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Trends
Cross-frequency coupling (CFC), in
other words the association of multiple
frequency neural oscillations, is present
across different frequency bands and
neural systems.

Circuit mechanisms determine CFC
characteristics: oscillations generated
in distinct versus overlapping circuits,
and continuously active versus inter-
mittent fast oscillation (FO).

Dynamic network properties determine
CFC signatures: phase–phase cou-
pling occur under weakly coupling
and do not co-occur with phase–fre-
quency coupling; phase–amplitude
coupling is present when the FO is
intermittent or sparse spiking; ampli-
tude–amplitude coupling requires
asymmetrical slow oscillations.

CFC is mechanistically implicated in
three cognitive operations: multi-item
representation, long-distance commu-
nication, and stimulus parsing.

Modeling shows that theta–gamma
CFC is an intracortical mechanism for
parsing speech.
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Neural oscillations are ubiquitously observed in the mammalian brain, but it has
proven difficult to tie oscillatory patterns to specific cognitive operations. Nota-
bly, the coupling between neural oscillations at different timescales has recently
received much attention, both from experimentalists and theoreticians. We
review the mechanisms underlying various forms of this cross-frequency cou-
pling. We show that different types of neural oscillators and cross-frequency
interactions yield distinct signatures in neural dynamics. Finally, we associate
these mechanisms with several putative functions of cross-frequency coupling,
including neural representations of multiple environmental items, communica-
tion over distant areas, internal clocking of neural processes, and modulation of
neural processing based on temporal predictions.

Mechanistic and Functional Characteristics of Cross-Frequency Coupling
Brain oscillations are observed in vivo and in vitro in almost any neuronal population of the neo- and
paleocortex. While it is relatively easy to measure oscillations and observe their modulations in
various sensory states and cognitive operations, it remains largely unclear what role, if any, they
play in neural information processing or, more generally, in cognition [1,2]. An intriguing feature of
neural oscillations is that rhythms of distinct frequencies show specific coupling properties [3–5].
The best-studied example of cross-frequency coupling (CFC, see Glossary) is between theta
(4–8 Hz) and gamma (>30 Hz) oscillatory activity in the rodent hippocampus [5–7]. Several other
observations of CFC, reported in a variety of species, brain regions, experimental conditions, and
recording techniques, have been linked to distinct cognitive processes [7–10], but the functional
significance of CFC remains enigmatic and its neuronal substrate obscure. The current working
hypothesis is that different functions ascribed to CFC, including the representation of multiple items
[7,11], communication between distant areas [12], and parsing of sensory stimuli with complex
temporal structure [8], could arise from specific CFC patterns.

To clarify the potential roles of CFC, mechanistic and functional levels of description need to be
brought together. These two strands of research have so far largely grown independently. To
wit, functional models of CFC generally elude committing to precise underlying neural mecha-
nisms, and dynamical models of CFC typically do not generate specific predictions about CFC
signatures and related functions. The goal of this review is to draw a closer link between CFC
mechanisms and functions. First, we introduce a novel classification of CFC phenomena
according to the underlying architectures: whether they are generated by intermingled or by
independent neuronal circuits, and whether the ensuing cross-frequency modulation is weak or
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strong. We then relate each architecture to an existing computational model, and connect the
various CFC signatures to specific neural mechanisms. Finally, we address how such neural
mechanisms may specifically underpin the commonly proposed CFC functions. Our novel
framework allows us to go beyond describing the various CFC phenomena because it lays
down a conceptual scaffold for the distinct CFC signatures as experimental markers of specific
neural mechanisms and cognitive functions.

CFC Architectures and Mechanisms
The first requirement for a network to generate CFC is to produce neural oscillations at two
distinct frequencies. Three elementary architectures allow neuronal circuits to synchronize
spiking activity and generate periodic rhythms: (i) synaptic coupling between inhibitory neurons,
(ii) synaptic coupling across inhibitory and excitatory neurons, and (iii) electrical coupling via gap
junctions – see [1]. When synaptic coupling generates synchrony, the decay time of inhibition is a
major determinant of the oscillation frequency [13]. Subpopulations of interneurons, with slower
and faster synaptic dynamics, as found in both the hippocampus and the neocortex [6,14], can
give rise to coupled neural oscillations at distinct frequencies. We focus here exclusively on CFC
between two neural oscillations that we refer to as fast and slow oscillations, abbreviated FO and
SO, respectively.

The second requirement for a neural network to produce CFC lies in the coupling between the
neural circuits that generate the individual oscillations. Depending on the nature of the coupling
different CFC classes can be distinguished. Intermingled CFC networks (Figure 1A) refer to
architectures where circuits generating individual oscillations share a common subpopulation,
while independent CFC networks refer to separate populations generating the two oscillations.
This case further divides into two subtypes: bidirectional coupling (Figure 1B), where two
reciprocally coupled populations generate individual oscillations, and unidirectional coupling
(Figure 1C) where unidirectional connections from the population generating one rhythm actively
modulate the other rhythm. So far, theoretical models of unidirectional coupling only considered
the case where FO are driven by SO, although the reverse mechanism of FO driving SO might
also exist [15]. Finally, unidirectional CFC with external drive (Figure 1D) corresponds to the case
where SO is not an internally generated oscillation but is a (pseudo-)rhythmic sensory signal
modulating FO in sensory circuits (see section ‘Temporal Parsing of Continuous Stimuli’).

