jTj ] are increasing (and concave) hence what probably matters is the coefficient in
front of th[ων̄jTj ] for the largest ν̄jTj . However, we are not able to prove it. △

On the one hand, if y is s.t. this limit is negative —γ̄(y)β̄(y) < µ2k|ν̄k(y)|2δ̄(y)ᾱ(y)—,

then for ω large enough ω 7→ f̃n(ω, y) has in every

[pπ/(|ν̄k(y)|Tk), (p+ 1)π/(|ν̄k(y)|Tk))
exactly one zero ωp ∈ (pπ/(|ν̄k(y)|Tk), (p+ 1/2)π/(|ν̄k(y)|Tk)). On the other hand, if this

limit is positive, then for ω large enough ω 7→ f̃n(ω, y) has in every

[pπ/(|ν̄k(y)|Tk), (p+ 1)π/(|ν̄k(y)|Tk))
exactly one zero ωp ∈ ((p+ 1/2)π/(|ν̄k(y)|Tk), (p+ 1)π/(|ν̄k(y)|Tk)).

This concludes the proof of Lemma 3.5. □

4. The simple square well: direct computations

In this section, we specify to the simple square well (n = 1), i.e., the “1+1 layers” case:

(µ(z), ρ(z)) =

{
(µ1, ρ1) , if 0 ⩽ z < H ,

(µ2, ρ2) , if H ⩽ z < +∞ ,

where µj , ρj > 0, j = 1, 2, with C∞ = C2 =
√
µ2/ρ2 >

√
µ1/ρ1 = C1 = C0.

Our goal is to retrieve the values of H,C1, C2, and ρ2 from the knowledge of the
frequency–wavenumber couples of the Love waves and from the knowledge of ρ1.

Applying Proposition 2.1 to n = 1 (or by direct computations), f1 defined in (22) reads

f1(ω, k) = µ2ν2(ω, k) ch[ν1(ω, k)H] + µ1ν1(ω, k) sh[ν1(ω, k)H] . (34)

By Lemma 2.3, ν1 = ν0 and ν2 = ν∞ defined in (6) satisfy ν1(ω, k) ∈ iR− \ {0}
and ν2(ω, k) ⩾ 0 if (ω, k) is a zero of f1. Hence, for such (ω, k) —thus ω > 0—, we have

f1(ω, k) = ω (µ2ν̄2(k/ω) cos[ω|ν̄1(k/ω)|H]− µ1|ν̄1(k/ω)| sin[ω|ν̄1(k/ω)|H]) . (35)

4.1. Study of the wavenumbers. We can give another form to the characterization of
the kℓ’s in Definition 2.2 (and Lemma 2.3): for ω fixed, the kℓ’s are the k’s solution to

tan

[
Hω

√
C−2
1 − k2ω−2

]
=
µ2
µ1

√
k2ω−2 − C−2

2

C−2
1 − k2ω−2

and
ω

C2
⩽ k <

ω

C1
,

where the l.h.s. of the equation makes sense since f1(ω, k) = 0 implies cos[|ν1(ω, k)|H] ̸= 0.
Note that the above dispersion relation can be found for instance in [10, (9.10)].

On one hand the function ψ1(x) :=

√
x−C−2

2

C−2
1 −x

is continuous strictly increasing from 0 to

+∞ on [C−2
2 , C−2

1 ). On another hand the function ψ2(x) := tan

[
Hω
√
C−2
1 − x

]
satisfies

(for Hω > 0) the following properties, where n :=

⌊
ωH
π

√
C2

2−C2
1

C1C2
− 3

2

⌋
+ 1 ⩾ 1.

If C−2
2 < C−2

1 −
(

3
2H

π
ω

)2 ⇔ ω > 3
2
π
H

C1C2√
C2

2−C2
1

, then it is continuous and strictly decreasing

• from tan

[
ωH

√
C2

2−C2
1

C1C2

]
to −∞ on

[
C−2
2 , C−2

1 −
(
2n+1
2Hω π

)2)
,

• from +∞ to −∞ on the intervals
(
C−2
1 −

(
2ℓ−1
2Hω π

)2
, C−2

1 −
(
2ℓ−3
2Hω π

)2)
, ℓ ∈ J2, n+ 1K,

• from +∞ to 0 on
(
C−2
1 −

(
1
2H

π
ω

)2
, C−2

1

]
.
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1
C2

2

1
C2

1

C−2
1 −

(
3

2H
π
ω

)2

C−2
1 −

(
5

2H
π
ω

)2
C−2

1 −
(

1
2H

π
ω

)2

tan

[
Hω

√
C−2

1 − ·
]

µ2

µ1

√
· − C−2

1

C−2
2 − · (

k(ω)
ω

)2

Figure 2. Functions ψ1 (red) and ψ2 (blue) when C−2
2 < C−2

1 −
(

3
2H

π
ω

)2
.

1
C2

2

1
C2

1

C−2
1 −

(
13
2H

π
ω

)2

C−2
1 −

(
15
2H

π
ω

)2

C−2
1 −

(
17
2H

π
ω

)2

C−2
1 −

(
19
2H

π
ω

)2

C−2
1 −

(
21
2H

π
ω

)2
C−2

1 −
(

1
2H

π
ω

)2

tan

[
Hω

√
C−2

1 − ·
]

µ2

µ1

√
· − C−2

1

C−2
2 − · (

k(ω)
ω

)2

Figure 3. Functions ψ1 (red) and ψ2 (blue) when C−2
2 < C−2

1 −
(

3
2H

π
ω

)2
,

but for an ω larger than in Figure 2.

If C−2
1 −

(
3
2H

π
ω

)2
< C−2

2 < C−2
1 −

(
1
2H

π
ω

)2
, then it is continuous and strictly decreasing

⋆ from tan

[
ωH

√
C2

2−C2
1

C1C2

]
to −∞ on

[
C−2
2 , C−2

1 −
(

1
2H

π
ω

)2)
,

⋆ from +∞ to 0 on
(
C−2
1 −

(
1
2H

π
ω

)2
, C−2

1

]
.

1
C2

2

1
C2

1

C−2
1 −

(
1

2H
π
ω

)2

tan

[
Hω

√
C−2

1 − ·
]

µ2

µ1

√
· − C−2

1

C−2
2 − · (

k(ω)
ω

)2

Figure 4. Functions ψ1 (red) and ψ2 (blue) when C
−2
1 −

(
3
2H

π
ω

)2
< C−2

2 <

C−2
1 −

(
1
2H

π
ω

)2
.

If C−2
1 −

(
1
2H

π
ω

)2
< C−2

2 ⇔ ω < π
2H

C1C2√
C2

2−C2
1

, then it is continuous ans strictly decreasing

from tan

[
ωH

√
C2

2−C2
1

C1C2

]
> 0 to 0 on its domain

[
C−2
2 , C−2

1

]
.
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1
C2

2

1
C2

1

tan

[
Hω

√
C−2

1 − ·
]

µ2

µ1

√
· − C−2

1

C−2
2 − · (

k(ω)
ω

)2

Figure 5. Functions ψ1 (red) and ψ2 (blue) when C−2
1 −

(
1
2H

π
ω

)2
< C−2

2
(ω small).

The kℓ’s are therefore implicitly defined as the points x’s at which the two functions
intersect. For instance, in Figures 5 and 4 —that is, ω small enough—, there is only one
branch: k1; in Figure 2 —that is, for a larger ω—, there are four branches: k1, k2, k3,
and k4; and in Figure 3 —that is, for an even larger ω—, there are eleven branches (the
intersection of the curves corresponding to k1, on the right of the figure, is not visible).

4.2. Regularity of the branches of wavenumbers. The goal of this subsection is to
prove the following.

Proposition 4.1. Let n = 1. For any integer ℓ ⩾ 1, ω 7→ kℓ(ω)/ω is smooth, bijective,
increasing from (ωℓ,+∞) to (1/C2, 1/C1), where

ωℓ := (ℓ− 1)
C1C2√
C2
2 − C2

1

π

H
.

The top-left simulation in Figure A illustrates the bijectivity of ω 7→ kℓ(ω)/ω.
We already know, by Proposition 3.3, that the function is even analytic. However, we

give the proof of smoothness because it can be obtained “by hand” thanks to implicit
function theorem (IFT), without analytic perturbation theory, and because we obtain the
explicit formulae of the ωℓ’s.

Proof. By the properties described above of the two functions ψ1 and ψ2 introduced earlier,
and the definition of the kℓ’s, we deduce all claimed results except for the values of the
ωℓ’s, which is established at the end of this proof, and for the strict monoticity and the
smoothness, which are now obtained by the IFT.

Let us define g : R× (0,
√

1/C2
1 − 1/C2

2 ) → R by

g(ω, Y ) := µ1Y sin[HωY ]− µ2

√
C2
2 − C2

1

C2
1C

2
2

− Y 2 cos[HωY ] ,

which is continuous differentiable, as well as

Yℓ ≡ Yℓ(ω) :=

√
1

C2
1

−
(
kℓ(ω)

ω

)2

∈
(
0,

√
1

C2
1

− 1

C2
2

)
.

Remark. This g is nothing else than −f̃1 in Definition 2.6, up to the domain and after the
change of variable Y = |ν1(y)|. △

For any ω⋆ > ωℓ, kℓ(ω⋆) exists and we have g(ω⋆, Yℓ(ω⋆)) = 0 by definition of the kℓ’s.
Moreover, defining for shortness

s(Y ) :=

√
C2
2 − C2

1

C2
1C

2
2

− Y 2 ∈
(
0,

√
C2
2 − C2

1

C1C2

)
,
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we have

1

µ1

dg

dY
(ω, Y ) =

[
1 +

µ2
µ1
Hωs(Y )

]
sin[HωY ] +HωY

[
1 +

µ2
µ1

1

Hωs(Y )

]
cos[HωY ] ,

thence dg
dY (ω⋆, Yℓ(ω⋆)) ̸= 0 since sin[Hω⋆Yℓ(ω⋆)] and cos[Hω⋆Yℓ(ω⋆)] must have the same

sign (and be non-zero) by (35). Therefore, by the IFT there exists a neighborhood U
of {ω⋆} s.t. there exists a unique φ ∈ C1(U,R) with φ(ω⋆) = Yℓ(ω⋆) and g(ω, φ(ω)) = 0
on U . This φ is (on U) exactly Yℓ by definition of kℓ. Moreover, omitting for shortness
the dependency of Yℓ in ω, we have

Y ′
ℓ (ω) = φ′(ω) = −

(
dg

dYℓ
(ω, φ(ω))

)−1 dg

dω
(ω, φ(ω))

= −HYℓ
Yℓ cos[HωYℓ] +

µ2

µ1
s(Yℓ) sin[HωYℓ][

1 + µ2

µ1
Hωs(Yℓ)

]
sin[HωYℓ] +HωYℓ

[
1 + µ2

µ1

1
Hωs(Yℓ)

]
cos[HωYℓ]

on U , hence Y ′
ℓ (ω⋆) < 0, for the same reason that the trigonometric functions share the

same sign for any (ω, Yℓ(ω)). Finally, given the definition of Yℓ, we have

kℓ(ω⋆)

ω
∂ω

(
kℓ(ω⋆)

ω⋆

)
= −Yℓ(ω⋆)Y

′
ℓ (ω⋆) > 0 .

Since kℓ > 0 and since the above reasoning is true for any ω⋆ > ωℓ, it proves that
ω 7→ {kℓ(ω)/ω}ℓ is a strictly increasing function (where it is defined).

Moreover, since the denominator of Y ′
ℓ does not vanish, by bootstrapping we obtain

that Yℓ is smooth. Hence, from the definition of Yℓ, we deduce that ω 7→ {kℓ(ω)/ω}ℓ is
also smooth as claimed.

Finally, due to the strict monotonicity, the ωℓ’s are necessarily the ω’s such that
(ω, ω/C2) is a zero of f1. Since ν2(ω, ω/C2) = 0, the formula (35) of f1 gives that the ωℓ’s
are the (increasingly ordered) nonnegative solutions to ω|ν̄1(1/C2)| sin[ω|ν̄1(1/C2)|H] = 0.
That is,

ωℓ = (ℓ− 1)
C1C2√
C2
2 − C2

1

π

H
. □

4.3. Recovering the parameters of the medium. The properties of the two functions
ψ1 and ψ2 introduced earlier imply, when kℓ(ω) exists, that kℓ(ω)

2/ω2 belongs to
(
C−2
1 −

(
2ℓ− 1

2Hω
π

)2

, C−2
1 −

(
2ℓ− 3

2Hω
π

)2
)

∩
[
C−2
2 , C−2

1

)
,

for ℓ ⩾ 2, and that k1(ω)
2/ω2 ∈

(
C−2
1 −

(
1

2Hωπ
)2
, C−2

1

)
. Consequently,

∀ ℓ ⩾ 1, C1 = lim
ω→+∞

ω

kℓ(ω)
= inf

ω>0

ω

kℓ(ω)
, (36)

and we (empirically) recover the value of C1 from

∀ ℓ ⩾ 1, 1/C1 = sup
ω>0

kℓ(ω)

ω
.

Since we suppose ρ1 to be known, the definition of C1 gives µ1: µ1 = ρ1C
2
1 .

Additionally, and by construction, we have

∀ ℓ ⩾ 2 ,

√
1

C2
1

−
(
ℓ− 1

ωℓ

π

H

)2

=
1

C2
=
kℓ(ωℓ)

ωℓ
= lim

ω↘ω1=0

k1(ω)

ω
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and we consequently recover (empirically) the value of C2 from

∀ ℓ ⩾ 1, C2 = lim
ω↘ωℓ

ω

kℓ(ω)
= sup

ω>ωℓ

ω

kℓ(ω)
. (37)

1
C2

2

1
C2

1

C−2
1 −

(
1

2H
π
ω

)2

tan

[
Hω

√
C−2

1 − ·
]

µ2

µ1

√
· − C−2

1

C−2
2 − · (

k(ω)
ω

)2

Figure 6. ω = ω2.

Moreover, the knowledge of the maps kℓ(ω)/ω’s allows us to (empirically) determine
the ωℓ’s: they are the value below which kℓ ceases to exist.