In addition to the specific neural architectures, circuit parameters such as cross-circuit coupling
strength also determine the temporal pattern of the cross-coupled oscillations. An important
factor that characterizes the dynamics of CFC is whether the FO is present or not throughout the
slow cycle [16]. Accordingly, we distinguish between continuous CFC, where the fast oscillations
remain constantly active (Figure 1E), and intermittent CFC where FO is only present in a restricted
interval of the SO cycle (Figure 1F,G). Both can be predicted from the phase diagram, which
shows the conditions for fast oscillations to occur as a function of external inputs (Figure 1E–G)
[13,17–19]. In the phase diagram, each phase of the SO cycle is associated with a given subset
of coordinates, and the whole SO cycle determines a periodic trajectory. If the external
modulation by the SO is weak enough that the FO state stays within the oscillatory region
throughout the SO cycle (e.g., for weak coupling, Box 1), FO remains continuously active
throughout the SO cycle. If, conversely, the SO is strong enough to drive the FO system in and
out of the oscillatory region of the phase diagram (FO passes a bifurcation point at the boundary
between the oscillatory and non-oscillatory region), FO occurs intermittently for SO phases
where the FO system stays within the oscillatory boundaries. Within this scheme, FO can
alternate with quiescent periods during which there is no spiking activity in the network
(Figure 1F), with an asynchronous regime where spiking is not synchronized across neurons
(Figure 1G), or any other dynamic state. Existing computational models of intermittent CFC have
only focused on alternation with quiescent state [16,20].
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Glossary
Amplitude–amplitude coupling
(AAC): coupling between the
amplitudes of a slow oscillation (SO)
and a fast oscillation (FO).
Cross-frequency coupling (CFC):
dynamical interactions between
neural oscillations operating in
different frequency bands.
Dense-spiking oscillation:
oscillation generated by synchrony in
a neural population in which each
neuron in the population emits one
spike per cycle at a specific phase.
Interneuronal gamma (ING)
oscillation: gamma neural oscillation
(>30 Hz) arising from inhibitory–
inhibitory coupling; an inhibitory burst
silences the network until synaptic
inhibition decays.
m:n coupling: form of phase–phase
coupling where the FO completes
exactly m cycles while the SO
completes n cycles (e.g., 2:1, 3:1, or
3:2).
Phase–amplitude coupling (PAC):
coupling between the phase of a SO
and the amplitude and a FO, also
known as ‘nesting’.
Phase–frequency coupling (PFC):
coupling between the phase of a SO
and the frequency of a FO.
Phase–phase coupling (PPC):
coupling between SO and FO
phases.
Pyramidal interneuronal gamma
(PING) oscillation: gamma neural
oscillations (>30 Hz) arising from
excitatory–inhibitory coupling; a burst
of excitatory neuron spiking is closely
followed by a burst of inhibitory
spikes silencing the network until the
next excitatory burst.
Sparse-spiking oscillation:
oscillation generated by synchrony in
a neural population in which spiking
of individual neurons is stochastic;
the oscillation frequency exceeds the
average firing rate.
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Figure 1. Architectures for Cross-Frequency Neural Coupling. (A–D) Cross-frequency coupling (CFC) architectures.
(A) Intertwined oscillators. Neural oscillations in distinct frequency bands are generated by partially overlapping neural
populations. In the depicted example, excitatory neurons (represented by the triangle) participates in the generation of both
a slow oscillation (SO) and a fast oscillation (FO), whereas separate inhibitory populations (represented by green and orange
circles) are involved in the generation of respectively SO and FO. CFC arises though the dynamics of the neural population
common to both oscillations. Intermingled CFC has been proposed to explain the emergence theta/gamma coupled
oscillations in hippocampus [6,30,100], where a common excitatory population is coupled to fast-spiking (FS) cells
(generating gamma oscillations) and oriens-lacunosum moleculare (O-LM) cells (generating theta oscillations). (B) Bidirec-
tional coupling. Segregated populations are implicated in the generation of the SO and FO (in the depicted example, a
population of excitatory and inhibitory neurons for both oscillations), and coupling is mediated by reciprocal coupling
between SO neurons and FO neurons. This architecture was used in the first computational model of coupled theta–gamma
oscillations in hippocampus, which featured two coupled inhibitory subpopulations with distinct GABA decay time [101].
Moreover, precise spiking and local field potential (LFP) dynamics of in vitro cortical slices was explained by a sophisticated
model whereby a beta1 rhythm concatenates two bidirectionally coupled oscillations, a gamma rhythm generated in
superficial layers and a beta2 rhythm generated in deep layers [102,103]. (C) Unidirectional coupling. Distinct populations
are implicated in the generation of SO and FO, and coupling arises though one population projecting onto the other
population (here SO to FO). In a recent model of speech perception in auditory cortex, coupled theta–gamma oscillations
were modeled by two separate excitatory–inhibitory subpopulations responsible for the generation of both rhythms [39],
with the theta module projecting onto the gamma module. (D) Sensory entrainment. Sensory entrainment of neural
oscillators is a special case of unidirectional coupling where a neural oscillator is modulated by slow modulations in
sensory stimulus (e.g., visual rhythmic movements or amplitude-modulated sounds). This model has been tested in the
context of visual processing: a PING module generating broad gamma rhythm responds to visual activity experimentally
recorded in monkey thalamus that carries strong slow modulations [28]. (E–G) Temporal dynamics of FO. (E) Continuous
FO. (Left) Schematic phase diagram of FO dynamical state: continuous FO occurs when SO modulation shapes a trajectory
within the region of existence of FO. (Right) The continuous model of CFC from Fontolan et al. [16] (see their Figure 5) was
transformed into a mathematically equivalent model of quadratic-and-fire neurons and simulated (with membrane white
noise of variance 0.01). SO is modeled as a simple modulatory signal while FO is composed of a population of pyramidal and
inhibitory cells generating gamma oscillations through the PING mechanism. (Top right) SO modulating signal. (Bottom right)
raster plot of FO spikes: pyramidal neurons (n = 50, light orange); inhibitory neurons (n = 50, dark orange). FO spiking
occurs throughout the SO cycle. (F) Oscillation/quiescent-state intermittent FO. (Left) This type of intermittent FO occurs
when SO modulation shapes a trajectory between the oscillatory and quiescent regions of FO. (Right) The intermittent model
of CFC from [16] (see their Figure 7) was transformed into network of quadratic-and-fire neurons and simulated. FO
alternates between a period of gamma oscillations when excitation from SO is large enough, and a quiescent state when SO
signal is lower. (G) Oscillation/asynchronous-state intermittent FO. (Left) This type of intermittent FO occurs when SO
modulation shapes a trajectory between the oscillatory and asynchronous regimes of FO. (Right) We modified the
parameters of the gamma network of [16] (constant current, synaptic conductance, and membrane noise) such that
the network alternates within SO cycle between a period of strong oscillation and a period of asynchronous spiking activity.
CFC Signatures
Experimentally, evidence for CFC derives from spectral analyses of collective neural measures
[local field potential (LFP), electroencephalography (EEG), or magnetoencephalography (MEG)
signals]. Each oscillation is characterized by three properties: frequency, amplitude, and phase.
Theoretically, two rhythms may couple through any pair of such features, but coupling emerges
Trends in Neurosciences, November 2015, Vol. 38, No. 11 727



more readily when both features evolve on similar timescales. Hence, the four principal CFC
signatures are: phase–frequency coupling (PFC), phase–phase coupling (PPC), phase–
amplitude coupling (PAC), and amplitude–amplitude coupling (AAC) [4]. Recently, the
development of novel statistical methods has allowed discrimination between the different
coupling modes in recorded data [21–25].

Essentially, the challenge that experimentalists are facing is to infer the underlying network
structure from CFC neural signatures measured from brain recordings [1,26]. Computational
modeling of CFC networks provides clues as to how to resolve this non-trivial reverse-engi-
neering problem (Box 2). A pivotal issue is the complex relationship between spiking activity, the
focus of most network modeling studies, and the measures of collective neural activity, such as
the LFP or EEG signal, on which most empirical evidence of CFC is based [27]. Because the
frequency of an LFP oscillation reflects the frequency of average spiking of local populations, the
observed oscillation is more visible in multi-unit rather than in individual spiking activity [28].
Moreover, power in an LFP oscillation reflects the degree to which neural spiking engages in a
global oscillation, and is thus sensitive both to the fraction of neurons that spike at each cycle and
to the phase dispersion of such spiking (i.e., the degree of synchronization). Finally, because LFP
is assumed to index synaptic activity, there is usually a constant offset between the phase of the
LFP oscillations and spike timing. Interestingly, such observed relationships should allow us to
predict specific LFP signatures of distinct CFC networks.

Phase–Phase Coupling (PPC)
Much of our understanding on how and when two oscillations couple in phase arises
from analyzing how the dynamics of coupled intrinsic oscillators can evolve towards a stable
phase-locked solution (Box 1). PPC is a peculiar form of CFC that occurs even with very weak
coupling. It is a subtle effect because both coupled variables (SO phase and FO phase) evolve
along distinct timescales, and any perturbation due to heterogeneity or noise is liable to disrupt
the coupling. The larger the m and n factors in m:n coupling (Box 1), the smaller the region of
coupling parameter space where locking can occur [29].
Box 1. Analytical Methods for Neural Cross-Frequency Coupling

Dynamical systems theory provides powerful tools to study the different forms of coupling between cortical rhythms,
using reduced mathematical descriptions of universal oscillatory phenomena to describe complex neural systems with
relatively simple sets of differential equations. Different coupling classes can be organized according to the magnitude of
the synaptic conductance present in the network. SO and FO are weakly coupled when the connections are weaker than
the intrinsic forces driving each oscillator. In this case, amplitude modulations of FO are negligible, and one can fully
describe the dynamics by the phase of the oscillations, giving rise to PPC. By contrast, strongly coupled systems may
also lead to PFC, PAC, and AAC.

When synaptic SO–FO interactions are fast enough (the case referred to as ‘pulsatile coupling’), one can compute the
phase response curve (PRC) [104], that is, the phase advance/delay induced by a small synaptic perturbation as a
function of the current phase of the oscillator (Figure IA–D). From the PRC one can then determine the FO-to-SO
synchronization properties [105]: a fully nonnegative (type I) PRC produces a weak PPC but reliable PFC (Figure 2A);
instead, a FO with biphasic (i.e., partly positive and partly negative, type II) PRC is prone to synchronize in phase with any
SO, but yields more modest PFC. PRC shapes can be measured experimentally [106,107], and help to determine the
FO-system bifurcation, in other words the particular set of key changes in its dynamics. The PRC formalism can be
applied to both unsynchronized and phase-locked dynamics (m:n coupling). Regions of the parameter space corre-
spond to different m:n locking modes, forming the Arnold tongue map of the system (Figure IE). Although the PRC is
usually computed between two oscillators (neurons or populations), including bidirectional intermittent strongly coupled
oscillations [108], it has been used to model complex multiple interactions such as three-neuron networks [20,109].
Similar methods are used for weakly coupled oscillations with slow synaptic coupling [110].