With C1, C2, and the ωℓ’s recovered, the knowledge of two consecutive ωℓ’s yields H:

H =
C1C2√
C2
2 − C2

1

× π

ωℓ+1 − ωℓ
. (38)

Finally, to determine ρ2 and, consequently, µ2 = ρ2C
2
2 , we use the equation in (26),

which reads µ1|ν1(ω, k)| sin[|ν1(ω, k)|H] = µ2ν2(ω, k) cos[|ν1(ω, k)|H] for n = 1. Indeed,
the knowledge of one couple (ω, kℓ(ω)), and of ρ1, yields ρ2:

ρ2 = ρ1
C2
1

C2
2

√
C−2
1 − (kℓ(ω)/ω)2

(kℓ(ω)/ω)2 − C−2
2

tan

[
Hω

√
C−2
1 − (kℓ(ω)/ω)2

]
. (39)

4.4. Proof of Weyl’s law for the simple square well. We give here the proof of
Proposition 1.5 in the case n = 1 (but notice that we did not need it to recover the pa-
rameter of the problem). We want to prove that for any y ∈ [1/C∞, 1/C0) = [1/C2, 1/C1),
as ω goes to +∞, we have

N(ω, y) ∼ ω

π
|ν̃1(y)|T̃1 =

ω

π
|ν̄1(y)|H =

ω

π

√
C−2
1 − y2H .

By Definition 1.3 of N(ω, y), we look for any fixed y ∈ [1/C2, 1/C1), at the positive
zeros of

ω 7→ f̃1(ω, y) = µ2ν̄2(y) cos[ω|ν̄1(y)|H]− µ1|ν̄1(y)| sin[ω|ν̄1(y)|H] .

Recall that |ν̄1(y)| > 0 for y ∈ [1/C2, 1/C1). Note first that if ω is a zero of this function,
then cos[ω|ν̄1(y)|H] ̸= 0 as, otherwise, sin[ω|ν̄1(y)|H] = ±1 and we have the contradiction

f̃1(ω, y) = −µ1|ν̄1(y)| sin[ω|ν̄1(y)|H] ̸= 0 .

Hence, f̃1(ω, y) = 0 ⇔ tan[ω|ν̄1(y)|H] = (µ2ν̄2(y))/(µ1|ν̄1(y)|) ⩾ 0 and f̃1(·, y) admits
exactly one zero on each interval

[
pπ

|ν̄1(y)|H
,
(p+ 1)π

|ν̄1(y)|H

)
, p ⩾ 0 .

Moreover, if y > 1/C2, then the (p+ 1)-th zero belongs to
(

pπ

|ν̄1(y)|H
,
(p+ 1/2)π

|ν̄1(y)|H

)
, p ⩾ 0 ,
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while if y = 1/C2, then the p-th positive zero ωp is the (p+ 1)-th ωℓ:

ωℓ=p+1 =
pπ

|ν̄1(y)|H
, p ⩾ 1 .

The claim N(ω, y) ∼ ω|ν̄1(y)|H/π for y ∈ [1/C2, 1/C1) is therefore proved.

5. The double square well

In this section, we specify to the double square well (n = 2), i.e., the “2+1 layers” case:

(µ(z), ρ(z)) =





(µ1, ρ1) , if 0 ⩽ z < H2 ,

(µ2, ρ2) , if H2 ⩽ z < H3 ,

(µ3, ρ3) , if H3 ⩽ z < +∞ ,

where µj , ρj > 0, j = 1, 2, 3, with

C∞ = C3 =
√
µ3/ρ3 > min{

√
µ1/ρ1,

√
µ2/ρ2} = min{C1, C2} = C0 .

Our goal is to retrieve the values of H2, H3, C1, C2, C3, ρ2 and ρ3 from the knowledge of
the frequency–wavenumber couples of the Love waves and from the knowledge of ρ1.

Applying Proposition 2.1 to n = 2, f2 defined in (22) reads

f2(ω, k) := (µ3ν3 ch[ν1T1] + µ1ν1 sh[ν1T1]) ch[ν2T2]

+
(
µ22ν

2
2 ch[ν1T1] + µ3ν3µ1ν1 sh[ν1T1]

) sh[ν2T2]
µ2ν2

, (40)

if k ̸= ω/C2, and

f2(ω, ω/C2) := µ3ν3 ch[ν1T1] + µ1ν1 sh[ν1T1] + µ3ν3µ1ν1 sh[ν1T1]
T2
µ2

, (41)

where for shortness we omitted in the r.h.s.’ the respective dependence in (ω, k) and
in (ω, ω/C2) of the νj ’s. We recall that ν0, ν1, ν2 ∈ R+ ∪ iR−, and ν3 = ν∞ are defined
in (6), with ν3(ω, k) > 0 for a Love wave to exists at (ω, k).

We have the following stronger version of Proposition 3.4 for n = 2.

Proposition 5.1. Let n = 2 and f̃2 be as in Definition 2.6 and fix y ∈ [1/C∞, 1/C0).

(i) If 1/C2 ⩽ y < 1/C1, then f̃2(·, y) admits exactly one zero

ωp(y) ∈
[

pπ

|ν̄1(y)|T1
,

(
p+ 1

2

)
π

|ν̄1(y)|T1

)
on each interval

[
pπ

|ν̄1(y)|T1
,
(p+ 1)π

|ν̄1(y)|T1

)
, p ⩾ 1 .

(ii) If 1/C1 ⩽ y < 1/C2, then f̃2(·, y) admits, at least for p large enough, exactly one zero
ωp(y) on each interval [

pπ

|ν̄2(y)|T2
,
(p+ 1)π

|ν̄2(y)|T2

)

with either ωn(y) ∈ (pπ/(|ν̄2(y)|T2), (p+ 1/2)π/(|ν̄2(y)|T2)] for all p (large enough) or
ωn(y) ∈ ((p+ 1/2)π/(|ν̄2(y)|T2), (p+ 1)π/(|ν̄2(y)|T2)) for all p (large enough).

(iii) If 1/C∞ ⩽ y < min{1/C1, 1/C2}, define{
m := min{|ν̄1(y)|T1, |ν̄2(y)|T2} ,
M := max{|ν̄1(y)|T1, |ν̄2(y)|T2} .

Then, there exists {ω̃p}p⩾1 s.t. ω̃p+1 − ω̃p = π/m, ω̃1 > 0, and f̃2(·, y) admits on each
interval [ω̃p, ω̃p+1) either ⌊M/m⌋+ 1 or ⌈M/m⌉+ 1 zeros.

Note that (i) covers in particular the non-standard setting C1 < C∞ ⩽ C2, and that
(iii) covers in particular the degenerated setting C1 = C2 < C∞.
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Proof. Case y = 1/C2. Hence, necessarily C∞ = C3 ⩾ C2 > C1 = C0 and we have

f̃2(ω, y) = 0 ⇔ µ3ν̄3(y) cos[ω|ν̄1(y)|T1] =
(
1 + ωµ3ν̄3(y)

T2
µ2

)
µ1|ν̄1(y)| sin[ω|ν̄1(y)|T1] ,

for any ω > 0. Thus, if C2 < C∞, then in every [pπ/(|ν̄1(y)|T1), (p+ 1)π/(|ν̄1(y)|T1)),
p ⩾ 1, f̃2(·, y) has exactly one zero ωp ∈ (pπ/(|ν̄1(y)|T1), (p+ 1/2)π/(|ν̄1(y)|T1)), while if

C2 = C∞, then the zeros of f̃2(·, y) are the ωp = pπ/(|ν̄1(y)|T1), p ⩾ 1.