In stochastic networks with weak coupling, perturbation analysis can be applied to mean field models (e.g., the model of
Wilson and Cowan [111]) to compute a first approximation of frequency modulations, in the case of PFC [18]. Novel
perturbation methods to investigate continuous strong coupling are being developed [16,112], although a general theory
is still lacking. In contrast to PPC and PFC, PAC is usually analyzed by reducing the population activity to a set of Wilson–
Cowan equations [19,96]; however, the suitability of this simplification has not yet been thoroughly assessed.
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Figure I. (A,B) Spiking frequency of type I and type II neurons as a function of driving-current magnitude. (A)
Cells with type I membrane excitability can spike at any arbitrary frequency once passed beyond the bifurcation point. (B)
When a type II neuron goes through the bifurcation point it starts firing from a finite frequency. (C) Phase response curve of a
type I neuronal oscillator: any small excitatory input induces a phase advance within the spiking cycle of the oscillator. (D)
Phase response curve of a type II neuron: an excitatory pulse either advances or delays the next spike depending on the
particular phase at which the input arrives within the spiking cycle. (E) When solicited with an external sinusoidal input (SO),
individual neurons from Aplysia display Arnold tongue maps (i.e., different forms of m:n coupling depending on the input
frequency and amplitude). Experimental results are in fair agreement with model simulations (adapted from [29]). (F,G)
Phase–amplitude coupling modeled through a set of Wilson–Cowan equations to represent the activity of a specific
population of interneurons in rat hippocampus (adapted from [96]). Experimenters recorded the response of excitatory and
inhibitory neurons to sinusoidal inputs induced using optogenetics tools. (F) Schematic illustration of the excitatory–
inhibitory hippocampal network and spontaneous FO visible in E and I population activity in absence of external noise. (G)
Phase portrait of the FO model showing the stable limit cycle of the system (blue), the nullclines (i.e., the points where either
the excitatory or the inhibitory activity would be constant; black: dashed, excitatory; solid, inhibitory), and the isochrones (the
set of initial points from which the dynamics would evolve towards oscillations having the same phase; red). Phase and
amplitude modulations of FO can be inferred from the phase portrait, given a specific set of initial conditions.
A recent analytical study shows how a pyramidal interneuronal gamma (PING) rhythm locks
to a slow sinusoidal input both in the cases of continuous and intermittent FO/quiescent state
regimes [16]. Whereas PPC is always weak in the continuous case (Figure 2A), strong FO
synchronization occurs in the intermittent regime at every SO cycle, whenever the system
crosses the bifurcation point to the quiescent state (Figure 2B). A similar strong phase-locking of
gamma FO to theta SO is found in intermingled models of rat hippocampus coupled oscillations
[6,20,30,31]. In this case, m:n synchronization is granted by an inhibitory pulse that shuts down
Trends in Neurosciences, November 2015, Vol. 38, No. 11 729



Box 2. Inferring CFC Architecture from Neural Data

Intermingled versus Independent Coupling
In intermingled models, resection of neural connections preserves one of the two rhythms. For example, transverse
hippocampal slices display gamma activity only, while longitudinal slices show theta activity. Resection along one or the
other direction severs the pyramidal–FS or pyramidal–O-LM connections, disrupting either of the two rhythms [100],
consistent with an intermingled network where the pyramidal population is involved in the generation of both oscillations.
By contrast, in an independent CFC network, two independent rhythms are preserved when the two subpopulations are
resected, as is the case of the coupled gamma and beta2 rhythms generated respectively in deep and superficial layers of
the neocortex [102]. In non-interventional experiments, CFC between distal sites (across areas or cortical layers) is strong
indication for independent coupling, especially if it is stronger than local CFC [51].

Unidirectional versus Bidirectional Coupling
Within a SO cycle, the phases at which distinct neural subpopulations sequentially fire reflect the underlying causal chain
of spiking, which can hence be retrieved using methods based on causal models of neural spiking [113–115]. The
pharmacological blockade of firing activity can uncover the causal patterns of spikes, as was used in [103] to reveal a
mechanism for rhythm concatenation in in vitro cortical slices. Causality is more difficult to evaluate when collective
signals such as LFP or EEG, rather than spiking activity, are recorded. A recent analysis of CFC in intracortical signals
during speech perception combined a non-causal measure of CFC and a causal measure of within-frequency coupling,
revealing causal relationships between two distinct frequency bands in two distinct areas [116]. More recently, Jiang and
colleagues developed an original technique to measure causality between distinct frequency bands and showed that,
surprisingly, the power of gamma oscillations drives slower alpha oscillations in resting state [15] (Table I).

Table I. Summary of Systematic Relationships Between Network Architectures and CFC Signaturesa

FO PRC: Type I FO PRC: Type II

Weak coupling � PPC

Strong coupling, continuous FO Weak PPC, strong PFC Strong PPC, weak PFC

If sparse-spiking FO: PAC
If sparse-spiking FO and asymmetric SO: AAC

Strong coupling, intermittent
FO/quiescent

PPC, PFC, PAC
If asymmetric SO: AAC

Strong coupling, intermittent
FO/asynchronous

Weak PPC, PFC, PAC If asymmetric SO: AAC

aSee section (ii) in the main text and Box 1 for details.
network activity for a short period at every SO cycle; this requires SO inhibition to last longer than
the membrane potential time-constant of the FO neuron. However, intermittent FO does not
guarantee strong PPC: for example PPC is absent when the FO switches intermittently to the
asynchronous regime (Figure 2C).