The special case y = 1/C2 of (i) is therefore proved and, from now on, we assume
y ∈ [1/C∞, 1/C0) \ {1/C2}. For any ω > 0, we have

f̃2(ω, y) = (µ3ν̄3 ch[ων̄1T1] + µ1ν̄1 sh[ων̄1T1]) ch[ων̄2T2]

+
(
µ22ν̄

2
2 ch[ων̄1T1] + µ3ν̄3µ1ν̄1 sh[ων̄1T1]

) sh[ων̄2T2]
µ2ν̄2

= (µ3ν̄3 ch[ων̄2T2] + µ2ν̄2 sh[ων̄2T2]) ch[ων̄1T1]

+

(
ch[ων̄2T2] +

µ3ν̄3
µ2ν̄2

sh[ων̄2T2]

)
µ1ν̄1 sh[ων̄1T1] .

We always have ν̄3 ⩾ 0, but for ν̄1 and ν̄2, there are three distinct situations to consider:
1/C2 < y < 1/C1, 1/C1 ⩽ y < 1/C2, and y < min{1/C1, 1/C2}.

Case 1/C2 < y < 1/C1. Then, ν̄1 = −i|ν̄1|, ν̄2 > 0, and f̃2 reads

f̃2(ω, y) = (µ3ν̄3 ch[ων̄2T2] + µ2ν̄2 sh[ων̄2T2]) cos[ω|ν̄1|T1]

− µ1|ν̄1|
(
ch[ων̄2T2] +

µ3ν̄3
µ2ν̄2

sh[ων̄2T2]

)
sin[ω|ν̄1|T1] ,

where the factors of cos[ω|ν̄1|T1] and sin[ω|ν̄1|T1] are respectively positive and negative.

Hence, in every [pπ/(|ν̄1(y)|T1), (p+ 1)π/(|ν̄1(y)|T1)), p ⩾ 1, f̃2(·, y) has exactly one zero
ωp ∈ (pπ/(|ν̄1(y)|T1), (p+ 1/2)π/(|ν̄1(y)|T1)). This concludes the proof of (i).

Case 1/C1 ⩽ y < 1/C2 (proof of (ii)). Then, ν̄2 = −i|ν̄2|, and ν̄1 ⩾ 0, and f̃2 reads

f̃2(ω, y)

ch[ων̄1T1]
= (µ3ν̄3 + µ1ν̄1 th[ων̄1T1]) cos[ω|ν̄2|T2]

+
(
µ3ν̄3µ1ν̄1 th[ων̄1T1]− µ22|ν̄2|2

) sin[ω|ν̄2|T2]
µ2|ν̄2|

.

• If y = 1/C1, then ν̄1 = 0 and the positive zeros of f̃2(·, y) are the ones of tan[ω|ν̄2|T2]−
µ3ν̄3/(µ2|ν̄2|). Hence, they are spaced exactly by π/(|ν̄2(y)|T2) and belong to the
intervals (pπ/(|ν̄2(y)|T2), (p+ 1/2)π/(|ν̄2(y)|T2)) if 1/C3 < 1/C1, while they are the
ωp = (p+ 1/2)π/(|ν̄2(y)|T2), p ⩾ 1, if 1/C3 = 1/C1.

• For y > 1/C1, on the one hand, if y is s.t. µ3ν̄3(y)µ1ν̄1(y) ⩽ µ22|ν̄2(y)|2 —which allows

y = 1/C3—, then in every [pπ/(|ν̄2(y)|T2), (p+ 1)π/(|ν̄2(y)|T2)), p ⩾ 1, f̃2(·, y) has
exactly one zero ωp ∈ (pπ/(|ν̄2(y)|T2), (p+ 1/2)π/(|ν̄2(y)|T2)], similarly to previously.
On the other hand, if µ3ν̄3(y)µ1ν̄1(y) > µ22|ν̄2(y)|2 —which excludes y = 1/C3—, then
for ω large enough, the factor of sin[ω|ν̄2|T2] is positive. Thus, for p large enough, in

every [pπ/(|ν̄2(y)|T2), (p+ 1)π/(|ν̄2(y)|T2)) the function f̃2(·, y) has exactly one zero
ωp ∈ ((p+ 1/2)π/(|ν̄2(y)|T2), (p+ 1)π/(|ν̄2(y)|T2)).

This concludes the proof of (ii).

Case 1/C3 ⩽ y < min{1/C1, 1/C2} (proof of (iii). Then, f̃2 reads

f̃2(ω, y) = (µ3ν̄3 cos[ω|ν̄2|T2]− µ2|ν̄2| sin[ω|ν̄2|T2]) cos[ω|ν̄1|T1]
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− µ1|ν̄1|
(
cos[ω|ν̄2|T2] +

µ3ν̄3
µ2|ν̄2|

sin[ω|ν̄2|T2]
)
sin[ω|ν̄1|T1] .

• If |ν̄1|T1 = |ν̄2|T2 = m =M , it reduces to

f̃2(ω, y) = µ3ν̄3 cos
2[ωm]− (µ1|ν̄1|+ µ2|ν̄2|) cos[ωm] sin[ωm]− µ3ν̄3

µ1|ν̄1|
µ2|ν̄2|

sin2[ωm] .

If y > 1/C3, since the r.h.s. does not vanish when cos[ωm] = 0, then the l.h.s.
shares its zeros with

µ3ν̄3 − (µ1|ν̄1|+ µ2|ν̄2|) tan[ωm]− µ3ν̄3
µ1|ν̄1|
µ2|ν̄2|

tan2[ωm] ,

i.e., the ω’s s.t.

tan[ωm] =





−µ2|ν̄2|

√
(µ1|ν̄1|+ µ2|ν̄2|)2 + 4(µ3ν̄3)2

µ1|ν̄1|
µ2|ν̄2| + (µ1|ν̄1|+ µ2|ν̄2|)

2µ3ν̄3µ1|ν̄1|
< 0

or

µ2|ν̄2|

√
(µ1|ν̄1|+ µ2|ν̄2|)2 + 4(µ3ν̄3)2

µ1|ν̄1|
µ2|ν̄2| − (µ1|ν̄1|+ µ2|ν̄2|)

2µ3ν̄3µ1|ν̄1|
> 0 .

Hence, in every [pπ/(2m), (p+ 1)π/(2m)), p ⩾ 1, the function f̃2(·, y) has exactly
one zero ωp. That is, exactly 2 = ⌊M/m⌋ + 1 = ⌈M/m⌉ + 1 zeros in every interval
[pπ/m, (p+ 1)π/m) of length π/m.

If y = 1/C3, then the positive zeros are the positive ω’s s.t. cos[ωm] sin[ωm] = 0,
i.e., the elements of {nπ/(2m)}n⩾1, and the claim is also proved.