Phase–Frequency Coupling (PFC)
PFC is a generic form of CFC models where SO modulates the excitability of FO, which in turn
induces a FO frequency modulation. In a continuous CFC setting, this modulation is bounded by
a minimal and a maximal FO frequency generally corresponding to the trough and peak of the SO
(Figure 2A). In intermittent CFC, the FO frequency is modulated during the periods of oscillatory
regime, while outside this period FO is non-existent (Figure 2B,C). Such frequency modulation
was analyzed in a noise-free dense-spiking PING FO network, under both continuous and
intermittent CFC settings [16]. Simulations of a SO-modulated minimal PING model also showed
that FO accelerates when the SO input whether to pyramidal cells or, counter-intuitively, to
inhibitory cells [19], is maximal. Despite being a prevalent signature of CFC, PFC is seldom
reported in experiments, presumably because it is difficult to identify instantaneous frequency
peaks in EEG and MEG spectrograms. Nevertheless, PFC could be investigated in intracranial
recordings, where clear peaks do appear even at higher frequencies [32,33]. Interestingly, PFC
and PPC tend not to appear conjointly (Boxes 1,2). For example, the former appears without the
730 Trends in Neurosciences, November 2015, Vol. 38, No. 11
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Figure 2. Phase–Frequency Coupling (PFC) and Phase–Phase Coupling (PPC). (A) Continuous fast oscillation
(FO). (Top) PPC in the continuous FO model of Figure 1E. The top panel shows the histogram of FO phases as a function of
slow oscillation (SO) phase for a simulation of 30 s. Darker areas show higher phase concentration. The overall largely
homogeneous pattern indicates that very limited PPC emerges, which is confirmed by computing the FO phase-locking
factor (PLF) as a function of SO phase [69]: low PLF indicates that SO phase had virtually no influence on FO phase. The
green line shows the outline of the SO modulating signal. (Bottom) PFC in the same model. The black curve shows the
frequency of FO bursts as a function of SO phase. (B) Intermittent oscillatory/quiescent FO. (Top) PPC in the intermittent
oscillatory/quiescent FO model of Figure 1F. The top panel shows very strong FO phase concentration throughout the SO
cycle, with nearly non-existent phase change during the quiescent period (i.e., frequency vanishes) and rapid phase
dynamics in the oscillatory period. FO-PLF remains high during the whole SO cycle, with highest values during the quiescent
period. (Bottom) PFC in the same model. FO frequency is modulated during the oscillatory period and vanishes during the
quiescent period. (C) Intermittent oscillatory/asynchronous FO displaying PFC without PPC. (Top) PPC in the intermittent
oscillatory/asynchronous FO model of Figure 1G. PPC hardly emerges in this network because no phase-resetting occurs
during the asynchronous phase. (Bottom) PFC in the same model. FO frequency is modulated during the oscillatory period
and vanishes during the asynchronous period. (D) Type II FO displaying PPC without PFC. (Top left) Raster plot of a network
of a single class of interconnected excitatory neurons (adaptive quadratic integrate-and-fire) receiving rhythmic SO impulse.
(Bottom left) Nearly symmetrical phase response curve (PRC) of FO neurons showing phase lead for later phases and phase
lag for earlier phase, corresponding to a type II oscillator (Box 1). (Top right) Strong PPC in the network because type II
oscillators phase-lock easily to external excitatory input. (Lower right) PFC is absent in the same network. Because of the
symmetrical PRC, on average there is no acceleration or slowing down of the FO because phase leads and delays cancel
out, and FO remains at a constant frequency throughout the SO cycle.
latter in intermittent FO/asynchronous networks (Figure 2C) while the opposite pattern is
illustrated in Figure 2D. These two examples show how different coupling architectures may
give rise to fully distinct CFC profiles.

Phase-Amplitude Coupling (PAC)
PAC or nesting refers to the CFC case where FO power is modulated by the SO phase. PAC has
been reported at many distinct frequency ranges and using various recording and computation
techniques [5,34,35]. In intermittent CFC, PAC results from the presence of FO in only part of the
SO cycle, such that FO power shows all-or-none switches [19,31]. PAC in continuous CFC is
subtler and requires that SO modulates either the proportion or the phase dispersion of FO
neuron spiking. Spiking patterns of individual neurons within the FO can span a whole spectrum
from one spike per cycle to random, extremely sparse, spiking skipping multiple periods [13]. It is
instructive to consider the two limiting cases as a conceptual scaffold to understand the
mechanisms of CFC and their implications for function. In dense-spiking oscillations each
neuron spikes once per cycle at a specific phase, leaving no opportunity for the slow rhythm to
modulate either the proportion or the phase dispersion of spiking. As a consequence, PAC is
absent when a dense-spiking PING FO is modulated by SO (Figure 3A), as well as in a simplified
noise-free PING network [19]. By contrast, in the sparse-spiking PING case, when neuronal
spiking is irregular and occurs at a much lower rate that the oscillation frequency [36,37], the
number of neurons firing at each cycle and their phase-locking to the FO oscillations depends on
the input parameters. As a result, a SO modulation yields strong amplitude modulation, in other
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Figure 3. Phase–Amplitude Coupling (PAC) and Amplitude–Amplitude Coupling (AAC). (A) Dense-spiking con-
tinuous fast oscillation (FO). Plot shows FO amplitude as a function of slow oscillation (SO) phase for distinct FO frequencies
(from 10 Hz to 100 Hz) for the dense-spiking continuous FO model of Figure 1E. Red, high FO power; blue, low FO power.
Peak FO frequency varies throughout SO cycle (PFC) but the overall FO power remains constant. (B) Sparse-spiking
continuous FO. PAC is present in a model identical to that of panel A with simply an increased level of noise, producing sparse-
spiking FO oscillations. (Left) Raster plot showing that the number of FO spikes at each cycle varies as a function of SO phase.
(Right) FO amplitude as a function of SO phase, showing strong PAC with maximal FO amplitude close to SO peak, on top of
PFC. (C) Sparse-spiking continuous FO with adaptation. The model in (B) was modified by introducing an adaptation current,
slowing down the dynamics of the FO oscillation in response to SO modulation. PAC plot shows that maximal FO power
occurs at a later SO cycle compared with the no-adaptation model of (B). (D) Dual ING/PING alternation. (Leftmost and
middle-left) The FO network alternates within a SO cycle between a period of pyramidal-interneuron-generated oscillations
(PING mechanism) and another period of faster interneuron-generated oscillations (ING) (this is obtained by a SO modulation
applied to the inhibitory instead of the excitatory population). (Middle-right) FO amplitude as a function of SO phase. PAC
occurs for two distinct FO frequencies, with maximal FO power for these two frequencies in antiphase. Such a pattern with
distinct frequencies (pointing to distinct oscillation-generation mechanisms) should not be confounded with the case of a
frequency modulation within a single FO frequency band, as shown in (A). (Rightmost) Data from rat hippocampus recordings
showing a similar alternation between slow gamma and fast gamma within a theta cycle (adapted from [41]). (D) Positive AAC
for positive asymmetric SO. (Left panel) The cross-frequency coupling (CFC) network with sparse-spiking FO oscillations was
simulated with a SO sinusoid which amplitude was modulated at a 1 Hz rate, whereby an increase in SO amplitude is
accompanied by a general increase in SO level (green curve, left panel). This leads to general increase of FO amplitude on top
of an increase of PAC strength. (Middle panel) FO amplitude as a function of SO phase, separately for high SO amplitude
cycles (red curve) and low SO amplitude cycles (black curve). PAC was present as for the non-modulated SO sinusoid
(Figure 3B), but here PAC modulation increased with higher SO amplitude. (Right panel) FO amplitude as a function of SO
amplitude, showing strong positive AAC. Figure S1 in the supplemental information online shows the absence of AAC for
a symmetric SO. (F) Negative AAC for negative asymmetric SO. Same model as in (E) but here the increase in SO amplitude
is accompanied by a general decrease in SO level. This in turn leads to general decrease of FO amplitude on top of an
increase of PAC strength, hence a negative correlation between SO and FO amplitudes.
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words PAC (Figure 3B) [38,39]. Sparse-spiking gamma oscillations are prominent in sensory
areas and respond to the sensory input. Accordingly, gamma power which reflects the
information content of the stimulus is modulated by slow (delta) fluctuations of the sensory
stimulus [28,40].