• If M = |ν̄1|T1 > |ν̄2|T2 = m, then we consider the sequence ω̃p of consecutive positive
zeros of tan[ωm]+µ2|ν̄2|/(µ3ν̄3) if y > 1/C3 and of cos[ωm] if y = 1/C3. Considering
on (ω̃p, ω̃p+1) the function

µ1|ν̄1| tan[ωM ]− µ3ν̄3 − µ2|ν̄2| tan[ωm]

1 + µ3ν̄3
µ2|ν̄2| tan[ωm]

,

one can check the following. Either cos[ω̃pM ] = 0 and the function has exactly ⌈M/m⌉
zeros on (ω̃p, ω̃p+1), hence f̃2(·, y) admits exactly ⌈M/m⌉+ 1 zeros on [ω̃p, ω̃p+1): ω̃p

plus these ⌈M/m⌉ zeros in (ω̃p, ω̃p+1); or cos[ω̃pM ] ̸= 0 and cos[ω̃pM ] has either
⌊M/m⌋ or ⌈M/m⌉ zeros in (ω̃p, ω̃p+1) hence the function has either ⌊M/m⌋ + 1 or

⌈M/m⌉+1 zeros on (ω̃p, ω̃p+1), and f̃2(·, y) admits also either ⌊M/m⌋+1 or ⌈M/m⌉+1
zeros on [ω̃p, ω̃p+1).

• If m = |ν̄1|T1 < |ν̄2|T2 =M , then we consider the sequence ω̃p of consecutive positive
zeros of tan[ωm] + (µ2|ν̄2|)2/(µ1ν̄1µ3ν̄3) if y > 1/C3 and of cos[ωm] if y = 1/C3. The
same result is obtained working on

µ2|ν̄2| tan[ωM ]− µ3ν̄3 − µ1|ν̄1| tan[ωm]

1 + µ3ν̄3
µ2|ν̄2|

µ1ν̄1
µ2|ν̄2| tan[ωm]

.

Summarizing, in the case 1/C3 ⩽ y < min{1/C1, 1/C2}, we have found intervals [ω̃p, ω̃p+1)

of length π/m partitioning R+ such that f̃2(·, y) admits on each of them either ⌊M/m⌋+1
or ⌈M/m⌉+ 1 zeros. This concludes the proof of (iii). □

We can now prove Proposition 1.5 in the case n = 2, that we recall in Proposition 5.2
below. The proof is in the spirit of the one of Proposition 5.1 (and is actually an immediate
consequence of it in its cases (i) and (ii)). This result will allow, thanks to Corollary 5.3

below, to recover C̃2 (and C0) as well as T̃1 and T̃2.
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Proposition 5.2. Let y ∈ [1/C∞, 1/C0) be fixed. As ω goes to +∞, we have




N(ω, y) ∼ ω

π
|ν̃1(y)|T̃1 , if y ∈ [1/C̃2, 1/C0) ,

N(ω, y) ∼ ω

π

(
|ν̃1(y)|T̃1 + |ν̃2(y)|T̃2

)
, if y ∈ [1/C∞, 1/C̃2) .

Notice that on the one hand if C1 = C2, then 1/C∞ < 1/C̃2 = 1/C0 and the first case

is empty but not the second one, which then reads N(ω, y) ∼ ω|ν̃1(y)|(T̃1 + T̃2)/π, and

that on the other hand if 1/C∞ ⩾ 1/C̃2, then 1/C0 > 1/C∞ ⩾ 1/C̃2 and the second case
is empty but not the first one.

Proof. When y ∈ [1/C̃2, 1/C0), this is an immediate consequence of Proposition 5.1(i)–(ii).

When y ∈ [1/C∞, 1/C̃2), we follow the proof of Proposition 5.1(iii).

• If |ν̄1|T1 = |ν̄2|T2 = m = M , the result is an immediate consequence of the proof of
Proposition 5.1 (iii) for that case, since the proof gives either, for y > 1/C∞, the exact
number of zeros —two zeros in every interval [pπ/m, (p+ 1)π/m) of length π/m—
or, for y = 1/C∞, the exact location of all the zeros —{nπ/(2m)}n⩾1.

• If m = min{|ν̄1|T1, |ν̄2|T2} < max{|ν̄1|T1, |ν̄2|T2} = M —here, we group together the
second and third subcases of the proof of Proposition 5.1 (iii)—, then the proof of
Proposition 5.1 (iii) shows that we have to study on (ω̃p, ω̃p+1) the function

tan[ωM ]− α− β tan[ωm]

1 + γ tan[ωm]

either, if y > 1/C∞, for α, β, γ > 0 and where the ω̃p’s are the consecutive positive
zeros of 1+γ tan[ωm], or, if y = 1/C∞, for β > 0 = α = γ and where the ω̃p’s are the
consecutive positive zeros of cos[ωm]. In both cases, the number of zeros in (ω̃p, ω̃p+1)
of the studied function is one plus the number of zeros of cos[ωM ] in that interval

of length π/m. Moreover, ω̃p is itself a positive zero of f̃2(·, y) if and only if it is a

zero of cos[ωM ]. Thus, the average of the number of positive zeros of f̃2(·, y) on the
intervals [ω̃p, ω̃p+1) is 1 +M/m. Consequently, when ω → +∞,

N(ω, y) ∼ ω

π/m

(
1 +

M

m

)
=
ω

π
(m+M) =

ω

π

(
|ν̃1(y)|T̃1 + |ν̃2(y)|T̃2

)
. □

Corollary 5.3. Let n = 2 and y ∈ [1/C∞, 1/C0). Then,

lim
ω→+∞

π
N(ω, y − ω−1)−N(ω, y)√

2ω
> 0 ⇔ y ∈ {1/C̃1, 1/C̃2} \ {1/C∞} ,

and in such case, for C̃j < C∞, we have

π
N(ω, 1/C̃j − ω−1)−N(ω, 1/C̃j)√

2ω
−→

ω→+∞




T̃j/

√
C̃j if C1 ̸= C2 ,

(T̃1 + T̃2)/
√
C0 if C1 = C2 .

This corollary means that the branches kℓ(ω)/ω “accumulate” from below at the 1/Cj ’s,
in the sense that the number of branches below and close to 1/Cj is diverging with ω, at
speed

√
ω.

Proof. First, at y = 1/C∞, N(ω, y − ω−1) = 0 for ω > 0, hence

π
N(ω, y − ω−1)−N(ω, y)√

2ω
⩽ 0 .
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From now on, we suppose y ∈ (1/C∞, 1/C0). We have

|ν̃j(y − ω−1)| =





|ν̃j(y)|+
yω−1

|ν̃j(y)|
+O

(
ω−2

)
if y < C̃−1

j ,

√
2

ωC̃j

(
1− ω−1

4C̃j

+O
(
ω−2

)
)

if y = C̃−1
j .

Recall that at y = 1/C0 = 1/C̃1, we have N(ω, 1/C0) = 0. Therefore,

π
N
(
ω, 1

C0
− 1

ω

)
−N(ω, 1

C0
)

√
2ω

∼





√
ω

2

∣∣∣∣ν̃1
(

1

C0
− 1

ω

)∣∣∣∣ T̃1 →
T̃1√
C0

if C̃2 > C0 ,

√
ω

2

∣∣∣∣ν̃1
(

1

C0
− 1

ω

)∣∣∣∣
(
T̃1 + T̃2

)
→ T̃1 + T̃2√

C0
if C̃2 = C0 .