The precise dependence of FO power on SO phase reflects the underlying coupling mecha-
nisms [19]. In general, one expects FO power to be maximal at SO peak or trough, depending
on the excitatory/inhibitory nature of SO. Accordingly, electrocorticography (EcoG) recordings
in human patients reveal that inter-areal PAC occurs mainly when FO power is maximal
around SO peak or trough [35]. However, transmission and synaptic delays as well as
neural adaptation may introduce a significant phase-shift (Figure 3C). This likely explains
why, for some electrode pairs, FO power peaks with some offset with respect to SO
extrema [35].

An interesting configuration emerges when SO modulation induces a switch in FO between two
distinct oscillatory modes, for example, between a slower PING-like oscillation and a faster
interneuronal gamma (ING) (Figure 3D). In this case, the power of both FO oscillations couples
in antiphase to the SO. Accordingly, low and high gamma power peaking at distinct phases of a
theta cycle has been observed in both the hippocampus and the motor cortex [41,42]. The
alternating PING/ING scenario mentioned above appears to be a possible oscillation generation
mechanism in these circuits.

Amplitude–Amplitude Coupling (AAC)
While there is an abundant literature on amplitude coupling of neural oscillations in the same
frequency band at distal sites [43–46], within- and cross-frequency AAC probably rely on distinct
neural mechanisms. Within-frequency AAC is simply a marker of linear coupling, and is thus not
very specific with respect to the underlying mechanisms. By contrast, cross-frequency AAC
emerges when SO power modulates the average FO power; this occurs on top of PAC when the
SO shape is asymmetric. For positive asymmetric SO, that is, when the overall SO level increases
with power and SO positively modulates FO amplitude, higher SO amplitudes lead to overall
higher FO amplitudes, and there is positive AAC (Figure 3E). This was observed in a model of
sparse-spiking sensory gamma modulated by theta sensory signals (see Figure 4F in [40]). AAC
can also emerge from a negative asymmetric SO, leading to a negative correlation between SO
and FO amplitudes (Figure 3F). The human visual alpha oscillation is asymmetric [47] and is
thought to be functionally inhibitory [48,49]. Accordingly, alpha increases are typically accom-
panied by gamma decreases in occipital areas [10,50,51]. Moreover, the alpha phase modulates
gamma amplitude (AAC is accompanied by PAC) and stronger alpha power increases PAC
[52,53].

Functions of CFC
The ubiquity of CFC phenomena across dynamical systems, from seismic waves to financial
indices [54], challenges the relevance of these phenomena to brain function. As illustrated
above, in most cases at least one form of CFC signatures is bound to emerge from intrinsically
shared circuitry, or from connections between neural systems generating oscillations at distinct
frequencies. Given this uncertainty, the issue of how coupled neural oscillations contribute to
cognitive operations has been the object of intense exploration and speculation. Reviewing the
possible CFC mechanisms and their related dynamical signatures significantly enhances the
possibility to connect CFC as empirical phenomena to specific neural computations, and
permits a reasonable bridge to brain functions, which are grouped below into three conceptual
families.
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Figure 4. Functions of Cross-Frequency Coupling (CFC). (A) Multi-item/sequence representation. (a) Multi-item
representations through CFC is envisaged for working memory (Top, in hippocampus and prefrontal cortex) [54,116],
spatial memory for previously and subsequently visited items (in hippocampus) [60,61], and visual attention to a series of
items in visual field (Bottom, in visual cortex) [10]. (b) Putative CFC architecture for multi-item representation. Intertwined
CFC network with a common population of pyramidal neurons connecting to two populations of distinct types of inhibitory
neurons, each responsible for the generation of one of the two oscillations (slow, SO; and fast, FO). Some models also
include direct connections between the two inhibitory populations [6,20]. (c) Multi-item representation relies on intermittent/
quiescent CFC regime: the nested FO oscillation only occurs during a defined phase range, with one item being represented
at each FO burst. AAC (through asymmetrical SO) allows modulating the phase range of FO and thus the number of
represented items. (B) Long-distance communication. (a) Putative architecture. FO synchrony between region 1 and region
2 is mediated by inter-area SO synchrony and local PPC. Strong SO coherence is provided by connections between the two
SO modules (broad green connection). As a result, FO synchrony allows efficient selective communication between region 1
and region 2 neurons (broad orange connection) in face of distractors. (b) Coherent SO oscillations (green lines), coherent
FO oscillation (orange lines). The rastergram below the oscillatory pattern in each region shows that the spiking pattern in
region 2 closely follows that of region 1. (C) Sensory parsing. (a) Putative architecture: a sensory stimulus (light blue) with
slow rhythmic modulations is fed both to a SO module whose activity phase-locks to sensory modulations (green), and to a
FO module that encodes fine-grained stimulus information (orange). Direct connection from SO to FO enables control of
stimulus-processing resources depending on the modulation phase, with more FO power being assigned to more-
informative stimulus periods [39]. (b) Sensory decoding: SO provides an internal clock for stimulus decoding; for example,
FO spikes can be decoded with respect to SO spike bursts. FO is nested within FO, and the stimulus is encoded in pattern
of spikes from the FO module.
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Multi-Item or Sequence Encoding
Many neural systems need to concurrently maintain active representations of distinct items,
while avoiding interferences: these can be objects in the visual field, items in working memory, or
sequences of motor commands in a complex movement [4]. Neural oscillations offer a potentially
efficient tool for multi-item representation by temporally clustering spikes pertaining to each item
within distinct oscillations phases. This principle allows downstream neural systems to read-out
a given item by tuning to its associated phase range [55,56]. CFC offers a refined version of this
phase-clustering scheme: the SO oscillation defines the phase-coding temporal code while the
FO oscillation generates rhythmic spiking activity, associating each represented item with one
FO cycle (Figure 4A). The discrete item-specific FO bursts within the SO cycle optimize the
encoded information while minimizing interference across encoded items. This idea dates back
to a model proposed by Lisman and colleagues, wherein items representations were nested
within coupled hippocampal theta–gamma rhythms [57,58]. Similarly, alpha–gamma CFC over
parietal–occipital networks is proposed to underpin multiple-item representation in visual work-
ing memory [59]. CFC also provides a means of ordering a timed sequence of elements within a
time-compressed temporal window, which appears potentially useful to learn specific associ-
ations between the successive elements (through neural plasticity) [12]. This coding principle is
hypothesized to underpin spatial navigation in the rodent hippocampus: within a theta cycle a full
sequence of locations, from previously to subsequently visited locations, is represented at a rate
of one location per gamma cycle [60,61]. Likewise, alpha–gamma CFC assemblies are pro-
posed to mediate cortical representation of sequences of visual field locations [10,62]. The
activation order of neural representations within an alpha cycle would depend on stimulus
saliency: neurons coding for the most salient stimuli activate first and process information in
priority, while less-salient stimuli are processed later, and irrelevant stimuli may even not be
processed at all.

What neural architecture(s) and CFC signature(s) could possibly support multi-item representa-
tion? CFC-based multi-item representation is characterized by one inactive period within the SO
cycle (specifically, between the beginning of a new sequence and the end of the previous one)
during which no item is represented and FO vanishes. It thus corresponds to an intermittent FO
CFC, potentially inducing both PAC and PPC. Hippocampal theta–gamma PAC has been
reported across studies in rodents [30,63] and humans [64,65]. PAC increases during learning of
item–context associations [66] and m:n PPC between theta and low- and mid-gamma frequen-
cies is present during maze exploration, on top of a PAC effect [67]. Theta–gamma PPC is
observed in human EEG during visual working memory [68], with a load-dependent PPC effect
during retention of visual information in addition to PAC [69]. Circuit models of coupled theta–
gamma generation reproduce such dynamics, using intermingled theta–gamma network mod-
ules producing intermittent gamma/quiescent CFC, and thus PAC and PPC [6,30]. In the
framework of these models, the maximum number of items that can be simultaneously
represented is determined by the number of active FO cycles within one SO. The models
account for the proposed maximal number of items (7 � 2) that can be stored in human short-
term memory because at most seven gamma cycles can fit within a theta cycle [57]. Interestingly,
storage capacity could acutely be modulated by modifying the SO frequency, as observed
during high-load working-memory tasks [9].

AAC provides an alternative mechanism: the amplitude of SO would modulate the number of FO
cycles and thus the number of represented items. This scheme could account for the modulation
of visual field capacity as a function of attention: when attention is low, the visual alpha band
power increases in the related visual field, and, through its inhibitory action on spiking gamma
activity (negative AAC), restricts the amount of attended items to the most salient ones [10]. In
turn, top-down control of visual attention may implicate a whole hierarchy of oscillations.
Occipital alpha is modulated by frontal theta through negative AAC: this would explain why
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increases in frontal activity after behavioral errors are translated into decreases in occipital alpha,
and thus enhanced attention [70]. Such a top-down regulation of visual processing through AAC
is absent in children with attention deficit hyperactivity disorder (ADHD) performing a cross-
modal task, and could account for their cognitive impairment on the task [71]. For spatial
navigation, positive AAC is proposed to play a similar role: theta–gamma AAC increases during
successful spatial navigation based on trial-and-error exploration [72].

Synchronization of Fast Oscillations for Long-Distance Communication
One of the most prominent roles assigned to neural oscillations is to mediate selective neural
communication between areas, with in-phase regions communicating more efficiently than out-
of-phase ones [73]. Gamma rhythms have predominantly been implicated in this so-called
‘communication through coherence’ mechanism, especially for bottom-up processes [74].
However, fast oscillations only synchronize at a local scale. By contrast, slower rhythms
(<10 Hz) may synchronize between distant areas [75,76]. Coupling phase of gamma oscillations
to slower rhythms may be a way to selectively enhance communication between distant areas
via long-distance synchronization between local gamma rhythms [12,59]. In this way coherence
between distant SO associated with local SO/FO PPC could bring synchrony to distant FO
(Figure 4B). Accordingly, observations in rodents show fast gamma synchronization between
hippocampus CA1 and medial entorhinal cortex, slow gamma synchronization between CA1
and CA3, theta synchrony between all three sites, and a strong coupling of low and high gamma
to theta [41]. A computational model of hippocampal theta–gamma oscillations demonstrates
mechanistically how theta synchronizes gamma in transverse CA3 modules [6]. A similar
mechanism might be at work in visual cortex, where theta phase modulates V1/V4 gamma
synchronization during a selective attentional task [77,78]. These observations are consistent
with a form of PPC where gamma is reset by the theta oscillation. However, good FO
synchronization requires precise SO alignment at the FO timescale. For example, in the
hippocampus model, gamma synchronizes across modules when theta conduction delays
are below 8–9 ms, in other words only a fraction of the �40 Hz gamma cycle [6].