At y = 1/C̃2 < 1/C0, we have

π
N(ω, C̃−1

2 − ω−1)−N(ω, C̃−1
2 )√

2ω

∼
√
ω

2

(
|ν̃1(C̃−1

2 − ω−1)|T̃1 + |ν̃2(C̃−1
2 − ω−1)|T̃2 − |ν̃1(C̃−1

2 )|T̃1
)

=
T̃2√
C̃2

+
ω−1/2

√
2C̃2|ν̃1(C̃−1

2 )|
T̃1 +O(ω−1) → T̃2√

C̃2

.

For 1/C∞ < y < 1/C̃2, we have

π
N(ω, y − ω−1)−N(ω, y)√

2ω

∼
√
ω

2

((
|ν̃1(y − ω−1)| − |ν̃1(y)|

)
T̃1 +

(
|ν̃2(y − ω−1)| − |ν̃2(y)|

)
T̃2

)

=
y√
2ω

(
T̃1

|ν̃1(y)|
+

T̃2
|ν̃2(y)|

+O
(
ω−1

)
)

→ 0 .

For 1/C̃2 < y < 1/C0, we have

π
N(ω, y − ω−1)−N(ω, y)√

2ω
∼
√
ω

2

(
|ν̃1(y − ω−1)| − |ν̃1(y)|

)
T̃1

=
y√
2ω

(
T̃1

|ν̃1(y)|
+O

(
ω−1

)
)

→ 0 .

□

In order to recover the values we are looking for, one has to plot the experimental data
into a graph (ω, k(ω)/ω) —see top-right figure in Figure A for a simulated version of such
data—, then to proceed as follow.

First, following Corollaries 1.2 and 5.3, one reads in the plot the three values 1/C̃j .
Corollary 5.3 ensures that the levels y of “accumualtion” of branches, when ω becomes

large, that one reads on the plot, are the values 1/C̃2 and 1/C̃1 and only them: the plot
contains no other levels of “accumualtion”. In particular, if there is only one level of
“accumualtion” (which is then necessarily at the top of the plot), then C1 = C2.

Second, one retrieves T̃1 and T̃2 by evaluating the limits in Corollary 5.3. In the special

case C1 = C2, we recover instead the sum T̃1 + T̃2.
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Third, if we have three different values for the Cj ’s (i.e., if C1 ̸= C2), we identify which
layer is at the surface and which one is below it (and above the semi-infinite layer). To
do so, we use (see the proof of Proposition 5.1) that on the one hand if C1 > C2, then

the zeros at y = 1/C̃2 = 1/C1 are equidistant —by π/(|ν̄2(1/C1)|T2)— while on the other

hand if C1 > C2, then the zeros at y = 1/C̃2 = 1/C2 are not equidistant (but their spacing
tends to π/(|ν̄1(1/C2)|T1) from above).

Summarizing, we have identified C1, C2, C3, T1, and T2 (or T1 + T2 if C1 = C2 < C3).
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Appendix

A. Numerical simulations. We present here numerical simulations of kℓ(ω)/ω.

(1 + 1)-layers

(C1, C2) = (1000, 10000) H2 = 100

(2 + 1)-layers

(C1, C2, C3) = (1000, 1818, 10000) (H2, H3) = (100, 200)

(3 + 1)-layers

(C1, C2, C3, C4) = (1000, 1429, 2500, 10000)
(H2, H3, H4) = (100, 200, 300)

(4 + 1)-layers

(C1, C2, C3, C4, C5) = (1000, 1290, 1818, 3077, 10000)
(H2, H3, H4, H5) = (100, 200, 300, 400)

(5 + 1)-layers

(C1, C2, C3, C4, C5, C6) = (1000, 1220, 1562, 2174, 3571, 10000)
(H2, H3, H4, H5, H6) = (100, 200, 300, 400, 500)

(6 + 1)-layers

(C1, C2, C3, C4, C5, C6, C7) = (1000, 1176, 1429, 1818, 2500, 4000, 10000)
(H2, H3, H4, H5, H6, H7) = (100, 200, 300, 400, 500, 600)

Figure A. Numerical computations of ω 7→ {kℓ(ω)/ω}ℓ, from 1 + 1 to 6 + 1 layers.
For ω ∈ (0, 1800], increments of 0.25, and ρi = 1, i ⩾ 1.

Note that, at least for the case (2 + 1)-layers, i.e., n = 2, similar simulations can be
found in the literature, even though with less details. See e.g., in [3, Fig 1(a)].

Remark. Contrarily to what the above figures could mislead to think, the first branch does
not (necessarily) “starts” at (0, 1/Cn+1). As shown in Section 4, this is true for n = 1,
but this is generically false for n ⩾ 2, for which it starts at (ω1, 1/Cn+1) with ω1 ⩾ 0. △
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B. Derivation of the Love waves boundary value problem. We consider and present
first the linear elastic wave equation (without source term) in R2 × [0,+∞), see e.g., [1].
In coordinates (x, z), x = (x1, x2) ∈ R2, z = x3 ∈ [0,+∞), we consider solutions
u = (u1, u2, u3) satisfying stress-free (Neumann) boundary condition at the surface z = 0,

ρ∂ttu = div τ (u) and τ (u)
∣∣
z=0

· e3 = 0 , (B.1)

where ρ(x, z) is the mass density, u(x, z, t) = (u1(x, z, t), u2(x, z, t), u3(x, z, t)) the dis-
placement vector, and τ (u) = (τij)1⩽i,j⩽3 the Cauchy stress tensor given by Hookes’ law

τ (u) = Cε(u) ,

in which C(x, z) = (Cijkℓ(x, z))1⩽i,j,k,ℓ⩽3 is the stiffness tensor and ε = (εij)1⩽i,j⩽3 the
infinitesimal strain tensor, which is given by the strain–displacement equation

ε(u) =
∇u+∇uT

2
.

Equivalently, in terms matrices’ coefficients we have

τij(u) =
3∑

k,ℓ=1

Cijkℓεkℓ(u) with εkℓ(u) =
∂xk

uℓ + ∂xℓ
uk

2
.

Note that, in particular, ε is symmetric: εij = εji for all i, j ∈ J1, 3K.
Our first but physically natural assumption is that C is symmetric:

Cijkℓ = Cjikℓ = Ckℓij , for all i, j ∈ J1, 3K .

The i-th component of the elastic wave equation (B.1) therefore reads

ρ∂ttui = (div τ (u))i =

3∑

j=1

∂xj

3∑

k,ℓ=1

Cijkℓ
∂xk

uℓ + ∂xℓ
uk

2
=

3∑

j,k,ℓ=1

∂xjCijkℓ∂xk
uℓ (B.2)

and the one of the stress-free boundary condition reads

3∑

k,ℓ=1

Ci3kℓ∂xk
uℓ

∣∣∣∣
z=0

= 0 .

We now introduce our main assumption. Namely, we assume that the medium is a
time-independent, stratified medium that is homogeneous in the (x, y)-plane: ρ and C
depend only on the variable z. This allows us to write the elastic wave equation (B.2) as

ρ∂ttui =
3∑

ℓ=1


∂zCi33ℓ∂z +

2∑

j=1

Cij3ℓ∂xj∂z +
2∑

k=1

∂zCi3kℓ∂xk
+

2∑

j,k=1

Cijkℓ∂xj∂xk


uℓ .

Introducing the time and (x, y)-space Fourier transform

ûi(z) ≡ ûi(ξ, z, ω) :=

∫

R2

∫

R
ui(x, z, t)e

iωteiξ·x dt dx

(and assuming that everything is well-defined), we formally obtain

−ω2ρûi =
3∑

ℓ=1


∂zCi33ℓ∂z +

2∑

j=1

iξjCij3ℓ∂z +
2∑

k=1

iξk∂zCi3kℓ∂xk
−

2∑

j,k=1

ξkξjCijkℓ


 ûℓ (B.3)

and the one of the stress-free boundary condition reads

3∑

ℓ=1

{
i

2∑

k=1

Ci3kℓξkûℓ + Ci33ℓ∂zûℓ

}∣∣∣∣
z=0

= 0 . (B.4)
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In the case of isotropic media, the stiffness tensor C takes the form [1]

Cijkℓ = λδji δ
ℓ
k + µ

(
δki δ

ℓ
j + δℓi δ

k
j

)
, (B.5)

where λ and µ are the Lamé parameters. Injecting (B.5) in (B.3)–(B.4), we obtain





0 =
(
(λ+ µ)ξ21 + µ|ξ|2 −

(
∂zµ∂z + ρω2

))
û1 + (λ+ µ)ξ1ξ2û2 − i (λ∂z + ∂zµ) ξ1û3 ,

0 = (λ+ µ)ξ1ξ2û1 +
(
(λ+ µ)ξ22 + µ|ξ|2 −

(
∂zµ∂z + ρω2

))
û2 − i (λ∂z + ∂zµ) ξ2û3 ,

0 = −i (µ∂z + ∂zλ) ξ1û1 − i (µ∂z + ∂zλ) ξ2û2 +
(
µ|ξ|2 −

(
∂z (λ+ 2µ) ∂z + ρω2

))
û3 ,

that is,


(λ+ µ)ξ21 + µ|ξ|2 −

(
∂zµ∂z + ρω2

)
(λ+ µ)ξ1ξ2 −i (λ∂z + ∂zµ) ξ1

(λ+ µ)ξ1ξ2 (λ+ µ)ξ22 + µ|ξ|2 −
(
∂zµ∂z + ρω2

)
−i (λ∂z + ∂zµ) ξ2

−i (µ∂z + ∂zλ) ξ1 −i (µ∂z + ∂zλ) ξ2 µ|ξ|2 −
(
∂z (λ+ 2µ) ∂z + ρω2

)





û1
û2
û3


 =



0
0
0




and 



iξ1û3(0) + ∂zû1(0) = 0 ,

iξ2û3(0) + ∂zû2(0) = 0 ,

iλ(0) (ξ1û1(0) + ξ2û2(0)) + (λ(0) + 2µ(0)) ∂zû3(0) = 0 .

Introducing the orthogonal matrix

P (ξ) :=



ξ2/|ξ| −ξ1/|ξ| 0
ξ1/|ξ| ξ2/|ξ| 0
0 0 1




and ϕ := (ϕ1, ϕ2, ϕ3)
T := P (ξ)(û1, û2, û3)

T, we obtain the equation


−∂zµ∂z + µ|ξ|2 − ρω2 0 0

0 −∂zµ∂z + (λ+ 2µ)|ξ|2 − ρω2 −i|ξ| (λ∂z + ∂zµ)
0 −i|ξ| (µ∂z + ∂zλ) −∂z(λ+ 2µ)∂z + µ|ξ|2 − ρω2





ϕ1
ϕ2
ϕ3


 =



0
0
0




with the boundary condition




∂zϕ1(0) = 0 ,

i|ξ|ϕ3(0) + ∂zϕ2(0) = 0 ,

iλ(0)|ξ|ϕ2(0) + (λ(0) + 2µ(0)) ∂zϕ3(0) = 0 .

In this decoupled system, the component ϕ1 corresponds to Love waves and (ϕ2, ϕ3) to
Rayleigh waves. Defining the wavenumber k := |ξ|, we have derived the boundary value
problem (3).

Remark. In [4], the equation —(5.2) in the paper—

−∂zµ̂∂zϕ+ µ̂|ξ|2ϕ = Λϕ

is obtained for Love waves in an isotropic medium, where µ̂ = µ/ρ and Λ = ω2. Our
equation in (3) differs by the presence of ρ multiplying Λ = ω2 because we started from
the true linear elastic wave equation while an approximated version of it (but equivalent
from the semiclassical point of view) is considered in [4, Sect. 2]. △

Finally, the continuity condition on the solution means that û, hence ϕ, is z-continuous,
while the continuity condition on the stress components xz and yz means here that

τ 13(u) = µ (iξ1û3 + ∂zû1) and τ 23(u) = µ (iξ2û3 + ∂zû2)

are continuous and, consequently, that ϕ1 = ξ2û1 − ξ1û2 satisfies µ∂zϕ1 continuous.
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C. Postponed proofs in the general case.

Proof of Lemma 2.7. We prove it for P̃m and Q̃m, then the result for f̃n is an immediate
consequence.

First, P̃0 ≡ 1 and Q̃0 ≡ 0 on [0,+∞)×[1/C∞, 1/C0), and they are obviously continuous.
Now, with the M̄m’s defined in (33), for which on [0,+∞)× [1/C∞, 1/C0) we have

(
P̃m(ω, y)

Q̃m(ω, y)

)
= M̄m(ω, y)

(
P̃m−1(ω, y)

Q̃m−1(ω, y)

)
, ∀m ∈ J1, nK ,

we see that the M̄m’s are continuous on (0,+∞) × [1/C∞, 1/C0), as P̃0 and Q̃0 are, and
an induction immediately gives the claimed continuity on this domain. We are left with
proving the continuity at (0, y0), y0 ∈ [1/C∞, 1/C0), which we also do by induction.

The result holds for m = 0 as explained earlier. Assume now that P̃m−1 and Q̃m−1,
m ∈ J1, nK, are continuous at (0, y0). Then, (P̃m(0, y0), Q̃m(0, y0)) = (1, 0) and, writing
(
P̃m(ω, y)

Q̃m(ω, y)

)
−
(
1
0

)
= M̄m(ω, y)

((
P̃m−1(ω, y)

Q̃m−1(ω, y)

)
−
(
1
0

))
+
(
M̄m(ω, y)− I2

)(1
0

)
,

we obtain the wanted result as (ω, y) → (0, y0), since
∣∣∣∣
∣∣∣∣
(
P̃m(ω, y)− 1

Q̃m(ω, y)

)∣∣∣∣
∣∣∣∣
∞

⩽
∣∣∣∣M̄m(ω, y)

∣∣∣∣
∞

∣∣∣∣
∣∣∣∣
(
P̃m−1(ω, y)− 1

Q̃m−1(ω, y)

)∣∣∣∣
∣∣∣∣
∞

+

∣∣∣∣
∣∣∣∣
(

ch[ων̄m(y)Tm]− 1
µmν̄m(y) sh[ων̄m(y)Tm]

)∣∣∣∣
∣∣∣∣
∞

and
∣∣∣∣M̄m(ω, y)

∣∣∣∣
∞ is uniformly bounded on any neighborhood of (0, y0). □

Remark. Notice that even though the M̄m’s are not continuous since

M̄m(0, 1/Cm) = I2 ̸=
(
1 Tm/µm
0 1

)
= M̄m(ω, 1/Cm) , ∀ω > 0 ,

the P̃m’s and the Q̃m’s are continuous. △
Proof of Lemma 2.8. Since the zeros of fn are in (0,+∞)× [ω/C∞, ω/C0) by Lemma 2.3

and f̃n(ω, y) = ω−1fn(ω, ωy) on (0,+∞)× [1/C∞, 1/C0) by definition of f̃n, we have

{(ω, y) : (ω, ωy) ∈ ker fn} = ker f̃n ∩ (0,+∞)× [1/C∞, 1/C0) .