A variant of the communication through CFC hypothesis postulates increased communication
between regions in which gamma is jointly active within similar SO phases; this scheme requires
PAC rather than PPC. In this view, the diversity of FO amplitude to SO locking could flexibly
shape functional connectivity in the brain [35]. Evidence for such a routing mechanism comes
from the medial temporal cortex: oscillations occurring in distinct gamma sub-bands and distinct
portions of the theta cycle could ensure selective communication between CA1 and CA3, or
between CA1 and medial entorhinal cortex [41]. This role of CFC is supported by recent in vitro
measurements in human neocortical slices where interlaminar theta coherence coexists with
theta–gamma PAC, and these two measures correlate [79]. A functional validation of this
hypothesis comes from a task manipulating visual spatial attention in monkeys while activity
was recorded from two interconnected regions of the ventral stream, V4 and TEO. As the
monkey was paying attention to a given visual stimulus, there was an increase both in theta
coherence between V4 site and TEO sites whose receptive fields encompass the location of the
stimulus, and in theta–gamma PAC within each site [80]. This combination of distinct effects
could selectively enhance communication across sites whenever the stimulus within their
receptive field is the current focus of attention.

Temporal Parsing of Continuous Stimuli
Many biological stimuli are characterized by an intrinsic quasi-rhythmic temporal structure, or are
processed in a rhythmic mode. Speech is marked with syllabic contours, odors are sniffed at the
respiratory rhythm, visual scenes are explored at the pace of saccades, etc. [81,82]. While slow
oscillations in sensory areas reflect the rhythm of the sensory signal or of sensory sampling, fast
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gamma oscillations underpin fine-grained sensory processing in a bottom-up fashion
[28,39,74,83]. The gamma rhythm does not need to have any counterpart in the sensory
structure but is rather the operating rhythm of the sensory cortex itself. Hence, in this case, the
FO represents the content and SO the context.

The control of FO by SO exploits the sensory temporal modulation during perceptual processes
in two possible ways (Figure 4C) [8,84–86]. First, when the rhythm is present in the sensory
signal, the cortical perceptual system may take advantage of the temporal structure of the input
to perform discrete processing of meaningful sequences [82]. Slow oscillations (2–12 Hz)
constitute the perfect tool for carrying such temporal predictions associated with rhythmic
modulations [87]. There is ample evidence that slow oscillations in sensory areas lock to sensory
input modulations [88,89], and could constitute an internal clock for chunking sensory stimuli
(e.g., into syllables) and decoding FO activity. Correspondingly, the phase at which neurons in
the auditory cortex spike with respect to slow LFP oscillations helps to uncover the identity of
naturalistic sounds [90,91]. In a recent modeling work, we showed that theta spike bursts in
auditory cortex can reliably signal the boundaries between syllables in continuous speech, thus
parsing speech into relevant stimulus chunks; the identity of syllables can be decoded from the
spike timing of FO (gamma) neurons with respect to SO (theta) spike bursts [39].

Second, SO may directly modulate FO to deploy more processing resources (FO power) at the
SO phases where the most relevant sensory information occurs (e.g., onset of odors in sniffing
episodes) and filter out irrelevant stimuli arriving out of phase [5,92,93]. In our syllable decoding
model, direct connection between circuits generating slow and fast oscillations, essentially
coupling gamma power to theta phase, was crucial to accurate syllable decoding.

Current Limitations and Future Directions
The field of neural cross-frequency coupling is still in its infancy. On the mathematical side, there
is still much to do to understand the conditions under which CFC emerges (see Outstanding
Questions). While most current theoretical studies focus on the synchronizing properties of
individual neurons, we also need to understand the dynamics of populations of oscillating
neurons (FO and SO), especially in the context of noise and heterogeneity [18,19]. Most
importantly, theoretical work should be translated into testable experimental predictions with
respect to the neural signatures of CFC (PPC, PAC, etc.).

Correspondingly, experimental studies should strive to pinpoint more specifically which type of
CFC is encountered by testing its diverse forms in a given dataset. Too often, experimenters
seek evidence for only one specific form of CFC, but the conclusion that a coupling mode does
exist is, by itself, insufficient to link it to a particular neural architecture or function. Convergence
between models and experiments should, when possible, be tested quantitatively and not only
qualitatively, for example, by using model-based analyses to compare different possible archi-
tectures and infer physiological variables from experimental data.

Regarding the functional significance of CFC, the current challenge is to go beyond correlative
observations of CFC signatures and cognitive processes. Computational modeling provides a
promising tool because it allows direct testing of whether a biologically plausible neural circuit
may implement a given cognitive operation. The three possible roles of CFC outlined here (multi-
item representation, long-distance communication, sensory parsing) rely on substantial experi-
mental evidence but all await validation from modeling (Outstanding Questions). The syllable
parsing and recognition model we recently developed provides a first step in this direction,
indicating that a theta–gamma sensory parsing could indeed work for the special case of speech
perception [39]. For multi-item representation, this may involve constructing models of coupled
theta–gamma generation with models of theta spatial encoding in hippocampus [6,94,95]. In
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Outstanding Questions
Can recent optimal and efficient coding
theories [97] help to delineate clear
and specific functional roles for
CFC? Beyond mere phenomenological
approaches, computational modeling
using realistic neural networks together
with optimality constraints will be nec-
essary to prove the utility of CFC-based
mechanisms for neural processing.

Can the general rules linking network
physiology to CFC signatures pre-
sented in this review (and summarized
in Table I in Box 2) be explained in a
mathematical theory of neural CFC?
These rules were distilled by generaliz-
ing from various computational studies
focusing on specific neural networks;
their validity needs to be confirmed
using the tools of dynamic systems
analysis.

How can we distinguish CFC as a func-
general, the CFC schemes will have to prove their functional relevance in comparison to
alternative non-oscillatory encoding models. In complement to computational modeling,
optogenetics provides a causal tool to intervene on the mechanisms of generation of
coupled oscillations and pin down the specific role of CFC and of distinct neural subpo-
pulations [96].

Concluding Remarks
The coupling between neural oscillations may take a variety of forms, emerge from different
architectures, and underpin distinct functions. However, causal relationships between neural
CFC and cognitive functions are yet to be demonstrated. We hope that, by clarifying the
concepts and the relationships between mechanisms and function, the framework we outlined
here will stimulate original research and hence contribute to filling conceptual and empirical gaps.
Essential future developments in this research agenda include combining theoretical and
experimental work, in particular using optogenetics to test the dependence of various cognitive
operations on specific forms of CFC.
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