Since ker f̃n ⊂ [0,+∞)× [1/C∞, 1/C0) by definition of f̃n, we are left with proving that

ker f̃n ∩ {0} × [1/C∞, 1/C0) = {(0, 1/C∞)} .
By definitions, P̃n(0, y) = 1 and Q̃n(0, y) = 0 hence f̃n(0, y) = µ∞ν̄∞(y) = 0. Hence,

f̃n(0, y) > 0 if y > 1/C∞ and f̃n(0, 1/C∞) = 0, since ν̄∞(y) > 0 if y > 1/C∞ and
ν̄∞(1/C∞) = 0. This concludes the proof. □

D. Supplementary results for the simple square well. We recall that ν1 = ν0 and
ν2 = ν∞ are defined in (6). More precisely, ν1(ω, k) ∈ R+ ∪ iR− and, by Section 1, for a
Love wave to exist at (ω, k) we must have ν2(ω, k) > 0.

D.1. Alternative formula giving H.

Proposition D.1. Let n = 1 and ℓ ⩾ 1. The function

(ωℓ,+∞) →
(
(ℓ− 1)

π

H
, (ℓ− 1)

π

H
+

π

2H

)

ω 7→ ωYℓ(ω) = |ν1(ω, kℓ(ω))| =
√
ω2

C2
1

− kℓ(ω)2 .
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is smooth, bijective, increasing. Consequently,

∀ ℓ , H = lim
ω→+∞

π√
ω2

C2
1
− kℓ+1(ω)2 −

√
ω2

C2
1
− kℓ(ω)2

.

Proof. Since sin[ωYℓ(ω)H] cos[ωYℓ(ω)H] > 0 by (26), which reads

µ1|ν1(ω, k)| sin[|ν1(ω, k)|H] = µ2ν2(ω, k) cos[|ν1(ω, k)|H] and ω/C2 < k < ω/C1

for n = 1, and since ω 7→ ωYℓ(ω) is continuous by Proposition 4.1, for any ℓ there exists
a p such that HωYℓ(ω) ∈ (pπ, pπ + π/2) for ω > ωℓ. From the formula of ωℓ and the fact
that limω↘ωℓ

kℓ(ω)/ω = 1/C2 by Proposition 4.1, we obtain limω↘ωℓ
ωYℓ(ω)H = (ℓ− 1)π,

hence p = ℓ− 1 and

∀ ℓ , ∀ω > ωℓ , ωYℓ(ω)H ∈
(
(ℓ− 1)π, (ℓ− 1)π +

π

2

)
. (D.1)

We are therefore left with proving that the function is strictly increasing, which we do
again by the IFT. Let us define, as before for shortness,

r(ω,Z) :=

√
C2
2 − C2

1

C2
1C

2
2

ω2H2 − Z2 > 0

on (ωℓ,+∞)×((ℓ− 1)π, (ℓ− 1)π + π/2), and gℓ : (ωℓ,+∞)×((ℓ− 1)π, (ℓ− 1)π + π/2) by

gℓ(ω,Z) = µ1Z sinZ − µ2r(ω,Z) cosZ .

For any ω⋆ > ωℓ, gℓ(ω⋆, ω⋆Yℓ(ω⋆)H) = 0 and we have

dgℓ
dY

(ω,Z) = [µ1 + µ2r(ω,Z)] sinZ +

[
µ1 +

µ2
r(ω,Z)

]
cosZ ,

hence dgℓ
dY (ω⋆, ω⋆Yℓ(ω⋆)H) ̸= 0 again since sin[ω⋆Yℓ(ω⋆)H] cos[ω⋆Yℓ(ω⋆)H] > 0.

Therefore, by the IFT there exists a neighborhood U of {ω⋆} s.t. there exists a unique
h ∈ C1(U,R) with h(ω⋆) = ω⋆Yℓ(ω⋆)H and gℓ(ω, h(ω)) = 0 on U . This h is (on U) exactly
ω 7→ ωYℓ(ω)H by definition of kℓ. Moreover, on U ,

h′(ω) = −
(

dgℓ
dY

(ω, h(ω))

)−1 dgℓ
dω

(ω, h(ω))

=
ρ2(C

2
2 − C2

1 )H
2ω

C2
1r(ω, h(ω))

([
µ1 +

µ2

r(ω,h(ω))

]
+ [µ1 + µ2r(ω, h(ω))] tan[h(ω)]

) ,

hence h′(ω⋆) > 0, again since tan[ω⋆Yℓ(ω⋆)H] > 0, concluding the proof of the first claim.
Moreover, by a bootstrapping argument, we obtain that h is smooth.

The second claim is a direct consequence of the first result. □

D.2. On the behaviour of the kℓ(ω)’s when ω ↘ ωℓ.

Proposition D.2. Let n = 1, the kℓ(ω)’s be defined in Definition 2.2, and the ωℓ’s as in
Proposition 4.1. Define yℓ : (ωℓ,+∞) → (1/C2, 1/C1) by yℓ(ω) = kℓ(ω)/ω. Then,

lim
ω↘ωℓ

y′ℓ(ω) = 0 .

Proof. By definition, f̃1(ω, yℓ(ω)) = 0. Differentiating ω 7→ f̃1(ω, yℓ(ω)), we obtain

y′ℓ(ω)yℓ(ω)
[
(µ2Hων̄2(yℓ(ω))− µ1)

sin[ω|ν̄1(yℓ(ω))|H]

|ν̄1(yℓ(ω))|

+

(
µ2

ν̄2(yℓ(ω))
+ µ1Hω

)
cos[ω|ν̄1(yℓ(ω))|H]

]

= µ2Hν̄2(yℓ(ω))|ν̄1(yℓ(ω))| sin[ω|ν̄1(yℓ(ω))|H] + µ1H|ν̄1(yℓ(ω))|2 cos[ω|ν̄1(yℓ(ω))|H] ,
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where |ν̄1(yℓ(ω))|, ν̄2(yℓ(ω)) > 0 since |ν̄1(yℓ(ω))| < yℓ(ω) < 1/C1. Multiplying both sides
by ν̄2(yℓ(ω)) > 0 then taking the limit ω ↘ ωℓ =

ℓ−1√
1/C2

1−1/C2
2

π
H , we obtain

(−1)ℓ−1 µ2
C2

lim
ω↘ωℓ

y′ℓ(ω) = 0 ,

where we used that limωℓ
yℓ = 1/C2, hence limωℓ

ν̄2◦yℓ = 0, limωℓ
|ν̄1|◦yℓ =

√
1/C2

1 − 1/C2
2 ,

and limω↘ωℓ
ω|ν̄1(yℓ(ω))|H = (ℓ− 1)π. □
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